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Abstract—In resource-constrained IoT networks, the use of
conventional message authentication codes (MACs) to provide
message authentication and integrity is not possible due to the
large size of the MAC output. A straightforward yet naive
solution to this problem is to employ a truncated MAC which
undesirably sacrifices cryptographic strength in exchange for
reduced communication overhead. In this paper, we address this
problem by proposing a novel approach for message authentica-
tion called Cumulative Message Authentication Code (CuMAC),
which consists of two distinctive procedures: aggregation and
accumulation. In aggregation, a sender generates compact au-
thentication tags from segments of multiple MACs by using
a systematic encoding procedure. In accumulation, a receiver
accumulates the cryptographic strength of the underlying MAC
by collecting and verifying the authentication tags. Embodied
with these two procedures, CuMAC enables the receiver to
achieve an advantageous trade-off between the cryptographic
strength and the latency in the processing of the authentication
tags. Furthermore, for some latency-sensitive messages where
this trade-off may be unacceptable, we propose a variant of
CuMAC that we refer to as CuMAC with Speculation (CaMAC/S).
In addition to the aggregation and accumulation procedures,
CuMAC/S enables the sender and receiver to employ a spec-
ulation procedure for predicting future message values and pre-
computing the corresponding MAC segments. For the messages
which can be reliably speculated, CaMAC/S significantly re-
duces the MAC verification latency without compromising the
cryptographic strength. We have carried out a comprehensive
evaluation of CuMAC and CuMAC/S through simulation and a
prototype implementation on a real car.

Index Terms—Message authentication code (MAC); Internet-
of-Things (IoT); Controller area network (CAN).

I. INTRODUCTION

N emerging applications, such as intelligent automobiles,

industrial control systems, and smart city networks, a
large number of energy-constrained computing devices are
getting closely integrated with the existing computer infras-
tructure through bandwidth-constrained networks to form the
Internet-of-Things (IoT) [1]. The successful adoption of those
applications will partially depend on our ability to thwart
security and privacy threats, including message forgery and
tampering. Today, message authentication code (MAC) is the
most commonly used method for providing message authen-
ticity and integrity in wired/wireless network applications. To
employ MACs in a resource-constrained (i.e., energy and/or
bandwidth-constrained) network, we need to consider two
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problems: the computational burden on the devices for gen-
erating/verifying the MAC, and the additional communication
overhead incurred due to the inclusion of the MAC in each
message frame/packet. The first problem can be addressed by
using dedicated hardware and cryptographic accelerators [2],
[3]. However, the second problem is not as easy to address.

Problem. The cryptographic strength of a MAC depends
on the cryptographic strength of the underlying cryptographic
primitive (e.g. a hash or block cipher), the size and quality of
the key, and the size of the MAC output. Hence, a conventional
MAC scheme typically employs at least a few hundred bits
of MAC output to ensure a sufficient level of cryptographic
strength. Unfortunately, in resource-constrained IoT networks
(e.g., energy-constrained low-power wide-area network with
battery-powered devices and bandwidth-constrained in-vehicle
controller area network), the payload size of each packet is
very short, i.e., less than a hundred bits [4]. As such, not more
than a few bits can be spared to include an authentication tag,
prohibiting the usage of the conventional MAC [1].

Related Work. The legacy solution for generating a short
authentication tag is to truncate the output of a conventional
MAC so that it fits a message packet [S5]-[7]. This type of
MAC is called a truncated MAC. However, the truncated MAC
sacrifices cryptographic strength in exchange for reduced
communication overhead and energy consumption, which may
be undesirable, or even unacceptable, in some applications.
Note that the truncated MAC without sufficient cryptographic
strength renders the application vulnerable to collision attacks
[8]. To enable authentication with enhanced cryptographic
strength, Katz et al. propose the concept of aggregate MAC
where conventional MACs of multiple messages are combined
into one aggregate MAC and transmitted over successive
packets [9]. Similarly, Nilson et al. propose a compound MAC
which is calculated on a compound of multiple messages
and distributed over successive packets [4]. However, both
the aggregate and compound MAC schemes incur significant
latency in the verification of the messages because the receiver
needs to receive and process all associated packets before
being able to verify the validity of the MAC.

Challenges. In the above discussion, we identify three critical
challenges in employing MACs for IoT networks: (1) incurring
minimal communication overhead so that the MAC can fit in a
packet, (2) ensuring that the cryptographic strength meets the
security need of the application, and (3) incurring minimal
latency so that the MAC generation and verification processes
do not cause unacceptable delays in the packet processing.

Proposed Solution. In this paper, we address the afore-



mentioned challenges through a novel approach for message
authentication that we refer to as Cumulative Message Au-
thentication Code (CuMAC). In CuMAC, a sender utilizes a
procedure called aggregation through which the sender first
divides the full-sized MAC of each message into multiple short
MAC segments, and then “aggregates” the MAC segments of
multiple messages using a systematic encoding procedure to
form a short authentication tag. This procedure resolves the
first challenge of ensuring low communication overhead.

Further, the receiver utilizes a procedure called accumula-
tion through which it first verifies the MAC segments aggre-
gated into the authentication tag of each received packet, and
then “accumulates” the cryptographic strength by collecting
the verified MAC segments associated with the target message.
In this procedure, the receiver may incur a delay that is
proportional to the accumulated cryptographic strength since it
needs to wait for the relevant tags to be received and processed.
Hence, while the accumulation procedure caters to the second
and the third challenge, it brings up a novel and flexible trade-
off between the cryptographic strength and latency. CuMAC
enables the receiver to authenticate the message in real-time
with the cryptographic strength which is commensurate with
the size of each tag. Meanwhile, CuMAC also enables the
authentication with the highest level of cryptographic strength
after accumulating all segments of the MAC that cover the
message in the associated packets.

Moreover, in latency-sensitive IoT applications, the receiver
may be required to immediately authenticate a message with
high cryptographic strength as it arrives. In such cases, the
trade-off made by CuMAC may not be sufficient. To address
this need, we propose a variant of CUMAC called CuMAC with
Speculation (CuMACY/S) that enables a receiver to accumulate
the MAC’s cryptographic strength while incurring a minimal
delay. The core concept of CuMAC/S is motivated by the
technique of speculative execution' which is widely employed
in modern computer systems [10], [11]. CuMAC/S can be
utilized in IoT applications where future messages can be
predicted correctly with high reliability with an appropriate
speculation model using the current and past messages.

In CuMAC/S, a sender speculates future messages, com-
putes the corresponding MACs, and aggregates the MAC
segments of the speculated messages into the authentication
tag of the current packet. If the speculated value of a received
message is equal to the actual value, then all its segments can
be verified in current and previous tags, and hence the receiver
can accumulate cryptographic strength without having to wait
for tags included in forthcoming packets; this significantly cuts
down on the MAC verification delay.

The paper’s main contributions are summarized as follows.

o We propose a novel message authentication scheme called
CuMAC, which meets the security need of resource-
constrained IoT applications. CuMAC is an embodiment
of two novel concepts that we refer to as aggregation

I'Speculative execution is an optimization technique in which a computer
system performs speculative execution where some outcome is predicted and
execution proceeds along a predicted path. Work is done before it is known
whether it is actually needed, so as to prevent a delay that would have to be
incurred by doing the work after it is known that it is needed.
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Fig. 1: Architecture of typical IoT networks.

