

Impact of the elemental composition of exported organic matter on the observed dissolved nutrient and trace element distributions in the upper layer of the ocean

Author

Paul Quay

School of Oceanography

MS 355351

University of Washington

Seattle, WA 98195

206-685-8061

pdquay@uw.edu

ORCID: <https://orcid.org/0000-0001-5147-0289>

Key Points

- Variations in nutrient distributions in upper ocean result from C/N/P of exported organic matter, nitrogen fixation and air-sea CO₂ flux.
- Nutrient and trace element (TE) budgets yield estimates of the C/N/P/TE composition of exported organic matter (OM) from surface ocean.
- Estimated C/N/P of exported OM has maxima in the subtropics well above Redfield which agree with observations and modeling results.

1 **Abstract**

2 Systematic regional variations in the ratio of nutrient depth gradients of dissolved inorganic
3 carbon (ΔDIC): nitrate (ΔNO_3): phosphate (ΔPO_4) in the upper layer (300m) of the Pacific
4 Ocean are observed. Regional variations in the $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ are primarily the result of
5 three processes, that is, the C/N/P of organic matter (OM) being exported and subsequently
6 degraded, nitrogen fixation and air-sea CO_2 gas exchange. The link between the observed
7 dissolved $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ and the C/N/P of exported OM is established using surface layer
8 dissolved DIC, NO_3 and PO_4 budgets. These budgets, in turn, provide a means to indirectly
9 estimate the C/N/P of OM being exported from the surface layer of the ocean. The indirectly
10 estimated C/N/P of exported OM reach maxima in the subtropical gyres at 177/22/1 that is
11 significantly greater than the Redfield ratio and a minimum in the equatorial ocean at 109/16/1
12 with both results agreeing with available observed particle C/N/P and ocean biogeochemical
13 models. The budget approach was applied to a bioactive trace element (TE) using the measured
14 dissolved Cadmium (Cd) to PO_4 gradients to estimate the Cd/P of exported OM in the Pacific
15 Ocean. Combining the budget method with the availability of high-quality dissolved nutrient
16 and trace element data collected during the GOSHIP and GEOTRACES programs could
17 potentially provide estimates of the C/N/P/TE of exported OM on global ocean scales which
18 would significantly improve our understanding of the link between the ocean's biological pump
19 and dissolved nutrient distributions in the upper ocean.

20

21

22 **Plain Language Summary**

23 Microscopic plants in the surface ocean called phytoplankton use photosynthesis to convert
24 carbon dioxide (CO_2) into organic compounds like carbohydrates, fats and proteins. When
25 phytoplankton die or are eaten by small animals (zooplankton) most of these compounds are
26 consumed for energy. A small fraction of the organic compounds in phytoplankton escape
27 consumption and sink into deeper portions of the ocean. This sinking organic matter is
28 consumed as food by bacteria and ultimately released as inorganic compounds like CO_2 , nitrate
29 (NO_3) and phosphate (PO_4). The ratio at which CO_2 , NO_3 and PO_4 is released depends on the

30 ratio of carbon (C):nitrogen (N):phosphorous (P) of the sinking organic matter and is a critical
31 factor in determining the distribution of nutrients (CO_2 , NO_3 , PO_4) in the upper ocean. However,
32 there are very few direct measurements of the C:N:P of sinking organic matter. In this study, a
33 new method is presented to estimate the C:N:P of sinking organic matter based on the observed
34 distributions of CO_2 , NO_3 and PO_4 in the upper ocean. This method can potentially estimate the
35 C:N:P of sinking organic matter on a global scale and improve our understanding of the
36 processes that control the distribution of nutrients in the ocean.

37

38 **Keywords:** nutrient cycling, carbon cycling, phytoplankton, trace elements.

39

40 **1. Introduction**

41 The ocean's biological pump describes the transfer or export of organic matter (OM) out
42 of the surface photic layer of the ocean into the deeper layers of the aphotic ocean. OM export
43 and its subsequent degradation in the aphotic ocean has a major impact on the depth distributions
44 of dissolved nutrients, oxygen, CO₂ and bioactive trace elements in the ocean. Furthermore, the
45 ocean's biological pump is a means to sequester CO₂ in the deep ocean and thus is a key
46 component of the earth's CO₂ cycle. Despite the importance of the ocean's biological pump
47 surprisingly little is known about variations in the elemental composition of the OM being
48 exported which has often resulted in an assumption that the elemental ratio of exported OM has a
49 constant carbon (C): nitrogen (N): phosphorous (P) ratio following the classic Redfield C/N/P
50 ratio of 106:16:1 (Redfield, 1958). However, there have been an increasing number of ocean
51 biogeochemical modeling studies that indicate that the element composition of particles in the
52 surface ocean deviate significant from Redfield (e.g., Weber and Deutsch, 2010; Deutsch and
53 Weber, 2012; Teng et al., 2014, Wang et al., 2019). Yet, it has been difficult to validate these
54 model results for several reasons. First, regional coverage by existing data is poor with most of
55 the ocean being unsampled (e.g., Martiny et al., 2013). Second, a two-fold short term variability
56 of the measured C/N/P of suspended particles at sites is typical (e.g., Karl et al., 2001; Bishop
57 and Wood, 2008). Third, the C/N/P of suspended particles does not necessarily represent the
58 C/N/P exported OM because of differential sinking rates of particles and a significant fraction
59 (~20%) of the exported OM being in the dissolved phase (Hansell et al., 2007). Our current lack
60 of knowledge about the elemental composition of exported OM leaves a substantial gap in our
61 understanding of the ocean's biological pump and its role in controlling dissolved nutrient
62 distributions in the mesopelagic zone (200-1000m) of the ocean.

63 Even with the limited data on the C/N/P of suspended particles in the surface ocean there
64 are some significant regional trends. Martiny et al. (2013) compiled ~5000 particle C/N/P
65 measurements and found the highest C/P of 170-230 and N/P of 25-37 occurred in the nutrient
66 depleted subtropical gyres and significantly lower C/P of 119-137 and N/P of 14-18 occurred in
67 the nutrient replete subpolar and equatorial regions. Martiny et al. (2013) concluded that this
68 spatial pattern is driven in large part by shifts in plankton assemblages with the cyanobacteria
69 that dominate the oligotrophic gyres having a substantially higher C/P (161-235) and N/P (25-

70 35) than eukaryotes with C/N/P of 107/16/1 that are more dominant in nutrient replete regions.
71 Martiny et al. found an overall mean C/N/P for particles of 146:20:1 which is significantly higher
72 than Redfield. As pointed out previously, the higher the C/N/P of exported OM the greater the
73 potential of the biological pump to sequester CO₂ from the atmosphere (e.g., Martiny et al.,
74 2013, Teng et al., 2014).

75 The greatest impact of OM degradation occurs in the shallowest layers of the thermocline
76 just below the photic layer where the OM flux is greatest and degradation rates are highest.
77 Vertical flux of sinking particles measured in the subtropical and subpolar N. Pacific Ocean
78 showed that 50-75% of particles were degraded within the upper 300m (Martin, 1987). Quay
79 and Wu (2015) showed that within the upper layers (<300m) of the N. Atlantic Ocean the slope
80 of nitrate versus phosphate concentrations ($\Delta\text{NO}_3/\Delta\text{PO}_4$) was 16 ± 0.2 . However, deeper in the
81 thermocline (500-1500m) the $\Delta\text{NO}_3/\Delta\text{PO}_4$ decreased to 14.6 ± 0.2 and was close to the
82 $\Delta\text{NO}_3/\Delta\text{PO}_4$ expected by conservative water mass mixing between Mediterranean Water and
83 Antarctic Intermediate Water and at depths >2000m the observed $\Delta\text{NO}_3/\Delta\text{PO}_4$ was 13 ± 0.4 and
84 equaled the $\Delta\text{NO}_3/\Delta\text{PO}_4$ expected by conservative water mass mixing between North Atlantic
85 Deep Water and Antarctic Bottom Water with little apparent impact by in situ OM degradation.
86 The depth dependence of the along isopycnal $\Delta\text{NO}_3/\Delta\text{PO}_4$ slopes observed by Quay and Wu
87 (2015) illustrate a general trend that the impact of in situ OM degradation on dissolved nutrient
88 concentrations in the ocean decreases with increasing depth as the OM flux and degradation rates
89 decrease, water parcel ages increase and the impact of circulation and water mass mixing
90 increase.

91 It is important to distinguish between the ratio of dissolved nutrient gradients, i.e.,
92 $\Delta\text{NO}_3/\Delta\text{PO}_4$, $\Delta\text{DIC}/\Delta\text{PO}_4$, $\Delta\text{DIC}/\Delta\text{NO}_3$ (where DIC = dissolved inorganic carbon) and the
93 stoichiometric ratio of nutrient concentrations measured in a water parcel. The latter
94 characteristic is a result of the all the inputs and losses of nutrients for a given water parcel (e.g.,
95 OM export, OM degradation, nitrogen fixation, denitrification, water mass mixing, CO₂ gas
96 exchange, etc.). In contrast, the ratio of nutrient gradients represents the ratio of nutrient fluxes.
97 For example, the ratio of the depth gradients of $\Delta\text{NO}_3/\Delta\text{PO}_4$ and $\Delta\text{DIC}/\Delta\text{PO}_4$ measured in the
98 upper 300m of the water column represents the ratio of NO₃ to PO₄ and DIC to PO₄,
99 respectively, being supplied to the surface layer from below by physical processes like turbulent

100 mixing, entrainment, upwelling, etc. There are significant differences between regional
 101 variations in the measured $\Delta\text{NO}_3/\Delta\text{PO}_4$ depth gradient ratio in the upper 300m of the Pacific
 102 Ocean and the NO_3/PO_4 concentration ratio of water parcels in the surface layer and at 250m
 103 (**Fig. 1**). The NO_3/PO_4 of water parcels ranges widely from 0 to 15 in the surface layer and from
 104 6 to 15 at 250m with minima in the subtropics. In contrast, the range in $\Delta\text{NO}_3/\Delta\text{PO}_4$ in the upper
 105 300m is significantly higher and narrower at 13 to 19 and much closer to the Redfield ratio at 16.

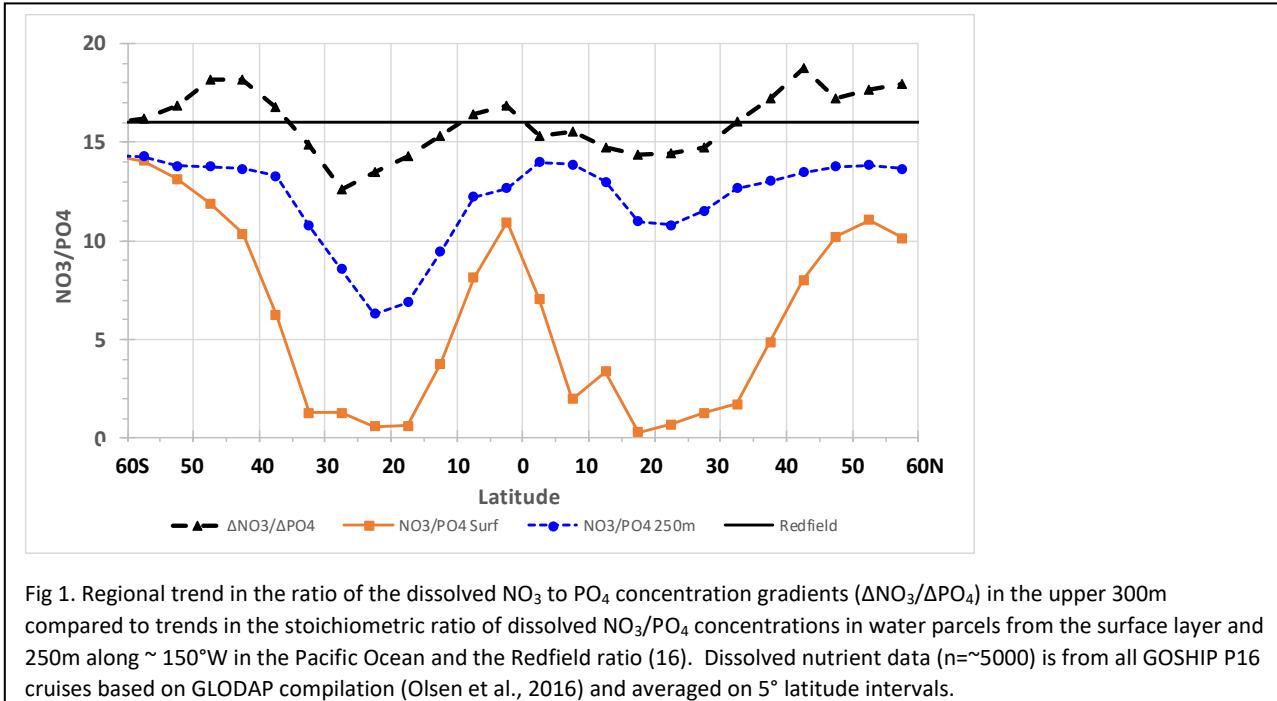


Fig 1. Regional trend in the ratio of the dissolved NO_3 to PO_4 concentration gradients ($\Delta\text{NO}_3/\Delta\text{PO}_4$) in the upper 300m compared to trends in the stoichiometric ratio of dissolved NO_3/PO_4 concentrations in water parcels from the surface layer and 250m along $\sim 150^\circ\text{W}$ in the Pacific Ocean and the Redfield ratio (16). Dissolved nutrient data ($n=\sim 5000$) is from all GOSHIP P16 cruises based on GLODAP compilation (Olsen et al., 2016) and averaged on 5° latitude intervals.

