
Phase-Aware CPU Workload Forecasting

Erika S. Alcorta1, Pranav Rama1, Aswin Ramachandran2, and Andreas
Gerstlauer1

1 The University of Texas at Austin, Austin TX, USA
{esalcort, pranavrama9999, gerstl}@utexas.edu

2 Intel Corporation, Austin TX, USA
aswin.ramachandran@intel.com

Abstract. Predicting workload behavior during execution is essential
for dynamic resource optimization of processor systems. Early studies
used simple prediction algorithms such as a history tables. More re-
cently, researchers have applied advanced machine learning regression
techniques. Workload prediction can be cast as a time series forecasting
problem. Time series forecasting is an active research area with recent
advances that have not been studied in the context of workload predic-
tion. In this paper, we first perform a comparative study of representative
time series forecasting techniques to predict the dynamic workload of ap-
plications running on a CPU. We adapt state-of-the-art matrix profile
and dynamic linear models (DLMs) not previously applied to workload
prediction and compare them against traditional SVM and LSTM mod-
els that have been popular for handling non-stationary data. We find
that all time series forecasting models struggle to predict abrupt work-
load changes. These changes occur because workloads go through phases,
where prior work has studied workload phase detection, classification and
prediction. We propose a novel approach that combines time series fore-
casting with phase prediction. We process each phase as a separate time
series and train one forecasting model per phase. At runtime, forecasts
from phase-specific models are selected and combined based on the pre-
dicted phase behavior. We apply our approach to forecasting of SPEC
workloads running on a state-of-the-art Intel machine. Our results show
that an LSTM-based phase-aware predictor can forecast workload CPI
with less than 8% mean absolute error while reducing CPI error by more
than 12% on average compared to a non-phase-aware approach.

Keywords: Run time workload prediction · time series forecasting.

1 Introduction

Predicting dynamic workload behaviors has become an essential step in optimiz-
ing hardware resources at runtime. For example, anticipating an application’s
memory intense period can result in power savings if the power management
module switches the core frequency promptly. In addition to power manage-
ment, prediction of workload metrics such as CPI has also been exploited in a

2 E. Alcorta et al.

variety of applications including reduction of task interference in multi-tenant
systems [13], task migration and scheduling [19], and defending against side-
channel attacks [17]. Predictions allow systems to behave proactively instead of
reactively. It has been previously shown that proactive decisions yield better
optimization results [1]. However, proactive approaches are challenging because
they require predicting the future.

Looking at the past is often a reliable way of estimating the future. Pro-
gram applications specifically present variable workload behaviors throughout
their execution and many of them exhibit periodic trends or patterns. Workload
prediction techniques exploit these characteristics to estimate future behaviors.
Early work in dynamic workload forecasting investigated basic methods such as
exponential averaging and history tables [7]. Later studies proposed more ad-
vanced approaches, ranging from linear regression [20] to, more recently, recur-
rent neural networks (RNNs) [13]. Their objective is to minimize the forecasting
error of periodically measured CPU workload metrics, such as CPI. This peri-
odic collection of metrics forms a time series; hence, runtime workload behavior
forecasting is formally a time series forecasting problem [6, 7, 20, 26].

Time series analysis has been studied for numerous applications, such as stock
price prediction, earthquake detection and traffic forecasting [15]. Researchers
have proposed many recent advances in these fields that have not been studied
in the context of dynamic workload forecasting. In this paper, we first perform
a comparative study of representative time series forecasting models applied to
predicting CPU workload metrics on a single core. We focus on models that
can handle non-stationary program behaviors. We compare classic support vec-
tor machine (SVM) [21] and RNN-based long-short term memory (LSTM) [8]
regressors against auto-regressive dynamic linear models (DLMs) [11] from the
controls domain as well as predictors based on state-of-the-art matrix profile
(MP) [27] time series data mining models.

Our results show that all time series forecasting techniques struggle to pre-
dict abrupt workload changes. Such changes occur because workloads go through
phases. Program phases and their detection, classification and prediction at
runtime have been extensively studied [4]. Phase predictors excel at predict-
ing abrupt workload changes since, by definition, a phase is composed of inter-
vals of execution with similar behaviors. A change of phase is thus a change in
average workload behavior. We propose to complement time series forecasting
with phase classification and prediction. Our approach trains multiple regression
models, one per program phase. At runtime, sampled workload traces are fed
into the appropriate phase-specific model and forecasted workload metrics are
selected and concatenated based on the output of a phase classifier and predictor.
Our results show that complementing time series forecasting with phase predic-
tion consistently decreases the forecasting error of all forecasting techniques and
programs that go through phases.