(which reduces the communication overhead) and accu-
mulation (which increases the cryptographic strength).

e We propose a variant of CuMAC called CuMAC/S that
meets the security need of delay-sensitive, resource-
constrained IoT applications. CuMAC/S enables the accu-
mulation of cryptographic strength while incurring min-
imal delay by employing the novel idea of speculation.

e We have thoroughly evaluated the -effectiveness of
CuMAC and CuMAC/S through a simulated in-vehicle
controller area network and a prototype implementation
on a real car. Our results illustrate that while incurring
the same communication overhead as the truncated MAC
scheme, CuMAC achieves the cryptographic strength
equivalent to the conventional MAC scheme at the cost
of increased latency. Further, for the messages which can
be accurately speculated, CuMAC/S achieves the cryp-
tographic strength equivalent to the conventional MAC
scheme without any additional latency.

II. MOTIVATION FOR SHORT MACS

IoT networks consist of resource-constrained devices at
the lowest layer as shown in Figure 1. To enable message
authentication in such networks, it is imperative to use short
MACs as demonstrated by the following discussion of two spe-
cific application scenarios — one with the energy-constrained
devices and another with the bandwidth-constrained devices.

A. Low-Power Wide-Area Network (LPWAN)

Many IoT applications (e.g., smart metering and smart city
infrastructure) require a densely deployed network of low-
cost energy-constrained battery-operated wireless devices. The
paradigm of LPWAN is aimed at fulfilling these requirements
of IoT networks [1], [5]. Sigfox [12] is one example of a
widely-known LPWAN technology. In Sigfox, each uplink
packet contains a counter, a message (with the length between
0 and 96 bits), and an authentication tag (with the length
between 16 and 40 bits). To enable robust communication
over the unreliable wireless channel, the sender in Sigfox
transmits multiple copies of the same packet sequentially.
After transmitting the fixed number of copies of the packet, the
sender waits for an acknowledgment from the receiver. In the
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Fig. 2: Effect of the size of message and authentication tag

on the service life of a sensor node in Sigfox (the results are

obtained using the battery consumption data from a Sigfox

compliant transceiver produced by ON Semiconductor [13].)

absence of the acknowledgment, the packet is considered lost.
Sigfox does not support retransmission of such lost packets.

The battery-powered Sigfox devices are expected to have a
service/battery life of several years. As the energy consump-
tion of a Sigfox device is directly proportional to the size
of communicated packets, it is imperative to communicate
using short packets to ensure long service life. Figure 2 illus-
trates that in comparison to the standard benchmark of 48-bit
messages without any tags, while utilizing a short MAC with
16-bit tags achieves a modest (around 10%) reduction in the
service life, utilizing the conventional MAC with 128-bit tags
results in a significant loss of around 45% of the service life.
As such, although the message integrity and authentication are
of prime importance in applications supported by Sigfox [14],
the energy overhead of communicating the full-sized MAC
output in the Sigfox packet is undesirably high.

B. In-Vehicle Controller Area Network (CAN)

Today’s high-end cars use a hundred or more electronic
control units (ECUs) to enable advanced functionalities, such
as adaptive cruise control and internet-of-vehicles (IoV) [15]-
[17]. As shown in Figure 3, these ECUs communicate with
each other over a bandwidth-constrained wired broadcast
channel called the CAN bus [18], [19]. Because the messages
communicated among ECUs directly affect vital functions of
a vehicle, some of which are safety-related (e.g., dynamics
control system [20]), the security and reliability of the CAN
bus and the integrity of the messages on it are critical [3]. We
note that while the state-of-the-art CAN bus supports robust
mechanisms for message acknowledgment and retransmission
of corrupted/lost packets, it does not support any security
mechanism [21].

Several studies have shown that a car’s in-vehicle network
can be compromised through either direct physical access (e.g.,
using the on-board diagnostics port) or a remote connection
(e.g., using Bluetooth) to the CAN bus [22], [23]. Due to one
such vulnerability, Jeep had to recall 1.4 million vehicles in
2015 [24]. Although the existing literature [25]-[27] addresses
some of the authentication issues in a vehicle-to-smart grid
(V2G) or internet-of-vehicles (IoV) scenarios, there is a lack
of an effective and practical scheme to counter impersonation
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Fig. 3: Architecture of an in-vehicle controller area network.
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attacks against ECUs in CAN. To this end, the US National
Highway Traffic Safety Administration (NHTSA) recommends
the inclusion of MACs for the end-to-end authentication of the
messages on the CAN bus [28].

A CAN packet consists of an 11-bit or a 29-bit identifier
field and a message field with a length between O and 64
bits. Except for the identifier and message fields, we cannot
arbitrarily change the length or the content of other fields in the
CAN packet as that would make the modified packet incom-
patible with the existing CAN protocol. Hence, in the prior art
[6], [29], to realize MAC-based authentication in each packet,
the identifier field is used to accommodate an 18-bit counter,
and the message field is used to accommodate the message
payload as well as the authentication tag. Although such a
design of the modified packet ensures that it is backward-
compatible, inserting a full-sized MAC in the modified packet
is not possible because the maximum allowed length of the
message field in a CAN packet is only 64 bits. Further,
since the bandwidth of a typical CAN bus is only 500 kbit/s,
transmitting additional trailing packets containing only the
authentication tag undesirably increases the bus load [30].

Proposed Design. In both the above application scenarios
(LPWAN and CAN), the constraints of the IoT network —
either in terms of the MAC size or energy/bandwidth consump-
tion of the networked devices — prohibit the use of the con-
ventional MAC scheme. To address this challenge, we propose
CuMAC and CuMAC/S which can be readily employed in
these scenarios to achieve the desired level of security provided
by short MACs. In this paper, we utilize CAN as a concrete
application scenario to highlight the advantages of CuMAC
and CuMAC/S. However, these two schemes can be applied to
other resource-constrained network applications, including IoT
applications (e.g. LPWAN, Bluetooth Low Energy (BLE) [31],
Constrained Access Protocol (CoAP) [32] or Message Queue
Telemetry Transport (MQTT) [33]).

III. MODEL AND SECURITY OBJECTIVES

Here we discuss the network model and define the security
objectives of the proposed MAC schemes.



A. Model and Assumptions

System Model. We consider an energy-constrained and/or
bandwidth-constrained IoT network where a sender needs to
transmit security-critical messages to a receiver using small
packets. Hence, the sender and the receiver (after sharing a
secret key) employ a MAC scheme for message authentication.
As shown in Figure 4, we let the sender employ a packet
format that contains at least three fields: a packet counter,
a message, and an authentication tag. We note that these
three fields are critical for ensuring any secure message
authentication scheme including CuMAC and CuMAC/S. If
the network protocol (e.g., Sigfox as discussed in Section II-A)
employs these fields in the conventional packets by design,
we can readily utilize them; otherwise, the packet contents
can be modified in the target network protocol (e.g., CAN as
discussed in Section II-B) to include these fields.