106 There is a direct link between the ratio of nutrient fluxes ($\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$) and the
 107 C/N/P of OM being exported. In the simplest situation where the vertical flux of dissolved
 108 nutrients at the base of the photic layer is the sole source of nutrient input to the photic layer and
 109 export of OM is the sole nutrient sink, then at steady-state the ratio of $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ being
 110 supplied equals the C/N/P of the exported OM. Although nitrogen fixation and air-sea CO_2
 111 exchange alter this simple situation, as discussed below, there is a clear dependence between the
 112 ratios of dissolved nutrients being supplied and organic nutrients being exported. Estimating the
 113 ratio of nutrient fluxes is significantly more robust than estimating the fluxes themselves because
 114 the flux ratio only depends on the measured concentration gradients but not an estimate of the
 115 rates of advection, turbulent mixing, entrainment, etc.

116 In this study, the first objective is to establish the link between the C/N/P of exported OM
117 and the dissolved $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ depth gradient ratio in the upper layer (300m) of the Pacific
118 Ocean. The second objective is to demonstrate the means to estimate regional variations in the
119 C/N/P of exported OM based on observed dissolved $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$. To accomplish these
120 goals simple surface layer DIC, NO_3 and PO_4 budgets are used. We find regional trends in
121 observed $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ across the Pacific Ocean basin that yield systematic, but different,
122 regional trends in the estimated C/N/P of exported OM. The highest C/N/P for exported OM are
123 found in the subtropics and lowest ratios in the equatorial region that agree with available
124 observed particle C/N/P. We find that three factors primarily control the regional variations in
125 the $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ in the upper 300m of the ocean, i.e., the C/N/P of OM exported out of
126 photic layer and subsequently degraded, the fraction of exported organic nitrogen supported by
127 nitrogen fixation and fraction of exported organic carbon supported by net air-sea CO_2 gas
128 exchange flux. We extend this analysis approach to bioactive trace elements (TE) using the ratio
129 of measured depth gradients of dissolved Cadmium (Cd) and PO_4 to estimate regional trend in
130 the Cd/P of exported OM.

131 **2. Methods**

132

133 *2.1 Data Sets and $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ calculation*

134 The ratio of dissolved DIC, NO_3 , PO_4 depth gradients ($\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$) was
135 determined using data collected during several north-south cruises in the Pacific Ocean (P16
136 cruises occurred between $\sim 70^\circ\text{S}$ and 60°N along $\sim 150^\circ\text{W}$) as part of the GOSHIP program and
137 compiled by the GLODAP program (Key et al., 2015; Olsen et al., 2016). The nutrient data ($n \sim$
138 5000) was averaged over 25m depth intervals between 0 and 300m (12 layers) and over 5°
139 latitude bands from 60°S to 60°N . The $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ was determined using a linear
140 regression of concentrations in the layers between the base of the mixed layer and 300m.
141 Determining the $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ for specific P16 cruises that occurred between 1991 and
142 2015 indicates that the regional trend in $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ is reproducible over decadal time
143 scales in the Pacific Ocean (**Fig. S1**) which illustrates, first, the robustness of this characteristic
144 and, second, that the uptake of anthropogenic CO_2 has no significant effect on the
145 $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ for the water residence times in the upper 300m. The measured DIC depth
146 gradient was corrected for CaCO_3 dissolution based on the observed alkalinity depth gradient.

147 The alkalinity correction was only significant poleward of 55°S and 35°N where it accounted for
148 10-20% of the DIC gradient in the upper 300m. It is assumed that the corrected dissolved
149 $\Delta\text{DIC}/\Delta\text{PO}_4$ and $\Delta\text{DIC}/\Delta\text{NO}_3$ represent the effect of OM export and degradation processes.
150 Unless otherwise stated, $\Delta\text{NO}_3/\Delta\text{PO}_4$, $\Delta\text{DIC}/\Delta\text{PO}_4$ and $\Delta\text{DIC}/\Delta\text{NO}_3$ represents the ratio of the
151 vertical nutrient gradients measured over the upper 300m of the water column.

152 Additionally, the ratio of horizontal concentration gradients of dissolved DIC, NO_3 and
153 PO_4 in the surface ocean was determined using gridded GLODAP data at 1° latitude by 3°
154 longitude resolution. The meridional and zonal horizontal surface layer nutrient gradients
155 $[\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4]_h$ were averaged between 180°W and 130°W and over 5° of latitude. The
156 horizontal surface $[\Delta\text{DIC}/\Delta\text{PO}_4]_h$ and $[\Delta\text{DIC}/\Delta\text{NO}_3]_h$ gradients are much more variable than
157 $[\Delta\text{NO}_3/\Delta\text{PO}_4]_h$ especially in the subtropics where the NO_3 and PO_4 concentrations are low, i.e.,
158 ~50% of the surface $[\Delta\text{DIC}/\Delta\text{PO}_4]_h$ values were either negative or >300 whereas $<20\%$ of the
159 surface $[\Delta\text{NO}_3/\Delta\text{PO}_4]_h$ values were either negative or >40 . The higher variability of the surface
160 $[\Delta\text{DIC}/\Delta\text{PO}_4]_h$ and $[\Delta\text{DIC}/\Delta\text{NO}_3]_h$ gradients are in part a result of there being only half as much
161 DIC data as for NO_3 and PO_4 and the impact of air-sea CO_2 gas exchange on surface DIC
162 resulting from seasonal temperature variations (Takahashi et al., 2009).

163 Regional trends in the indirect estimates of the C/N/P of exported OM were compared to
164 observed trends in available particle C/N/P data from the Pacific Ocean (60°S to 50°N). The
165 primary source of particle data is the compilation by Martiny et al. (2014). We imposed a
166 constraint of a minimum particulate phosphorous (POP) concentration of 10 nM to eliminate
167 anomalously high N/P and C/P in the subtropical gyres. At the time-series Stn. ALOHA (23°N
168 153°W) this constraint reduced the mean C/P and N/P by 10% and simultaneously reduced the
169 variability (SD) by 30%. Particle data from coastal ocean sites were excluded from the Martiny
170 et al. compilation with the most notable sites being located in the California Current System and
171 on the Bering Sea shelf. The filtered data set had ~1700 measurements of C/P and N/P and
172 ~6200 measurements of C/N for suspended particles. The spatial coverage in C/P and N/P is
173 limited to 30°S to 40°N with about half of the observations (~760) occurring at the time series
174 station ALOHA whereas the C/N data set expanded coverage to 60°S to 50°N. Additionally,
175 updated C/N/P data was added for suspended particles in the upper 100m (n=190) and sediment
176 trap material at 150m (n=160) collected at Stn ALOHA between 2000 and 2018 and at Ocean

177 Station Papa (OSP, 50°N 145°W) between 1987 and 1996 (Wong et al., 1999) and suspended
178 material collected in the upper 100m using an in situ filtration method (MULVFS) at Stn K2
179 (47°N 161°E) in the subpolar N. Pacific (Bishop and Wood, 2008). Particle C/P and N/P data
180 from HOT and SUPERHI sites measured between 2002 and 2012 were corrected for a particulate
181 phosphorous measurement method artifact (Fujeiki et al., 2015).

182 Dissolved cadmium (Cd) data measured on the GOSHIP P16 cruises in 2005-2006
183 (Landing et al., 2019) was used to determine the vertical $\Delta\text{Cd}/\Delta\text{PO}_4$ in the upper 300m.

184 *2.2 Surface Layer Dissolved DIC, NO₃ and PO₄ Budgets*

185 Surface layer nutrient budgets were used to link the C/N/P of exported OM and the
186 observed gradient ratios of $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ in the upper 300m. The budget terms included
187 nutrient input from the physical supply (from advection, mixing, entrainment, eddies, etc.) and
188 loss from exported OM which includes both particulate and dissolved OM. The NO₃ budget had
189 an additional term representing inorganic nitrogen (N) input from N fixation. The DIC budget
190 had an additional term representing air-sea CO₂ exchange which could be either a DIC source or
191 sink. The expressions for these budgets are as follows.

192 $Z^*d\text{PO}_4/dt = -\text{Export_P} + \text{Supply_PO}_4$ (1)

193 $Z^*d\text{NO}_3/dt = -\text{Export_N} + \text{Supply_NO}_3 + \text{N fixation rate}$ (2)

194 $Z^*d\text{DIC}/dt = -\text{Export_C} + \text{Supply_DIC} \pm \text{Air-sea CO}_2 \text{ gas flux}$ (3)

195 where t is time, Z represents the surface layer depth, *Export* represents the export rate of OM and
196 *Supply* represents the supply rate of dissolved nutrients by physical processes. It is assumed that
197 $\text{Export_N} = \text{Export_P}^*(\text{N/P})_{\text{OM}}$, $\text{Export_C} = \text{Export P}^*(\text{C/P})_{\text{OM}}$, $\text{Supply_NO}_3 =$
198 $\text{Supply_PO}_4^*(\Delta\text{NO}_3/\Delta\text{PO}_4)$ and $\text{Supply_DIC} = \text{Supply_PO}_4^*(\Delta\text{DIC}/\Delta\text{PO}_4)$.

199 The NO₃, PO₄ and DIC surface layer budgets can be used to estimate the C/N/P of the
200 exported OM. At steady-state, the following relationships exist between ratio of dissolved
201 nutrients being supplied ($\Delta\text{NO}_3/\Delta\text{PO}_4$, $\Delta\text{DIC}/\Delta\text{PO}_4$, $\Delta\text{DIC}/\Delta\text{NO}_3$) and the N/P, C/P and C/N of
202 organic matter being exported.

203 $(\text{N/P})_{\text{OM}} = (\Delta\text{NO}_3/\Delta\text{PO}_4) / (1-F_n)$ (4)

204 $(C/P)_{OM} = (\Delta DIC / \Delta PO_4) / (1 - Fc)$ (5)

205 $(C/N)_{OM} = (\Delta DIC / \Delta NO_3) \cdot (1 - Fn) / (1 - Fc)$ (6)

206 Fn equals the fraction of OM exported nitrogen supplied by N fixation and Fc is the fraction of
207 OM exported carbon supplied by CO₂ gas invasion (a negative value if CO₂ gas is evading from
208 the surface ocean). It is assumed that all other dissolved nutrient inputs and losses to the surface
209 layer are negligible compared to physical supply and OM export, respectively. Note that when
210 the N fixation and CO₂ flux rates are zero then the estimated N/P, C/P and C/N of exported OM
211 equals the observed supply ratio of ΔNO₃/ΔPO₄, ΔDIC/ΔPO₄ and ΔDIC/ΔNO₃, respectively.

