
Learning based Memory Interference Prediction for
Co-running Applications on Multi-Cores

Ahsan Saeed1,2, Daniel Mueller-Gritschneder2, Falk Rehm1, Arne Hamann1,
Dirk Ziegenbein1, Ulf Schlichtmann2 and Andreas Gerstlauer3

1Robert Bosch GmbH, 2Technical University of Munich, 3The University of Texas at Austin
{ahsan.saeed,falk.rehm,arne.hamann,dirk.ziegenbein}@de.bosch.com,
{daniel.mueller,ulf.schlichtmann}@tum.de, gerstl@ece.utexas.edu

Abstract—Early run-time prediction of co-running indepen-
dent applications prior to application integration becomes chal-
lenging in multi-core processors. One of the most notable causes is
the interference at the main memory subsystem, which results in
significant degradation in application performance and response
time in comparison to standalone execution. Currently available
techniques for run-time prediction like traditional cycle-accurate
simulations are slow, and analytical models are not accurate
and time-consuming to build. By contrast, existing machine-
learning-based approaches for run-time prediction simply do not
account for interference. In this paper, we use a machine learning-
based approach to train a model to correlate performance data
(instructions and hardware performance counters) for a set of
benchmark applications between the standalone and interference
scenarios. After that, the trained model is used to predict the
run-time of co-running applications in interference scenarios. In
general, there is no straightforward one-to-one correspondence
between samples obtained from the standalone and interference
scenarios due to the different run-times, i.e. execution speeds. To
address this, we developed a simple yet effective sample alignment
algorithm, which is a key component in transforming interference
prediction into a machine learning problem. In addition, we
systematically identify the subset of features that have the highest
positive impact on the model performance. Our approach is
demonstrated to be effective and shows an average run-time
prediction error, which is as low as 0.3% and 0.1% for two
co-running applications.

Index Terms—run-time, prediction, machine learning, inter-
ference, co-running, microprocessor, sample alignment, memory
interference

I. INTRODUCTION

Early performance prediction is one of the major challenges
for co-running or co-locating independent (e.g. virtualized)
applications on multi-core processors or on the same server in
the cloud. In the automotive industry, for example, the current
trend is to combine multiple distributed electrical/electronic
(E/E) systems towards a more centralized design where mul-
tiple functions are consolidated onto powerful multi-core and
multi-processor systems-on-chip (MPSoCs).

Building such multi-core processor platforms imposes new
challenges for a system designer as well application develop-
ers, given that these powerful platforms typically feature mul-
tiple processing elements, sharing some hardware resources
like the interconnect and the main memory. Emerging ap-
plications, such as assisted driving, require a lot of memory,

and the additional delay caused by memory contention cannot
be ignored because it has a significant impact on run-time.
Modern multi-core processor platforms, on the other hand,
are extremely complex and are designed for performance
rather than predictability. As a consequence, when applications
are co-run, interference through shared resources leads to
undesired application performance coupling [1] and as a result,
non-negligible context-dependent execution-time variability.

With such effects, prediction of the response time of an
application is non-trivial since these contention effects are
very difficult to analyze. Contention effects can be evaluated
by simply co-running the applications. However, in many
cases, different parties develop applications independently, and
sharing applications between them is not possible due to the
involvement of intellectual property (IP). Similarly, in a server
or cloud context, an operating system (OS) should be able
to estimate the performance impact of co-location decisions
before committing them. As such, it is highly desirable to
evaluate the timing characteristics of the entire platform (e.g.,
application response times) before co-locating tasks.

Widely adopted simulation-based approaches, such as cycle
accurate models, and traditional analytical models are not an
option for interference evaluation due to the aforementioned
application unavailability due to the involvement of IP in
addition to lacking significantly in speed and accuracy re-
spectively. Machine-learning based approaches have emerged
for application performance prediction [2]–[6], but existing
approaches do not take interference into account. Therefore,
there is a need for new methods predicting the effects of
interference on run-time of applications while representing
interfering applications in a way that does not require the
sharing of actual application themselves.

