
1

Cumulative Message Authentication Codes for

Resource-Constrained IoT Networks
He Li, Vireshwar Kumar, Member, IEEE, Jung-Min (Jerry) Park, Fellow, IEEE, and Yaling Yang, Member, IEEE

Abstract—In resource-constrained IoT networks, the use of
conventional message authentication codes (MACs) to provide
message authentication and integrity is not possible due to the
large size of the MAC output. A straightforward yet naive
solution to this problem is to employ a truncated MAC which
undesirably sacrifices cryptographic strength in exchange for
reduced communication overhead. In this paper, we address this
problem by proposing a novel approach for message authentica-
tion called Cumulative Message Authentication Code (CuMAC),
which consists of two distinctive procedures: aggregation and
accumulation. In aggregation, a sender generates compact au-
thentication tags from segments of multiple MACs by using
a systematic encoding procedure. In accumulation, a receiver
accumulates the cryptographic strength of the underlying MAC
by collecting and verifying the authentication tags. Embodied
with these two procedures, CuMAC enables the receiver to
achieve an advantageous trade-off between the cryptographic
strength and the latency in the processing of the authentication
tags. Furthermore, for some latency-sensitive messages where
this trade-off may be unacceptable, we propose a variant of
CuMAC that we refer to as CuMAC with Speculation (CuMAC/S).
In addition to the aggregation and accumulation procedures,
CuMAC/S enables the sender and receiver to employ a spec-
ulation procedure for predicting future message values and pre-
computing the corresponding MAC segments. For the messages
which can be reliably speculated, CuMAC/S significantly re-
duces the MAC verification latency without compromising the
cryptographic strength. We have carried out a comprehensive
evaluation of CuMAC and CuMAC/S through simulation and a
prototype implementation on a real car.

Index Terms—Message authentication code (MAC); Internet-
of-Things (IoT); Controller area network (CAN).

I. INTRODUCTION

IN emerging applications, such as intelligent automobiles,

industrial control systems, and smart city networks, a

large number of energy-constrained computing devices are

getting closely integrated with the existing computer infras-

tructure through bandwidth-constrained networks to form the

Internet-of-Things (IoT) [1]. The successful adoption of those

applications will partially depend on our ability to thwart

security and privacy threats, including message forgery and

tampering. Today, message authentication code (MAC) is the

most commonly used method for providing message authen-

ticity and integrity in wired/wireless network applications. To

employ MACs in a resource-constrained (i.e., energy and/or

bandwidth-constrained) network, we need to consider two
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problems: the computational burden on the devices for gen-

erating/verifying the MAC, and the additional communication

overhead incurred due to the inclusion of the MAC in each

message frame/packet. The first problem can be addressed by

using dedicated hardware and cryptographic accelerators [2],

[3]. However, the second problem is not as easy to address.

Problem. The cryptographic strength of a MAC depends

on the cryptographic strength of the underlying cryptographic

primitive (e.g. a hash or block cipher), the size and quality of

the key, and the size of the MAC output. Hence, a conventional

MAC scheme typically employs at least a few hundred bits

of MAC output to ensure a sufficient level of cryptographic

strength. Unfortunately, in resource-constrained IoT networks

(e.g., energy-constrained low-power wide-area network with

battery-powered devices and bandwidth-constrained in-vehicle

controller area network), the payload size of each packet is

very short, i.e., less than a hundred bits [4]. As such, not more

than a few bits can be spared to include an authentication tag,

prohibiting the usage of the conventional MAC [1].

Related Work. The legacy solution for generating a short

authentication tag is to truncate the output of a conventional

MAC so that it fits a message packet [5]–[7]. This type of

MAC is called a truncated MAC. However, the truncated MAC

sacrifices cryptographic strength in exchange for reduced

communication overhead and energy consumption, which may

be undesirable, or even unacceptable, in some applications.

Note that the truncated MAC without sufficient cryptographic

strength renders the application vulnerable to collision attacks

[8]. To enable authentication with enhanced cryptographic

strength, Katz et al. propose the concept of aggregate MAC

where conventional MACs of multiple messages are combined

into one aggregate MAC and transmitted over successive

packets [9]. Similarly, Nilson et al. propose a compound MAC

which is calculated on a compound of multiple messages

and distributed over successive packets [4]. However, both

the aggregate and compound MAC schemes incur significant

latency in the verification of the messages because the receiver

needs to receive and process all associated packets before

being able to verify the validity of the MAC.

Challenges. In the above discussion, we identify three critical

challenges in employing MACs for IoT networks: (1) incurring

minimal communication overhead so that the MAC can fit in a

packet, (2) ensuring that the cryptographic strength meets the

security need of the application, and (3) incurring minimal

latency so that the MAC generation and verification processes

do not cause unacceptable delays in the packet processing.

Proposed Solution. In this paper, we address the afore-
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mentioned challenges through a novel approach for message

authentication that we refer to as Cumulative Message Au-

thentication Code (CuMAC). In CuMAC, a sender utilizes a

procedure called aggregation through which the sender first

divides the full-sized MAC of each message into multiple short

MAC segments, and then “aggregates” the MAC segments of

multiple messages using a systematic encoding procedure to

form a short authentication tag. This procedure resolves the

first challenge of ensuring low communication overhead.

Further, the receiver utilizes a procedure called accumula-

tion through which it first verifies the MAC segments aggre-

gated into the authentication tag of each received packet, and

then “accumulates” the cryptographic strength by collecting

the verified MAC segments associated with the target message.

In this procedure, the receiver may incur a delay that is

proportional to the accumulated cryptographic strength since it

needs to wait for the relevant tags to be received and processed.

Hence, while the accumulation procedure caters to the second

and the third challenge, it brings up a novel and flexible trade-

off between the cryptographic strength and latency. CuMAC

enables the receiver to authenticate the message in real-time

with the cryptographic strength which is commensurate with

the size of each tag. Meanwhile, CuMAC also enables the

authentication with the highest level of cryptographic strength

after accumulating all segments of the MAC that cover the

message in the associated packets.

Moreover, in latency-sensitive IoT applications, the receiver

may be required to immediately authenticate a message with

high cryptographic strength as it arrives. In such cases, the

trade-off made by CuMAC may not be sufficient. To address

this need, we propose a variant of CuMAC called CuMAC with

Speculation (CuMAC/S) that enables a receiver to accumulate

the MAC’s cryptographic strength while incurring a minimal

delay. The core concept of CuMAC/S is motivated by the

technique of speculative execution1 which is widely employed

in modern computer systems [10], [11]. CuMAC/S can be

utilized in IoT applications where future messages can be

predicted correctly with high reliability with an appropriate

speculation model using the current and past messages.

In CuMAC/S, a sender speculates future messages, com-

putes the corresponding MACs, and aggregates the MAC

segments of the speculated messages into the authentication

tag of the current packet. If the speculated value of a received

message is equal to the actual value, then all its segments can

be verified in current and previous tags, and hence the receiver

can accumulate cryptographic strength without having to wait

for tags included in forthcoming packets; this significantly cuts

down on the MAC verification delay.

The paper’s main contributions are summarized as follows.

• We propose a novel message authentication scheme called

CuMAC, which meets the security need of resource-

constrained IoT applications. CuMAC is an embodiment

of two novel concepts that we refer to as aggregation

1Speculative execution is an optimization technique in which a computer
system performs speculative execution where some outcome is predicted and
execution proceeds along a predicted path. Work is done before it is known
whether it is actually needed, so as to prevent a delay that would have to be
incurred by doing the work after it is known that it is needed.
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Fig. 1: Architecture of typical IoT networks.