We assume that there exists a message acknowledgment
mechanism that enables the sender to know if a particular
packet was correctly delivered to the receiver [34]. The ac-
knowledgment mechanism assisted with the packet counter
enables the sender and the receiver to maintain the same
sequence of packets. Note that we do not make any assumption
about the message retransmission mechanism, i.e., the network
may or may not support retransmission.

Threat Model. We consider an adversary that aims to forge
valid authentication tags for its malicious messages so that it
can deceive the authentication scheme at the receiver. While
the adversary can eavesdrop on the communication channel to
obtain packets transmitted by the sender, it does not know the
secret key (used for generating and verifying authentication
tags) shared between the sender and the receiver.

Cryptographic Strength. We convey the cryptographic
strength in bits, where a cryptographic strength of A bits
for a scheme means that for any adversary making at most
2 queries or taking at most 2* time, the probability of
successfully launching an attack against the scheme is negli-
gibly small [35]. The cryptographic strength of a conventional
MAC depends on three security criteria: (1) the cryptographic
strength of the underlying cryptographic primitive, (2) the
size and quality of the secret key, and (3) the size of the
MAC output. In this paper, we assume that the first and
second criteria have been satisfied, and focus only on the third
criterion. As such, to achieve a cryptographic strength of A
bits, the minimum size of the MAC output (denoted by L)
should be A bits.

B. Proposed Approach and Security Objectives

MAC Design. As shown in Figure 5, we consider that an
L-bit MAC of a message m; is divided into n segments each
of length [, and distributed in tags 7;, -, Tj4+n—1. Also, if
after generating the message m;_,1, the message m; can be
speculated as m;, the corresponding MAC is computed as 7;.
The MAC o; is divided into n segments, and the last n — 1
segments are distributed in tags 7;_,41, -, T;—1, which are
transmitted before ;.

Real-time authentication

Mi-p+] | Tin+l | — — —’ m; | T; l ‘ Mit] | Ti+l | ™ — " |Mi+n-1| Ti+n-1

Partially accumulated authentication

Full authentication

Fig. 5: Tllustrative distribution of the segments of the MAC of
message m;, and definition of the authentication levels.

Authentication Levels. To compare the proposed approach
with the prior art, we define three levels/features of authen-
tication: (1) real-time authentication, (2) full authentication,
and (3) partially accumulated authentication. Figure 5 illus-
trates these different levels of authentication, when applied to
message m;. Here the receiver can perform real-time authenti-
cation immediately after receiving message m; by processing
the current tag 7; and the previous tags 7; 41, - , T;—1. With
real-time authentication, the receiver performs authentication
without any delay, but it achieves the lowest cryptographic
strength since there is no security accumulation using the
subsequent tags. On the other hand, the receiver can perform
full authentication after receiving all of the segments of the
MAC associated with message m; in tags 7;—p41, - , Titn—1-
With full authentication, the receiver achieves the highest cryp-
tographic strength but needs to incur a latency of n—1 packets.
The receiver can perform partially accumulated authentication
by accumulating and processing tags T;—p41,°* , Tidr—1,
where 1 < r < n. Partially accumulated authentication
enables the receiver to make a trade-off between cryptographic
strength and message verification latency to meet the security
and performance needs of the application.

Security Objectives. The security objective of the proposed
MAC scheme is to ensure that the probability with which an
adversary succeeds in breaking each of the three authentication
features is negligible (i.e, as difficult as random guessing).
Specifically, to break the real-time authentication feature, the
adversary needs to forge a message and a valid tag. The forgery
needs to be fresh which means that the sender has not gener-
ated the MAC of the same counter and message pair using the
same shared key. As such, the cryptographic strength of real-
time authentication depends on the size of the MAC segment
l. To break the partially accumulated authentication feature
with r accumulated segments, the adversary needs to forge a
sequence of r messages with valid tags. In this sequence, the
forgery for only the first message needs to be fresh. Hence, the
cryptographic strength of partially accumulated authentication
depends on the size of the MAC segment [ and the number
of accumulated segments r. Similarly, to break the full au-
thentication feature, the adversary needs to forge a sequence
of n messages with valid tags, where forgery for at least the
first message is fresh. Hence, the cryptographic strength of full
authentication is limited by the size of MAC L. In the case of
the speculation of future messages, the cryptographic strengths
of the real-time and the partially accumulated authentication
also depend on the message speculation accuracy.

A formal discussion of the security properties and associated
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proofs corresponding to CuMAC and CuMAC/S are provided
in Appendix A and B.

IV. TECHNICAL DETAILS OF CUMAC

CuMAC comprises two major algorithms: tag generation
and tag verification. In the tag generation algorithm, the
sender computes the authentication tag through two major
steps (Figure 6). In the first step, the sender generates the
MAC of the message, breaks the MAC into short segments,
and stores them into a segment array. In the second step, the
sender retrieves one MAC segment of the current message, and
several segments of the MACs of the previously transmitted
messages from the segment array, and aggregates the segments
to generate a tag. Having received each packet, the receiver
runs the tag verification algorithm which includes two major
steps. In the first step, the receiver generates an authentication
tag of the received message using the same procedure em-
ployed in the tag generation algorithm. In the second step, the
receiver compares the generated authentication tag with the
received authentication tag. If the authentication tags match,
the receiver accumulates the MAC segment (aggregated in
the authentication tag) with the previously received MAC
segments of the corresponding message.

Below we present the technical details of the algorithms
in CuUMAC, and an instantiation that illustrates the generation
and verification of the tags in CuMAC.

A. Algorithms

CuMAC is composed of the following algorithms, where the
KeyGen(1*) and MacGen(k, i,m;) algorithms utilize existing
approaches and the rest ones are proposed in this paper.

k < KeyGen(1?)

This probabilistic key generation algorithm is utilized by the
sender and receiver to obtain the secret key. The input to this
algorithm is the security parameter A € N, and the output is
the secret key denoted by k. In a resource-constrained network,
this algorithm can be efficiently realized by leveraging a
trusted node [7]. In the absence of such a node, it can also be
realized using an efficient key distribution scheme [36].

o; < MacGen(k, i,m;)

This deterministic MAC generation algorithm is utilized
by the sender and the receiver (as a sub-algorithm of tag
generation and verification algorithms) to compute the MAC of
a message using the secret key. The inputs to this algorithm are
the secret key k, a counter ¢, and a message m;. This algorithm
outputs the L bits long MAC represented by o;. This algorithm
can be realized using a cipher-based (e.g., AES-CMAC [37])
or a hash-based (e.g., SHA-3) MAC scheme. In this paper, we
utilize the widely used AES-CMAC.