We summarize the contributions of this paper as follows:

1. We perform a comparative study of representative time series forecasting
techniques to predict application workload behavior at run time. Our com-

Phase-Aware CPU Workload Forecasting 3

parative study includes state-of-the-art time series techniques that, to the
best of our knowledge, have not previously been adopted for time series
forecasting before.

2. We propose to complement time series forecasting techniques with phase
prediction by implementing a separate forecaster per workload phase, which
results in significant reductions of forecasting errors for all benchmarks.

3. We perform our study and evaluate our approach for prediction of large-scale
SPEC benchmark behavior running on state-of-the-art CPUs for up to 20
time steps into the future. Results show that a phase-aware LSTM provides
the best predictions, where a phase-aware approach improves prediction ac-
curacy by more than 12% compared to a non-phase-aware setup.

The remainder of this paper is organized as follows. We review the related
work in the next section. In Section 3, we provide background about the forecast-
ing models that we evaluate. We summarize the workload forecasting formulation
and explain how we complement it with phase prediction in Section 4. Section 5
presents the experimental methodology and Section 6 shows our results. Finally,
we present our conclusions in Section 7.

2 Related Work

Time series analysis applications are prevalent in economics, demography, indus-
trial process control, etc. [15]. Time series forecasting has been used in a wide
range of computing applications as well. In [3], the auto-regressive moving aver-
age (ARMA) model was compared against exponential averaging, history table
predictor, and least squares regression for thermal prediction in multiprocessor
SoCs. In data centers, forecasting has been used to predict cluster utilization [24].
Nikravesh et al. [16] noticed that SVMs and MLPs have comparative accuracies
in predicting data center user requests over time. Matrix profile is a state-of-the-
art technique used for time series motif discovery and analysis [27]. It has been
applied in detecting anomalies in CPU utilization traces of various workloads [5].
However, existing work has not studied matrix profile for time series prediction.
In our work, we specifically demonstrate its adoption for workload forecasting.

Early studies in forecasting dynamic workload metrics proposed basic sta-
tistical and table-based predictors. Duesterwald et al. [7] compared a last-value
predictor with exponentially weighted moving average (EWMA) and history
predictors to forecast instructions per cycle (IPC) and L1D cache misses. The
history table predictor resulted in the lowest mean absolute error (MAE). An-
other study [20] evaluated linear regression to forecast IPC. The results show
that they have a lower MAE than the last-value predictor. Kalman filters have
been recently used in the context of CPU workload prediction [14]. They are
used to predict cycles per instruction (CPI) to optimize dynamic energy man-
agement. One of the forecasting models that we study in this work is DLM [11],
which uses a state-space representation similar to Kalman filters. It additionally
can capture short-term periodicity and trends in time series, but has not been
applied to workload prediction before. Advanced machine learning techniques

4 E. Alcorta et al.

have shown to be more accurate than traditional predictors. Zaman et al. [26]
found that a SVM regressor results in the lowest MAE when forecasting various
performance counters. They compared an SVM against last-value, history table,
and ARMA predictors. ARMA is an auto-regressive predictor that assumes that
the time series is stationary. Since workload behaviors are not stationary, we
include DLM as representative auto-regressive technique that does not assume
stationarity. With recent popularity of RNNs, a later study [13] investigated the
design space of LSTMs to forecast IPC and other metrics of workloads when
they are co-allocated with other tasks in data centers. They compared LSTMs
against linear regression and MLPs, concluding that LSTMs result in the highest
coefficient of determination (R2) scores.

Multiple studies have proposed to detect and classify workload phases us-
ing hardware counters. Early work [9] categorized the memory-boundedness of
a workload into phases. A more recent study [10] uses unsupervised learning to
cluster samples of hardware counters. In addition to detection and classification,
studies in phase prediction focus on predicting discrete workload transitions, i.e.,
its phase changes. In [9], a global phase history table was proposed. In [10] a
genetic algorithm uses phase labels and other parameters for thermal prediction,
where changes occur at a slower pace as opposed to CPU workload prediction,
where changes can be abrupt. Laun et al. [12] compared Markov tables with
last-value predictors. They observed that the same phase is detected in con-
secutive sampling periods and proposed to use run-length encoding to predict
phase changes and estimate phase duration interval ranges. This observation has
been made in more recent studies as well. Srinivasan et al. [23] proposed a lin-
ear adaptive filter to predict the duration of classified phases. To the best of our
knowledge, however, there is no existing work that has short-term workload time
series forecasting with phase prediction to capture long-term patterns. In this
work, we aim to evaluate how the notion of phases impacts forecasting accuracy
orthogonal to any specific phase prediction approach. As such, we implement an
oracle predictor and leave research into phase predictors for forecasting to future
work.

