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Abstract

This paper reviews available tuning guidelines for model predictive control (MPC), from
theoretical and practical perspectives. Its primary focus is on the guidelines introduced since the
publication of our previous review of MPC tuning guidelines in this same journal in 2010. Since
then, new guidelines based on approaches such as pole placement and multi-objective optimization
have been proposed, and more auto-tuning methods have been introduced. This review covers
different implementations of MPC such as dynamic matrix control, generalized predictive control,
and state-space-model predictive control that requires Kalman filter tuning. The closed-loop
performances of a distillation column and the Shell fractionator under model-predictive controllers

tuned using four different tuning guidelines are compared through numerical simulations.



1. Introduction

Model predictive control (MPC) is now a mature control technology '. Since the pioneering
work of Zadeh et al. 2, Propoi °, and Rafal and Stevens *, it has evolved significantly and has been

implemented in many industries >"!2.

MPC is particularly suitable for complex multivariable
systems with constraints !. Currently-active research areas in MPC include economic MPC '¥13

and stochastic MPC 618,

The formulation and implementation of MPC have evolved considerably since its
introduction. They include linear quadratic Gaussian (LQG) '°, dynamic matrix control (DMC)
20 model algorithmic control (MAC) 2!, state-space MPC, and nonlinear MPC. As MPC evolved,
more types of constraints were added to the formulation, more complex performance indices were
considered, and set-point tracking was replaced with reference trajectory tracking. The latter has
allowed for adjusting the speed and shape of the closed-loop output response. With the addition of
these appealing features, MPC became more flexible, but its complexity and number of tunable
parameters increased. The tunable parameters now include prediction horizons, control horizons,
weights on the magnitudes of the controlled variables, weights on the rates of change of
manipulated variables, weights on the magnitudes of manipulated variables, reference trajectory
parameters, soft constraint weights, and the model horizon (when the controller is based on a finite

impulse- or step-response model).

The high number of tunable parameters has motivated many studies on MPC tuning.
Existing MPC tuning methods have different forms. Some are in the form of equations describing

the tuning parameters in terms of process dynamics parameters such as dead times, time constants,
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and the sampling period. For example, Shridhar and Cooper’s guideline “ is based on the

assumption that process dynamics can be represented by a first-order plus dead time model. There
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are some in the form of optimization problems whose solutions are MPC tuning parameter values.
There are also heuristic tuning methods. An MPC implementation first requires the development
or identification of a suitable and accurate process model. The MPC formulation is intuitive and
easy to understand. Some control practitioners 2* believe that MPC based on an accurate process
model is easy to tune; an accurate model simplifies the task of finding a balanced trade-off between

controller robustness and performance.

There have been several review papers on MPC tuning. Yamuna Rani and Unbehauen
surveyed tuning methods that had been proposed for DMC and generalized predictive controller
(GPC) during 1984-1995. Garriga and Soroush !° provided a comprehensive review of theoretical
and heuristic tuning strategies for different MPC implementations such as DMC, GPC, state space,
and max-plus-linear. Their review covered publications until 2009. This paper reviews MPC
tuning guidelines that have been introduced since then. These tuning guidelines are for MPC
implementations such as DMC, GPC, and state space. Two case studies, one on a distillation
column and the other on the Shell fractionator, are presented to compare the closed-loop

performances obtained by using four of the tuning guidelines reviewed in this article.

2. Mathematical Preliminaries

To define the tunable parameters precisely and for completeness, a mathematical
formulation of MPC is first needed. Here, for the ease of instruction, we consider a linear, discrete-

time, time-invariant state-space process model in the form:

x(k +1) = Ax(k) + Bu(k) + Gw(k)}

y(k) = Cx(k) +v(k) (M



T . ) T,
where x = [xl,---,xnx] is the vector of state variables, y = [yl,---,yny] is the vector of

controlled variables, and u = [ul,---,unu]Tis the vector of manipulated variables. Here, k
represents the sampling time instant. A € R™*"x B € R™*™ € € R™*™x and G € R™*™w are
all constant matrices. w € R™*1 is the vector of state disturbance variables, and v € R™>1 is the
vector of output disturbance variables. Each component of w and v is assumed to be a white noise
sequence (Gaussian sequence with zero mean). The covariance matrices of w and v are
represented by @Q,, and @, respectively. Estimates of the state variables are obtained using a