T; + SegAgg(seghrray)

This segment aggregation algorithm is utilized by the sender
and the receiver as a sub-algorithm of tag generation and
tag verification algorithms, respectively. It takes as input a
two-dimensional array of MAC segments segArray. This
algorithm proceeds as follows. The i*" row of segments in
segArray is generated as follows. The L-bit MAC o; is
divided into n segments, such that the size of each segment
is [ bits, i.e., L =n-[. The jth segment of o; is represented
by s, and is extracted from o; as

Sf A (Uz‘)u(y‘—l)~l+1,j-l]~ (D

It means that the bits in s{ correspond to the bits from
((G—1) -1+ 1™ bit to (j-1)™ bit in ;. Further, this al-
gorithm extracts n elements from segArray (n — 1 previous
MAC segments and one current MAC segment), and computes
the authentication tag 7; as follows.

n
Ti sgfjﬂ. )

Jj=1,i=j+1>0
This algorithm outputs the authentication tag ;.
7; + TagGen(k,i,m;)

This tag generation algorithm is run by the sender to
generate an authentication tag. It takes as inputs the secret
key k, a counter ¢ and a message m;. It utilizes an array
of MAC segments segTx which is stored and maintained by

the sender. This algorithm proceeds as follows to output the
authentication tag ;.

1) Compute the MAC of the message m; and set it as o;,
i.e., o; + MacGen(k,i,m;).

2) Divide the MAC o; into n segments as shown in equa-

tion (1) and append the segments to the array segTx.

3) Compute and output the tag 7; by aggregating the

segments of MACs in segTx as shown in equation (2),
i.e., 7, < SegAgg(segTx).

After receiving a positive acknowledgment of the delivery of
the packet at the receiver, the sender increments the counter @
by one for the next packet. We note that the counter ¢ can
be readily employed to handle the case of a lost packet. The
sender gets to know that the i*" packet is lost when it does not
receive the acknowledgment from the receiver or it receives a
negative acknowledgment. In this case, if the sender does not
support any retransmission mechanism, the sender does not
increment the packet counter, removes the i row (i.e., the
most recently appended row) of segments in segTx, and then
proceeds with the tag generation of the next message.
valid/invalid < TagVerify(k,i,m;, ;)

This verification algorithm is run by the receiver for verify-
ing the authenticity of the received message and tag by regen-
erating the authentication tag and compared to the received tag.
It takes as inputs the secret key k, the received counter 7, the
received message m;, and the received tag 7;. It also utilizes
an array of MAC segments segRx and an array of verified
MAC segments accRx. These arrays are stored and maintained
by the receiver. This algorithm first generates the tag for the
received message using the TagGen algorithm while updating



TABLE I: Example illustrating CuMAC with L = 128, n = 4,
and [ = 32.
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the MAC segments in segRx, i.e., 7; < TagGen(k,i,m;).
It then verifies whether the generated tag 7; is equal to the
received tag ;. If the verification succeeds, it updates the array
of accumulated MAC segments accRx and outputs the value
valid; otherwise, it outputs the value invalid.

B. Illustration

Table I presents an example of CuMAC. The size of the
tag in each packet is 32 bits (i.e., | = 32). The MAC is
generated using the AES-CMAC algorithm. Hence, the size
of the MAC output is 128 bits (i.e., L = 128), which provides
cryptographic strength of 128 bits. Each MAC is divided into
four segments (i.e., n = 4). In the fifth packet, the MAC o5 of
the message ms is computed. To compute the corresponding
tag 75, the sender aggregates the segment s} of the MAC o5
and the segments of the MACs of the previously generated
messages, 0o, o3 and os. Further, the tags 74, 77 and 7g are
computed using the segments s2, s? and s} of o5, respectively.

When the receiver receives the fifth packet with the message
ms, the successful verification of the tag 75 enables the real-
time authentication of message mjs with the cryptographic
strength of 32 bits. Next, the receiver receives and verifies the
validity of tags 74, 77, and 7g. If all four tags are verified as
valid, the receiver combines the segments si, s2, s¢ and s3—
which are contained in tags 75, 74, 77 and 7g, respectively—
to accumulate the cryptographic strength. This enables the
receiver to perform full authentication of message ms with
the cryptographic strength of 128 (= 4 x 32) bits. However,
if the receiver is restricted to process the fifth packet only
after receiving the seventh packet due to latency requirements,
it may also perform partially accumulated authentication of
message mjs with a cryptographic strength of 96 bits after
verifying tags 75, 7¢ and 77. We highlight that this ability to
perform the partially accumulated authentication is the most
unique feature of CUMAC when compared to the prior art.

V. TECHNICAL DETAILS OF CUMAC/S

In latency-sensitive applications, the receiver must authen-
ticate a message as it arrives. For such applications, the trade-
off between the cryptographic strength and latency made by
CuMAC may not be sufficient. To address this challenge, we
present CuMAC/S, which employs a novel concept of message
speculation for MAC generation. Equipped with an accurate
message speculation algorithm, CuMAC/S achieves both high
cryptographic strength and low verification latency.

A. Feasibility of Speculation

We discuss the feasibility of speculation of future messages
by analyzing the messages communicated on a CAN bus in
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Fig. 7: Example illustrating the feasibility of speculation of a
vehicle’s transmission torque values through an ARIMA model
whose parameters are determined using the autocorrelation
function (ACF) and partial autocorrelation function (PACF).

a typical vehicle. To evaluate the speculation accuracy for
different CAN messages, we utilize trace files of a real vehicle,
which have been recorded using the OpenXC platform [38].
These files present different types of CAN messages which
can be identified and interpreted by OpenXC libraries. To
speculate future message values, we utilize the autoregressive
integrated moving average (ARIMA) model, which is a widely
used model for time series analysis.

The ARIMA model with hyperparameters (p, d, q) implies
that for the d®-order difference of the time series values, a
speculated future message value is the linear combination of p
previous values, and ¢ previous error values in the speculation.
We utilize the Box-Jenkins [39] method to compute the
hyperparameters of the ARIMA model for each type of CAN
message. In this method, we determine the values for p, d, and
q by observing the autocorrelation and partial autocorrelation
of the message values. We illustrate this procedure in Figure 7
which presents the autocorrelation and partial autocorrelation
of the values of the message corresponding to the torque at
transmission in a vehicle. From the results shown in Figure 7a,
we observe that there is high autocorrelation between message
values. Further, from the results shown in Figure 7b, we ob-
serve that the autocorrelation decays gradually, and the partial
autocorrelation is close to zero after a lag of 3 message values.
Hence, according to the rules of the Box-Jenkins approach,
we set ARIMA(3,1,0) model to speculate the message values
corresponding to the torque at the transmission.

In our analysis, we train the ARIMA model using the first
90% of the message values, and then we employ the model on
the last 10% of message values for the test. Here, the accuracy
of correct speculation/prediction of future message values is
measured using a metric called speculation error rate (SER),
which is defined as the ratio between the number of incorrect
speculations and the total number of speculations. Note that
the speculation is correct only if the message is correctly



TABLE II: Speculation accuracy for typical CAN messages.

Signal SER SER after ignoring 3 LSBs
Longitude <0.0001 <0.0001
Latitude <0.0001 <0.0001
Odometer <0.0001 <0.0001
Fuel level <0.0001 <0.0001
Fuel consumed since restart | <0.0001 <0.0001
Accelerator pedal position 0.0030 0.0002
Torque at transmission 0.0100 0.0020
Engine speed 0.2329 0.0880
Vehicle speed 0.2478 0.0975
Steering wheel angle 0.4763 0.3595

predicted up to the least significant bit (LSB). Table II shows
the speculation error rate of ten message-types. We observe
that certain types of CAN messages (e.g. the first five message
types listed in Table II) can be predicted with high reliability
using the ARIMA model.