212 Estimates of the regional trends in the N/P, C/P and C/N of exported OM were
213 determined from surface layer budgets for DIC, NO₃ and PO₄ based on equations 4-6. The mean
214 and standard deviation (SD) of the linear regression-based estimate of ΔNO₃/ΔPO₄, ΔDIC/ΔPO₄
215 and ΔDIC/ΔNO₃ in the upper 300m was determined for each 5° latitude band. A random value
216 of ΔNO₃/ΔPO₄, ΔDIC/ΔPO₄ and ΔDIC/ΔNO₃ was chosen based on the mean and SD and an
217 assumed normal distribution. A value for Fc and Fn was randomly chosen over possible range of
218 0 to 0.9 for each variable and then the N/P, C/P and C/N of export OM was calculated from
219 equations 4-6, respectively. This procedure was repeated 10,000 times. A subset of solutions
220 was selected that yielded N/P, C/P and C/N values within the ranges of 7 to 40, 40 to 270 and 5
221 to 14, respectively, which encompassed 95% ($\pm 2SD$) of the ranges observed for particles in the
222 Pacific Ocean (Martiny et al., 2013a and 2013b). A mean and standard deviation for N/P, C/P
223 and C/N was calculated from the solution subset for each latitude band. Fn was assumed equal
224 to zero when N* (=NO₃ - 16*PO₄ + 2.9) exceeded zero (Deutsch et al., 2001) which coincided
225 with surface NO₃ concentration exceeding ~0.3 umol/kg in a latitude band. Although the
226 possible range for Fn was 0 to 0.9 a maximum value of Fn ~ 0.6 was determined for the subset of
227 solutions in all latitude bands where N fixation was allowed to occur which agrees well with
228 inverse model results (Wang et al., 2019). Fc was assumed to vary between 0 and -0.9 between
229 10°S and 10°N as the equatorial Pacific is a region of CO₂ evasion (Takahashi et al., 2009).

230 The calculated C/N/P of exported OM is most sensitive to the observed
231 ΔDIC/ΔNO₃/ΔPO₄ with the N/P, C/P and C/N equaling the observed ΔNO₃/ΔPO₄, ΔDIC/ΔPO₄
232 and ΔDIC/ΔNO₃, respectively, when Fc and Fn equaled zero. For latitude bands where Fn and
233 Fc exceeded zero then the N/P and C/P of the exported OM exceeded the ΔNO₃/ΔPO₄ and

234 $\Delta\text{DIC}/\Delta\text{PO}_4$ respectively. Contrastingly, in the equatorial ocean the calculated C/P and C/N of
235 exported OM was less than the $\Delta\text{DIC}/\Delta\text{PO}_4$ and $\Delta\text{DIC}/\Delta\text{NO}_3$, respectively, because of CO₂ gas
236 evasion. The imposed maximum and minimum limits of N/P, C/P and C/N further constrained
237 the subset of selected scenarios by essentially limiting the range in Fc and Fn. For example, if a
238 randomly picked value of Fc was 0.9 and the observed $\Delta\text{DIC}/\Delta\text{PO}_4$ was 100 then the calculated
239 C/P of exported OM for this scenario would equal 1000 and the imposed limit of 270 would
240 exclude this scenario from selection. The same limits on N/P, C/P and C/N of particles were
241 applied to all latitude intervals.

242 *2.3 Vertical and Horizontal $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ and Nutrient supply*

243 The $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ used to calculate the C/N/P of exported OM in equations 4-6
244 ideally represents all physical processes supplying nutrients to the surface layer, e.g. turbulent
245 mixing, upwelling, surface advection, eddies, etc. The relative importance of horizontal versus
246 vertical supply of nutrients to the photic layer of the ocean remains an open question. Letscher et
247 al. (2016) used output from a global biogeochemical model tuned to yield observed nutrient
248 distributions to indicated that one-third of the dissolved N and two-thirds of the dissolved P in
249 the surface layer of the subtropical N. Pacific are supplied by horizontal processes although the
250 circulation model was not eddy resolving. On the other hand, field observations based on
251 continuous float (Johnson et al., 2010) and seaglider (Nicholson et al., 2008) based O₂ and NO₃
252 data sets at Stn ALOHA indicate that vertical transport of NO₃ and O₂ by episodic isopycnal
253 uplift events associated with mesoscale eddies and Rossby waves are a primary mechanism
254 supplying nutrients to the photic layer in the subtropical ocean. Johnson et al. (2010) concluded
255 that episodic transport events could supply NO₃ to the photic layer at a sufficient rate (coupled
256 with N fixation) to support the observed OM export rate at Stn ALOHA and that within the water
257 column from the surface to 250m there is near equivalence between nutrient supply and demand.
258 In the subpolar N. Pacific at OSP Haskell et al. (2020) use multiyear (2009-2017) profiling float
259 and mooring based NO₃, pCO₂ and O₂ measurements to conclude that turbulent diffusion rates at
260 the base of the photic layer estimated from heat budgets at OSP (Cronin et al., 2015) supplied
261 sufficient NO₃ and DIC to support annual OM export. The increasing availability of continuous
262 T, S, NO₃, O₂ and pCO₂ measurements provided by floats, moorings and seagliders will
263 significantly improve estimates of turbulent mixing rates at the base of the photic layer (e.g.,

264 Cronin et al., 2015, Pelland et al., 2018), frequency of isopycnal displacement events (e.g.,
265 Nicholson et al., 2008; Johnson and Riser, 2010) and yield highly resolved vertical gradients of
266 NO_3 , DIC and O_2 in the upper ocean (e.g. Haskell et al., 2020) which together will help answer
267 the question about importance of vertical versus horizontal nutrient supply in the surface ocean.

268 The key issue is how well the $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ determined from depth gradients in the
269 upper 300m represents all processes supplying dissolved inorganic nutrients to the surface layer.
270 If the $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ measured on depth gradients in the upper 300m is similar to the
271 $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ determined from horizontal concentration gradients in the surface layer, then
272 both horizontal and vertical processes supplying nutrients will be accurately represented in
273 equations 4-6. A comparison of nutrient gradient ratios focuses on $\Delta\text{NO}_3/\Delta\text{PO}_4$ because of the
274 variability issues with surface $\Delta\text{DIC}/\Delta\text{PO}_4$ and $\Delta\text{DIC}/\Delta\text{NO}_3$ concentration gradients, discussed
275 above. The vertical $[\Delta\text{NO}_3/\Delta\text{PO}_4]_z$ over the upper 300m is determined by averaging nutrient
276 depth gradients measured during several P16 cruises over 5° latitude band (Fig. S1). The
277 horizontal meridional and zonal concentration gradient ratios in the surface layer $[\Delta\text{NO}_3/\Delta\text{PO}_4]_h$
278 are determined from observed NO_3 and PO_4 concentrations based on the GLODAP data
279 compilation (Olsen et al., 2016). A comparison between the observed $[\Delta\text{NO}_3/\Delta\text{PO}_4]_z$ and
280 $[\Delta\text{NO}_3/\Delta\text{PO}_4]_h$ show clear regional trends (Fig. 2). One notable observation is that in the
281 subpolar and equatorial oceans where there are significant surface PO_4 and NO_3 concentrations
282 the $[\Delta\text{NO}_3/\Delta\text{PO}_4]_h$ at 16 ± 4 is indistinguishable from $[\Delta\text{NO}_3/\Delta\text{PO}_4]_z$ at 17 ± 1 . This is important
283 because it implies that $[\Delta\text{NO}_3/\Delta\text{PO}_4]_z$ should adequately represent both vertical and horizontal
284 supplies of NO_3 and PO_4 to the surface layer in these regions. Another notable observation is
285 that the horizontal surface transport of PO_4 (and NO_3) in the subtropics is near zero because of
286 the very low concentrations of dissolved PO_4 (and NO_3) in the surface layer (Fig. 2). The
287 horizontal advective PO_4 (and NO_3) transport in the surface layer was determined by multiplying
288 meridional and zonal components of advective velocities based on ARGO (2001-2013
289 climatology) by the meridional and zonal PO_4 (and NO_3) gradients from GLODAP climatology
290 and averaging zonally between 180°W and 130°W and over 5° latitude bands. The implication
291 is that vertical supply of nutrients by turbulent mixing, upwelling, and eddy pumping (as
292 discussed above) should dominate and be accurately represented by $[\Delta\text{NO}_3/\Delta\text{PO}_4]_z$ in the
293 subtropics. That local vertical nutrient supply dominates over horizontal nutrient supply in the

294 subtropical Pacific Ocean agrees with the field-based studies at Stn. ALOHA but not the
 295 modeling results, discussed above.

296 Results and Discussion

297 3.1 Regional Trends in Dissolved $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ and C/N/P of Exported Organic Matter

298 There are clear regional trends in the dissolved $\Delta\text{NO}_3/\Delta\text{PO}_4$, $\Delta\text{DIC}/\Delta\text{PO}_4$ and
 299 $\Delta\text{DIC}/\Delta\text{NO}_3$ across the Pacific Ocean (Fig. 3). The $\Delta\text{NO}_3/\Delta\text{PO}_4$ has minima (~14) in the
 300 subtropics and maxima (~18) in subpolar regions. The $\Delta\text{DIC}/\Delta\text{PO}_4$ has minimum in the
 301 subtropical N. Pacific (~80) and a maximum in the subtropical S. Pacific (~180) as does
 302 $\Delta\text{DIC}/\Delta\text{NO}_3$ at ~5 and 12, respectively. There are clear regional trends in the budget-based
 303 estimates of the N/P, C/P and C/N of exported OM yet they are distinct from the $\Delta\text{NO}_3/\Delta\text{PO}_4$,
 304 $\Delta\text{DIC}/\Delta\text{PO}_4$ and $\Delta\text{DIC}/\Delta\text{NO}_3$ trends (Fig. 3). The estimated exported N/P ranges from ~16 to 22
 305 with a minimum at the equator and maxima in the subtropics. Notably, the exported N/P
 306 significantly exceeds the $\Delta\text{NO}_3/\Delta\text{PO}_4$ in the subtropics but equals $\Delta\text{NO}_3/\Delta\text{PO}_4$ in the equatorial

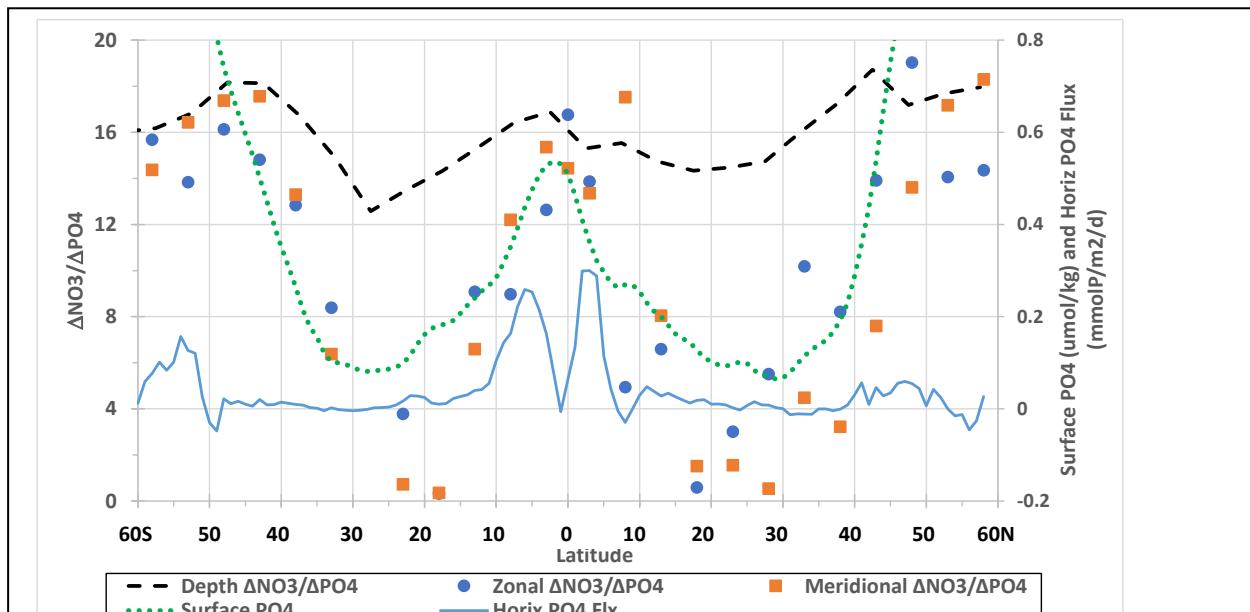


Figure 2. Regional trends in the mean observed vertical $[\Delta\text{NO}_3/\Delta\text{PO}_4]_z$ based on depth concentration gradients in the upper 300m and horizontal surface $[\Delta\text{NO}_3/\Delta\text{PO}_4]$ based on meridional and zonal surface nutrient concentration gradients using the GLODAP data compilation (Olsen et al., 2016) averaged between 170°W and 130°W and over 5° latitude intervals. Surface advective PO_4 flux ($\text{mmol P/m}^2/\text{d}$) is based on meridional and zonal surface PO_4 gradients and current velocities from a gridded ARGO data climatology.