(which reduces the communication overhead) and accu-

mulation (which increases the cryptographic strength).

• We propose a variant of CuMAC called CuMAC/S that

meets the security need of delay-sensitive, resource-

constrained IoT applications. CuMAC/S enables the accu-

mulation of cryptographic strength while incurring min-

imal delay by employing the novel idea of speculation.

• We have thoroughly evaluated the effectiveness of

CuMAC and CuMAC/S through a simulated in-vehicle

controller area network and a prototype implementation

on a real car. Our results illustrate that while incurring

the same communication overhead as the truncated MAC

scheme, CuMAC achieves the cryptographic strength

equivalent to the conventional MAC scheme at the cost

of increased latency. Further, for the messages which can

be accurately speculated, CuMAC/S achieves the cryp-

tographic strength equivalent to the conventional MAC

scheme without any additional latency.

II. MOTIVATION FOR SHORT MACS

IoT networks consist of resource-constrained devices at

the lowest layer as shown in Figure 1. To enable message

authentication in such networks, it is imperative to use short

MACs as demonstrated by the following discussion of two spe-

cific application scenarios – one with the energy-constrained

devices and another with the bandwidth-constrained devices.

A. Low-Power Wide-Area Network (LPWAN)

Many IoT applications (e.g., smart metering and smart city

infrastructure) require a densely deployed network of low-

cost energy-constrained battery-operated wireless devices. The

paradigm of LPWAN is aimed at fulfilling these requirements

of IoT networks [1], [5]. Sigfox [12] is one example of a

widely-known LPWAN technology. In Sigfox, each uplink

packet contains a counter, a message (with the length between

0 and 96 bits), and an authentication tag (with the length

between 16 and 40 bits). To enable robust communication

over the unreliable wireless channel, the sender in Sigfox

transmits multiple copies of the same packet sequentially.

After transmitting the fixed number of copies of the packet, the

sender waits for an acknowledgment from the receiver. In the
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Fig. 2: Effect of the size of message and authentication tag

on the service life of a sensor node in Sigfox (the results are

obtained using the battery consumption data from a Sigfox

compliant transceiver produced by ON Semiconductor [13].)

absence of the acknowledgment, the packet is considered lost.

Sigfox does not support retransmission of such lost packets.

The battery-powered Sigfox devices are expected to have a

service/battery life of several years. As the energy consump-

tion of a Sigfox device is directly proportional to the size

of communicated packets, it is imperative to communicate

using short packets to ensure long service life. Figure 2 illus-

trates that in comparison to the standard benchmark of 48-bit

messages without any tags, while utilizing a short MAC with

16-bit tags achieves a modest (around 10%) reduction in the

service life, utilizing the conventional MAC with 128-bit tags

results in a significant loss of around 45% of the service life.

As such, although the message integrity and authentication are

of prime importance in applications supported by Sigfox [14],

the energy overhead of communicating the full-sized MAC

output in the Sigfox packet is undesirably high.

B. In-Vehicle Controller Area Network (CAN)

Today’s high-end cars use a hundred or more electronic

control units (ECUs) to enable advanced functionalities, such

as adaptive cruise control and internet-of-vehicles (IoV) [15]–

[17]. As shown in Figure 3, these ECUs communicate with

each other over a bandwidth-constrained wired broadcast

channel called the CAN bus [18], [19]. Because the messages

communicated among ECUs directly affect vital functions of

a vehicle, some of which are safety-related (e.g., dynamics

control system [20]), the security and reliability of the CAN

bus and the integrity of the messages on it are critical [3]. We

note that while the state-of-the-art CAN bus supports robust

mechanisms for message acknowledgment and retransmission

of corrupted/lost packets, it does not support any security

mechanism [21].

Several studies have shown that a car’s in-vehicle network

can be compromised through either direct physical access (e.g.,

using the on-board diagnostics port) or a remote connection

(e.g., using Bluetooth) to the CAN bus [22], [23]. Due to one

such vulnerability, Jeep had to recall 1.4 million vehicles in

2015 [24]. Although the existing literature [25]–[27] addresses

some of the authentication issues in a vehicle-to-smart grid

(V2G) or internet-of-vehicles (IoV) scenarios, there is a lack

of an effective and practical scheme to counter impersonation
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Fig. 3: Architecture of an in-vehicle controller area network.

Fig. 4: Considered packet model.

attacks against ECUs in CAN. To this end, the US National

Highway Traffic Safety Administration (NHTSA) recommends

the inclusion of MACs for the end-to-end authentication of the

messages on the CAN bus [28].

A CAN packet consists of an 11-bit or a 29-bit identifier

field and a message field with a length between 0 and 64

bits. Except for the identifier and message fields, we cannot

arbitrarily change the length or the content of other fields in the

CAN packet as that would make the modified packet incom-

patible with the existing CAN protocol. Hence, in the prior art

[6], [29], to realize MAC-based authentication in each packet,

the identifier field is used to accommodate an 18-bit counter,

and the message field is used to accommodate the message

payload as well as the authentication tag. Although such a

design of the modified packet ensures that it is backward-

compatible, inserting a full-sized MAC in the modified packet

is not possible because the maximum allowed length of the

message field in a CAN packet is only 64 bits. Further,

since the bandwidth of a typical CAN bus is only 500 kbit/s,

transmitting additional trailing packets containing only the

authentication tag undesirably increases the bus load [30].

Proposed Design. In both the above application scenarios

(LPWAN and CAN), the constraints of the IoT network –

either in terms of the MAC size or energy/bandwidth consump-

tion of the networked devices – prohibit the use of the con-

ventional MAC scheme. To address this challenge, we propose

CuMAC and CuMAC/S which can be readily employed in

these scenarios to achieve the desired level of security provided

by short MACs. In this paper, we utilize CAN as a concrete

application scenario to highlight the advantages of CuMAC

and CuMAC/S. However, these two schemes can be applied to

other resource-constrained network applications, including IoT

applications (e.g. LPWAN, Bluetooth Low Energy (BLE) [31],

Constrained Access Protocol (CoAP) [32] or Message Queue

Telemetry Transport (MQTT) [33]).

III. MODEL AND SECURITY OBJECTIVES

Here we discuss the network model and define the security

objectives of the proposed MAC schemes.
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A. Model and Assumptions

System Model. We consider an energy-constrained and/or

bandwidth-constrained IoT network where a sender needs to

transmit security-critical messages to a receiver using small

packets. Hence, the sender and the receiver (after sharing a

secret key) employ a MAC scheme for message authentication.

As shown in Figure 4, we let the sender employ a packet

format that contains at least three fields: a packet counter,

a message, and an authentication tag. We note that these

three fields are critical for ensuring any secure message

authentication scheme including CuMAC and CuMAC/S. If

the network protocol (e.g., Sigfox as discussed in Section II-A)

employs these fields in the conventional packets by design,

we can readily utilize them; otherwise, the packet contents

can be modified in the target network protocol (e.g., CAN as

discussed in Section II-B) to include these fields.

We assume that there exists a message acknowledgment

mechanism that enables the sender to know if a particular

packet was correctly delivered to the receiver [34]. The ac-

knowledgment mechanism assisted with the packet counter

enables the sender and the receiver to maintain the same

sequence of packets. Note that we do not make any assumption

about the message retransmission mechanism, i.e., the network

may or may not support retransmission.