We can improve the speculation accuracy by using more
sophisticated and further tuned models. Moreover, we can
mitigate the impact of speculation errors by increasing the
robustness of the MAC scheme against such errors. For
example, if the message contains some values for which some
of the least significant bits can be safely ignored (without
impacting performance or security), then these bits do not need
to be protected by a MAC, and hence the MAC calculation can
be limited to only the part of a message that can be predicted
with high reliability. In the rightmost column of Table II, we
show that the SER can be significantly improved for some
types of messages by ignoring the last three least LSBs.

Now we present the technical details of the algorithms in
CuMAC/S and an instantiation that illustrates the generation
and verification of the tags in CuMAC/S.

B. Algorithms

The KeyGen and MacGen algorithms in CuMAC (discussed
in Section IV) and those in CuMAC/S are the same, and hence
we do not provide their details in this section. We present the
details of other algorithms in CuMAC/S as follows.
msgArray’ + MsgSpec(msgArray)

This deterministic message speculation algorithm is uti-
lized by the sender and receiver for the speculation of
future message values. It takes an array of the transmit-
ted and speculated messages msgArray as input. At the
ith instance, the array msgArray can be represented as
{ml, mo,y -« yMyi—1,My, T/T\li_H, 7/7\7,1‘4_2, ce 7’/7\7,1‘4_”_2}. This al-
gorithm generates the predicted value of the message m;y,—1,
which is represented by 7., 1, appends it to the array
msghrray, and outputs the updated array msgArray’. Since
the speculation model used in this algorithm is deterministic,
the sender and the receiver run the same set of steps, and obtain
the same speculated messages given the same input messages.

7; + SegAgg(seghrray)

This segment aggregation algorithm is run by the sender
and the receiver. It takes as input a two-dimensional array
of MAC segments segArray. The segArray comprises of

Segments of MACs of
previous messages

Break
Message ——> > Compute | , MAC into C:nm;:’uvte
MAC ) ag by
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— Tag

Store in
message
array

Store in
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array
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Break

L C‘]’\'l“:g“ || MAC into|_,|

Speculated message —>|

Fig. 8: Schematic of the procedures at the sender in CuMAC/S.

the segments of the MACs of the transmitted and speculated
messages. The it" entry in segArray is generated by the
segment s Vj € [1,n] using the equation (1). This algorithm
extracts 2n—1 elements from segArray (n—1 previous MAC
segments, current MAC segment, and n — 1 speculated MAC
segments), and computes the authentication tag 7; as follows.

n

D

j=1,i—j+1>0

n
) J =
T sl e, ] ¥
Jj=2

This algorithm outputs the authentication tag ;.
7; + TagGen(k,i,m;)

This tag generation algorithm is utilized by the sender to
generate an authentication tag. It takes as inputs the secret
key k, a counter ¢ and a message m;. It utilizes an array of
the transmitted and speculated messages msgTx, and an array
of MAC segments of the transmitted and speculated messages
segTx. The arrays msgTx and segTx are stored and maintained
by the sender. Figure 8 presents an overview of the algorithm
which proceeds as follows.

1) Extract m; from msgTx and verify whether m; = m,.

a) If m; = ﬁli, set o; = ET\Z

b) Otherwise, if m; # m;, compute the MAC of
the message m; and set it as oy, i.e., 0; <
MacGen(k, i, m;). Divide the MAC o; into n seg-
ments and replace the MAC segments of &; in the
array segTx.

2) Predict the value of the message m;,—1 and append
the speculated message m; 1,1 to the array msgTx, i.e.,
msgTx’ < MsgSpec(msgTx).

3) Compute the MAC of the message ;4,1 and set it as
6'\1‘4_”_1, ie., 6'\1‘4_”_1 — MacGen(k,i,ﬁzi+n_1). Divide
the MAC G4, into n segments and append to the
array segTx.

4) Compute the current tag 7; by aggregating the segments
of MACs of the previous, current and future messages,
i.e., 7; «+ SegAgg(segTx).

valid/invalid «+ TagVerify(k, i, m;, 7;)

This verification algorithm is run by the receiver for verify-
ing the authenticity of the received message and tag by regen-
erating the authentication tag and compared to the received
tag. It takes as inputs the secret key k, the received counter
i, the received message m;, and the received tag 7;. It stores
and manages an array of previously received and speculated
messages msgRx, an array of MAC segments segRx, and
an array of verified segments accRx. This algorithm first
generates the tag for the received message using the TagGen



TABLE III: Example illustrating CuMAC/S with L = 128, n =4, and | = 32.

Packet Previous Current Previous Current .
Aggregation of MAC segments Tag
Counter MACs MAC speculated MACs | speculated MAC
2 o1 o2 33, 27'\4 35 S% D s% D 3\% D /Sz b ./S\g T2
3 01,02 o3 04,05 6 S%@S%@Sé@gz@gg@gé 3
4 01,02,03 o4 05,06 o7 stosspsiosl DT st T4
5 02,03,04 a5 06,07 s SADssDsTDst DSEDF D3y 5
6 03,04,05 a6 57,08 Gy SEDs]DsIDsE D2 DI DS, 6
7 04,05,06 a7 08,09 G1o S1D st Ds2DstDSLDE D3, T7
8 05,06,07 os 59,010 G11 ssdsiosiosioas, o5t | ™

algorithm while updating the speculated message in msgRx
and MAC segments in segRx, i.e., 7; + TagGen(k,i,m;).
It then verifies whether the generated tag 7; is equal to the
received tag 7;. If the verification succeeds, it updates the array
of accumulated MAC segments accRx and outputs the value
valid; otherwise, it outputs the value invalid.

C. Illustration

Table III presents an example of CuMAC/S, which follows
the example of CuMAC presented in Section IV-B. When
the receiver receives the fifth packet with the message ms,
it verifies whether it matches the speculated message ms. If
they do not match, the successful verification of the tag 75
enables the real-time authentication of message ms with a
cryptographic strength of 32 bits, which is the same as in
CuMAC. Next, the receiver receives and verifies the validity
of tags 75,---,7g. If all four tags are verified as valid,
the receiver combines the segments si, s%, s3 and si—
which are contained in tags 75, 76, 77 and g, respectively—
to accumulate the cryptographic strength. This enables the
receiver to perform full authentication of message ms with
a cryptographic strength of 128 (= 4 x 32) bits.

However, if the message ms and 75 match, and tags 7o,
T3, T4 and 75 are verified as valid, the receiver combines the
segments s}, 52, 52 and Si—which are contained in tags s,
T4, T3 and 7o, respectively. This enables the receiver to perform
real-time authentication of message ms with a cryptographic
strength of 128 bits. We highlight that this unique ability
to achieve equal cryptographic strengths for the real-time
authentication and full authentication in spite of using short
authentication tags distinguishes CuMAC/S from prior art.