In this paper, we demonstrate how to formulate the problem
of run-time prediction of co-running applications in the multi-
core processor platform into a machine learning-based ap-
proach and propose an Interference-Aware Runtime Predictor
framework for generating the predictive model. One-to-one
correspondence of samples for machine learning between the
standalone and interference scenarios is not possible due to
the different rates of application progress in the respective
scenarios. To address this issue, we propose a novel, efficient,
and effective sample alignment algorithm that aligns the sam-
ples so that they roughly correspond to the same section of978-1-6654-3166-8/21/$31.00 ©2021 IEEE

executed code. The key contributions of this work are:
1) We propose a machine learning based approach that can

predict the run-time of co-running applications in multi-
core processors. It combines an efficient sample align-
ment algorithm based on correspondence of executed
instructions in standalone and interference scenarios
with a regression-based learning formulation to predict
the number of instructions executed per sampling period
in interference.

2) We identify and select features based on actual DRAM
utilization and hardware performance events of the
memory controller and cores to accurately represent
the execution characteristics of an application for in-
terference prediction. Additionally, we explore different
linear regression models for their suitability in modeling
interference behavior.

3) We validate our approach on a multi-core (NXP
S32V234) platform and evaluate it on an extensive set
of realistic benchmarks from the San Diego Vision
Benchmark set [7], and demonstrate its effectiveness
by predicting the average run-time of applications in
interference scenario while executing applications in
standalone only. Results show that our approach is able
to predict the average run-time with an error as low
as 0.3% and 0.1% for two co-running applications,
respectively.

II. RELATED WORK

Widely adopted simulation-based approaches estimate per-
formance of an application by executing it on cycle-accurate or
cycle-approximate instruction set simulators (ISSs) [8]–[10],
which excel in accuracy yet have substantial speed limitations.
Traditional analytic models for performance prediction of
different architectures are difficult and time-consuming to
build, and are frequently incapable of capturing the full system
and application complexity.

By contrast, learning based approaches have recently
emerged [2]–[6], which tend to be simple, fast and accurate.
However, they only execute a single task on a single core and
thus do not take interference into account. While [11] claims
to predict parallel application performance, the prediction is
intended to aid in tuning an application’s input parameters and
algorithm parameters rather than to estimate interference for
co-running applications. In general, all existing machine learn-
ing approaches rely solely on hardware performance events
within the cores, which provides insufficient information about
the underlying memory saturation and thus interference. This
prevents the predictive models from learning important ap-
plication characteristics relevant to interference scenarios. By
contrast, we propose an extensive set of features based on
actual DRAM utilization and hardware performance events of
memory controllers in addition to cores.

III. INTERFERENCE PREDICTION

An overview of the proposed approach for interference
prediction is shown in Fig. 1. The set of symbols used

TABLE I
SYMBOL TABLE.

Symbols Descriptions
N Number of cores
K Number of applications
T Number of samples in an application in standalone
j j-th application running on nth core
k k-th application running on mth core
t t-th sample in standalone scenario
s s-th sample in interference scenario
τ Sample period
i Instructions per τ in standalone scenario
f Vector of features per τ in standalone scenario
ia Aligned instructions per τ
fa Aligned vector of features per τ
i
′

Instructions per τ in interference scenario
ipred Predicted instructions
a Accumulated ipred

cpred Predicted run-time

Interference Scenario

Standalone Scenario

Sample
Alignment

Learning
Algorithm

(LAn,m)

Sample
Alignment

Predictive
Model
(PMn,m)

Hardware
Platform

Core n

...

...

Hardware
Platform

Core n

...

...

Hardware
Platform

Core m

...

...

Hardware
Platform

Core m

...

...

App. j

App. k

Hardware
Platform

Core n

...

...

Core m

...

App. k

App. j

i's,n,j

...

...

...

...

......

App. 1

App. K i's,n,j

i's,m,k

it,n,j ,
ft,n,j

it,m,k ,
ft,m,k

i's,m,k

i's,n,j ias,n,j ,
fa

s,n,j

ias,m,k ,
fa

s,m,k

Predictive
Model
(PMm,n)

Learning
Algorithm

(LAm,n)

i's,m,k

ias,m,k ,
fa

s,m,k

ias,n,j ,
fa

s,n,j

(a) Training Phase

Standalone Scenario

cpred
n,j

Sample
Alignment

Sample
Alignment

ipred
s,n,j

Predictive
Model
(PMn,m)

Predictive
Model
(PMm,n)

 Condition
Check

Condition
Check

ipred
s,m,k

Hardware
Platform

Core n

...