Threat Model. We consider an adversary that aims to forge

valid authentication tags for its malicious messages so that it

can deceive the authentication scheme at the receiver. While

the adversary can eavesdrop on the communication channel to

obtain packets transmitted by the sender, it does not know the

secret key (used for generating and verifying authentication

tags) shared between the sender and the receiver.

Cryptographic Strength. We convey the cryptographic

strength in bits, where a cryptographic strength of λ bits

for a scheme means that for any adversary making at most

2λ queries or taking at most 2λ time, the probability of

successfully launching an attack against the scheme is negli-

gibly small [35]. The cryptographic strength of a conventional

MAC depends on three security criteria: (1) the cryptographic

strength of the underlying cryptographic primitive, (2) the

size and quality of the secret key, and (3) the size of the

MAC output. In this paper, we assume that the first and

second criteria have been satisfied, and focus only on the third

criterion. As such, to achieve a cryptographic strength of λ
bits, the minimum size of the MAC output (denoted by L)

should be λ bits.

B. Proposed Approach and Security Objectives

MAC Design. As shown in Figure 5, we consider that an

L-bit MAC of a message mi is divided into n segments each

of length l, and distributed in tags τi, · · · , τi+n−1. Also, if

after generating the message mi−n+1, the message mi can be

speculated as m̂i, the corresponding MAC is computed as σ̂i.

The MAC σ̂i is divided into n segments, and the last n − 1
segments are distributed in tags τi−n+1, · · · , τi−1, which are

transmitted before τi.

mi
τi-n+1 mi+1 mi+n-1τi τi+1 τi+n-1mi-n+1

Real-time authentication

Partially accumulated authentication

Full authentication

Fig. 5: Illustrative distribution of the segments of the MAC of

message mi, and definition of the authentication levels.

Authentication Levels. To compare the proposed approach

with the prior art, we define three levels/features of authen-

tication: (1) real-time authentication, (2) full authentication,

and (3) partially accumulated authentication. Figure 5 illus-

trates these different levels of authentication, when applied to

message mi. Here the receiver can perform real-time authenti-

cation immediately after receiving message mi by processing

the current tag τi and the previous tags τi−n+1, · · · , τi−1. With

real-time authentication, the receiver performs authentication

without any delay, but it achieves the lowest cryptographic

strength since there is no security accumulation using the

subsequent tags. On the other hand, the receiver can perform

full authentication after receiving all of the segments of the

MAC associated with message mi in tags τi−n+1, · · · , τi+n−1.

With full authentication, the receiver achieves the highest cryp-

tographic strength but needs to incur a latency of n−1 packets.

The receiver can perform partially accumulated authentication

by accumulating and processing tags τi−n+1, · · · , τi+r−1,

where 1 < r < n. Partially accumulated authentication

enables the receiver to make a trade-off between cryptographic

strength and message verification latency to meet the security

and performance needs of the application.

Security Objectives. The security objective of the proposed

MAC scheme is to ensure that the probability with which an

adversary succeeds in breaking each of the three authentication

features is negligible (i.e, as difficult as random guessing).

Specifically, to break the real-time authentication feature, the

adversary needs to forge a message and a valid tag. The forgery

needs to be fresh which means that the sender has not gener-

ated the MAC of the same counter and message pair using the

same shared key. As such, the cryptographic strength of real-

time authentication depends on the size of the MAC segment

l. To break the partially accumulated authentication feature

with r accumulated segments, the adversary needs to forge a

sequence of r messages with valid tags. In this sequence, the

forgery for only the first message needs to be fresh. Hence, the

cryptographic strength of partially accumulated authentication

depends on the size of the MAC segment l and the number

of accumulated segments r. Similarly, to break the full au-

thentication feature, the adversary needs to forge a sequence

of n messages with valid tags, where forgery for at least the

first message is fresh. Hence, the cryptographic strength of full

authentication is limited by the size of MAC L. In the case of

the speculation of future messages, the cryptographic strengths

of the real-time and the partially accumulated authentication

also depend on the message speculation accuracy.

A formal discussion of the security properties and associated
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Fig. 6: Schematic of the procedures at the sender in CuMAC.

proofs corresponding to CuMAC and CuMAC/S are provided

in Appendix A and B.

IV. TECHNICAL DETAILS OF CUMAC

CuMAC comprises two major algorithms: tag generation

and tag verification. In the tag generation algorithm, the

sender computes the authentication tag through two major

steps (Figure 6). In the first step, the sender generates the

MAC of the message, breaks the MAC into short segments,

and stores them into a segment array. In the second step, the

sender retrieves one MAC segment of the current message, and

several segments of the MACs of the previously transmitted

messages from the segment array, and aggregates the segments

to generate a tag. Having received each packet, the receiver

runs the tag verification algorithm which includes two major

steps. In the first step, the receiver generates an authentication

tag of the received message using the same procedure em-

ployed in the tag generation algorithm. In the second step, the

receiver compares the generated authentication tag with the

received authentication tag. If the authentication tags match,

the receiver accumulates the MAC segment (aggregated in

the authentication tag) with the previously received MAC

segments of the corresponding message.

Below we present the technical details of the algorithms

in CuMAC, and an instantiation that illustrates the generation

and verification of the tags in CuMAC.

A. Algorithms

CuMAC is composed of the following algorithms, where the

KeyGen(1λ) and MacGen(k, i,mi) algorithms utilize existing

approaches and the rest ones are proposed in this paper.

k← KeyGen(1λ)
This probabilistic key generation algorithm is utilized by the

sender and receiver to obtain the secret key. The input to this

algorithm is the security parameter λ ∈ N, and the output is

the secret key denoted by k. In a resource-constrained network,

this algorithm can be efficiently realized by leveraging a

trusted node [7]. In the absence of such a node, it can also be

realized using an efficient key distribution scheme [36].

σi ←MacGen(k, i,mi)
This deterministic MAC generation algorithm is utilized

by the sender and the receiver (as a sub-algorithm of tag

generation and verification algorithms) to compute the MAC of

a message using the secret key. The inputs to this algorithm are

the secret key k, a counter i, and a message mi. This algorithm

outputs the L bits long MAC represented by σi. This algorithm

can be realized using a cipher-based (e.g., AES-CMAC [37])

or a hash-based (e.g., SHA-3) MAC scheme. In this paper, we

utilize the widely used AES-CMAC.

τi ← SegAgg(segArray)
This segment aggregation algorithm is utilized by the sender

and the receiver as a sub-algorithm of tag generation and

tag verification algorithms, respectively. It takes as input a

two-dimensional array of MAC segments segArray. This

algorithm proceeds as follows. The ith row of segments in

segArray is generated as follows. The L-bit MAC σi is

divided into n segments, such that the size of each segment

is l bits, i.e., L = n · l. The jth segment of σi is represented

by sji , and is extracted from σi as

sji ← (σi)↓[(j−1)·l+1,j·l]. (1)

It means that the bits in sji correspond to the bits from

((j − 1) · l + 1)
th

bit to (j · l)
th

bit in σi. Further, this al-

gorithm extracts n elements from segArray (n− 1 previous

MAC segments and one current MAC segment), and computes

the authentication tag τi as follows.

τi ←
n⊕

j=1,i−j+1>0

sji−j+1. (2)

This algorithm outputs the authentication tag τi.