3 Background

This section describes in further detail the models that we evaluate in this study.

Support Vector Machines (SVMs) An SVM is a supervised learning model whose
objective is to minimize an error bound instead of minimizing residuals. This
objective has the purpose of generalizing unseen data [21]. We use SVMs for
regression, which is commonly referred to as support vector regression (SVR).
It is common to apply non-linear transformations, called kernels, to the SVM’s
input space. In this work, we show the performance of both linear and kernel
SVRs. We use a radial-basis function (RBF) as kernel, which is expected to im-
prove accuracy compared to a linear SVR at the expense of computational cost.
SVMs take a vector of features as their input. Thus, we convert the multivariate

Phase-Aware CPU Workload Forecasting 5

history window to a single-dimensional space. In our study, when the forecast
horizon, k, is greater than 1, multiple SVM models are learned independently.

Dynamic Linear Models (DLMs) Dynamic linear models (DLMs) [11] are re-
cursive models formulated as state space models with state parameters corre-
sponding to the structure of the time series. We include DLM components for
the general trend of the time series, seasonality of a given size (to capture pe-
riodicity) and dynamic regression with predictor variables. These components
are combined into state space form to iteratively estimate the next step in time
series given the previous inputs of a certain window size. Due to the iterative
nature, the model can only consider the previous input window to make a predic-
tion. Making the window size and seasonality too large might result in infeasible
computation time. As such, this model is suitable for short term but not long
term periodicity.

Long-Short Term Memory (LSTM) LSTM networks are a type of RNN whose
structure is characterized by having a memory unit that holds long-term infor-
mation. The architectures used in this work is composed out of one or more
stacked LSTM layers and one fully connected layer. The LSTM layers process
the inputs in the time domain to encode a feature vector that the fully con-
nected layer uses to output the forecasts. This architecture is formally classified
as an acceptor LSTM. The fully connected layer has k output neurons, which
simultaneously predict each value of the forecast horizon.

Matrix Profile (MP) Matrix profile is a recent and fast algorithm for uni-variate
time series motif discovery [27]. Motifs are defined as pairs of subsequences of
the same time series that are very similar to each other. We propose to adopt
matrix profile for workload forecasting by finding a window in a workload time
series yt that is most similar to the most recent window of size h, (yt−h+1, ..., yt).
The samples that follow the most similar window are then used as the forecast
values at time t. In other words, there is a subsequence (yv−h+1, ..., yv), v+ h <
t, that matrix profile finds to be the most similar to (yt−h+1, ..., yt). The k
samples that follow v are then used as the forecast at time t, i.e. (ŷt+1, ..., ŷt+k) =
(yv+1, ...yv+k)

4 CPU Workload Forecasting

In the following, we first summarize the task of forecasting CPU workload metrics
as used in this work. We then describe our proposal to combine forecasting with
phase detection and prediction.

4.1 Basic Forecasting

Workload time series are formed from hardware counter data collected using
the CPU’s performance monitoring units (PMU). Multiple PMU counters are

6 E. Alcorta et al.

Forecast

Forecast

Fig. 1: Example of forecasting executions of two different phases of nab

collected each period, resulting in a multivariate time series. The forecasting
techniques focus on predicting one of the counters and may use the rest of them
as inputs for additional information. We run different programs and consider the
execution of each program as a separate time series forecasting task.

Formally, each multivariate time series U ∈ Rn×m is composed out of n
observations of m variables. In the case of workload metric forecasting, the value
of m depends on the maximum number of PMU counters that can be collected
at the same time. We are interested in predicting one of the m variables, y ∈ U .
The observation of this variable at time t, 1 ≤ t ≤ n, is denoted as yt. We are
interested in predicting k future values of y at time t, (ŷt+1, ..., ŷt+k), using only
past observations Ui, i ≤ t. k is known as the forecast horizon. At each step t,
a predictor generally takes as input a history window of size h, (Ut−h+1, ..., Ut).
In summary, the time series forecasting problem can be formalized as follows:

(ŷt+1, ..., ŷt+k) = mp,w

(
(Ut−h+1, ..., Ut)

)
, (1)

where mp,w represents the trained model function of predictor p with its set of
trainable parameters w.