Kalman filter:

x(k + 1|k) = Ax(k|lk — 1) + Bu(k) + AL(k)(y(k) — Cx(klk — 1)) (2)
where the Kalman gain is given by:
L(k) = F(klk — 1)CT[CF(k|k — 1)CT + Q,]* (3)

Here, F(k|k — 1) denotes the covariance matrix of the estimation error, e(k) = x(k) —

X(k|k — 1). F(k|k — 1) is obtained by solving the Ricatti equation:
F(k + 1]k) = AF(k|k — DA + 6Q,,GT — AL(k)CF(k|k — 1)AT 4)

Consider a general moving-horizon optimization problem that minimizes the following
cost function:

Pj=Po +1

. ny [
min . ; N\k+1+P, —1)—
ul(k)’.“’ul(k+M1_1)’“.‘unu(k)‘.“'unu(k"'Mnu—l) {21=1 Zl=1 4ji yr} ( 0j )

~ 2 ny M; 2 ny M
9 (k+1+ P, = 1)| + 2 B0 6wk + 1= D] + T T2 rigfug Gk + 1) -

w(k +1— 1)]2} (5)



subject to:
x(k + 1) = Ax(k) + Bu(k) + Gw(k)
y(k) = Cx(k) + v(k)
wk+D)=uk+1-1), i=1,..,n, =M,
Du(k)<d, k=01,

Hx(k)<h, k=01,

Yr; Tepresents the reference trajectory of the controlled variable y;, defined by:

yr, () = (k)

o, (ke + 1) = 9,0k + 1)
e,k +y;—1) =;(k +v; - 1)
ik +v;) = (1= B))ysp, (k) + B;3(k +v; — 1)

Ve, (kv + 1) = (1= B;)ysp, () + B; 3 (k +v;)

Vr;(k +P) = (1= B))ysp, (k) + B;9; (ke + P = 1)

(6)
(7
®)
)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

where f; is the tuning parameter of the reference trajectory Vr (0 < Bj < 1) and sets the speed of

the y; response, and y; is the relative degree (order) of the controlled variable y; with respect to

u.

The performance index of (5) in terms of:

Y (k) Y, (k) U, (k)
Yy =| ¢ |, k)= ¢ |, Uk)=]|
Y., (k) Un, (k)

ny



where

Yr; (k + P"J’) Yrj (k +P°j)
Y](k) = : , J=1 yNy; Yrj(k) = : , J=1 y Ny
vr;(k + P;) vr;(k + P;)
Uj(k)
Uj(k)= : , J=1,-,ny
uj(k + M; — 1)

takes the form:

min ([¥, (k) = Y (O17QLY, (&) = Y (0] + UG U(K)

+[U(k) — Uk — DI"R[U (k) — Uk — D]}

where
Q = diag {qll’ B ql(Pl—P01+1)' T lnyn qny(Pny_POny+1)}’
R = diag {7‘11:"';T1(M1—1)» :rnul""'rnu(Mnu—l)}9
A= diag {511."‘,51(1\/11—1)' '6nu1""'6nu(Mnu—1)}‘
The following notations will be used in the next sections: P = [P; - Pny]T, P, =

[Po, - Py, 1", and M = [M; - My, ]".

3. Tuning Guidelines

3.1. Horizons

The prediction horizons, control horizons, and model horizon (in the case that the model is
a finite step- or impulse-response model) are important tuning parameters in MPC. This section

reviews tuning guidelines for these horizons.



3.1.1. Prediction Horizons

A pair of lower and upper prediction-horizon limits, F, and P;, specify the range of the time
window into the future (in terms of number of sampling periods) over which the response of a
controlled variable y; is predicted by a plant model and is optimized. [k + F,,, k + P;] is the time
window, where k represents the present time instant. In general, the prediction horizons should be
adequately large so that controlled output predictions can represent a significant portion of the
dynamics of the process under consideration; adequately large values should be selected for Py,

e Pny to ensure closed-loop stability and robustness. However, as P;, -, Pny increase, the

computational cost of solving the MPC optimization problem increases.