τi ← TagGen(k, i,mi)
This tag generation algorithm is run by the sender to

generate an authentication tag. It takes as inputs the secret

key k, a counter i and a message mi. It utilizes an array

of MAC segments segTx which is stored and maintained by

the sender. This algorithm proceeds as follows to output the

authentication tag τi.

1) Compute the MAC of the message mi and set it as σi,

i.e., σi ← MacGen(k, i,mi).
2) Divide the MAC σi into n segments as shown in equa-

tion (1) and append the segments to the array segTx.

3) Compute and output the tag τi by aggregating the

segments of MACs in segTx as shown in equation (2),

i.e., τi ← SegAgg(segTx).

After receiving a positive acknowledgment of the delivery of

the packet at the receiver, the sender increments the counter i
by one for the next packet. We note that the counter i can

be readily employed to handle the case of a lost packet. The

sender gets to know that the ith packet is lost when it does not

receive the acknowledgment from the receiver or it receives a

negative acknowledgment. In this case, if the sender does not

support any retransmission mechanism, the sender does not

increment the packet counter, removes the ith row (i.e., the

most recently appended row) of segments in segTx, and then

proceeds with the tag generation of the next message.

valid/invalid← TagVerify(k, i,mi, τi)
This verification algorithm is run by the receiver for verify-

ing the authenticity of the received message and tag by regen-

erating the authentication tag and compared to the received tag.

It takes as inputs the secret key k, the received counter i, the

received message mi, and the received tag τi. It also utilizes

an array of MAC segments segRx and an array of verified

MAC segments accRx. These arrays are stored and maintained

by the receiver. This algorithm first generates the tag for the

received message using the TagGen algorithm while updating
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TABLE I: Example illustrating CuMAC with L = 128, n = 4,

and l = 32.

Packet Previous Current
Aggregation of MAC segments Tag

Counter MACs MAC

5 σ2, σ3, σ4 σ5 s4
2
⊕ s3

3
⊕ s2

4
⊕ s1

5
τ5

6 σ3, σ4, σ5 σ6 s4
3
⊕ s3

4
⊕ s2

5
⊕ s1

6
τ6

7 σ4, σ5, σ6 σ7 s4
4
⊕ s3

5
⊕ s2

6
⊕ s1

7
τ7

8 σ5, σ6, σ7 σ8 s4
5
⊕ s3

6
⊕ s2

7
⊕ s1

8
τ8

the MAC segments in segRx, i.e., τ̃i ← TagGen(k, i,mi).
It then verifies whether the generated tag τ̃i is equal to the

received tag τi. If the verification succeeds, it updates the array

of accumulated MAC segments accRx and outputs the value

valid; otherwise, it outputs the value invalid.

B. Illustration

Table I presents an example of CuMAC. The size of the

tag in each packet is 32 bits (i.e., l = 32). The MAC is

generated using the AES-CMAC algorithm. Hence, the size

of the MAC output is 128 bits (i.e., L = 128), which provides

cryptographic strength of 128 bits. Each MAC is divided into

four segments (i.e., n = 4). In the fifth packet, the MAC σ5 of

the message m5 is computed. To compute the corresponding

tag τ5, the sender aggregates the segment s15 of the MAC σ5

and the segments of the MACs of the previously generated

messages, σ2, σ3 and σ3. Further, the tags τ6, τ7 and τ8 are

computed using the segments s25, s35 and s45 of σ5, respectively.

When the receiver receives the fifth packet with the message

m5, the successful verification of the tag τ5 enables the real-

time authentication of message m5 with the cryptographic

strength of 32 bits. Next, the receiver receives and verifies the

validity of tags τ6, τ7, and τ8. If all four tags are verified as

valid, the receiver combines the segments s15, s25, s35 and s45—

which are contained in tags τ5, τ6, τ7 and τ8, respectively—

to accumulate the cryptographic strength. This enables the

receiver to perform full authentication of message m5 with

the cryptographic strength of 128 (= 4 × 32) bits. However,

if the receiver is restricted to process the fifth packet only

after receiving the seventh packet due to latency requirements,

it may also perform partially accumulated authentication of

message m5 with a cryptographic strength of 96 bits after

verifying tags τ5, τ6 and τ7. We highlight that this ability to

perform the partially accumulated authentication is the most

unique feature of CuMAC when compared to the prior art.

V. TECHNICAL DETAILS OF CUMAC/S

In latency-sensitive applications, the receiver must authen-

ticate a message as it arrives. For such applications, the trade-

off between the cryptographic strength and latency made by

CuMAC may not be sufficient. To address this challenge, we

present CuMAC/S, which employs a novel concept of message

speculation for MAC generation. Equipped with an accurate

message speculation algorithm, CuMAC/S achieves both high

cryptographic strength and low verification latency.

A. Feasibility of Speculation

We discuss the feasibility of speculation of future messages

by analyzing the messages communicated on a CAN bus in
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(b) First-order differenced data.

Fig. 7: Example illustrating the feasibility of speculation of a

vehicle’s transmission torque values through an ARIMA model

whose parameters are determined using the autocorrelation

function (ACF) and partial autocorrelation function (PACF).

a typical vehicle. To evaluate the speculation accuracy for

different CAN messages, we utilize trace files of a real vehicle,

which have been recorded using the OpenXC platform [38].

These files present different types of CAN messages which

can be identified and interpreted by OpenXC libraries. To

speculate future message values, we utilize the autoregressive

integrated moving average (ARIMA) model, which is a widely

used model for time series analysis.

The ARIMA model with hyperparameters (p, d, q) implies

that for the dth-order difference of the time series values, a

speculated future message value is the linear combination of p
previous values, and q previous error values in the speculation.

We utilize the Box-Jenkins [39] method to compute the

hyperparameters of the ARIMA model for each type of CAN

message. In this method, we determine the values for p, d, and

q by observing the autocorrelation and partial autocorrelation

of the message values. We illustrate this procedure in Figure 7

which presents the autocorrelation and partial autocorrelation

of the values of the message corresponding to the torque at

transmission in a vehicle. From the results shown in Figure 7a,

we observe that there is high autocorrelation between message

values. Further, from the results shown in Figure 7b, we ob-

serve that the autocorrelation decays gradually, and the partial

autocorrelation is close to zero after a lag of 3 message values.

Hence, according to the rules of the Box-Jenkins approach,

we set ARIMA(3,1,0) model to speculate the message values

corresponding to the torque at the transmission.

In our analysis, we train the ARIMA model using the first

90% of the message values, and then we employ the model on

the last 10% of message values for the test. Here, the accuracy

of correct speculation/prediction of future message values is

measured using a metric called speculation error rate (SER),

which is defined as the ratio between the number of incorrect

speculations and the total number of speculations. Note that

the speculation is correct only if the message is correctly
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TABLE II: Speculation accuracy for typical CAN messages.

Signal SER SER after ignoring 3 LSBs

Longitude <0.0001 <0.0001

Latitude <0.0001 <0.0001

Odometer <0.0001 <0.0001

Fuel level <0.0001 <0.0001

Fuel consumed since restart <0.0001 <0.0001

Accelerator pedal position 0.0030 0.0002

Torque at transmission 0.0100 0.0020

Engine speed 0.2329 0.0880

Vehicle speed 0.2478 0.0975

Steering wheel angle 0.4763 0.3595

predicted up to the least significant bit (LSB). Table II shows

the speculation error rate of ten message-types. We observe

that certain types of CAN messages (e.g. the first five message

types listed in Table II) can be predicted with high reliability

using the ARIMA model.