Finding model parameters w is a supervised learning problem. We use a sub-
set of observations t in U with known true values ŷ to create a training data
set. During prediction at runtime, we use sliding windows of h history values for
every new time step t in the test set to predict k future values rooted at t.

4.2 Phase-Aware Forecasting

As our results will show, basic forecasting techniques show low prediction ac-
curacy for workloads that exhibit distinct long-term phase behavior, even when
those phases repeat over time. We propose to alleviate this problem by expanding
the scope of time series forecasting using phase detection and prediction. Figure 1
shows the intuition behind our approach. The center of the figure shows a snip-
pet of the nab workload going through two different phases, highlighted as red
and green regions. We partition the trace based on phases, concatenate the sub-
traces, and train a predictor specific to each phase. The forecasts belonging to a

Phase-Aware CPU Workload Forecasting 7

𝑚𝑝,𝑤1

𝑚𝑝,𝑤𝑐

𝑉1,𝑡′

Phase
classifier 𝜃

𝑚𝑝,𝑤2𝑉2,𝑡′

Ƹ𝑧1,𝑡′+𝑘

Ƹ𝑧2,𝑡′ +𝑘

Ƹ𝑧𝑐,𝑡′+𝑘

𝑈𝑡 ො𝑦𝑡+𝑘

…

𝑉𝑐,𝑡′

Phase
predictor 𝜓

Phase-based
forecasting

models

P
h

as
e

se
p

ar
at

io
n

Fo
re

ca
st

 r
ec

o
n

st
ru

ct
io

n

…

Fig. 2: Phase-aware workload forecasting.

phase are thus only dependent on the history of that phase, and phase-specific
predictors can be specialized to a single phase to increase accuracy. Finally, with
knowledge of the future phase behavior, phase-specific forecasts are concatenated
and assembled to reconstruct the forecast for the overall time series.

Formally, we use c to denote the total number of distinct phases that a
workload cycles through. An overview of our phase-aware forecasting approach
is shown in Figure 2. Our approach consists of four high-level stages: (1) phase
classification and separation, (2) phase-based forecasting, (3) phase prediction,
and (4) forecast reconstruction. In the following, we formalize each step in detail.

Phase Classification and Separation A phase classifier, Θ, maps each sam-
ple, Ut, to a phase, αt, 1 ≤ αt ≤ c:

αt = Θ(Ut). (2)

The samples of U that share the same phase, i, are concatenated into a single
vector. In total, there are c disjoint time series Vi, defined as follows:

Vi =
(
Ut|αt = i

)
, 1 ≤ i ≤ c (3)

with observations Vi,t′ , where t′ represents the mapping of original observations
Ut into a new time dimension t′ for each series. Note that the following conditions
must be true:

U =
c⋃
i=1

Vi, and
c⋂
i=1

Vi = ∅. (4)

8 E. Alcorta et al.

Phase-Based Forecasting Each new time series, Vi is processed by a different
model mp,wi

, where p again denotes the prediction technique and wi the corre-
sponding set of trained parameters. Note that all models use the same model
architecture and predictor type, i.e. they differ only in trained parameters. The
models are otherwise handled in the same way as in Section 4.1; they use h
samples to forecast k values of a predicted variable zi ∈ Vi as follows:

(ẑi,t′+1, ..., ẑi,t′+k) = mp,wi

(
(Vi,t′−h+1, ..., Vi,t′)

)
. (5)

Phase Prediction A phase predictor, ψ, further takes outputs αt from the
phase classifier to predict k future phases at time t based on the history of d
previous phases. In other words:

(α̂t+1, ..., α̂t+k) = ψ
(
(αt−d+1, ..., αt)

)
. (6)

Forecast Reconstruction Finally, since the forecasting models mp,wi
are un-

aware of their interactions and relationships to the original time series, we use
the outputs α̂t from the phase predictor to select those values of ẑi,t′ that should
be output as overall forecast ŷt. Formally:

(ŷt+1, ..., ŷt+k) = (ẑα̂t+1,t′+1, ..., ẑα̂t+k,t′+k). (7)

5 Experimental Methodology

To generate the workload traces, we use a subset of programs from the SPEC
CPU 2017 benchmark suite [22]. The subset was chosen to represent different
representative workload phase behaviors: a uniform pattern (nab), abrupt tran-
sitions (cactuBSSN), hard to predict non-stationary patterns (mcf), long phase
durations (xz), and workloads with only a single phase (perlbench). We used the
ref inputs given by the benchmark suite. The execution time of all workloads
is more than one minute, which provides enough data to train the forecasting
models. Table 1 summarizes the workloads and their phase characteristics.