...

Hardware
Platform

Core n

...

...

Hardware
Platform

Core m

...

...

Hardware
Platform

Core m

...

...

New
App. j

New
App. k

cpred
m,k

it,n,j ,
ft,n,j

it,m,k ,
ft,m,k

ipred
s-1,n,j

ipred
s-1,m,k

ias,n,j ,
fa

s,n,j

ias,n,j ,
fa

s,n,j

ias,m,k ,
fa

s,m,k

ias,m,k ,
fa

s,m,k

(b) Prediction Phase

Fig. 1. Interference prediction framework

throughout the paper is summarized in Table I. The learning-
based formulation of the run-time prediction of co-running
applications consists of two phases: a training phase (Fig. 1(a))
and a prediction phase (Fig. 1(b)). During the training phase,
a pair of applications (j,k) from a benchmark set (training
applications) are run individually (standalone scenario) and
then co-run (interference scenario) on cores n and m of the
hardware platform. For each of these scenarios, we collect, at
a fixed sampling period, the number of instructions i executed
as well as various hardware performance events (features)
f per period. The standalone instructions and features are
then passed through a sample alignment algorithm to obtain
aligned samples ia and fa that correspond to sections of code

on both cores running in contention during interference. Our
goal is to extract the latent relationship between the hardware
performance events and the number of instructions executed in
interference per sample period for applications running on core
n when they are co-executed with another application on core
m. We formulate this problem into a machine learning setting,
and derive a predictive model PMn,m by using a learning
algorithm LAn,m.

It is worth to note that the number of needed LA instances,
and therefore the corresponding PM, is equal to the total
number of unique target and interfering core pairs on which
applications in the hardware platform co-run. This is due to the
fact that all cores with an operating system running on top of
it are not always same in terms of execution characteristics.
Hence, the order is important, and PMn,m is not equal to
PMm,n.

During the prediction phase, a new pair of applications
is run standalone. A set of hardware performance events is
obtained at a fixed sampling period and passed through sample
alignment to be used as inputs to the PM in order to produce
an estimate of the number of instructions ipred executed per
sampling period in interference. The number of instructions
executed per sampling period is then translated into a predicted
run-time cpred of the applications.

A. Interference-Aware Runtime Predictor

Algorithm 1 sketches the working of our proposed
interference-aware run-time prediction in training and pre-
diction phases to learn and apply on two cores, but can be
generalized to more cores. During the training phase, training
applications are profiled in two different scenarios: standalone
and interference. At first, pairs of training applications j
and k are run standalone on cores m and n, respectively,
to collect Tj and Tk number of samples of instructions i
and features f, which are stored in global buffers ibuf and
Fbuf . Next, the same pairs of training applications (j,k) are
then co-run on cores (n, m) to collect only instructions i

′

in interference. i
′

samples are passed through the sampAlign
algorithm (discussed in Section III-B) together with ibuf , Fbuf
to obtain the aligned samples ia and fa. The sample collection
is performed until the first application finishes execution and
there is no more contention, which is determined by comparing
the accumulated instructions a with the total number of
instructions itotal in each application. The arrays X and y are
used to store all of the aligned samples and their corresponding
instructions in interference, respectively, from all the pairs of
applications. A learning algorithm LA is then applied to derive
a predictive model PM, which learns the relationship between
the arrays of aligned features X and instructions y executed
during each sample period τ .

During the prediction phase, a pair of new applications is
run standalone on cores (m,n). The collected samples are
stored, passed through the sample alignment algorithm (similar
to the training phase), and fed into the PM to obtain the
predicted instructions ipred during each sample period τ . The
total number of predicted instructions a is kept track of by

Algorithm 1: Interference-Aware Run-time Predictor

1 Training Phase:
input : n, m
output: PMn,m , PMm,n

2 foreach pair of App (j,k) running on Core (n,m) do
3 foreach sample t < Tj do
4 Append it,n,j to ibufn,j , Append ft,n,j to Fbufn,j