We can improve the speculation accuracy by using more

sophisticated and further tuned models. Moreover, we can

mitigate the impact of speculation errors by increasing the

robustness of the MAC scheme against such errors. For

example, if the message contains some values for which some

of the least significant bits can be safely ignored (without

impacting performance or security), then these bits do not need

to be protected by a MAC, and hence the MAC calculation can

be limited to only the part of a message that can be predicted

with high reliability. In the rightmost column of Table II, we

show that the SER can be significantly improved for some

types of messages by ignoring the last three least LSBs.

Now we present the technical details of the algorithms in

CuMAC/S and an instantiation that illustrates the generation

and verification of the tags in CuMAC/S.

B. Algorithms

The KeyGen and MacGen algorithms in CuMAC (discussed

in Section IV) and those in CuMAC/S are the same, and hence

we do not provide their details in this section. We present the

details of other algorithms in CuMAC/S as follows.

msgArray′ ←MsgSpec(msgArray)
This deterministic message speculation algorithm is uti-

lized by the sender and receiver for the speculation of

future message values. It takes an array of the transmit-

ted and speculated messages msgArray as input. At the

ith instance, the array msgArray can be represented as

{m1,m2, · · · ,mi−1,mi, m̂i+1, m̂i+2, · · · m̂i+n−2}. This al-

gorithm generates the predicted value of the message mi+n−1,

which is represented by m̂i+n−1, appends it to the array

msgArray, and outputs the updated array msgArray′. Since

the speculation model used in this algorithm is deterministic,

the sender and the receiver run the same set of steps, and obtain

the same speculated messages given the same input messages.

τi ← SegAgg(segArray)
This segment aggregation algorithm is run by the sender

and the receiver. It takes as input a two-dimensional array

of MAC segments segArray. The segArray comprises of
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Fig. 8: Schematic of the procedures at the sender in CuMAC/S.

the segments of the MACs of the transmitted and speculated

messages. The ith entry in segArray is generated by the

segment sji ∀j ∈ [1, n] using the equation (1). This algorithm

extracts 2n−1 elements from segArray (n−1 previous MAC

segments, current MAC segment, and n− 1 speculated MAC

segments), and computes the authentication tag τi as follows.

τi ←




n⊕

j=1,i−j+1>0

sji−j+1


⊕




n⊕

j=2

ŝji+j−1


 . (3)

This algorithm outputs the authentication tag τi.

τi ← TagGen(k, i,mi)
This tag generation algorithm is utilized by the sender to

generate an authentication tag. It takes as inputs the secret

key k, a counter i and a message mi. It utilizes an array of

the transmitted and speculated messages msgTx, and an array

of MAC segments of the transmitted and speculated messages

segTx. The arrays msgTx and segTx are stored and maintained

by the sender. Figure 8 presents an overview of the algorithm

which proceeds as follows.

1) Extract m̂i from msgTx and verify whether mi = m̂i.

a) If mi = m̂i, set σi = σ̂i.

b) Otherwise, if mi 6= m̂i, compute the MAC of

the message mi and set it as σi, i.e., σi ←
MacGen(k, i,mi). Divide the MAC σi into n seg-

ments and replace the MAC segments of σ̂i in the

array segTx.

2) Predict the value of the message mi+n−1 and append

the speculated message m̂i+n−1 to the array msgTx, i.e.,

msgTx′ ← MsgSpec(msgTx).
3) Compute the MAC of the message m̂i+n−1 and set it as

σ̂i+n−1, i.e., σ̂i+n−1 ← MacGen(k, i, m̂i+n−1). Divide

the MAC σ̂i+n−1 into n segments and append to the

array segTx.

4) Compute the current tag τi by aggregating the segments

of MACs of the previous, current and future messages,

i.e., τi ← SegAgg(segTx).

valid/invalid← TagVerify(k, i,mi, τi)
This verification algorithm is run by the receiver for verify-

ing the authenticity of the received message and tag by regen-

erating the authentication tag and compared to the received

tag. It takes as inputs the secret key k, the received counter

i, the received message mi, and the received tag τi. It stores

and manages an array of previously received and speculated

messages msgRx, an array of MAC segments segRx, and

an array of verified segments accRx. This algorithm first

generates the tag for the received message using the TagGen
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TABLE III: Example illustrating CuMAC/S with L = 128, n = 4, and l = 32.

Packet Previous Current Previous Current
Aggregation of MAC segments Tag

Counter MACs MAC speculated MACs speculated MAC

2 σ1 σ2 σ̂3, σ̂4 σ̂5 s2
1
⊕ s1

2
⊕ ŝ2

3
⊕ ŝ3

4
⊕ ŝ4

5
τ2

3 σ1, σ2 σ3 σ̂4, σ̂5 σ̂6 s3
1
⊕ s2

2
⊕ s1

3
⊕ ŝ2

4
⊕ ŝ3

5
⊕ ŝ4

6
τ3

4 σ1, σ2, σ3 σ4 σ̂5, σ̂6 σ̂7 s4
1
⊕ s3

2
⊕ s2

3
⊕ s1

4
⊕ ŝ2

5
⊕ ŝ3

6
⊕ ŝ4

7
τ4

5 σ2, σ3, σ4 σ5 σ̂6, σ̂7 σ̂8 s4
2
⊕ s3

3
⊕ s2

4
⊕ s1

5
⊕ ŝ2

6
⊕ ŝ3

7
⊕ ŝ4

8
τ5

6 σ3, σ4, σ5 σ6 σ̂7, σ̂8 σ̂9 s4
3
⊕ s3

4
⊕ s2

5
⊕ s1

6
⊕ ŝ2

7
⊕ ŝ3

8
⊕ ŝ4

9
τ6

7 σ4, σ5, σ6 σ7 σ̂8, σ̂9 σ̂10 s4
4
⊕ s3

5
⊕ s2

6
⊕ s1

7
⊕ ŝ2

8
⊕ ŝ3

9
⊕ ŝ4

10
τ7

8 σ5, σ6, σ7 σ8 σ̂9, σ̂10 σ̂11 s4
5
⊕ s3

6
⊕ s2

7
⊕ s1

8
⊕ ŝ2

9
⊕ ŝ3

10
⊕ ŝ4

11
τ8

algorithm while updating the speculated message in msgRx

and MAC segments in segRx, i.e., τ̃i ← TagGen(k, i,mi).
It then verifies whether the generated tag τ̃i is equal to the

received tag τi. If the verification succeeds, it updates the array

of accumulated MAC segments accRx and outputs the value

valid; otherwise, it outputs the value invalid.

C. Illustration

Table III presents an example of CuMAC/S, which follows

the example of CuMAC presented in Section IV-B. When

the receiver receives the fifth packet with the message m5,

it verifies whether it matches the speculated message m̂5. If

they do not match, the successful verification of the tag τ5
enables the real-time authentication of message m5 with a

cryptographic strength of 32 bits, which is the same as in

CuMAC. Next, the receiver receives and verifies the validity

of tags τ5, · · · , τ8. If all four tags are verified as valid,

the receiver combines the segments s15, s25, s35 and s45—

which are contained in tags τ5, τ6, τ7 and τ8, respectively—

to accumulate the cryptographic strength. This enables the

receiver to perform full authentication of message m5 with

a cryptographic strength of 128 (= 4× 32) bits.