Our target platform is an Intel Xeon-SP running Ubuntu 18.04. We collect
PMU counters every 10ms using Intel’s EMON command-line tool. We con-
strained our data features to the number of PMU events that can be accessed
simultaneously. In the case of the Intel Xeon-SP platform, 4 fixed counters and
up to 8 variable counters can be sampled per core (or uncore) simultaneously. In
addition to fixed instruction and cycle counters, we selected 8 counters for predic-
tion that can characterize the workload behaviors by their memory boundedness
(L2 accesses, L2 hits and L3 misses, i.e. main memory accesses), control flow
predictability (retired total and mispredicted branch instructions), and opera-
tion mix (retired floating point operations). We also use executed µOps and stall
cycles to account for other resources stalling the CPU pipeline execution. Nor-
malizing the PMU counters to the number of instructions yielded more accurate
results for all multi-variate models. We also found that reducing dimensionality

Phase-Aware CPU Workload Forecasting 9

Table 1: Benchmark summary.
Benchmark Samples No. of phases Avg. phase length

cactuBSSN 202,179 5 167

mcf 52,673 5 599

nab 170,251 5 231

perlbench 16,462 1 —

xz 126,669 4 7,037

with principal component analysis (PCA) improves the performance of SVR and
LSTM models. Finally, we applied a median filter to the data to eliminate noise.
A median filter was preferred over other smoothing techniques for its ability to
preserve workload behavior changes.

CPI is used as the variable of interest, y, to compare our models. The rest
of the collected performance counters are used by some of the models as inputs.
The matrix profile algorithm is designed for uni-variate time series; therefore,
we only use CPI as input. The rest of the models use the other counters in a
multi-variate fashion as described in Equation (1).

We split each time series into 70% of samples used for training, hyperpa-
rameter tuning and model selection, and 30% of samples for testing. We use the
mean absolute percentage error (MAPE) between measured and predicted CPI
to evaluate our forecasting models. We set a fixed forecast horizon of all models
of k = 20. With this, we compute a separate MAPEi for every step 1 ≤ i ≤ k
in the forecast horizon as follows:

MAPEi =
100%

n

n−k∑
t=1

(
|yt+i − ŷt+i|

yt+i

)
(8)

When comparing different models, we look at the average MAPE (AMAPE) of

all 20 predictions: AMAPE = 1
k

∑k
i=1MAPEi.

In addition to evaluating forecast errors, we measured the inference time
corresponding to one prediction step. To perform a fair comparative study, we
run the inference of all forecasting models on the same machine, an Intel Core i9-
9900K running Debian 9.13. We use Python’s time standard library to measure
the inference time. The frameworks that we use to implement and train our
forecasting models are PyDLM [25] for DLM, scikit-learn [18] for SVM, Keras [2]
for LSTM, and PySCAMP [28] for matrix profile.

To evaluate the benefits of phase-aware forecasting independent of a specific
phase prediction approach that comes with its own inaccuracies, we use an oracle
phase predictor. We focus our work on the study of forecasting models in phase-
aware versus -unaware settings, and leave the selection of phase predictors to
future work.

10 E. Alcorta et al.

6 Experimental Results

We first discuss tuning of hyperparameters and selection of forecasting model
architectures. We then evaluate and compare accuracy of different phase-aware
versus -unaware variants of each model. As described above, we use 70% of the
trace of each benchmark for training and 30% for testing. For hyperparameter
tuning and model selection, we further split the training set into 50% of samples
used for exploration, i.e. to train the models with different hyperparameters,
and 20% used for validation, i.e. to select the best parameters based on the
average performance across benchmarks. We then train the final models with
the complete 70% of samples and use the remaining 30% in the test set to
evaluate accuracy of each forecasting technique.

6.1 Hyperparameter Tuning and Model Selection

We evaluate each technique’s sensitivity to history window size, h, and other
relevant model parameters to select the best overall architecture for each model.
Figure 3 shows the exploration of all forecasting models. We plot the tradeoff
between the mean AMAPE across all benchmarks on the y-axis and the inference
time on the x-axis. We also show the finally selected hyperparameters of each
model with a dotted green circle on each figure.