VI. SIMULATION RESULTS

In this section, we consider a simulated IoT environment,
where we assume AES-CMAC with a MAC output of 128 bits
as the underlying MAC algorithm, and we set the size of the
tag in all schemes to 16 bits. We evaluate the performance
of CuMAC and CuMAC/S by comparing them with three
other schemes from the prior art: the truncated MAC [6],
the compound MAC [4], and the aggregate MAC [9]. In the
truncated MAC scheme, each MAC is truncated to 16 bits,
and transmitted as the tag. In the compound MAC scheme, a
compound MAC of 128 bits is computed over eight messages.
In the aggregate MAC scheme, an aggregate MAC of 128 bits
is computed by aggregating the MACs of eight messages. The

@150
g
=
2
o 100
@
o
£
& 50 Trucated MAC
> &3 Compound MAC|
kel % CuMAC
SN © cumAcis
S o | | | | | | :
0 1 2 3 4 5 6 7 8

Delay (packets)

(a) Trade-off between cryptographic strength and delay.

o

¥ —— &

®
=]

o2}
=]

IS
=)

Trucated MAC
H Compound/Aggregate MAC
| % CuMAC, CuMAC/S |
5 10
Packet drop rate(%)

n
=]

Packet processing rate(%)

o
o

(b) Effect of unreliable communication channel.

Fig. 9: Illustration of the higher cryptographic strength and
higher packet processing rate achieved by CuMAC and
CuMAC/S in comparison with the prior art.

compound MAC and the aggregate MAC are divided into eight
segments each of size 16 bits and transmitted in each of the
eight packets as the tag. In CuMAC and CuMAC/S, each MAC
of 128 bits is divided into eight segments each of size 16 bits.
In CuMAC, each tag is generated by aggregating segments
of seven previously transmitted messages and the current
message. In CUMAC/S, each tag is generated by aggregating
segments of seven previously transmitted messages, the current
message, and seven speculated messages.

Cryptographic Strength. Figure 9a presents the crypto-
graphic strengths of the MAC schemes versus their authen-
tication delay. In the figure, we observe that CuMAC provides
real-time authentication with cryptographic strength of 16
bits, which is the same for the truncated MAC. As more
packets are received, partially accumulated authentication
is achieved and CuMAC provides increasing cryptographic
strength. Finally, CuMAC provides full authentication with
cryptographic strength of 128 bits, which is the same as
the compound/aggregate MAC. This way, CuMAC enables a
receiver to make a trade-off between (accumulated) crypto-
graphic strength and authentication delay. In some latency-
tolerant IoT applications, this attribute provides the receiver
with operational flexibility to vary the security level and/or
packet processing delay based on particular needs of a protocol



TABLE IV: Comparison of the MAC schemes using the prototype implementation on a real car.

Scheme Code Space Increase in Real-Time Auth. Full Auth. Partially Accum. Auth.
Bus Load Delay Strength Delay Strength Delay Strength
Trailing MAC 7410 bytes 200 % 3.451 ms 0 bit 5.616 ms 128 bits | 50.000 ms 128 bits
Truncated MAC 7410 bytes 8 % 3.440 ms 16 bits 3.440 ms 16 bits 50.000 ms 16 bits
Compound/Aggregate MAC | 7450 bytes 8 % 3.887 ms 0 bit 84.143 ms | 128 bits | 50.000 ms 0 bits
CuMAC 7522 bytes 8 % 3.798 ms 16 bits 83.983 ms | 128 bits | 50.000 ms 64 bits
CuMAC/S 7640 bytes 8 % 3.809 ms | 128 bits | 83.994 ms | 128 bits | 50.000 ms 128 bits

or rules prescribed by network traffic processing policies.

Most importantly, findings shown in Figure 9a highlight
one critical advantageous attribute of CuMAC/S. We observe
that CuMAC/S enables the receiver to achieve 128 bits of
cryptographic strength for real-time authentication. In other
words, for the messages which can be reliably predicted,
the receiver achieves the cryptographic strength of the full
authentication without any delay (i.e., immediately after the
message is received).

Unreliable Communication Channel. The unreliability of
the channel is measured by the packet drop rate which is
equal to the ratio of the lost packets and the total number
of transmitted packets. The performance of each scheme is
measured in terms of the packet processing rate which is equal
to the ratio of successfully authenticated packets at the receiver
and the total number of transmitted packets.

We evaluate the effect of unreliable communication chan-
nels on the MAC schemes in Figure 9b. In the figure,
we observe that the packet processing rate in CuMAC and
CuMAC/S is equal to that in the truncated MAC. However,
the compound/aggregate MAC can enable the processing of
a significantly lower number of packets than CuMAC and
CuMAC/S. This is because, in compound/aggregate MAC, the
verification of a MAC requires the receiver to receive all of
the packets that contain the messages utilized to compute that
particular MAC, and loss of any one of those packets leads
to the failure in the processing of other packets. For instance,
with a typical 10% packet drop rate, the packet processing
rate in the compound/aggregate MAC is around 43% which
might lead to an unacceptable performance in any typical IoT
application.

VII. IMPLEMENTATION RESULTS

Here we discuss the results obtained from a prototype
implementation of CuMAC and CuMAC/S on a real car.

A. Details of Prototype Implementation

Figure 10 illustrates the prototype implementation and the
setup that was used for running our experiments. The prototype
implementation comprised of two ECU prototypes connected
to the on-board diagnostics (OBD) port of the CAN bus (with
the bus speed of 500 kbps) of a 2016 Toyota Corolla. The
ECU prototype consisted of an Arduino UNO board and a
Seeed Studio CAN shield. The Arduino UNO board was used
to emulate the controller unit of an ECU, and the Seeed
Studio CAN shield implemented the OBD-II protocol stack.
The Arduino UNO board utilizes an Atmel ATmega328P chip,

Fig. 10: Prototype connected to a car’s CAN bus.

which includes a low-power 8-bit microcontroller running at
16 MHz clock speed along with a 32 KB flash memory and
a 2 KB RAM. These specifications of the ECU prototype
are representative of a typical state-of-the-art automotive-grade
controller [40].

With the above experimental setup, we compared six
schemes: the trailing MAC, the truncated MAC, the compound
MAC, the aggregate MAC, CuMAC, and CuMAC/S. For all
schemes, AES-CMAC with a MAC output of 128 bits was
utilized as the underlying MAC algorithm. We utilized an
open-source cryptography library [41] to implement AES-
CMAC. We found that the average computation time (calcu-
lated by averaging the computation time over 1000 executions)
of generating a MAC was 0.786 ms. For all MAC schemes
except the trailing MAC, the size of the tag was set to 16 bits,
and the message and tag were inserted into the data field of
the same CAN packet. For the trailing MAC, the 128-bit MAC
was split into two tags of 64 bits and inserted into the data
fields of two consecutive CAN packets. These packets were
transmitted immediately after the CAN packet containing only
the message.