However, if the message m5 and m̂5 match, and tags τ2,

τ3, τ4 and τ5 are verified as valid, the receiver combines the

segments s15, ŝ25, ŝ35 and ŝ45—which are contained in tags τ5,

τ4, τ3 and τ2, respectively. This enables the receiver to perform

real-time authentication of message m5 with a cryptographic

strength of 128 bits. We highlight that this unique ability

to achieve equal cryptographic strengths for the real-time

authentication and full authentication in spite of using short

authentication tags distinguishes CuMAC/S from prior art.

VI. SIMULATION RESULTS

In this section, we consider a simulated IoT environment,

where we assume AES-CMAC with a MAC output of 128 bits

as the underlying MAC algorithm, and we set the size of the

tag in all schemes to 16 bits. We evaluate the performance

of CuMAC and CuMAC/S by comparing them with three

other schemes from the prior art: the truncated MAC [6],

the compound MAC [4], and the aggregate MAC [9]. In the

truncated MAC scheme, each MAC is truncated to 16 bits,

and transmitted as the tag. In the compound MAC scheme, a

compound MAC of 128 bits is computed over eight messages.

In the aggregate MAC scheme, an aggregate MAC of 128 bits

is computed by aggregating the MACs of eight messages. The
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Fig. 9: Illustration of the higher cryptographic strength and

higher packet processing rate achieved by CuMAC and

CuMAC/S in comparison with the prior art.

compound MAC and the aggregate MAC are divided into eight

segments each of size 16 bits and transmitted in each of the

eight packets as the tag. In CuMAC and CuMAC/S, each MAC

of 128 bits is divided into eight segments each of size 16 bits.

In CuMAC, each tag is generated by aggregating segments

of seven previously transmitted messages and the current

message. In CuMAC/S, each tag is generated by aggregating

segments of seven previously transmitted messages, the current

message, and seven speculated messages.

Cryptographic Strength. Figure 9a presents the crypto-

graphic strengths of the MAC schemes versus their authen-

tication delay. In the figure, we observe that CuMAC provides

real-time authentication with cryptographic strength of 16

bits, which is the same for the truncated MAC. As more

packets are received, partially accumulated authentication

is achieved and CuMAC provides increasing cryptographic

strength. Finally, CuMAC provides full authentication with

cryptographic strength of 128 bits, which is the same as

the compound/aggregate MAC. This way, CuMAC enables a

receiver to make a trade-off between (accumulated) crypto-

graphic strength and authentication delay. In some latency-

tolerant IoT applications, this attribute provides the receiver

with operational flexibility to vary the security level and/or

packet processing delay based on particular needs of a protocol
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TABLE IV: Comparison of the MAC schemes using the prototype implementation on a real car.

Scheme Code Space
Increase in Real-Time Auth. Full Auth. Partially Accum. Auth.

Bus Load Delay Strength Delay Strength Delay Strength

Trailing MAC 7410 bytes 200 % 3.451 ms 0 bit 5.616 ms 128 bits 50.000 ms 128 bits

Truncated MAC 7410 bytes 8 % 3.440 ms 16 bits 3.440 ms 16 bits 50.000 ms 16 bits

Compound/Aggregate MAC 7450 bytes 8 % 3.887 ms 0 bit 84.143 ms 128 bits 50.000 ms 0 bits

CuMAC 7522 bytes 8 % 3.798 ms 16 bits 83.983 ms 128 bits 50.000 ms 64 bits

CuMAC/S 7640 bytes 8 % 3.809 ms 128 bits 83.994 ms 128 bits 50.000 ms 128 bits

or rules prescribed by network traffic processing policies.

Most importantly, findings shown in Figure 9a highlight

one critical advantageous attribute of CuMAC/S. We observe

that CuMAC/S enables the receiver to achieve 128 bits of

cryptographic strength for real-time authentication. In other

words, for the messages which can be reliably predicted,

the receiver achieves the cryptographic strength of the full

authentication without any delay (i.e., immediately after the

message is received).

Unreliable Communication Channel. The unreliability of

the channel is measured by the packet drop rate which is

equal to the ratio of the lost packets and the total number

of transmitted packets. The performance of each scheme is

measured in terms of the packet processing rate which is equal

to the ratio of successfully authenticated packets at the receiver

and the total number of transmitted packets.

We evaluate the effect of unreliable communication chan-

nels on the MAC schemes in Figure 9b. In the figure,

we observe that the packet processing rate in CuMAC and

CuMAC/S is equal to that in the truncated MAC. However,

the compound/aggregate MAC can enable the processing of

a significantly lower number of packets than CuMAC and

CuMAC/S. This is because, in compound/aggregate MAC, the

verification of a MAC requires the receiver to receive all of

the packets that contain the messages utilized to compute that

particular MAC, and loss of any one of those packets leads

to the failure in the processing of other packets. For instance,

with a typical 10% packet drop rate, the packet processing

rate in the compound/aggregate MAC is around 43% which

might lead to an unacceptable performance in any typical IoT

application.

VII. IMPLEMENTATION RESULTS

Here we discuss the results obtained from a prototype

implementation of CuMAC and CuMAC/S on a real car.

A. Details of Prototype Implementation

Figure 10 illustrates the prototype implementation and the

setup that was used for running our experiments. The prototype

implementation comprised of two ECU prototypes connected

to the on-board diagnostics (OBD) port of the CAN bus (with

the bus speed of 500 kbps) of a 2016 Toyota Corolla. The

ECU prototype consisted of an Arduino UNO board and a

Seeed Studio CAN shield. The Arduino UNO board was used

to emulate the controller unit of an ECU, and the Seeed

Studio CAN shield implemented the OBD-II protocol stack.

The Arduino UNO board utilizes an Atmel ATmega328P chip,

Fig. 10: Prototype connected to a car’s CAN bus.

which includes a low-power 8-bit microcontroller running at

16 MHz clock speed along with a 32 KB flash memory and

a 2 KB RAM. These specifications of the ECU prototype

are representative of a typical state-of-the-art automotive-grade

controller [40].

With the above experimental setup, we compared six

schemes: the trailing MAC, the truncated MAC, the compound

MAC, the aggregate MAC, CuMAC, and CuMAC/S. For all

schemes, AES-CMAC with a MAC output of 128 bits was

utilized as the underlying MAC algorithm. We utilized an

open-source cryptography library [41] to implement AES-

CMAC. We found that the average computation time (calcu-

lated by averaging the computation time over 1000 executions)

of generating a MAC was 0.786 ms. For all MAC schemes

except the trailing MAC, the size of the tag was set to 16 bits,

and the message and tag were inserted into the data field of

the same CAN packet. For the trailing MAC, the 128-bit MAC

was split into two tags of 64 bits and inserted into the data

fields of two consecutive CAN packets. These packets were

transmitted immediately after the CAN packet containing only

the message.

To evaluate the delay performance, we utilized one ECU

prototype (called Tx-ECU) to transmit 6-byte messages with

the tags on the CAN bus, and another ECU prototype (called

Rx-ECU) to measure the end-to-end delay. In the experiment,

the Rx-ECU requested the Tx-ECU (through an external

synchronization channel) to send a message and started the

timer. The Rx-ECU stopped the timer after verifying the tag

and authenticating the message. The delay was measured as

the time between starting the timer and stopping the timer.

Also, we let the message processing deadline for the message
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type utilized in the experiment be 50 ms. Note that the

processing deadline represents the time within which the

authentication tags corresponding to the message are expected

to be generated, communicated, and verified.