307 and subpolar regions. The estimated exported C/P ranges from ~90 to 220 with maxima in the
 308 subtropical S. Pacific and a minimum in the equatorial region and exceeds the $\Delta\text{DIC}/\Delta\text{PO}_4$

309 everywhere except in the equatorial region. Similarly, the estimated exported C/N ranges from
310 ~7 to 10 with maximum in the subtropical S. Pacific and a minimum in the equatorial region and
311 exceeds the $\Delta\text{DIC}/\Delta\text{NO}_3$ poleward of $\sim 30^\circ$. The estimated exported N/P, C/P and C/N exceed
312 Redfield (106:16:1) everywhere except in the equatorial region.

313 The question arises why the budget-based estimates of exported N/P, C/P and C/N differ
314 from the observed $\Delta\text{NO}_3/\Delta\text{PO}_4$, $\Delta\text{DIC}/\Delta\text{PO}_4$ and $\Delta\text{DIC}/\Delta\text{NO}_3$ of nutrients supplied to the surface
315 layer, respectively. The simplest steady-state surface layer budget situation would be where the
316 supply of dissolved nutrients by physical processes is exactly balanced by the loss of those
317 nutrients in exported OM which would imply that the N/P, C/P and C/N of exported OM equals
318 the $\Delta\text{NO}_3/\Delta\text{PO}_4$, $\Delta\text{DIC}/\Delta\text{PO}_4$ and $\Delta\text{DIC}/\Delta\text{NO}_3$ supplied, respectively. However, two processes
319 alter this simple situation and can cause the C/N/P of exported OM to differ significantly from
320 the $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ supplied. First, nitrogen (N) fixation is a source of inorganic nitrogen.
321 Second, air-sea CO_2 gas exchange can be either a source (invasion) or sink (evasion) of DIC.
322 The occurrence of N fixation implies that the N/P of exported OM exceeds the $\Delta\text{NO}_3/\Delta\text{PO}_4$
323 being supplied at steady-state. Similarly, air-sea CO_2 invasion (evasion) implies that the C/P of
324 exported OM is greater than (less than) the $\Delta\text{DIC}/\Delta\text{PO}_4$ being supplied. The quantitative
325 relationships between $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ being supplied, C/N/P of exported OM, N fixation and
326 air-sea CO_2 exchange are shown in equations 4 - 6. For example, if N fixation supplied an
327 amount of inorganic N equal to the NO_3 being supplied by physical processes, then the N/P of
328 exported OM would be double the NO_3/PO_4 being supplied. Likewise, if air-sea CO_2 invasion
329 contributed an equal amount of DIC as being supplied by physical processes then the C/P of
330 exported OM would be double the DIC/PO_4 being supplied. To reiterate, the surface layer
331 nutrient budgets assume any sources or sinks of inorganic nutrients other than those related to
332 physical supply, N fixation and CO_2 gas flux are negligible in the upper 300m of the Pacific
333 Ocean.

334 To be clear the C/N/P of the exported OM controls the $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ being
335 supplied, that is, the depth and horizontal surface gradient ratios for dissolved $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$
336 being supplied by physical processes adjust to the C/N/P of exported OM and the rates of OM
337 export, N fixation and air-sea CO_2 exchange. The C/N/P of the plankton can vary substantially
338 depending on the specific phytoplankton species, growth rates, growth limitations imposed by

339 availability of NO_3 , PO_4 , light, iron, etc., the abundances of macromolecules (proteins, lipids,
340 carbohydrates) required to support photosynthesis rates and for energy or nutrient storage, etc.
341 (e.g., Geider and La Roche, 2002; Agren, 2004; Klausmeier et al., 2004). The substantial
342 variability of particle C/N/P in the surface ocean is illustrated by the five-fold range observed in
343 C/P and N/P for suspended particles in the data set compiled by Martiny et al. (2014) and by the
344 two-fold range in N/P (15-30) and C/P (100-200) measured on suspended particles in the surface
345 layer at Stn. ALOHA over ~20 years (Fig. S2). The same overall mean C/N/P of 145/20/1 was
346 observed by Martiny et al. and at Stn ALOHA (2000-2018) which is significantly greater than
347 Redfield and underscores the point that the classical Redfield ratio does not represent an optimal
348 C/N/P of phytoplankton but an average composition. Because the C/N/P of plankton varies
349 substantially it is difficult to characterize the annual mean C/N/P of particles based on short-term
350 direct measurements especially in regions with strong seasonality in primary production rates,
351 nutrient availability, phytoplankton species, etc. A further complication is the role of exported
352 dissolved organic matter (DOM) which on average contributes about 20% of the exported OM
353 (Hansell et al., 2007). Because the DOM pool has both refractory and labile components the
354 C/N/P of the exported and subsequently degraded labile DOM in the upper 300m can differ
355 significantly from the C/N/P of bulk DOM in the surface layer (Hopkinson and Vallino, 2005).
356 Hopkinson and Vallino measured the C/N/P of the labile component of the DOM at three coastal
357 sites and at Stn ALOHA and found a consistent C/N/P of 199/20/1. A model-based study of the
358 C/N/P of labile DOM yielded a similar value of 225/19/1 for labile DOM needed to best match
359 the observed DOM distribution in the ocean (Letscher et al., 2015). If these results are
360 representative ocean-wide then the impact of labile DOM export on the C/N/P of exported OM
361 would be greatest in the subpolar and equatorial regions where the C/N/P of labile DOM differs
362 most from the C/N/P of the particles and least in the subtropical gyres where the C/N/P of labile
363 DOM is similar to the C/N/P of particles (**Fig. 3**), as discussed below.

364 There are several advantages of estimating the C/N/P for exported OM based on the observed
365 dissolved gradient ratio of $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ in the upper ocean. The $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$
366 integrate over the ventilation time of these shallow waters (a few years) and thus provide longer
367 term estimates of the C/N/P of exported OM which avoids the problem of temporal variability in
368 direct measurements of the C/N/P of OM. The estimate of exported C/N/P represent all
369 processes that export OM (e.g., particle sinking, transport of DOM, diel migration of

370 zooplankton, etc.) and avoids the issue of whether the measured C/N/P of suspended particles
 371 accurately represents the C/N/P of exported OM. The budget-based method relies directly on
 372 observations and doesn't require biogeochemical model output which avoids possible model
 373 biases. Because high quality dissolved nutrient data is available on global scales through the
 374 GOSHIP program the C/N/P of exported OM potentially can be indirectly estimated across all
 375 ocean basins. Lastly, the same approach can be applied to bioactive trace elements being
 376 measured by the GEOTRACES program to estimate the TE/C/N/P of exported OM, as illustrated
 377 below.

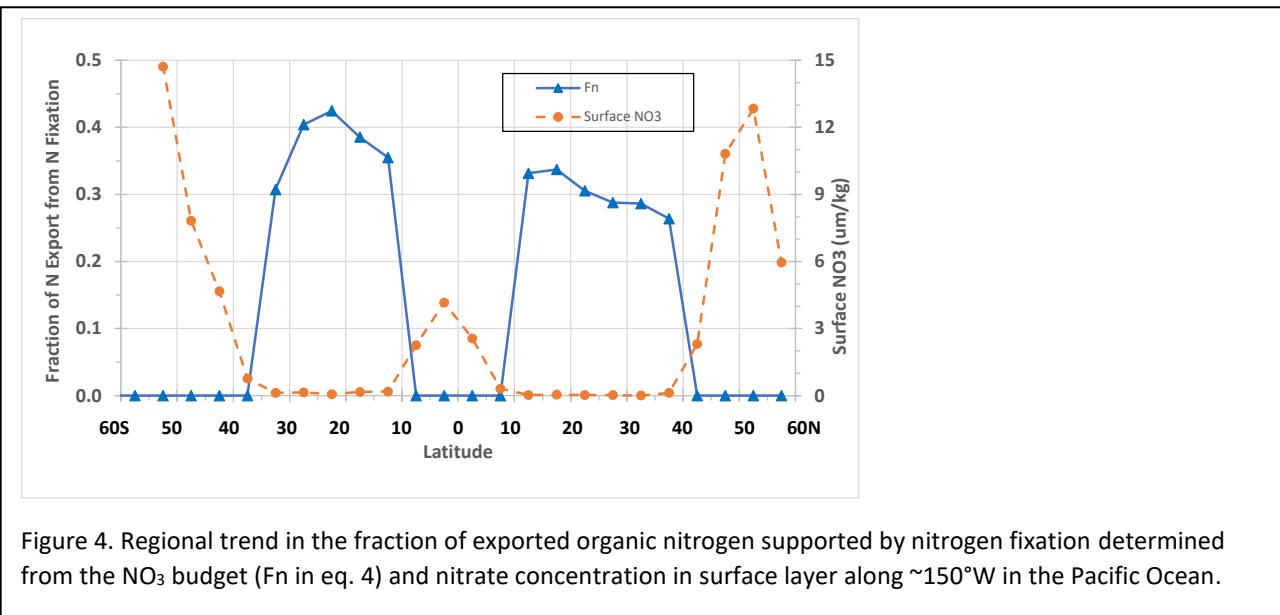


Figure 4. Regional trend in the fraction of exported organic nitrogen supported by nitrogen fixation determined from the NO_3 budget (Fn in eq. 4) and nitrate concentration in surface layer along $\sim 150^\circ\text{W}$ in the Pacific Ocean.