If the plant under consideration is delay-free, typically F,, =1, -, F, L= 1. For plants

n

with time delays, the following guideline is proposed:

m_in(Zr.l;‘ 61 min 27.1;‘ On, j
P, =1 +#, e POny =1+ M

ts ts

The upper limits of the prediction horizons, Py, -+, Pny, should be large enough. In general,
the robustness and stability of MPC increase with increased Py, ---, Pny. Beyond certain values,
further increases in Py, -, P, do not alter the control performance significantly, although they

intensify the computational burden of the controller and may deteriorate the robustness of the
controller’>. Many tuning guidelines have been proposed for setting the upper limits of the

prediction horizons, Py, -+, P, . The paragraphs in the rest of this section review guidelines
proposed for tuning Py, -+, P, in MPC implementations such as GPC, DMC, and the state-space.

Bagheri et al. ?® assumed a first-order plus dead time (FOPDT) model for unconstrained single-

input single-output (SISO) systems. Using a pole-placement approach, they proposed setting the

7



prediction horizon upper limit (prediction horizon) according to P; > tg + 1, where 0 is the SISO

plant dead time and t, is the sampling period. In other words, the prediction horizon upper limit
(prediction horizon) should be greater than or equal to the total time delay of the discrete-time
process model, where the total time delay is the number of sampling periods of the process

deadtime plus one. The one sampling period time delay is generated by the time discretization of

a dynamical model. Note that when P; < tg+ 1, the present value of the manipulated variable

does not affect the controlled variable model-predictions over the prediction window. The same
authors 27 extended their previous study to unconstrained multi-input multi-output (MIMO)
systems by using the same pole placement approach. They assumed that the system is square, and

all elements of its transfer function matrix are FOPDT transfer functions. This implies setting:

max(ZE‘ 91]-) max(Z’-Z‘ On j)
P1 > 1_{_#’...’13%] > 1+#_

ts ts

They set all control horizons to one and used the same SISO guideline for the prediction
horizons to develop guidelines for tuning the matrices Q and R. Gholaminejad et al. *® developed
an approach for adaptive MPC tuning for time-variant plants. The approach involves online
identification of a FOPDT model and then calculation of the prediction horizons using the
identified model parameter values and an existing tuning guideline that requires the parameter

values.

For example, the SISO guide of Maurath et al. * can be extended to MIMO plants; choose
the prediction horizon of a controlled variable such that the horizon is greater than or equal to the
rise time for 80 percent of the steady-state of the controlled variable and is less than or equal to

the rise time for 90 percent of the steady-state of the controlled variable. Ebrahimi et al. *°



recommended using a slightly larger lower limit for the prediction horizon in SISO plants; that is,

T, < P;. For SISO plants, Neshasteriz et al. ' suggested setting the prediction horizon, P;,

according to tg +1<P < tg + M;; the lower bound is exactly that of Bagheri et al. *6. Their

guideline states that the upper limit of the prediction window should be less than or equal to the
number of sampling periods of the plant deadtime plus the control horizon. In this case, the number
of sampling periods over which the plant output response in projected into the future is less than

or equal to the control horizon. Here, this tuning guide like is extended to MIMO systems:

: Z?g 0, ; c an 01

ts ts

Ny . ny . ny
max (Zj=1 eny]) max (Zj=1 eny])

+1<P < + max ZM]-
ts Y ts J .

Tran et al. ** studied GPC tuning for MIMO systems and suggested setting P; > 3(n+1),
j=1, -, ny, where n is the degree of the characteristic polynomial (CP) of the plant. These

prediction horizons are sufficiently large to account for process dynamics. Yamashita et al. 3 set

Py == Pny = 0.8T,/t,, where Ty is the largest settling time of the controlled variables in open

loop. Shehu et al. ** and Shah et al. *>3° used a different method and suggested setting the
prediction horizon P; = N, — N; + 1, where N;= 8 /t,, and N, is the upper prediction bound that
a user sets according to the application. Sha'aban et al. 3’ proposed setting the prediction horizon
P, = (0 +51,)/ts, where T, is the process time constant, while Neshasteriz et al. *® suggested
setting P, = (6/ts + M;) and P,; = (6/ts + 1). In the articles ***2, the tuning guidelines
proposed by Shridhar and Cooper ** was used to set the prediction horizon. However, in Ref** the

tuning guideline proposed by Clarke and Mohtadi *° was used.