B. Results

Table IV summarizes the results from the experiments. The

end-to-end delay shown in the table is the worst-case delay

in processing 1000 CAN messages. The table also presents

the cryptographic strengths for real-time, full and partially

accumulated authentication in each scheme. From Table IV,

we observe that: (1) In comparison to other MAC schemes,

additional storage for CuMAC and CuMAC/S is at most 2KB,

which is acceptable compared to 32KB total flash memory;

(2) Unlike the trailing MAC, CuMAC and CuMAC/S do not

increase the busload significantly; (3) Unlike the compound

MAC and the aggregate MAC, CuMAC and CuMAC/S pro-

vide real-time authentication; and (4) In comparison with the

truncated MAC, the compound MAC, and the aggregate MAC

schemes, CuMAC and CuMAC/S provide significantly higher

cryptographic strength for partially accumulated authentication

within the processing deadline; (5) CuMAC and CuMAC/S

bring at most 0.4 ms extra delay, which is acceptable compared

to the case where the service delay on the internet of vehicles

can be several seconds [16].

Table IV also shows that compared to CuMAC, CuMAC/S

achieves significantly higher cryptographic strength for real-

time authentication and partially accumulated authentication

at the cost of slightly higher verification delay and extra code

space. Hence, in delay-sensitive application scenarios such as

CAN, CuMAC/S achieves an advantageous trade-off. Mean-

while, since CuMAC/S shows no advantage over CuMAC

for full authentication, CuMAC would be more preferable in

delay-insensitive application scenarios such as Sigfox.

VIII. CONCLUSION

We proposed a novel concept for message authentication

that we refer to as cumulative MAC (CuMAC). CuMAC incurs

low communication overhead and provides high cryptographic

strength which is commensurate with the delay in the authenti-

cation. We also proposed a variant of CuMAC called CuMAC

with speculation (CuMAC/S) that is more suitable for latency-

sensitive applications. Our promising simulation and experi-

mental results validate that CuMAC and CuMAC/S provide

significant advantages over the MAC schemes in the prior art

when deployed in emerging IoT applications, including those

that run on energy/bandwidth-constrained networks.
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APPENDIX A

SECURITY DEFINITION

Here we present the formal security definitions for CuMAC

and CuMAC/S. Katz et al. provide the first concrete proof

which illustrates that if multiple conventional MACs with

cryptographic strength of λ bits are aggregated by XOR

operation to form an aggregate MAC, then the aggregate

MAC is secure with the cryptographic strength of λ bits [9],

[42]. The aggregation procedure employed in CuMAC and

CuMAC/S share similar attributes with the scheme proposed

by Katz et al. Hence, we present the security definitions which

closely follow those presented by Katz et al.

The security evaluation for CuMAC is centered around

the notion of unforgeability under chosen message attack

with parameter r (uf-cma-r), where r indicates the number

of packets accumulated for tag verification. We denote by

Adv
uf-cma-r
CuMAC (A, λ, q), the advantage of the adversary A in

forging a message for a random key k← KeyGen(1λ), where

A can make q queries to the tag generating oracle of CuMAC

OCuMAC(k, ·), and verification is performed after accumulating

r segments of each MAC. CuMAC is considered to be secure if

the advantage of the adversary A is negligibly small. Formally,

the advantage can be expressed by the probability (represented

by Pr[]) that the following experiment returns 1.

Expuf-cma-r
CuMAC (A, λ, q)

k← KeyGen(1λ)
Invoke AOCuMAC(k,·) who can make up to q queries to the

tagging oracle of CuMAC OCuMAC(k, ·). A can query

OCuMAC(k, ·) with n arbitrarily chosen messages and

receive their CuMAC tags in response.

A outputs a set of n pairs ({mi}
n
i=1, {τi}

n
i=1).

Return 1 if valid ← TagVerify (k, i,mi, τi) for all

1 ≤ i ≤ n, and A did not make the query for mi∗ to

OCuMAC(k, ·), where i∗ = n− r + 1.

Return 0 otherwise.

Definition 1. CuMAC is (t, q, ǫ, r)-uf-cma secure if for any

probabilistic polynomial time (PPT) adversary A running in

time t, Pr
[
Expuf-cma-r

CuMAC (A, λ, q) = 1
]
≤ ǫ.

Similar to the experiment Expuf-cma-r
CuMAC (A, λ, q), the uf-cma-r

experiment for CuMAC/S can be readily defined as follows.

Expuf-cma-r
CuMAC/S(A, λ, q)

k← KeyGen(1λ)
Invoke AOCuMAC/S(k,·) who can make up to q queries to the

tagging oracle of CuMAC/S OCuMAC/S(k, ·). A can query

OCuMAC/S(k, ·) with 2n − 1 arbitrarily chosen messages

and receive their CuMAC/S tags in response.

A outputs a set of 2n− 1 pairs
(
{mi}

2n−1
i=1 , {τi}

2n−1
i=1

)
.

Return 1 if valid ← TagVerify (k, i,mi, τi) for all 1 ≤
i ≤ 2n − 1, and A did not make the query for mi∗ to

OCuMAC/S(k, ·), where i∗ = 2n− r.

Return 0 otherwise.

Definition 2. CuMAC/S is (t, q, ǫ, r)-uf-cma secure

if for any PPT adversary A running in time t,

Pr
[
Expuf-cma-r

CuMAC/S(A, λ, q) = 1
]
≤ ǫ.

Note that if CuMAC and CuMAC/S are (t, q, ǫ, r)-uf-cma

secure for all r, then they are also (t, q, ǫ)-uf-cma secure which

is the standard notion of security for a MAC scheme. We

utilize the aforementioned uf-cma-r security model to define

the cryptographic strength for full authentication, partially

accumulated authentication, and real-time authentication. Note

that in the uf-cma-r experiment, when the experiment returns

a value of 1, it implies that A can forge a valid tag for a

packet at which point the receiver has already accumulated

r packets. Therefore, if CuMAC or CuMAC/S is (t, q, ǫ, n)
secure, i.e., r = n, then CuMAC or CuMAC/S is secure in

terms of full authentication. Similarly, if CuMAC or CuMAC/S

is (t, q, ǫ, r) secure for all 2 ≤ r ≤ n− 1, then the scheme is

secure for partially accumulated authentication; and if CuMAC

or CuMAC/S is (t, q, ǫ, 1) secure, i.e., r = 1, then the scheme

is secure in terms of real-time authentication.

The security of CuMAC and CuMAC/S is based on the fol-

lowing assumption that defines the security of the underlying

MAC algorithm [37].
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Assumption 1. The underlying deterministic MAC algorithm,

MacGen, is (t, q, ǫ)-uf-cma secure—i.e., the probability that

an adversary will be successful in producing a forged tag

after running for a polynomial-time t and making q queries is

negligible.

APPENDIX B

SECURITY PROOF

Here we present theorems and corresponding proofs for

the security for CuMAC and CuMAC/S. Let CuMAC be

instantiated with parameters (l, n), i.e., each MAC is divided

into n segments, each of length l bits. Let CuMAC/S be

instantiated with parameters (β, l, n), i.e., the speculation error

rate for the messages is β, and each MAC is divided into n
segments, each of length l bits. Note that in CuMAC and

CuMAC/S, the receiver performs real-time authentication by

setting r = 1, partially accumulated authentication by setting

1 < r < n, and full authentication by setting r = n.

Theorem 1. For any t, q ∈ N and ǫ > 0, if the underly-

ing deterministic MAC algorithm, MacGen, is (t, q, ǫ)-uf-cma

secure, then CuMAC with parameters (l, n) is (t′, q′, ǫ′, r)-uf-

cma secure, where

t′ ≈ t, q′ =
q − n+ 1

n
, ǫ′ = 2l(n−r) · ǫ.