For SVMs (Figure 3a), we explored both linear and RBF kernels. Given
inherently non-linear workload behavior, RBF kernels show significantly better
accuracy, but come at the expense of higher computational cost. Window size
impacts inference time with an RBF kernel, where more complex models with
larger input features increase computation time. By contrast, the forecast error
is very similar across window sizes. In general, a window size that is too small to
capture workload periodicity will result in larger errors. At the same time, very
long window sizes result in a model that averages samples instead of learning
their interactions. The optimal window size strongly depends on the workload,
however. The mean AMAPE is lowest for a window size of 70, but smaller window
sizes have better accuracy for nab while larger window sizes are better for xz.
We chose a window size of h = 50 due to its faster inference time and mean
AMAPE that is very close to h = 70 (less than 1% difference).

For DLM (Figure 3b), in addition to history window sizes, we selected sea-
sonality (periodicity) through validation. Larger periodicity improves accuracy
regardless of the window size, albeit at the cost of a significant increase in compu-
tation time. Window sizes show similar accuracy and inference time trends than
in SVMs, but they have a stronger impact on accuracy for DLMs. Medium win-
dow sizes show best accuracy at intermediate computation costs. These trends in
window sizes and periodicity were consistent in all benchmarks. The best mean
AMPAE with reasonable computation time was found to be for a window size of
h = 80 with periodicity of 100. Our DLM model also includes a degree 2 trend
component and a multivariate dynamic regression component with 8 predictor
variables. The DLM was found to do better with the multivariate predictor vari-
able component compared to without it.

Phase-Aware CPU Workload Forecasting 11

50%

0 1 2 3 4 5 6 7 8 9 10 11 12
Inference time (ms)

10%

15%

M
ea

n
AM

AP
E

h
5
10
20

50
70
100
200

kernel
linear
rbf

(a) SVM exploration

10 20 30 40 50 60 70 80
Inference time (ms)

50%

60%

70%

80%

90%

100%

M
ea

n
AM

AP
E h

20
50
70

80
100
150

period
80
100

(b) DLM exploration

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Inference time (ms)

10%

15%

20%

25%

M
ea

n
AM

AP
E

h
5
10
20
50

70
100
200
300

layers
1
2
4

features
16
40
128

(c) LSTM exploration

6 8 10 12 14
Inference time (ms)

10%

15%

20%

25%

M
ea

n
AM

AP
E

h
100
200
500
1000

(d) MP exploration

Fig. 3: Exploration of the forecasting techniques hyperparameter space.

The exploration of LSTM hyperparameters (Figure 3c) included the number
of LSTM layers and the number of features per layer in addition to input win-
dow size h. They all impact the computational costs, with fewer features, fewer
layers and smaller window sizes being faster. Having more features reduces the
forecasting error. This is a trend we observed across all benchmarks except perl-
bench, which showed an opposite trend. We thus selected 128 as the number
of features. A smaller number of layers generally decreases mean AMAPE, but
the impact on forecasting error is dependent on the number of features and the
workload. For example, for nab, increasing the number of layers with 16 features
reduces AMAPE, but the trend is opposite with 40 features. The models with
lowest mean AMAPE, however, all have 1 and 2 layers. As such, we chose 1 layer
for our final model as the inference time is faster and the mean AMPE difference
is not significant. The window sizes with lowest mean AMAPE were 70 and 100.
The best performing window, however, was different for each benchmark. The
best window size was 100 for cactuBBSN, 70 for mcf, 50 for nab and 10 for xz.

12 E. Alcorta et al.

cactuBSSN mcf nab perlbench xz mean

1%

10%

100%

AM
AP

E
(lo

g
sc

al
e)

MAPE
MAPE

DLM
DLM-PA

SVM
SVM-PA

LSTM
LSTM-PA

MP
MP-PA

Fig. 4: Accuracy of phase-unaware versus -aware (PA) models.

Similar to SVM and DLM models, the error decreases up to those values and
then increases again. The mean AMAPE is best for h = 100, which is what we
chose in the end.

Finally, the range of window sizes that we show for matrix profile (Figure 3d)
is at a larger scale than the other forecasting techniques. This is because MP did
not perform well with smaller window sizes. Similar to other models, we observed
that for most benchmarks, the forecast error decreases with increasing window
sizes up to a certain value, while larger window sizes increase computational
cost. The only benchmark that was not significantly impacted in accuracy by
the window size was xz. The best mean AMAPE for matrix profile was for
h = 500, which we chose for this model.