5 foreach sample t < Tk do
6 Append it,m,k to ibufm,k, Append ft,m,k to Fbufm,k

7 itotaln,j =
∑Tj
t=1 i

buf
t,n,j , i

total
m,j =

∑Tk
t=1 i

buf
t,m,k

8 an,j = 0, am,k = 0, s = 1
9 while an,j < itotaln,j and am,k < itotalm,k do

10 if s == 1 then
11 ias,n,j = ibuf1,n,j , fas,n,j = fbuf1,n,j

12 ias,m,k = ibuf1,m,k, fas,m,k = fbuf1,m,k

13 else
14 ias,n,j , fas,n,j = sampAlign(ibufn,j , Fbufn,j , i

′

s,n,j)
15 ias,m,k, fas,m,k = sampAlign(ibufm,k, Fbufm,k, i

′

s,m,k)

16 Append [ias,n,j , fas,n,j , ias,m,k, fas,m,k] to X
17 Append i

′

s,n,j to yn, Append i
′

s,m,k to ym
18 an,j = an,j + i

′

s,n,j , am,k = am,k + i
′

s,m,k

19 s = s + 1

20 PMn,m ← LAn,m(X, yn)
21 PMm,n ← LAm,n(X, ym)

22 Prediction Phase:
input : n, m, j, k, τ
output: cpredn,j , cpredm,k

23 foreach sample t < Tj do
24 Append it,n,j to ibufn,j , Append ft,n,j to Fbufn,j

25 foreach sample t < Tk do
26 Append it,m,k to ibufm,k, Append ft,m,k to Fbufm,k

27 itotaln,j =
∑Tj
t=1 i

buf
t,n,j , i

total
m,j =

∑Tk
t=1 i

buf
t,m,k

28 an,j = 0, am,k = 0, s = 1
29 while an,j < itotaln,j and am,k < itotalm,k do
30 if s == 1 then
31 ias,n,j = ibuf1,n,j , fas,n,j = fbuf1,n,j

32 ias,m,k = ibuf1,m,k, fas,m,k = fbuf1,m,k

33 else
34 ias,n,j , fas,n,j = sampAlign(ibufn,j , Fbufn,j , ipreds−1,n,j)
35 ias,m,k, fas,m,k = sampAlign(ibufm,k, Fbufm,k, ipreds−1,m,k)

36 ipreds,n,j = PMn,m([ias,n,j , fas,n,j , ias,m,k, fas,m,k])
37 ipreds,m,k = PMm,n([ias,n,j , fas,n,j , ias,m,k, fas,m,k])
38 an,j = an,j + ipreds,n,j , am,k = am,k + ipreds,m,k

39 s = s+ 1

40 Find largest βj for which ibuf1,n,j + · · ·+ ibufβj ,n,j
≤ an,j

41 Find largest βk for which ibuf1,m,k + · · ·+ ibufβk,m,k
≤ am,k

42 cpredn,j = s× τ + (Tj − βj)× τ
43 cpredm,k = s× τ + (Tk − βk)× τ
44 return cpredn,j , cpredm,k

Algorithm 2: Sample Alignment

1 sampAlign:
input : ibuf , Fbuf , i

′

output: ia, fa
2 Find largest β for which ibuf1 + . . . + ibufβ ≤ i

′

3 γ =
ibufβ+1−i

′

ibufβ+1

4 if γ == 1 then
5 ia = ibufβ

6 fa = fbufβ

7 else
8 ia = ibufβ × (1− γ) + ibufβ+1 × γ
9 fa = fbufβ × (1− γ) + fbufβ+1 × γ

10 return ia, fa

accumulating ipred. As soon as one of the two application
finishes its execution, there is no more interference, which is
again detected by comparing a against the total number of
instructions itotal of each application. Finally, the run-time
of the application that finished is calculated by multiplying
the number of predicted iterations s with the sample period
τ . The run-time of the unfinished application is estimated by
converting its remaining instructions into samples and adding
the additional time left for running standalone.

B. Sample Alignment

Co-running applications tend to experience delays in run-
time due to interference. As a result, applications have dif-
ferent numbers of instructions executed per sample period
in standalone vs. interference scenarios. This poses an issue
for prediction and training, where features are collected in
a standalone setting but the predictive model PM needs to
be provided inputs that correspond to sections of code that
execute in contention and hence run simultaneously on both
cores in interference. To address this issue, we propose an
efficient sample alignment algorithm (see Algorithm 2), which
aligns samples of applications on each core in standalone
scenarios to approximately correspond to the same section
of executed code in interference. The algorithm is based on
the fact that the number of instructions in an application
remains the same irrespective of whether they are executed
in standalone or interference scenarios.