L 46

Janior et a and Taeib et al. *’ found optimal values of Py, -+, Pny and other tuning

parameters by minimizing a time-weighted multi-objective performance index subject to the plant
model with its worst-case parameter values. In this case, at each time instant, MPC should solve
two optimization problems: an internal problem, the solution of which is MPC tunable parameter
values; and an external problem, the solution of which is the current values of the manipulated

1. *® also suggested an optimization approach for tuning predication horizons

variables. Turki et a
in MPC of linear controllable MIMO plants with active constrains. Their optimization problem
has three performance indices (a stability degree index, an error index, and a rapidity index). The
prediction-horizon tuning guidelines that were reviewed in this section are summarized in Tables

1 and 2, and those reviewed in Ref. !° are presented in Tables S1 and S2 of Supplementary

Information (SI).

Table 1. Tuning guidelines for the lower limit of the prediction horizon.

Ref. Py, Method
31 rnjn 91] GPC
L +1
ts
38 min 6; j GPC
L +1
ts
46 via optimization State-space
39-40.39,40 2 DMC
4 Same as in Ref.#*- GPC
48,51 52 0 State-space
4 0 DMC

Table 2. Tuning guidelines for the upper prediction horizons.

Ref. P; Method
267,53 max 6; ; DMC 26, GPC 77, State-
J +1 space %
ts
31 max 91] GPC
! +M;
ts
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32

3(ng+1)

GPC

33

0.87,

State-space

54

0.8T, < P, < 0.9T,

State-space

J

g P, >T, GPC
3536 Ay — A +1 GPC
38 max 91] +Ml GPC

46, 48

via optimization

State-space

3
2na—1<Pi<%

S

39-42 01] + STC” DMC
max | ———— +1
J s
3536 large value GPC
4 GPC

51-52, 57

Very large value

State-space

58

M;

State-space

47

via optimization

ts

3 Ql] + STCij DMC
max t—
J s
e 011 + 7, SISO DMC

3.1.2. Control Horizons

The control horizon M; is the number of values of the manipulated variable u; that a model
predictive controller calculates at each time instant; at each time instant a model predictive
controller calculates u;(k), -+, uj(k +M;—1), as it sets u;(k+j)=u(k+j—-1), j=
M;, M; + 1, ---. As the control horizons increase, the aggressiveness, the ability to stabilize unstable
plants, and computational cost (dimension of the optimization problem that has to be solved each

time instant) of the controller increase, but the robustness of the control system decrease °°. This

subsection reviews the tuning guidelines proposed for control horizons.

Bagheri et al. ** recommended setting M; < 2,i = 1, -+-, n,, as they did not observe any

appreciable improvement in closed-loop performance beyond these values, and small My, -+, My,
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values decreases the dimension of the optimization problem that MPC should solve each time

£.27.3436 quggested setting M; < 2, i =1, -,

instant. Using the same justifications, studies in Re
n,, but those in Ref. 3 recommended setting M; < 3, i = 1, -, n,. For a SISO plant, Sha’ban et
al. ¥ achieved satisfactory performance and robustness by setting M = 3. Salem et al. ®' set M =
3 and achieved a desired closed-loop output response (with a short T, a short rise time (7}.), a
small tracking error, and a low overshoot). Yamashita et al. **°* recommended 3 < M; <5,, i =
1, ---, n,, while for a SISO plant Ebrahimi et al. *° suggested setting M = P — d, where d is the
the dead time in a FOPDT process model of the plant. For SISO plants, Ref. *%:51:33:62 gyggested
setting M = P, while Ref. *** recommended using the guideline of Shridhar et al. **, and Ref.**
used the guideline of Clarke and Mohtadi **. The control-horizon tuning guidelines that were

reviewed in this section are summarized in Table 3, and those reviewed in Ref. !? are presented in

Table S3 of the SI.

Table 3. Tuning guidelines for the control horizon.

Ref. M; Method
26-21, 53 <2 DMC 26, GPC ¥, State-space *
32 <3 GPC
3334 3<M; <7 State-space
30 P; — maxd,;; GPC
530 . GPC
96,58 via optimization State-space
37 3 DMC
3942 Same as in Ref.# DMC
5556 P, GPC
44 49-50 GPC
48,5152 P State-space
7 large value State-space
2 2 State-space
4 via optimization
» 2 SISO DMC

12




3.1.3. Model Horizon

A finite impulse- or step-response model is typically used in DMC. These models have a horizon,
called the model horizon, that should be set. The model horizon affects the condition number of the matrix
A; as the model horizon increases, the condition number of the matrix A increases .