Overall, with the exception of DLM, all models show similar validation accu-
racies and inference times. DLM, however, is both significantly more inaccurate
and slower than other approaches. The technique with the fastest inference time
is SVM with 2.1ms, followed by LSTM with 3.9ms, matrix profile with 9.8ms
and lastly, DLM with 46ms. These time measurements were taken with the pur-
poses of comparing the inference times of different models relative to each other
in their base software implementation. Further investigation is required to opti-
mize their implementations and reduce overhead for actual deployment, e.g., by
pruning or hardware acceleration. We evaluate final model accuracy for the test
set in the next section.

6.2 Accuracy Evaluation

Figure 4 shows the accuracy comparison of all four forecasting techniques using
a basic and our proposed phase-aware (PA) setup. In addition to AMAPE, the
graph also shows the range of MAPE1 and MAPE20 across the nearest and
farthest prediction in the forecast horizon for each model and benchmark. Most
benchmarks and models show that the closest forecast is more accurate than the
farthest, with the mean between them.

Phase-Aware CPU Workload Forecasting 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Forecast step

0%
1%
2%
3%
4%
5%
6%

M
AP

E
LSTM LSTM-PA

Fig. 5: Accuracy per forecast steps of phase-aware and -unaware LSTM for xz.

When comparing traditional models with phase-aware approaches, results
show that using phase-specific models consistently decreases the forecasting error
of all techniques for all benchmarks except perlbench. The workload traces of
perlbench do not go through phases and there is no room of improvement for
phase-aware forecasting.

We observe that cactuBSSN exhibits the most impact in forecasting error
reduction with a phase-aware approach. Some of its transitions between phases
have very abrupt changes where the CPI value increases by 500%. Any mispre-
dictions of these transitions result in very large error penalization. This is also
reflected in the large variation in errors between the first and last prediction in
the forecast horizon. A phase-unaware LSTM in particular struggles to predict
those changes and benefits significantly from a phase-aware approach. By con-
trast, mcf is impacted the least from phase-aware models and generally exhibits
poor accuracy and larger error variations. This is because its phases continu-
ously change and reduce in length over time, which makes the workload hard to
predict overall. Note that matrix profile in particular cannot accurately predict
this trend since its predictions are purely based on recalling past behavior un-
changed. As opposed to mcf, the phases of nab have repetitive uniform patterns,
where phase-aware models have a significant impact in decreasing forecast error.
A basic LSTM is able to accurately learn both short-term and long-term phase
patterns for this workload, but its phase-aware counterpart still had room for
improvement.

Finally, Figure 5 shows the MAPE of all steps in the forecast horizon of a
phase-aware and -unaware LSTM when predicting xz. While a phase-unaware
LSTM provides good AMAPE across all steps, it shows high maximum errors due
to its inability to predict phase changes with larger CPI jumps for this workload.
The phase-unaware LSTM will sometimes predict a phase change when there
is none or will fail to predict a change at the right time, which results in large
errors for certain forecast steps. By contrast, the phase-aware LSMT shows small
variations in errors across steps with a general trend of slightly increasing errors
the further the predictions are made into the future.

14 E. Alcorta et al.

7 Summary and Conclusions

In this paper, we formulated runtime CPU workload prediction as a time series
forecasting problem and performed a comparative study among different repre-
sentative techniques including classical auto-regressive (DLM), machine learn-
ing (SVM and LSTM), and a state-of-the-art motif discovery (matrix profile)
approach that we proposed for workload forecasting. We showed that the main
challenge in workload forecasting is the prediction of abrupt changes due to work-
load phase behavior. We proposed a novel phase-aware forecasting approach that
leverages phase classification and prediction to separate time series into phases
and train a separate, specialized prediction model for each phase. Results on
a subset of SPEC 2017 benchmarks running on a state-of-the-art workstation
show that phase-aware forecasting improves MAPE by 14% on average across
different models and benchmarks. A phase-aware LSTM was the best performing
predictor with less than 8% average MAPE across benchmarks and a forecast
horizon of 20 steps. By contrast, a phase-aware SVM is almost twice as fast but
at decreased accuracy of 13% MAPE. A phase-aware matrix profile predictor can
in some cases outperform an LSTM, but at much higher computational cost.