3.2 Impact of N fixation and Air-Sea CO_2 Exchange on $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$

379 N fixation in the subtropics causes the N/P of exported OM to exceed the $\Delta\text{NO}_3/\Delta\text{PO}_4$
 380 being supplied. At Stn. ALOHA in the subtropical N. Pacific Karl et al. (1997) determined that N
 381 fixation contributed 32-48% of exported organic N based on a NO_3 budget approach and the
 382 $\delta^{15}\text{N}$ of exported particles. Using nutrient depth profiles measured monthly at Stn ALOHA
 383 between 2010 and 2018 yields an observed $\Delta\text{NO}_3/\Delta\text{PO}_4$ of 14.2 ± 1.7 measured over 300m which
 384 when combined with the measured N/P of 21 ± 5 for suspended particles and 24 ± 8 sediment trap
 385 during the same time interval indicate that N fixation would support 33-43% of the exported
 386 organic N in good agreement with the Karl et al estimate. Combining the budget based
 387 estimated Fn of 0.38 ± 0.11 and 0.30 ± 0.08 for the subtropical S. and N. Pacific (Fig. 4),

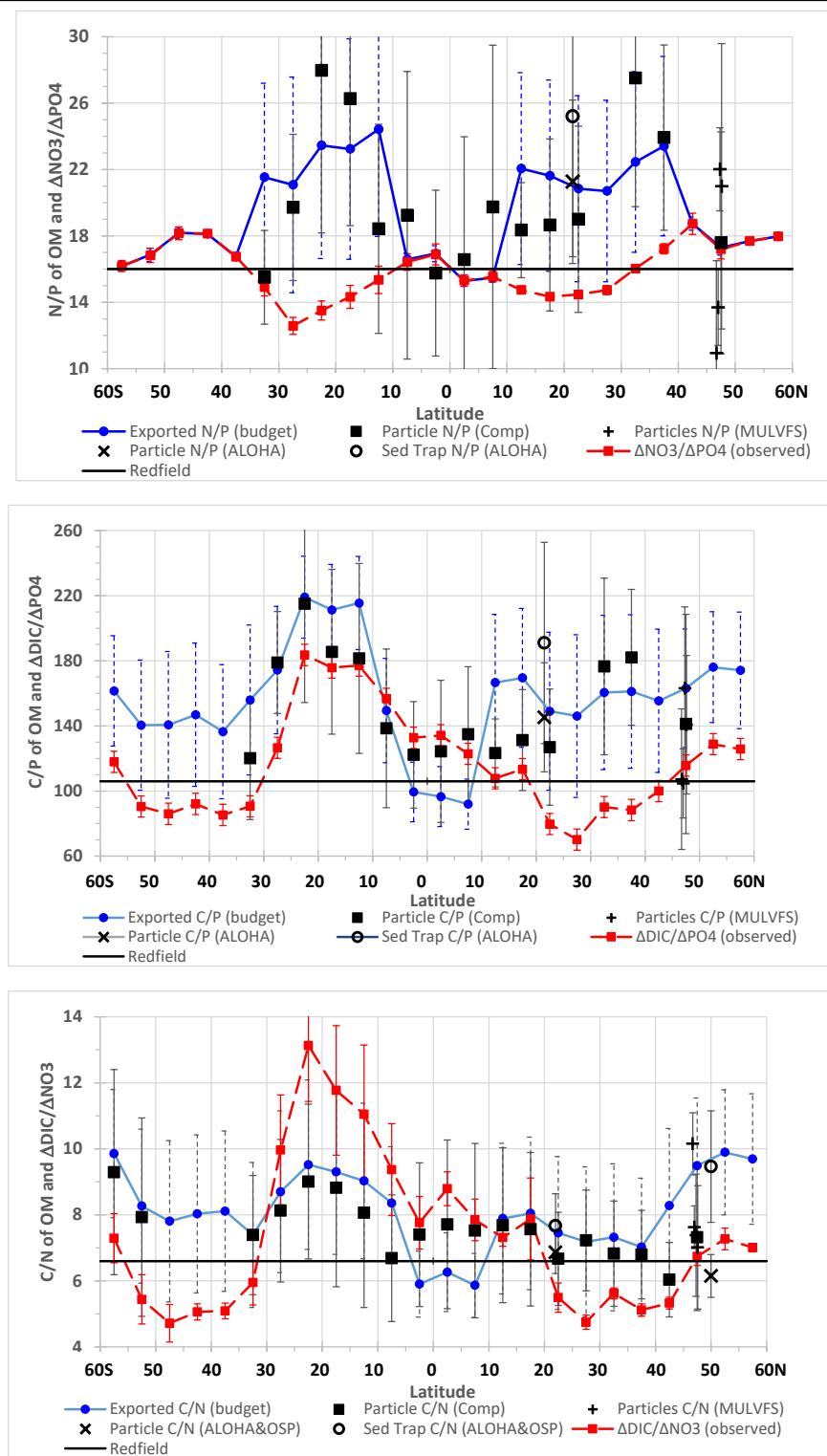


Figure 3. Regional trends in the observed $\Delta NO_3/\Delta PO_4$ (top), $\Delta DIC/\Delta PO_4$ (middle) and $\Delta DIC/\Delta NO_3$ (bottom) measured in the upper 300m, budget-based estimates of N/P, C/P and C/N for exported organic matter and observed N/P, C/P and C/N for particles. Error bars represent ± 1 SD of mean values averaged over 5° latitude bands. Particle data from global compilation (Martiny et al., 2014), samples collected at Stn K2 (Bishop and Wood, 2008) and multiyear samples collected at ALOHA and OSP (Wang et al., 1999).

389 respectively, with observed OM export rates of ~ 1 and 2.5 mols C/m²/yr, respectively, for these
 390 regions (Quay et al., 2020) and an average C/N of 8.0 for exported OM (**Fig. 3**) yields an
 391 estimated total N fixation rate of 79 ± 38 Tg N/yr for the Pacific Ocean which lies midway
 392 between the independent estimates of 59 ± 14 Tg/yr based on observed denitrification rate and
 393 NO₃ depth distributions (Deutsch et al., 2001) and inverse model estimates of 101 ± 30 Tg/yr
 394 (Wang et al., 2019).

395 In all regions of the Pacific, except near the equator, the estimated exported C/P
 396 significantly exceeds the $\Delta\text{DIC}/\Delta\text{PO}_4$ whereas near the equator the estimated C/P is lower than

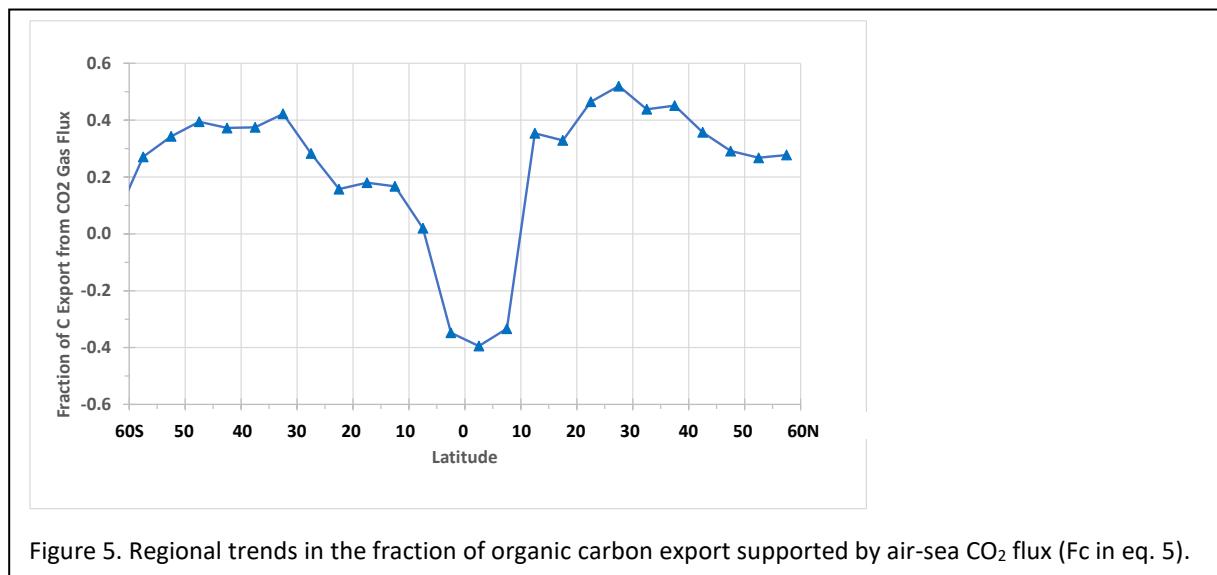


Figure 5. Regional trends in the fraction of organic carbon export supported by air-sea CO₂ flux (Fc in eq. 5). A negative value occurs when there is net CO₂ gas evasion from the surface ocean.

397 $\Delta\text{DIC}/\Delta\text{PO}_4$ (**Fig. 3**). This regional trend is a result of air-sea CO₂ gas invasion. Net CO₂ gas
 398 invasion is observed for most regions of the Pacific Ocean except the equatorial region where net
 399 CO₂ gas evasion is observed (Takahashi et al., 2009). The budget approach expresses air-sea
 400 CO₂ flux as a fraction of the exported organic C (Fc in eq. 5) and estimates of Fc are obtained
 401 from the budget scenarios that yield the observed $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ each latitude band, as
 402 discussed above. There is a clear region trend in Fc with maxima in the subtropics at ~ 0.4 and
 403 minima in the equatorial region at ~ -0.3 (**Fig. 5**). In the subtropical N. Pacific, where the
 404 estimated C/P of exported OM at 160 ± 42 exceeds the $\Delta\text{DIC}/\Delta\text{PO}_4$ being supplied at 91 ± 6 and
 405 requires a Fc of 0.43 ± 0.11 which compares well to previous independent Fc estimates of 0.31 -
 406 0.43 at Stn ALOHA based on multi-year DIC budgets (Quay et al., 2003; Keeling et al., 2004).
 407 In the equatorial region, in contrast to the subtropics, the observed $\Delta\text{DIC}/\Delta\text{PO}_4$ at 134 ± 8 being

408 supplied is greater than the estimated exported C/P at 109 ± 21 which is a result of air-sea CO_2
409 evasion and requires an Fc of -0.26 ± 0.06 . The regional trends in exported C/N and $\Delta\text{DIC}/\Delta\text{NO}_3$
410 have similar patterns to those for C/P and $\Delta\text{DIC}/\Delta\text{PO}_4$ except in the subtropical S. Pacific, where
411 the estimated exported C/N is less than the $\Delta\text{DIC}/\Delta\text{NO}_3$ being supplied. In this region, the relative
412 impact of N fixation on N/P export ($\text{Fn}=0.38$) exceeds the relative impact of CO_2 invasion on
413 C/P export ($\text{Fc}=0.24$) which causes the $\Delta\text{DIC}/\Delta\text{NO}_3$ being supplied to exceed the C/N of
414 exported OM (see eq. 6).

415 *3.3 Comparison Between Budget Estimated and Observed C/N/P of Particles*

416 Overall, the regional trend in the estimated N/P, C/P and C/N of exported OM agrees
417 with the available observed particle C/N/P which show subtropical maxima and an equatorial
418 minimum (**Fig. 3**). The estimated exported N/P and observed particle N/P have subtropical
419 peaks at 22 ± 6 and 21 ± 4 , respectively, that are primarily a result of the high N/P at 20-35 for
420 cyanobacteria including diazotrophs (Martiny et al., 2013; Letelier and Karl, 1998) and at 20 for
421 labile DOM (Hopkinson and Vallina, 2005). The estimated exported N/P and observed particle
422 N/P have equatorial minima at 16 ± 1 and 17 ± 5 , respectively. A similar subtropical maximum
423 and equatorial minimum for the N/P of exported OM was determined by Weber and Deutsch
424 (2010) based on model calculations which showed that high N/P (~ 20) in subtropics and low
425 values in equatorial (~ 16) and subpolar regions (~ 10) yielded a better match to observed NO_3
426 distribution in ocean than a constant N/P at Redfield. The inverse relationship between
427 estimated N/P and surface NO_3 concentration is expected based on the theory that phytoplankton
428 should exhibit low N/P under optimal growth conditions and high N/P under limited growth
429 conditions (Klausmeier et al., 2004) and observations of Geider and La Roche (2002) that
430 phytoplankton exhibited the lowest N/P in nutrient replete conditions and highest N/P under
431 oligotrophic nutrient deficient conditions.

432 The estimated exported and observed particle C/P and C/N have maxima in the
433 subtropics and a minimum in the equatorial region (**Fig. 3**). In the subtropics, the estimated
434 exported C/P at 177 ± 40 agrees with the observed particle C/P at 157 ± 40 as does the C/N for
435 estimated exported OM at 8.2 ± 2.4 and observed particles at 7.6 ± 1.9 . The high C/N/P for
436 particles and exported OM is likely a result of the dominance of cyanobacteria in these nutrient
437 depleted subtropical regions. Martiny et al. (2013) measured a C/N/P for *Prochlorococcus* at

438 235/35/1 and *Synechococcus* at 161/25/1 and Letelier and Karl (1998) measured a C/N/P at
439 271/42/1 for *Trichodesmium*. Similarly, the mean C/P of 145(\pm 33)/21(\pm 5)/1 is measured for
440 suspended particles (<100m) at Stn ALOHA (2000-2018) where *Prochlorococcus* dominates
441 (Campbell and Valette, 1993). It is worth noting that the C/N/P of material collected in sediment
442 traps at \sim 150m at Stn ALOHA (2000-2018) at 190(\pm 62)/25(\pm 8)/1 is significantly higher than the
443 C/P of suspended particles. This observation raises the question of how well the elemental
444 composition of suspended particles in the photic layer represents exported particles. A C/N/P of
445 154/18/1 was measured for labile DOM in the surface layer at Stn ALOHA (Hopkinson and
446 Vallino, 2005). In the equatorial region the estimated exported C/N/P of 109(\pm 21)/16(\pm 1)/1 is
447 and observed C/N/P for particles at 126(\pm 36)/17(\pm 5)/1 are significantly lower than in the
448 subtropical gyres, closer to the Redfield ratio and likely a result of increased contribution to
449 exported OM by eukaryotes for which Martiny et al. (2013) measured a C/N/P of 107/16/1.