Proof: Let there be an adversary A that succeeds to create

a forgery of an authentication tag for CuMAC with a non-

negligible probability. We construct a simulator S that interacts

with the adversary A and creates a forgery of a MAC for the

MacGen algorithm with a non-negligible probability.

Let CuMAC and the MacGen algorithm utilize the same

secret key k which is not known to the adversary A. Also, let

the MAC of a message in CuMAC be computed by a query

to the tag generating oracle of underlying MAC, which is

denoted as OMacGen(k, ·). In this way, S perfectly simulates

OCuMAC(k, ·), and hence, the uf-cma-r experiment. Suppose

the uf-cma-r experiment for CuMAC returns 1 with the

probability ǫ′ in time t′, where an adversary A outputs a valid

forgery ({mi}
n
i=1, {τi}

n
i=1) after q′ queries to OCuMAC(k, ·)

simulated by S . To create a forgery of a MAC for the MacGen

algorithm, the simulator S proceeds as follows.

For all i ∈ [1, n] and i 6= i∗, the simulator S queries the

OMacGen(k, ·) for the MAC of mi, and obtains the correspond-

ing σi. It divides each MAC into n segments as shown in

equation (1). It recovers the MAC segments of the message

mi∗ by removing the mask by the MAC segments of other

messages as follows:

ski∗ ← τi∗+k−1 ⊕

n⊕

j=1,j 6=k

sji∗+k−j . (4)

Since i∗ = n − r + 1, the simulator S cannot recover

the segments ski∗ with k ≥ r + 1. Hence, it makes a

random guess for the rest of the n − r segments, such that

s̃ki∗ ←$ {0, 1}
l

for all k ∈ [r + 1, n]. Finally, to create the

forgery for the underlying MAC algorithm, MacGen, it con-

catenates all the recovered segments and the guessed segments:

σi∗ ← s1i∗ ||s
2
i∗ · · · ||s

r
i∗ ||s̃

r+1
i∗ || · · · s̃

n
i∗ . This means that given a

successful forgery of the authentication tag in CuMAC, the

probability of creating the forgery of MacGen is 2−l(n−r).

To achieve the forgery of MacGen as shown above, the

simulator S conducts at most n·q′ queries to the OMacGen(k, ·)
to reply the q′ queries by A to OCuMAC(k, ·). Also, the

simulator S conducts n− 1 queries to OMacGen(k, ·) to obtain

{τi}
n
i=1,i 6=i∗ . Therefore, if these exists an adversary A running

in time t′ and achieving Pr
[
Expuf-cma-r

CuMAC (A, λ, q
′) = 1

]
≤ ǫ′,

then it can be leveraged to create a forgery for the underlying

MAC algorithm, MacGen, in time t′ plus the time required to

evaluate the equation (4), by making nq′ +n− 1 queries, and

with probability 2−l(n−r)ǫ′. Hence, if the underlying MAC

algorithm, MacGen, is (t, q, ǫ)-uf-cma secure, then CuMAC

is (t′, q′, ǫ′, r)-uf-cma secure, where t′ ≈ t, q′ = q−n+1
n , and

ǫ′ = 2l(n−r)ǫ.

Theorem 2. For any t, q ∈ N and ǫ > 0, if the underlying de-

terministic MAC algorithm, MacGen, is (t, q, ǫ)-uf-cma secure,

then CuMAC/S with parameters (β, l, n) is (t′, q′, ǫ′, r)-uf-cma

secure, where

t′ ≈ t, q′ =
q − 3n+ 3

2n− 1
, ǫ′ =

ǫ

(1− β) + β2−l(n−r)
.

Proof: Let there be an adversary A that succeeds to create

a forgery of an authentication tag for CuMAC/S with a non-

negligible probability. We construct a simulator S that interacts

with the adversary A and creates a forgery of a MAC for the

MacGen algorithm with a non-negligible probability.

Let CuMAC/S and the MacGen algorithm utilize the same

secret key k which is unknown to the adversary A. Also,

let the MAC of a message in CuMAC/S be computed by

a query to OMacGen(k, ·). In this way, S perfectly simu-

lates OCuMAC/S(k, ·), and hence the uf-cma-r experiment for

CuMAC/S. Suppose the uf-cma-r experiment for CuMAC/S

returns 1 with the probability ǫ′ in time t′, where an adversary

A outputs a successful forgery
(
{mi}

2n−1
i=1 , {τi}

2n−1
i=1

)
after q′

queries to OCuMAC/S(k, ·) simulated by S . To create a forgery

of a MAC for the MacGen algorithm, the simulator S proceeds

as follows.

For all i ∈ [1, 2n − 1] and i 6= i∗, the simulator S
queries OMacGen(k, ·) for the MAC of mi, and obtains the

corresponding σi. Additionally, it queries OMacGen(k, ·) for the

MAC of the speculated messages m̂i and obtains σ̂i for all

i ∈ [i∗+1, i∗+n− 1] . It divides each MAC into n segments

as shown in equation (1). It recovers the MAC segments of the

message mi∗ by removing the mask by the MAC segments of

other messages as follows:

ski∗ ← τi∗+k−1 ⊕

n⊕

j=1,j 6=k

sji∗−j+k ⊕

n⊕

j=2

ŝji∗+j+k−2. (5)

By following the above procedure, the simulator S recovers r
MAC segments. For all k ≥ r+1, the simulator S attempts to

recover ski∗ from the tags received before tag τi∗ as follows:

ski∗ ← τi∗−k+1 ⊕
n⊕

j=1

sji∗−k−j+2 ⊕
n⊕

j=2,j 6=k

ŝji∗−k+j . (6)
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These segments can be recovered with a probability 1 − β.

If a speculation error occurs, then the corresponding MAC

segment is not recovered. In this case, S sets the value of

the MAC segment by randomly guessing the bits. Finally,

the simulator S creates a fresh forgery for the underlying

deterministic MAC algorithm, MacGen, by concatenating all

recovered and guessed segments. The probability that such

forgery is correct is (1− β) + β · 2−l(n−r).

To achieve the forgery of MacGen as shown above, the sim-

ulator S conducts at most (2n− 1)q′ queries to OMacGen(k, ·)
to answer q′ queries by A to OCuMAC/S(k, ·). In order to

compute operations in equations (5) and (6), the simulator

S conducts at most 2n− 2 queries to OMacGen(k, ·) to obtain

{τi}
2n−1
i=1,i 6=i∗ , and at most n− 1 queries to obtain {σ̂i}

i∗+n−1
i=i∗+1 .

Therefore, if for an adversary A running in time t′, we have

Pr
[
Expuf-cma-r

CuMAC/S(A, λ, q
′) = 1

]
≤ ǫ′, then we can leverage

it to break the underlying MAC algorithm, MacGen, in time

t′ plus the time required to evaluate equations (5) and (6),

by making (2n− 1)q′ + 3n− 3 queries, and with probability

ǫ′(1 − β + β2−l(n−r)). Hence, if the underlying MAC algo-

rithm, MacGen, is (t, q, ǫ)-uf-cma secure, then CuMAC/S is

(t′, q′, ǫ′, r)-uf-cma secure, where t′ ≈ t, q′ = q−3n+3
2n−1 , and

ǫ′ = ǫ
1−β+β2−l(n−r) .