Future work includes investigating phase-aware forecasting for a wider range
of workloads, integrating phase predictors to complement phase-aware models,
approaches for online training of predictors, efficient hardware or software de-
ployment of predictors, application of phase-aware workload forecasting to vari-
ous use cases such as power management or system scheduling, as well as work-
load forecasting for multi-threaded workloads running in multi-core settings,
where task interference effects are considered in phase classification, detection
and forecasting.

Acknowledgments

We thank the anonymous reviewers for their valuable feedback. This work was
supported in part by Intel and NSF grant CCF-1763848.

References

1. Ababei, C., Moghaddam, M.G.: A survey of prediction and classification techniques
in multicore processor systems. IEEE TPDS 30(5), 1184–1200 (2018)

2. Chollet, F., et al.: Keras. https://keras.io (2015)
3. Coskun, A.K., Rosing, T.S., Gross, K.C.: Utilizing predictors for efficient thermal

management in multiprocessor SoCs. IEEE TCAD 28(10), 1503–1516 (2009)
4. Criswell, K., Adegbija, T.: A survey of phase classification techniques for charac-

terizing variable application behavior. IEEE TPDS 31(1), 224–236 (2019)
5. Dieter De Paepe, O.J., Hoecke, S.V.: Eliminating noise in the matrix profile. In:

ICPRAM (2019)
6. Dietrich, B., et al.: Time series characterization of gaming workload for runtime

power management. IEEE TC 64(1), 260–273 (2015)

Phase-Aware CPU Workload Forecasting 15

7. Duesterwald, E., Cascaval, C., Dwarkadas, S.: Characterizing and predicting pro-
gram behavior and its variability. In: PACT (2003)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation
9(8), 1735–1780 (1997)

9. Isci, C., Contreras, G., Martonosi, M.: Live, runtime phase monitoring and predic-
tion on real systems with application to dynamic power management. In: MICRO
(2006)

10. Khanna, R., John, J., Rangarajan, T.: Phase-aware predictive thermal modeling
for proactive load-balancing of compute clusters. In: ICEAC (2012)

11. Laine, M.: Introduction to Dynamic Linear Models for Time Series Analysis, pp.
139–156. Springer (2020)

12. Lau, J., Schoenmackers, S., Calder, B.: Transition phase classification and predic-
tion. In: HPCA (2005)

13. Masouros, D., Xydis, S., Soudris, D.: Rusty: Runtime system predictability lever-
aging LSTM neural networks. IEEE CAL 18(2), 103–106 (2019)

14. Moghaddam, M.G., Ababei, C.: Dynamic energy management for chip multi-
processors under performance constraints. Microprocessors and Microsystems 54,
1–13 (2017)

15. Montgomery, D.C.: Introduction to Time Series Analysis and Forecasting. Wiley
(2015)

16. Nikravesh, A.Y., Ajila, S.A., Lung, C.: Towards an autonomic auto-scaling predic-
tion system for cloud resource provisioning. In: SEAMS (2015)

17. Nomani, J., Szefer, J.: Predicting program phases and defending against side-
channel attacks using hardware performance counters. In: HASP (2015)

18. Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. JMLR 12, 2825–
2830 (2011)

19. Rapp, M., Pathania, A., Mitra, T., Henkel, J.: Prediction-based task migration on
S-NUCA many-cores. In: DATE (2019)

20. Sarikaya, R., Buyuktosunoglu, A.: Predicting program behavior based on objective
function minimization. In: IISWC (2007)

21. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statistics and
Computing 14(3), 199–222 (2004)

22. SPEC CPU®. https://www.spec.org/cpu2017/index.html (2017)
23. Srinivasan, S., Kumar, R., Kundu, S.: Program phase duration prediction and its

application to fine-grain power management. In: IEEE Computer Society Annual
Symposium on VLSI. pp. 127–132 (2013)

24. Vashistha, A., Verma, P.: A literature review and taxonomy on workload prediction
in cloud data center. In: Confluence (2020)

25. Wang, X.: Pydlm user manual. https://pydlm.github.io/ (2016)
26. Zaman, M., Ahmadi, A., Makris, Y.: Workload characterization and prediction: A

pathway to reliable multi-core systems. In: IOLTS (2015)
27. Zhu, Y., et al.: The swiss army knife of time series data mining: Ten useful things

you can do with the matrix profile and ten lines of code. Data Mining and Knowl-
edge Discovery 34(4), 949–979 (2020)

28. Zimmerman, Z., et al.: Matrix profile XIV: Scaling time series motif discovery
with GPUs to break a quintillion pairwise comparisons a day and beyond. In:
SoCC (2019)