450 The largest discrepancy between budget-based C/N/P of exported OM and observed
451 C/N/P of suspended particles possibly occurs in the subpolar N. and S. Pacific. Unfortunately,
452 there are no particle C/P or N/P data for the nutrient replete subpolar S. Pacific (south of 40°S)
453 and all the particle data north of 40°N is from the Bering Sea shelf region (<100m) based on the
454 data compiled by Martiny et al. (2014). Studies in the Gulf of Alaska have shown clear
455 differences in phytoplankton community structure, growth rate, cell size and species composition
456 between on- and off- shelf regions that are consistent with a gradient in iron availability (e.g.,
457 Strom et al., 2006). For this reason the particle data from the Bering Sea shelf region, where the
458 mean C/N/P is 86/11/1, may not be representative of the particle C/N/P in the subpolar Pacific
459 Ocean south of the Aleutian Islands where the budget based C/N/P of exported OM was
460 estimated and iron limitation of productivity is important (Harrison et al., 1999). However, there
461 are a few possible factors to explain why the C/N/P of exported OM would be significantly
462 greater than the C/N/P of suspended particles in the subpolar N. Pacific. First, the C/N/P of the
463 exported particles may be different from the suspended particles as Wong et al. (1999) observed
464 at OSP (50°N 145°W) where the C/N of organic material collected in sediment traps (150-200m)
465 at 9.5 was significantly higher than the C/N measured on suspended particles in the surface layer
466 at 6.2 based on data collected over multiple years. Second, exported DOM could significantly
467 increase the C/N/P of exported OM as Hopkinson and Vallini (2005) measured a consistent
468 C/N/P of 199/20/1 for labile DOM at both coastal and oligotrophic sites. In nutrient replete

469 regions where fast sinking diatoms or coccolithophores are a significant component of the
470 exported particles the impact of their degradation on the $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ in the upper 300m
471 would be reduced. In this situation, the export and degradation of labile DOM in the upper 300m
472 would be more important and shift the observed $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ towards 199/20/1. Haskell
473 et al. (2020) came to a similar conclusion at OSP, based on multiyear (2009-2017) float and
474 mooring based photic layer NO_3 and DIC budgets, that an observed decrease in the C/N of
475 exported OM with increasing depth was likely the result of a shift from DOM to particle
476 degradation. Haskell et al. estimated that a C/N of 8.8 ± 3.5 for exported OM from the photic
477 layer was needed to explain the observed annual cycles of DIC and NO_3 at OSP which
478 significantly exceeded the C/N of 5.5 ± 0.2 measured for suspended particles at OSP.

479 The situation in the subpolar S. Pacific is different from the subpolar N. Pacific. The
480 estimated mean exported C/N/P at 145/17/1 south of 40°S (**Fig. 3**) is significantly greater than
481 the C/N/P for particles of 73/13/1 collected in the subpolar (40°-60°S) Indian Ocean (Martiny et
482 al., 2014). Although the explanations for the difference between estimated and observed C/N/P
483 discussed above for the subpolar N. Pacific could apply in the subpolar S. Pacific there is an
484 alternative explanation that seems more likely. If the majority of nutrients supplied vertically in
485 the subpolar S. Pacific are not consumed by OM export but are removed by surface advection of
486 dissolved nutrients, then the C/N/P of exported OM would be poorly constrained by the observed
487 $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$. Support for this explanation comes from the magnitude of estimated
488 horizontal advective transport of dissolved NO_3 in the surface layer in the subpolar S. Pacific
489 (mainly equatorward) which at 3.0 ± 0.4 mmol N/m²/d represents a ~4 x greater loss than the
490 organic N export rate estimated at $\sim0.8\pm0.3$ mmol N/m²/d in this region (Arteaga et al., 2019).
491 In this situation the budget approach applied here would not yield useful estimates of the C/N/P
492 of exported OM because the impact of the C/N/P of exported OM would have only a minor
493 effect on the vertical (and horizontal) $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$ gradient ratio. Thus, the subpolar S.
494 Pacific appears to be a region where the observed dissolved nutrient distributions (even in the
495 upper 300m) are minimally affected by degradation of OM matter exported locally and instead
496 are largely controlled by external processes, i.e., nutrient composition of upwelling water. The
497 situation in the subpolar N. Pacific is different because of the horizontal surface advective flux of
498 NO_3 at 0.1 ± 1.1 mmol N/m²/d is lower than the estimates of OM export at $\sim0.6\pm0.2$ mmol N/m²/d
499 (Haskell et al., 2020). Thus, in the subpolar N. Pacific the dominant nutrient loss term should be

500 OM export and the budget-based method should provide useful estimates of C/N/P. A
501 difference between the estimated C/N/P of exported OM and observed particle C/N/P in the
502 subpolar N. Pacific would require other explanations, as discussed above.

503 *3.4 Variability in C/N/P of the ocean's biological pump*

504 The appropriate C/N/P to describe the ocean's biological pump depends on the depth
505 horizon of interest. If one is interested in the OM being exported at the base of the photic or
506 mixed layer then there are large regional variations in the C/N/P. A consistent result in the
507 subtropical Pacific Ocean is that the C/N/P of exported OM based on nutrient budgets (mean of
508 177/22/1) and observed suspended particles (mean of 157/21/1; Martiny et al., 2014)
509 significantly exceed Redfield (106/16/1) (**Fig. 3**). The likely reasons are the dominance of
510 cyanobacteria and diazotrophs in these regions of the Pacific Ocean with both species having
511 high C/N/P in the 160/25/1 to 240/40/1 range (e.g., Martiny et al., 2013; Letelier and Karl, 1998)
512 and the contribution by exported labile DOM with a C/N/P of ~200/20/1 (Hopkinson and Vallini,
513 2005). In the equatorial Pacific the estimated C/N/P of exported OM at 109/16/1 and observed
514 particle C/N/P at 126/17/1 is significantly lower than in the subtropics and closer to Redfield. In
515 nutrient replete regions a higher proportion of the phytoplankton pool is comprised of eukaryotes
516 with a lower C/N/P of ~ 107/16/1 (Martiny et al., 2013).

517 As the depth horizon of interest gets deeper the regional variations in the C/N/P of the
518 biological pump decrease for a couple of reasons. First, the contribution of small phytoplankton
519 with slow sinking rates and labile DOM with short turnover times and high C/N/P to the
520 degrading pool of OM decreases with depth whereas the contribution of larger and faster sinking
521 particles with lower C/N/P increases. This trend increases the weighting of the C/N/P of OM
522 being degraded to nutrient replete regions where larger phytoplankton were exported as depth
523 increases. This effect was observed during VERTEX where at the subtropical Stn. ALOHA
524 ~75% of the particles were degraded in the upper 300m whereas at subpolar Stn. K2 this fraction
525 decreased to 50% (Martin et al., 1987). Similarly, inverse model results indicate that the fraction
526 of surface particle flux present at 1500m is 3-4x greater in the subpolar regions compared to
527 subtropical regions with the primary controlling factor being particle size (Weber et al., 2016).
528 Second, the effects of water mass mixing increase with depth as water parcels ages increase.
529 Along isopycnal mixing integrates regional variations in C/N/P of exported OM on the dissolved

530 nutrient distribution and expands the spatial extent of the impact of degradation of OM exported
531 from nutrient replete (equatorial and subpolar) regions across the main thermocline of the ocean.
532 In this sense, the Redfield ratio yields a large phytoplankton and nutrient replete regionally
533 biased view of the ocean's biological pump which represents the exported OM reaching the main
534 thermocline (500-1500m) but does not accurately represent the C/N/P of OM being exported
535 from the photic layer. The shallow recycling of OM with high C/N/P has a potentially important
536 impact on CO₂ sequestration. Although a high C/N/P of exported OM increases the efficiency of
537 carbon sequestration, the shallow degradation of this OM (<300m) and short ventilation times of
538 this surface layer would significantly shorten the time scale of the CO₂ sequestration gain.

539 *3.5 Applying the Budget Approach to Trace Element Composition of Exported OM*

540 To evaluate whether the principle of a budget-based approach could be used to establish
541 the link between the bioactive trace element composition (TE/C/N/P) of exported organic matter
542 and the dissolved trace element gradients in the upper ocean it was applied to Cadmium (Cd).
543 The ratio of dissolved Cd to PO₄ depth gradients in the upper 300m ($\Delta\text{Cd}/\Delta\text{PO}_4$) was determined
544 based on dissolved Cd and PO₄ measurements during GOSHIP P16 cruises in 2005/6 (70°S to
545 60°N along ~150°W) in the Pacific Ocean (Landing et al., 2019). The vertical dissolved
546 $\Delta\text{Cd}/\Delta\text{PO}_4$ is assumed to represent the physical supply ratio to the photic layer analogous to
547 $\Delta\text{DIC}/\Delta\text{NO}_3/\Delta\text{PO}_4$. If there were no other significant sources of Cd or PO₄ to the surface ocean
548 (e.g., atmospheric deposition) and exported OM was the only sink for dissolved Cd and PO₄ then
549 the Cd/P of exported OM would equal the $\Delta\text{Cd}/\Delta\text{PO}_4$ being supplied at steady-state, i.e.,
550 analogous to the situation where the estimated N/P of exported OM equals the dissolved $\Delta\text{NO}_3/$
551 ΔPO_4 being supplied when Fn=0 (see eq. 4). There are clear regional trends in the dissolved
552 $\Delta\text{Cd}/\Delta\text{PO}_4$ with subtropical minima and equatorial and subpolar maxima (**Fig. 6**) that are similar
553 to the trends observed previously (Quay et al., 2015). Assuming any external sources of Cd and
554 PO₄ are negligible in the upper 300m then the meridional trend in dissolved $\Delta\text{Cd}/\Delta\text{PO}_4$
555 represents the trend in Cd/P of exported OM and this trend can be compared to the observed
556 Cd/P of particles measured in the photic layer using samples collected by the MULVFS method
557 at a few sites in the Pacific Ocean (Bourne et al., 2018). The observed particle Cd/P shows a
558 subtropical minima and equatorial and subpolar maxima similar to the estimated Cd/P of
559 exported OM trend with values that agree well in the subtropics. The higher particle Cd/P

560 observed in nutrient replete regions has been previously reported and attributed to several
 561 mechanisms (e.g., species composition, Fe limitation, phytoplankton growth rate, Zn availability,
 562 etc., see Bourne et al., 2018). However, the observed particle Cd/P data are significantly higher
 563 than the budget-based estimated Cd/P of exported OM in the nutrient replete regions. There is a
 564 tendency for the large particles ($>51\mu\text{m}$) to have lower Cd/P which agrees better with the
 565 dissolved $\Delta\text{Cd}/\Delta\text{PO}_4$ and raises the question of how well the Cd/P of total suspended particles
 566 represents the Cd/P of exported organic matter. One explanation of the difference in Cd/P for
 567 suspended particles versus exported OM would require preferential recycling between particulate
 568 and dissolved Cd compare to phosphorous within the euphotic zone. Another possible factor is