Algorithm 2 illustrates our proposed sample alignment
algorithm. Given the buffer ibuf holding the numbers of in-
structions executed per standalone sample and a target number
of instructions i

′
executed in interference to align to, the

algorithm first scans the buffer to find the standalone sample β
that corresponds to i′, i.e. that has executed the same number
of instructions (line 2). In general, the corresponding element
in ibuf and the corresponding sample of hardware performance
events in Fbuf are then returned as aligned samples ia and fa
(lines 5 and 6). However, if the adjustment is made at sample
level, the alignment can potentially be very coarse. Although

TABLE II
SB-VDS BENCHMARK CHARACTERISTICS IN STANDALONE.

Applications Avg. IPC Avg. Bandwidth
multi ncut 0.88 450 MB/s
disparity 0.50 441 MB/s
tracking 0.59 406 MB/s
mser 0.67 328 MB/s
sift 0.69 126 MB/s
stitch 0.90 124 MB/s

sampling with a small period is theoretically possible, it entails
an overhead due to the generation of more frequent timer
interrupts. We instead align samples by interpolating between
them. The algorithm calculates a ratio γ to determine the
position of i

′
in between the current and next sample in ibuf

(line 3). If i′ falls exactly on a sample boundary (line 4), ia

and fa are returned directly. Otherwise, the aligned samples
ia and fa are calculated by proportionally combining parts of
the β-th and β + 1 samples (lines 8 and 9).

IV. EVALUATION AND RESULTS

We evaluate our approach on the NXP S32V234 [12]
embedded platform. The SoC features 4 ARM Cortex A53
[13] CPUs, organized into 2 clusters each having 2 cores. Each
core has its own private L1 data and instruction cache whereas
the 2 cores within a cluster share a unified L2 cache. We use
two cores from two distinct clusters to perform our analysis.

All the hardware performance events are collected at a fixed
sampling period of 0.2ms using a System Level Instrumenta-
tion Framework (SLIF). Hardware performance events of an
application are obtained from Performance Monitoring Units
(PMUs) of the cores and Profiling Unit (PU) of the memory
controller. SLIF is implemented in Linux version 4.19 as a
loadable kernel module. The collected samples are stored in
SRAM memory to avoid additional traffic to the main memory.

A subset of benchmarks in the San Diego Vision Benchmark
Suite (SD-VBS) [7] are used to gain insight into the platform
and evaluate the proposed approach. Since we are interested in
applications that are DRAM-bound, we use the ones with the
largest input data size (named FullHD). The characteristics of
each benchmark included in our evaluations are summarized
in Table II. Unless otherwise noted, we use multicut, mser,
stitch and sift applications for the training set, and disparity
and tracking as the test set in all experiments.

A. Feature Selection

The evaluation platform has 58 measurable hardware perfor-
mance events, but provides only six generic 32-bit hardware
performance counters and a dedicated 64-bit cycle counter. As
such, we can only read 6 of the total 58 hardware performance
events in addition to the dedicated cycle counter at any given
time. This limitation is overcome by re-running the benchmark
applications each time reading a different set of 6 hardware
performance events out of 58. The values of all hardware
performance events are averaged over 50 iterations.

Apart from hardware performance events inside the cores,
the memory controller exposes a set of memory-mapped

performance counters that report: (1) the number of DDR
cycles elapsed, (2) the number of busy DDR cycles, the total
number of memory accesses in terms of (3) reads and (4)
writes, and the total number of bytes transferred in (5) read
and (6) write transactions.

All combined, we measured a total of 128 hardware per-
formance events from the system, 64 for each core. However,
incorporating all available features into the machine learning
algorithm does not necessarily generate the best analytical
model. In fact, the prediction error can become large in case
of severe multicollinearity as it increases the variance of the
regression coefficients, making them unstable. This issue of
correlation may also arise in our setting because different
features theoretically have an impact on each other. One
example of such a case is that the number of branches executed
is related to the total number of instructions executed, which
in turn have relation to L1 instruction cache access.