To evaluate the delay performance, we utilized one ECU
prototype (called Tx-ECU) to transmit 6-byte messages with
the tags on the CAN bus, and another ECU prototype (called
Rx-ECU) to measure the end-to-end delay. In the experiment,
the Rx-ECU requested the Tx-ECU (through an external
synchronization channel) to send a message and started the
timer. The Rx-ECU stopped the timer after verifying the tag
and authenticating the message. The delay was measured as
the time between starting the timer and stopping the timer.
Also, we let the message processing deadline for the message



type utilized in the experiment be 50 ms. Note that the
processing deadline represents the time within which the
authentication tags corresponding to the message are expected
to be generated, communicated, and verified.

B. Results

Table IV summarizes the results from the experiments. The
end-to-end delay shown in the table is the worst-case delay
in processing 1000 CAN messages. The table also presents
the cryptographic strengths for real-time, full and partially
accumulated authentication in each scheme. From Table IV,
we observe that: (1) In comparison to other MAC schemes,
additional storage for CuMAC and CuMAC/S is at most 2KB,
which is acceptable compared to 32KB total flash memory;
(2) Unlike the trailing MAC, CuMAC and CuMAC/S do not
increase the busload significantly; (3) Unlike the compound
MAC and the aggregate MAC, CuMAC and CuMAC/S pro-
vide real-time authentication; and (4) In comparison with the
truncated MAC, the compound MAC, and the aggregate MAC
schemes, CuMAC and CuMAC/S provide significantly higher
cryptographic strength for partially accumulated authentication
within the processing deadline; (5) CuMAC and CuMAC/S
bring at most 0.4 ms extra delay, which is acceptable compared
to the case where the service delay on the internet of vehicles
can be several seconds [16].

Table IV also shows that compared to CuUMAC, CuMAC/S
achieves significantly higher cryptographic strength for real-
time authentication and partially accumulated authentication
at the cost of slightly higher verification delay and extra code
space. Hence, in delay-sensitive application scenarios such as
CAN, CuMAC/S achieves an advantageous trade-off. Mean-
while, since CuMAC/S shows no advantage over CuMAC
for full authentication, CuUMAC would be more preferable in
delay-insensitive application scenarios such as Sigfox.

VIII. CONCLUSION

We proposed a novel concept for message authentication
that we refer to as cumulative MAC (CuMAC). CuMAC incurs
low communication overhead and provides high cryptographic
strength which is commensurate with the delay in the authenti-
cation. We also proposed a variant of CuMAC called CuMAC
with speculation (CuMAC/S) that is more suitable for latency-
sensitive applications. Our promising simulation and experi-
mental results validate that CuMAC and CuMAC/S provide
significant advantages over the MAC schemes in the prior art
when deployed in emerging [oT applications, including those
that run on energy/bandwidth-constrained networks.
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APPENDIX A
SECURITY DEFINITION

Here we present the formal security definitions for CuMAC
and CuMAC/S. Katz et al. provide the first concrete proof
which illustrates that if multiple conventional MACs with
cryptographic strength of A bits are aggregated by XOR
operation to form an aggregate MAC, then the aggregate
MAC is secure with the cryptographic strength of A bits [9],
[42]. The aggregation procedure employed in CuMAC and
CuMAC/S share similar attributes with the scheme proposed
by Katz et al. Hence, we present the security definitions which
closely follow those presented by Katz et al.

The security evaluation for CuMAC is centered around
the notion of unforgeability under chosen message attack
with parameter r (uf-cma-r), where r indicates the number
of packets accumulated for tag verification. We denote by
AdvEST(A N q), the advantage of the adversary A in
forging a message for a random key k < KeyGen(1%), where
A can make ¢ queries to the tag generating oracle of CUMAC

Ocumac(k, -), and verification is performed after accumulating
r segments of each MAC. CuMAC is considered to be secure if
the advantage of the adversary A is negligibly small. Formally,
the advantage can be expressed by the probability (represented
by Pr[]) that the following experiment returns 1.
Explutiac (A, A, q)

k < KeyGen(1*)

Invoke APcmac(s) who can make up to ¢ queries to the

tagging oracle of CuMAC Ocymac(k,-). A can query

Ocumac(k,:) with n arbitrarily chosen messages and

receive their CUMAC tags in response.

A outputs a set of n pairs ({m;};_, {m}i,)-

Return 1 if valid < TagVerify (k,i,m;,7;) for all

1 <4 < mn, and A did not make the query for m;- to

OCUMAC(ky -), where i* =n —r 4+ 1.

Return O otherwise.

Definition 1. CuMAC is (¢, g, €, r)-uf-cma secure if for any
probabilistic polynomial time (PPT) adversary .4 running in

time ¢, Pr [Expgf;i‘,,“,ig‘(A, Ag) = 1} <e

Similar to the experiment Expi-iaa’ (A, \, ¢), the uf-cma-r
experiment for CAMAC/S can be readily defined as follows.

uf-cma-r

Expcamac/s(A4 A, q)
k < KeyGen(1*)
Invoke ACcwmac/s(%:) who can make up to g queries to the
tagging oracle of CAMAC/S Ocymac /s(k7 -). A can query
Ocumacys(k, -) with 2n — 1 arbitrarily chosen messages
and receive their CuUMAC/S tags in response.
A outputs a set of 2n — 1 pairs ({mz}fgfl, {Tl}fZ;l)
Return 1 if valid < TagVerify (k,i,m;, 7;) for all 1 <
i < 2n — 1, and A did not make the query for m;- to
OCuMAC/S(kv '), where i* = 2n —r.
Return 0 otherwise.

Definition 2. CuMAC/S is (¢, ¢,€,7)-uf-cma
if for any PPT adversary A running in

Pr[Expiiim s(A 0 ) = 1] <«

secure
time ¢,

Note that if CuMAC and CuMAC/S are (¢, g, ¢, r)-uf-cma
secure for all r, then they are also (¢, ¢, €)-uf-cma secure which
is the standard notion of security for a MAC scheme. We
utilize the aforementioned uf-cma-r security model to define
the cryptographic strength for full authentication, partially
accumulated authentication, and real-time authentication. Note
that in the uf-cma-r experiment, when the experiment returns
a value of 1, it implies that .4 can forge a valid tag for a
packet at which point the receiver has already accumulated
r packets. Therefore, if CuMAC or CuMAC/S is (t,q,€,n)
secure, i.e., 7 = n, then CuMAC or CuMAC/S is secure in
terms of full authentication. Similarly, if CuMAC or CuMAC/S
is (t,q,¢€,7) secure for all 2 < r < n — 1, then the scheme is
secure for partially accumulated authentication; and if CAMAC
or CuMAC/S is (¢, q,€,1) secure, i.e., r = 1, then the scheme
is secure in terms of real-time authentication.

The security of CuMAC and CuMAC/S is based on the fol-
lowing assumption that defines the security of the underlying
MAC algorithm [37].



Assumption 1. The underlying deterministic MAC algorithm,
MacGen, is (t,q,€)-uf-cma secure—i.e., the probability that
an adversary will be successful in producing a forged tag
after running for a polynomial-time t and making q queries is
negligible.