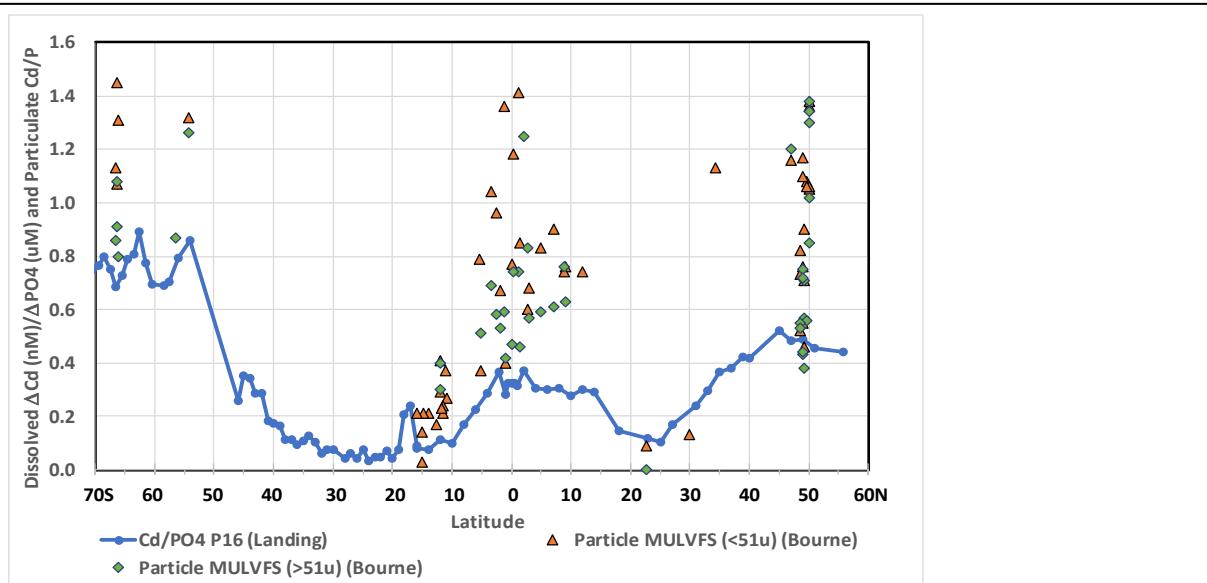


Figure 6. Regional trends in the dissolved $\Delta\text{Cd}/\Delta\text{PO}_4$ depth gradient ratio (nM/μM) in upper 300m based on measurements during GOSHIPs P16 cruises along 150°W (2005-06) by Landing et al. (2019) and measured Cd/P (nmol/μmol) of particles ($<51\mu\text{m}$ and $>51\mu\text{m}$ size classes) in upper 100m collected by the MULVFS method in the Pacific Ocean (Bourne et al., 2018).

569 the potential impact of exported DOM which could contribute to a difference between the Cd/P
 570 of exported OM and suspended particles. It is worth reiterating that estimating the TE/P of
 571 exported OM from the observed dissolved $\Delta\text{TE}/\Delta\text{PO}_4$, as done here for Cd/P, has the advantage
 572 of providing a multi-year estimates and avoiding the issue of temporal variability in particulate
 573 TE/P which makes it difficult to use single cruise measurements of particulate TE/P to accurately
 574 represent the mean value for a region. Additionally, for bioactive TEs that can have external
 575 inputs to the surface ocean then a significant difference between measured TE/P of exported OM
 576 and supplied $\Delta\text{TE}/\Delta\text{PO}_4$ could be used to constrain the magnitude of the external inputs.

577

578 **3. Conclusions**

579 The scarcity of measurements of the elemental composition of exported organic matter
580 from the surface ocean yields a substantial gap in a fundamental characteristic of the ocean's
581 biological pump and our understanding of how the dissolved nutrient and trace element
582 distributions in the upper ocean are impacted by organic matter export and degradation. Here a
583 new approach based on surface layer DIC, NO₃ and PO₄ budgets was used to establish the link
584 the C/N/P of organic matter being exported and degraded and the measured distributions of
585 dissolved nutrients in the upper 300m of the Pacific Ocean. The nutrient budgets provide a
586 means to estimate the C/N/P of exported organic matter indirectly based on the ratio of measured
587 gradients of dissolved nutrients which potentially could overcome the lack of measured organic
588 matter composition data. The surface layer nutrient budgets indicate that three primary factors
589 controlling regional variations in the dissolved DIC, NO₃ and PO₄ distributions in the upper layer
590 of the ocean, that is, the C/N/P of exported organic matter, presence of nitrogen fixation and air-
591 sea CO₂ gas exchange. Using the same approach, a surface layer budget for the bioactive trace
592 element Cd was used to estimate regional trends in the Cd/P of exported OM based on the trends
593 in the ratio of measured dissolved Cd and PO₄ depth gradients in the upper layer of ocean.

594 The generally good agreement between the regional variations in budget-based estimates
595 of the C/N/P for exported OM and available particle C/N/P measurements in the Pacific Ocean
596 encourages application of the method to other ocean basins using the availability of high-quality
597 nutrient and trace element data provided by the GOSHIP and GEOTRACES programs. The
598 observed regional trends in the dissolved $\Delta TE/\Delta DIC/\Delta NO_3/\Delta PO_4$ in the upper ocean should be a
599 useful metric for evaluating the parameterization of organic matter export and degradation in
600 ocean biogeochemical models. The observation-based results presented here for the Pacific
601 Ocean support the findings of several modeling studies and underscore the importance of
602 regional variability in the C/N/P of exported OM as a fundamental characteristic of the ocean's
603 biological pump that has a major impact on regional variations in the dissolved nutrient
604 distributions in the upper ocean.

605

606 *Acknowledgements and Data Availability:* The effort put into the GLODAP data compilation by
607 Bob Key and his colleagues is particularly appreciated. Particle and sediment trap elemental
608 data and depth profiles of dissolved nutrient for Stn. ALOHA were obtained via the Hawaii
609 Ocean Time-series HOT-DOGS application (University of Hawai'i at Mānoa and National
610 Science Foundation Award # 1756517). Bill Landing kindly allowed use of his dissolved Cd
611 data from P16. The work has been supported by the National Science Foundation as part of the
612 GEOTRACES program (OCE-1829796).

613 GLODAP data and their documentation are available at the Carbon Dioxide Information
614 Analysis Center (<https://www.glodap.info/>). The particle composition data compiled by Martiny
615 et al. (2014) is found at <https://datadryad.org/stash/dataset/doi:10.5061/dryad.d702p>. Particle,
616 sediment trap and dissolved nutrient data for Stn ALOHA are found at
617 <https://hahana.soest.hawaii.edu/hot/hot-dogs/interface.html>. ARGO based surface current
618 velocities are found at
619 http://apdrc.soest.hawaii.edu/projects/Argo/data/statistics/Velocities/Ensemble_mean/1x1/m00/index.html. The dissolved Cd data from P16 (Landing et al. 2019) is found at BCO-DMO archive at
620 <https://www.bco-dmo.org/dataset/778403/data>.
621

622

623

624 **References**

625 Agren, G.I. (2004). The C:N:P stoichiometry of autotrophs- theory and observations. *Ecological*
626 *Letters*, 7, 185-191.

627

628 Arteaga, L. A., Pahlow, M., Bushinsky, S. M., & Sarmiento, J. L. (2019). Nutrient controls on
629 export production in the Southern Ocean. *Global Biogeochemical Cycles*, 33, 942–956.
630 <https://doi.org/10.1029/2019GB006236>.

631

632 Ayers, J. M., & Lozier, M. S. (2012). Unraveling dynamical controls on the North Pacific carbon
633 sink. *Journal of Geophysical Research*, 117, C01017. <https://doi.org/10.1029/2011JC007368>

634

635 Bishop, J. K. B., & Wood, T. J. (2008). Particulate matter chemistry and dynamics in the twilight
636 zone at VERTIGO ALOHA and K2 sites. *Deep-Sea Research*, 1, 55, 1684–1706.
637 <https://doi.org/10.1016/j.dsr.2008.07.012>

638

639 Bourne, H. L., Bishop, J. K. B., Lam, P. J., & Ohnemus, D. C. (2018). Global spatial and
640 temporal variation of Cd:P in euphotic zone particulates. *Global Biogeochemical Cycles*, 32,
641 1123–1141. <https://doi.org/10.1029/2017GB005842>

642

643 Bushinsky, S. M., & Emerson, S. R. (2018). Biological and physical controls on the oxygen
644 cycle in the Kuroshio Extension from an array of profiling floats. *Deep Sea Research I*, 141, 51–
645 70. <https://doi.org/10.1016/j.dsr.2018.09.005>

646

647 Campbell, L. & Vaulot, D. (1993). Photosynthetic picoplankton community structure in the
648 subtropical North Pacific Ocean near Hawaii (station ALOHA). *Deep-Sea Research I*, 40, 2043–
649 2060.

650

651 Cronin, M. F., Pelland, N. A., Emerson, S. R., & Crawford, W. R. (2015). Estimating diffusivity
652 from the mixed layer heat and salt balances in the North Pacific. *Journal of Geophysical*
653 *Research: Oceans*, 120, 7346–7362. <https://doi.org/10.1002/2015JC011010>

654

655 Deutsch C., Gruber N., Key, R.M., Sarmiento J.L., & Ganachaud, A. (2001). Denitrification and
656 N₂ fixation in the Pacific Ocean. *Global Biogeochemical Cycles*, 15, 483–506.

657

658 Fassbender, A. J., Sabine, C. L., & Cronin, M. F. (2016). Net community production and
659 calcification from 7 years of NOAA Station Papa Mooring measurements. *Global*
660 *Biogeochemical Cycles* 30: 250–267.

661

662 Fujeiki, L. A., Santiago-Mandujano, F., Fumar, C., Lukas, R., & Church, M. (2015). *Hawaii*
Ocean Time-series Data Report 24: 2012.

663

664 Geider, R.J.. & LaRoche, J. (2002). Redfield revisited: Variability of C:N:P in marine
microalgae and its biochemical basis. *European Journal of Phycology*, 37, 1-17.

665

666 Gray, A., Johnson, K. S., Bushinsky, S. M., Riser, S. C., Russell, J. L., Talley, L. D.,
Wanninkhof, R., Williams, N.L., & Sarmiento, J.L. (2018). Autonomous biogeochemical floats

667 detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. *Geophysical*
668 *Research Letters*, 45, 9049–9057, <https://doi.org/10.1029/2018GL078013>
669

670 Hansell, D.A., Carlson, C.A., Repeta, D. J. & Schlitzer, R. (2007). Dissolved organic matter in
671 the ocean: a controversy stimulates new insights, *Oceanography*, 22, 206-211.

672 Harrison, P.J., Boyd, P.W., Varela, D.E., Takeda, S., Shiomoto, A., & Odate, T. (1999).
673 Comparison of factors controlling phytoplankton productivity in the NE and NW subarctic
674 Pacific gyres. *Progress in Oceanography*, 43, 205-234.

675

676 Haskell, W. Z. II, Fassbender, A. J., Long, J. S., & Plant, J. N. (2020). Annual net community
677 production of particulate and dissolved organic carbon from a decade of biogeochemical
678 profiling float observations in the Northeast Pacific. *Global Biogeochemical Cycles*, 34,
679 e2020GB006599, <https://doi.org/10.1029/2020GB006599>.

680

681 Hopkinson, C.S., & Vallino, J.J. (2005) Efficient export of carbon to the deep ocean through
682 dissolved organic matter. *Nature*, 433, 142-145.

683

684 Johnson, K. S., Riser, S. C., & Karl, D. M. (2010). Nitrate supply from deep to near-surface
685 waters of the North Pacific subtropical gyre. *Nature*, 465, 1062–1065.
<https://doi.org/10.1038/nature09170>

687

688 Karl D.M., Letelier, R., Tupas, L., Dore, J., Christian, J., & Hebel, D. (1997). The role of
689 nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. *Nature*, 388,
690 533-538.

691

692 Karl D.M., Bjorkman, K.M., Dore, J.E., Fujieki, L., Hebel, D.V., Houlihan, T., Letelier, R.M., &
693 Tupas, L.M. (2001). Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. *Deep-
694 Sea Research II*, 48, 1529–1566.

695

696 Keeling, C. D., Brix, H., & Gruber, N. (2004). Seasonal and long-term dynamics of the upper
697 ocean carbon cycle at station ALOHA near Hawaii. *Global Biogeochemical Cycles*, 18, GB4006,
698 doi:10.1029/ 2004GB002227.