To address such concerns while also making the learning
formulation more efficient, we apply a systematic feature
selection process. The reduction of features is accomplished
in three steps. First, features consistently reporting a value of
0 are eliminated as their contribution to the analytical model
is insignificant. We discover 26 such hardware performance
events with zero numeric values for all of our applications.

Second, we computed the correlation matrix using Spear-
man rank-order correlations of the remaining features between
each other. On top of this computed correlation matrix, we
performed hierarchical clustering and manually selected a
threshold by visual inspection of the branch diagram to group
our features into clusters and keep a single feature from each
cluster. For example, L2 cache accesses, DDR busy cycles and
non-cacheable external memory requests are clustered closely
together. By visual inspection, we chose a threshold of 0.4,
which reduced the overall feature set to 71.

Finally, we arrange these features in the order of their ”im-
portance” by using a permutation importance [14] technique
with the Ridge Linear Regression [15] method. Permutation
importance calculates the increase in the model’s prediction
error after permuting the features in the training set. A
feature is ”important” if changing its values raises the model
error, because the model depended on the feature for the
prediction. The impact of the number of ordered features on
the mean absolute error between the measured and predicted
instructions per sample is calculated and the set of features
with minimum mean absolute error is selected. This resulted
in 14 final features per core being selected for prediction as
shown in Table III. It is critical to address multicollinearity
before applying permutation importance, because otherwise
the results will show that none of the features are ”important”.

B. Interference-Aware Run-time Prediction

We evaluate four different linear regression models: Ridge
[15], Lasso [16], Elastic-Net [17] and Linear Support Vector
Regression (SVR) [18], which is SVR with a linear kernel. For
this particular experiment, we use the measured instructions i

′

in interference rather than the predicted instructions ipred for

TABLE III
SET OF 14 FEATURES SELECTED FOR EACH CORE.

Instructions L1 instruction cache access
DRAM write-bytes L1 instruction TLB refill
DRAM read-bytes Load instructions

DRAM busy-cycles Linefill because of prefetch
Conditional branches Read allocate mode

Unconditional branches L2 Data cache access
Exception taken pipeline stall because the store buffer is full

Ridge Lasso Linear SVR Elastic-Net
0

2

4

6

8

M
ea

n
Ab

so
lu

te
 E

rro
r (

%
)

Core-1
Core-2

Fig. 2. Comparison of different linear regression models

sample alignment to avoid prediction error propagation to the
next sample. Fig. 2 compares the mean absolute error between
the measured and predicted instructions per sample for these
models. The ridge method has the minimum mean absolute
error of 2.8% and 2.2% for core 1 and core 2, respectively.

Table IV shows the summary of various combinations of
training and test sets, and the corresponding run-time of
the test set in standalone and interference scenarios, along
with predicted run-time in interference from Algorithm 1
using Ridge Linear Regression as the predictive model. When
the disparity and tracking applications are co-run for 5,000
ms, the corresponding run-time in the standalone scenario is
significantly smaller, at 4,666 ms and 4,878 ms, respectively.
By using the Interference-Aware Run-time Predictor (Algo-
rithm 1), we are able to predict the run-time with an average
percentage error as low as 0.3% and 0.1% for two co-running
applications, respectively.

It is worth to note that the average prediction error in
Table IV (e.g. 2.2% for disparity) can at times be higher
the mean absolute prediction error (e.g. -3.6% for disparity)
shown in Fig. 2. This is due to the propagation of prediction
errors, which introduces additional inaccuracy into the sample
alignment algorithm (Algorithm 2).

Fig. 3 shows per sample execution characteristics of the
two co-running test set applications (disparity and tracking).
It can be observed that the two applications start to suffer from
interference and a delay in execution time roughly after 2,000
ms, which is also the portion where the instructions per time of
both applications falls to extremely low values. It is also worth
noting that the measured and predicted interference values are
following a similar pattern, which shows the accuracy of our
approach.