APPENDIX B
SECURITY PROOF

Here we present theorems and corresponding proofs for
the security for CaMAC and CuMAC/S. Let CuMAC be
instantiated with parameters (I, n), i.e., each MAC is divided
into n segments, each of length [ bits. Let CuMAC/S be
instantiated with parameters (3,1, n), i.e., the speculation error
rate for the messages is 3, and each MAC is divided into n
segments, each of length [ bits. Note that in CuMAC and
CuMAC/S, the receiver performs real-time authentication by
setting r» = 1, partially accumulated authentication by setting
1 < r < n, and full authentication by setting r = n.

Theorem 1. For any t,q € N and € > 0, if the underly-
ing deterministic MAC algorithm, MacGen, is (t,q, €)-uf-cma
secure, then CuMAC with parameters (I,n) is (t',q', € ,r)-uf-
cma secure, where

q—n +1 /

Vat, ¢="—""2 =27 ¢
n
Proof: Let there be an adversary 4 that succeeds to create
a forgery of an authentication tag for CuMAC with a non-
negligible probability. We construct a simulator S that interacts
with the adversary A and creates a forgery of a MAC for the
MacGen algorithm with a non-negligible probability.

Let CuMAC and the MacGen algorithm utilize the same
secret key k which is not known to the adversary A. Also, let
the MAC of a message in CuMAC be computed by a query
to the tag generating oracle of underlying MAC, which is
denoted as Opacgen(k, ). In this way, S perfectly simulates
Ocumac(k, ), and hence, the uf-cma-r experiment. Suppose
the uf-cma-r experiment for CuMAC returns 1 with the
probability ¢’ in time ¢, where an adversary A outputs a valid
forgery ({m;};_,,{m},—,) after ¢’ queries to Ocymac(k,-)
simulated by S. To create a forgery of a MAC for the MacGen
algorithm, the simulator S proceeds as follows.

For all i € [1,n] and 7 # ¢*, the simulator S queries the
OMacGen(k, -) for the MAC of m;, and obtains the correspond-
ing o;. It divides each MAC into n segments as shown in
equation (1). It recovers the MAC segments of the message
m;~ by removing the mask by the MAC segments of other
messages as follows:

s*<—7', +k—1D @
j=1,j#k

Since * = n — r + 1, the simulator S cannot recover
the segments sf with £ > r + 1. Hence, it makes a
random guess for the rest of the n — r segments, such that
5k «5{0,1}" for all k € [r + 1,n). Finally, to create the
forgery for the underlying MAC algorithm, MacGen, it con-
catenates all the recovered segments and the guessed segments:
Oix 4 St <+ ||s% |85 || - - - 3% This means that given a

Six +k 7" (4)

successful forgery of the authentication tag in CuMAC, the
probability of creating the forgery of MacGen is 2/(7—7),

To achieve the forgery of MacGen as shown above, the
simulator S conducts at most n-q" queries to the Omacgen (%, *)
to reply the ¢’ queries by A to Ocumac(k,:). Also, the
simulator S conducts n — 1 queries t0 Omacgen (X, -) to obtain
{7i}iz1 i~ Therefore, if these exists an adversary A running
in time ¢’ and achieving Pr [Exp%flﬁ\l,,nﬁg(A, A\q) = 1] <é,
then it can be leveraged to create a forgery for the underlying
MAC algorithm, MacGen, in time ¢’ plus the time required to
evaluate the equation (4), by making ng’ +n — 1 queries, and
with probability 2~("~")¢/. Hence, if the underlying MAC
algorithm, MacGen, is (¢, ¢, €)-uf-cma secure, then CuMAC
is (t',q', €, r)-uf-cma secure, where t' ~ t, ¢’ = (FT'“FI, and
e =2ln=rl¢, ]
Theorem 2. For any t,q € N and € > 0, if the underlying de-
terministic MAC algorithm, MacGen, is (t, q, €)-uf-cma secure,
then CuMAC/S with parameters (53,1,n) is (t',q', €, r)-uf-cma
secure, where
qg—3n+3 ;o €

2n—1 ' - (1=B)+p2-ln-)"

t/%t’ q/:

Proof: Let there be an adversary .4 that succeeds to create
a forgery of an authentication tag for CuMAC/S with a non-
negligible probability. We construct a simulator S that interacts
with the adversary A and creates a forgery of a MAC for the
MacGen algorithm with a non-negligible probability.

Let CuMAC/S and the MacGen algorithm utilize the same
secret key k which is unknown to the adversary A. Also,
let the MAC of a message in CuMAC/S be computed by
a query to OmacGen(k,+). In this way, S perfectly simu-
lates Ocymac/s(k, ), and hence the uf-cma-r experiment for
CuMAC/S. Suppose the uf-cma-r experiment for CuMAC/S
returns 1 with the probability ¢’ in time ', where an adversary

A outputs a successful forgery ({mz}fg;l,{ oy 1) after ¢/

queries to Ocymac /S(k, -) simulated by S. To create a forgery
of a MAC for the MacGen algorithm, the simulator S proceeds
as follows.

For all ¢+ € [1,2n — 1] and ¢ # 4*, the simulator S
queries OpacGen(k, ) for the MAC of m;, and obtains the
corresponding o;. Additionally, it querles OMacGen(k, -) for the
MAC of the speculated messages 7m; and obtains o; for all

€ [i*+1,i*+n—1] . It divides each MAC into n segments
as shown in equation (1). It recovers the MAC segments of the
message m;~ by removing the mask by the MAC segments of
other messages as follows:

z*<_7—z+k 1@ @

Jj=1,j#k

By following the above procedure, the simulator S recovers r
MAC segments. For all k£ > r+ 1, the simulator S attempts to
recover s¥, from the tags received before tag 7; as follows:

st T —k+1@698ﬂ a® @ 3

J=2,j#k

l**JJrk b @ Sivgjrh-2 )

j=2

z* k+7° (6)



These segments can be recovered with a probability 1 — .
If a speculation error occurs, then the corresponding MAC
segment is not recovered. In this case, S sets the value of
the MAC segment by randomly guessing the bits. Finally,
the simulator S creates a fresh forgery for the underlying
deterministic MAC algorithm, MacGen, by concatenating all
recovered and guessed segments. The probability that such
forgery is correct is (1 — 3) 4 3 -271n=7),

To achieve the forgery of MacGen as shown above, the sim-
ulator S conducts at most (2n — 1)q’ queries to OmacGen (&, *)
to answer ¢’ queries by A to Ocymac/s(k,-). In order to
compute operations in equations (5) and (6), the simulator
S conducts at most 2n — 2 queries to Omacgen(k, -) to obtain
{TZ}Z;;&? , and at most n — 1 queries to obtain {&\i}z;t::ll.
Therefore, if for an adversary A running in time ¢/, we have
Pr {Exp‘éfmnﬁg/s(A,)\,q’ ) = 1} < €, then we can leverage
it to break the underlying MAC algorithm, MacGen, in time
t' plus the time required to evaluate equations (5) and (6),
by making (2n — 1)q’ + 3n — 3 queries, and with probability
€ (1 — B+ p271»=)). Hence, if the underlying MAC algo-
rithm, MacGen, is (¢, g, €)-uf-cma secure, then CuMAC/S is
(t',q, €, r)-uf-cma secure, where t' ~ t, ¢ = 4373 and

2n—1 2
€ = [ ]

€
1_p1p2—ln—n "