699

700 Key, R.M., Olsen, A., van Heuven, S., Lauvset, S. K.. Velo, A., Lin, X., Schirnick, C., Kozyr,
701 A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F.,
702 & Suzuki, T. (2015). Global Ocean Data Analysis Project, Version 2 (GLODAPv2).
703 ORNL/CDIAC-162, NDP-093. *Carbon Dioxide Information Analysis Center*, Oak Ridge
704 National Laboratory, US Dept.of Energy, Oak Ridge,Tennessee. doi:
705 10.3334/CDIAC/OTG.NDP093_GLODAPv2

706

707 Klausmeier, C.A., Litchman, E., Daufresne, T., & Levin, S.A. (2004). Optimal nitrogen-to-
708 phosphorus stoichiometry of phytoplankton. *Nature*, 429, 171–174.

709

710 Landing, W., Measures, C., & Resing, J. (2019). Profiles of dissolved trace elements collected
711 using a trace-metal clean rosette from surface to 1000m depth from two CLIVAR P16 cruises in

712 2005 and 2006. *Biological and Chemical Oceanography Data Management Office* (BCO-DMO),
713 doi:10.1575/1912/bco-dmo.778403.1

714

715 Letelier, R.M., & Karl, D.M. (1998). *Trichodesmium* spp. physiology and nutrient fluxes
716 in the North Pacific subtropical gyre. *Aquatic Microbial Ecology*, 15, 265-276.

717

718 Letscher, R. T., Moore, J. K., Teng, Y.-C., & Primeau, F. (2015). Variable C:N:P stoichiometry
719 of dissolved organic matter cycling in the Community Earth System Model. *Biogeosciences*, 12,
720 209–221. <https://doi.org/10.5194/bg-12-209-2015>.

721

722 Letscher, R.T., Primeau, F., & Moore, J.K. (2016). Nutrient budgets in the subtropical ocean
723 gyres dominated by lateral transport. *Nature Geoscience*, 9, 815-819, doi: 10.1038/NGEO2812.

724

725 Martin, J.H., Knauer, G.A., Karl, D.M., & Broenkow, W.W. (1987). VERTEX: Carbon cycling
726 in the northeast Pacific. *Deep-Sea Research A* 34, 2, 267–285.

727

728 Martiny, A. C., Pham, C.T.A., Primeau, F.W., Vrugt, J.A., Moore, J.K., Levin, S.A. & Lomas,
729 M.W. (2013). Strong latitudinal patterns in the elemental ratios of marine plankton and organic
730 matter. *Nature Geoscience*, 6, 279-283.

731

732 Martiny, A.C., Vrugt, J.A., & Lomas, M.W. (2014) Concentrations and ratios of particulate
733 organic carbon, nitrogen, and phosphorus in the global ocean. *Scientific Data* 1:140048.
734 <http://dx.doi.org/10.1038/sdata.2014.48>

735

736 Nicholson, D., Emerson, S., & Eriksen, C. C. (2008). Net community production in the deep
737 euphotic zone of the subtropical North Pacific gyre from glider surveys. *Limnology and
738 Oceanography*, 53, 2226–2236. https://doi.org/10.4319/lo.2008.53.5_part_2.2226

739

740 Olsen, A., Key, R.M., van Heuven, S., Lauvset, S.K., Velo, A., Lin, X., Schirmick, C., Kozyr, A.,
741 Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F.F., &
742 Suzuki, T. (2016). The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an
743 internally consistent data product for the world ocean. *Earth System Science Data*, 8, 297–323,
744 <https://doi.org/10.5194/essd-8-297-2016>.

745

746 Pelland, N. A., Eriksen, C. C., Emerson, S. R., & Cronin, M. F. (2018). Seaglider surveys at
747 Ocean Station Papa: Oxygen kinematics and upper-ocean metabolism. *Journal of Geophysical
748 Research*, 123, 6408–6427. <https://doi.org/10.1029/2018jc014091>

749

750 Quay, P. (1997). Was a carbon balance measured in the equatorial Pacific during JGOFS?.
751 *Deep-Sea Research II*, 44, 1765-1781.

752

753 Quay, P. D., & Stutsman, J. (2003). Surface layer carbon budget for the subtropical N. Pacific:
754 $\delta^{13}\text{C}$ constraints at Station ALOHA. *Deep Sea Research I*, 50, 1045–1061,
755 [https://doi.org/10.1016/S0967-0637\(03\)00116-X](https://doi.org/10.1016/S0967-0637(03)00116-X)

756

757 Quay, P., J. Cullen, W. Landing, and P. Morton (2015). Processes controlling the distributions of
758 Cd and PO₄ in the ocean, *Global Biogeochemical Cycles*, 29, 830–841,
759 doi:10.1002/2014GB004998.

760

761 Quay, P., & Wu, J. (2015), Impact of end-member mixing on depth distributions of $\delta^{13}\text{C}$,
762 cadmium and nutrients in the N. Atlantic Ocean, *Deep Sea Research II*, 116, 107-116,
763 doi:10.1016/j.dsr2.2014.11.1109.

764

765 Quay, P., Emerson, S., & Palevsky, H. (2020). Regional pattern of the ocean's biological pump
766 based on geochemical observations. *Geophysical Research Letters*, 47, e2020GL088098.
767 <https://doi.org/10.1029/2020GL088098>.

768

769 Redfield, A.C. (1958). The biological control of chemical factors in the environment. *American
770 Scientist*, 46, 205-221.

771

772 Strom, S.L., Brady Olson, M., Macri, E.L., & Mordy, C.W. (2006). Cross-shelf gradients in
773 phytoplankton community structure, nutrient utilization, and growth rate in the coastal Gulf of
774 Alaska. *Marine Ecology*, 328, 75-92.

775

776 Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., et
777 al. (2009). Climatological mean and decadal change in surface ocean $p\text{CO}_2$, and net sea-air CO_2
778 flux over the global oceans. *Deep Sea Research II*, 56, 554–577.
779 <https://doi.org/10.1016/j.dsr2.2008.12.009>

780

781 Teng, Y-C., Primeau, F.W., Moore, J.K., Lomas, M.W. & Martiny, A.C. (2014). Global-scale
782 variations of the ratios of carbon to phosphorus in exported marine organic matter. *Nature
783 Geoscience*, 7, 895-898, doi: 10.1038/NGEO2303.

784

785 Wang, W-L., Moore, J.K., Martiny, A.C., & Primeau, F.W. (2019). Convergent estimates of
786 marine nitrogen fixation. *Nature*, 566, 205-213, <https://doi.org/10.1038/s41586-019-0911-2>

787

788 Weber, T. & Deutsch, C. (2010). Ocean nutrient ratios governed by plankton biogeography.
789 *Nature*, 467, 550-554.

790

791 Weber, T., Cram, J.A., Leung, S.W., DeVries, T., & Deutsch, C. (2016). Deep ocean nutrients
792 imply large latitudinal variation in particle transfer efficiency. *Proceedings National Academy
793 Sciences*, 113, 8606-8611.

794

795 Wong, C. S., Whitney, F. A., Crawford, D. W., Iseki, K., Matear, R. J., Johnson, W. K., Page,
796 J.S., & Timothy, D. (1999). Seasonal and interannual variability in particle fluxes of carbon,
797 nitrogen and silicon from time series of sediment traps at Ocean Station P, 1982–1993:
798 Relationship to changes in subarctic primary productivity. *Deep-Sea Research II*, 46, 2735–
799 2760, [https://doi.org/10.1016/S0967-0645\(99\)00082-X](https://doi.org/10.1016/S0967-0645(99)00082-X).

800

801

Figure S1. The regional trends in ratio of concentration depth gradients of $\Delta \text{NO}_3 / \Delta \text{PO}_4$ (top), $\Delta \text{DIC} / \Delta \text{PO}_4$ (middle) and $\Delta \text{DIC} / \Delta \text{NO}_3$ (bottom) in the upper 300m using dissolved nutrient data from the reoccupation of individual GOSHIP-P16 cruises (along $\sim 150^\circ \text{W}$) between 1991 and 2015. Black line is average of all cruises.

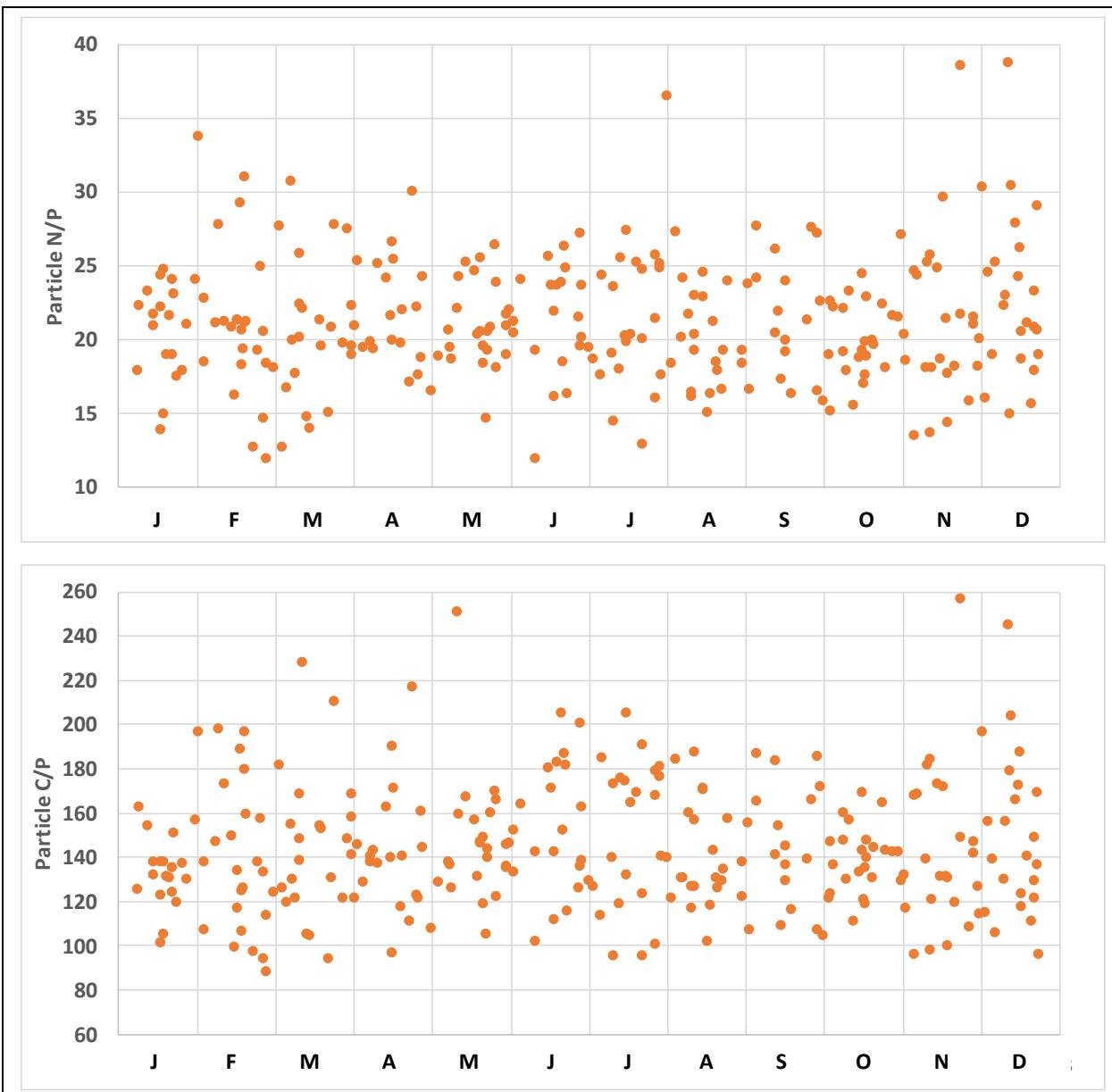


Figure S2. The N/P (top) and C/P (bottom) measured on suspended particulate organic matter collected in the upper at 100m at Stn ALOHA (23°N 153°W) between 1992 and 2018 and sorted by month. Particle elemental data for Stn. ALOHA was obtained via the Hawaii Ocean Time-series HOT-DOGS application.