TABLE IV
COMPARISON OF MEASURED AND PREDICTED TOTAL RUN-TIME OF APPLICATIONS USING THE RIDGE LINEAR REGRESSION

Training Set Test Set Standalone (measured) Interference (measured) Interference (predicted)
Core 1 Core 2 Core 1 (ms) Core 2 (ms) Core 1 (ms) Core 2 (ms) Core 1 (ms) Core 2 (ms)

multicut, mser, stitch, sift disparity tracking 4666 4878 5000 5000 4818 (-3.6%) 4994 (-0.1%)
stitch, sift, disparity, tracking multicut mser 4912 4898 5000 5000 4981 (-0.4%) 4943 (-1.1%)

disparity, tracking, multicut, mser stitch sift 4952 4985 5000 5000 4986 (-0.3%) 4997 (-0.1%)

0 1000 2000 3000 4000 5000
Time (ms)

0

250,000

500,000

750,000

1,000,000

1,250,000

1,500,000

1,750,000

In
st

ru
ct

io
ns

 p
er

 ti
m

e
(c

ou
nt

/m
s)

Standalone (measured)
Interference (measured)
Interference (predicted)

(a) Core 1 (disparity)

0 1000 2000 3000 4000 5000
Time (ms)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

In
st

ru
ct

io
ns

 p
er

 ti
m

e
(c

ou
nt

/m
s)

Standalone (measured)
Interference (measured)
Interference (predicted)

(b) Core 2 (tracking)

Fig. 3. Comparison of measured and predicted per sample run-time in
interference along with standalone values

V. SUMMARY AND CONCLUSIONS

In this paper, we presented a novel learning based approach
to predict interference-aware run-time. The key component
of our approach consists of the use of a sample alignment
algorithm and a formulation of interference prediction as a ma-
chine learning problem. We used hardware performance events
present inside the cores as well as the memory controller to
extract key features used for prediction. The training data is
then utilized to generate a predictive model that can predict the
performance of previously unseen applications in interference
scenario. By picking the 28 most important features out of 128

and employing the most effective model, Ridge Regression,
we were able to achieve an average run-time prediction error
of less than 0.3%, and a mean absolute per-sample prediction
error of less than 3% on two cores.

ACKNOWLEDGEMENT

This work has received funding from the European Unions
Horizon 2020 research and innovation programme under grant
agreement No 871669.

REFERENCES

[1] R. Cavicchioli et al., “Memory interference characterization between
CPU cores and integrated GPUs in mixed-criticality platforms,” in ETFA,
2017.

[2] X. Zheng et al., “Learning-based analytical cross-platform performance
prediction,” in SAMOS, 2015.

[3] X. Zheng et al., “Accurate Phase-Level Cross-Platform Power and
Performance Estimation,” in DAC, 2016.

[4] X. Zheng et al., “Sampling-based binary-level cross-platform perfor-
mance estimation,” in DATE, 2017.

[5] A. Saeed et al., “Machine Learning Based Cross-Platform Runtime,” in
ECRTS, Waters Workshop, 2019.

[6] C. Mendis et al., “Ithemal:Accurate, Portable and Fast Basic Block
Throughput Estimation using Deep Neural Networks,” in ICML, 2018.

[7] S. K. Venkata et al., “SD-VBS: The San Diego Vision Benchmark Suite,”
in IISWC, 2009.

[8] N. Binkert et al., “The gem5 simulator,” SIGARCH Computer Architec-
ture News, vol. 39, no. 2, 2011.

[9] T. Carlson et al., “Sniper: Exploring the level of abstraction for scalable
and accurate parallel multi-core simulation,” in SC, 2011.

[10] P. Magnusson et al., “Simics: A full system simulation platform,” IEEE
Computer, vol. 35, no. 2, 2002.

[11] K. Singh et al., “Predicting parallel application performance via machine
learning approaches,” Concurrency and Computation: Practice and
Experience, 2007.

[12] “S32V Vision and Sensor Fusion Evaluation Board.”
[13] “ARM Cortex-A53 MPCore Processor - Technical Reference Manual.”
[14] A. Fisher et al., “Model Class Reliance: Variable Importance Measures

for any Machine Learning Model Class, from the ”Rashomon” Perspec-
tive,” in arXiv Prepr, 2018.

[15] D. Marquardt et al., “Ridge Regression in Practice,” American Statisti-
cian - AMER STATIST, 1975.

[16] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society Series B, 1996.

[17] H. Zou et al., “Regularization and variable selection via the elastic net,”
Journal of the Royal Statistical Society Series B, 2005.

[18] D. Basak et al., “Support Vector Regression,” Neural Information
Processing Letters and Reviews, 2007.