According to Seborg et al. ®°, the model horizon, N, should be typically in the range of
30 — 120. A general rule is to set N = T, /t,, which ensures that the model can describe the plant
output response entirely from the time a plant input change is made to the time when the output
response reaches steady-state conditions®®. Bagheri et al. *° suggested setting prediction and

control horizons according to the guidelines of Shridhar and Cooper 22, but proposed setting N =

2 (%) + tg + 1, which yields a model horizon greater than their suggested prediction horizon.
N S

31,46

Klopot et al.% suggested setting N = . The model-horizon tuning guidelines reviewed in

N

Ref. '? are listed in Table S4 of the SI.

3.2. Weight Matrices (Q, R, and A)

The weight matrix Q includes penalties on the output errors, while R and A include
penalties on the rates of input changes and the input magnitudes, respectively, as defined in Section
2.2. The elements of the weighting matrix Q penalize the deviation of the controlled outputs from
their reference trajectories. Their relative values represent the relative importance of the controlled
outputs. They are reflective of the relative costs of the controlled variables deviating from their
reference trajectories and therefore their set points. The elements of R and A strongly affect the
magnitudes and the rates of change of the controller outputs (manipulated variables). Their relative

values of the elements of R are indicative of the relative costs of the manipulated inputs.

13



There are numerous different guidelines for setting the penalty matrices R, Q, and A. Here,
analytical and optimization-based tuning guidelines for R and Q are discussed. It is assumed that
A =0, unless a guideline is mentioned. Assuming FOPDT plant models and using the pole
placement concept, Bagheri et al. 2% and Bagheri and Khaki-Sedigh®® developed closed-form
equations for calculating the weight matrices Q and R for SISO DMC. They tested their tuning
guidelines on plants with FOPDT models and found that the guidelines provide fast tracking and
good performance (low overshoot and short settling time). Bagheri and Khaki-Sedigh™? tested their
proposed tuning guidelines on an unstable FOPDT plant, whose output showed no overshoot and
a short settling time, and on a pH neutralization process, whose output showed a small overshoot
and a short settling time. However, the guidelines did not provide satisfactory closed-loop

performance when used for time-variant plants and for plants with very poor models.

L 28 L 26

Gholaminejad et a continued the work of Bagheri ef a and developed new closed-form
equations for setting Q and R . When applied to the same pH neutralization process, the tuning
guidelines proposed in Ref.?® provided a better tracking performance than those presented in
Ref.?. Bagheri et al. *’ extended the work presented in Ref.?¢ to MIMO systems represented by
state-space models, and applied the resulting guidelines to the same pH neutralization process and
the Wood and Berry process . Using a controller-matching approach for a GPC and a linear time-
invariant controller, Tran et al. ** developed closed-form equations for R and Q. They showed the
effectiveness of their tuning guidelines by applying the guidelines to a binary distillation column.
Belda et al. % develop relationships between Q and its covariance and between R and its

covariance. The application of the proposed approach to a multidimensional robotic system led to

a satisfactory closed-loop response.
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Many tuning guidelines suggest setting Q = [ and R = pl, where p is a scalar also known
as a move suppression factor. While these settings simplify the task of MPC tuning, they take
away some flexibility of MPC and limit the degree of control quality that MPC can provide. This
approach, finding a suitable value of p instead of finding weight matrices, simplifies the tuning
task. With these settings, Bagheri et al. ®® applied DMC to SISO systems with an FOPDT model
and analytically found a range for p that provides robustness to model uncertainties. They applied
their tuning guidelines to FOPDT-MPC of a laboratory-scale level process and to a pressure
control system, and observed desired tracking performances in both cases. Performing sensitivity
analyses, Bagheri et al. *° developed the following closed-form equation for p in terms of the
process dynamic parameters (i.e., time constant and dead time) for SISO DMC based on a FOPDT

model:
0.15
p=a (g + 0.94) d%9K? a7

where K is the steady state gain, and a and o are set according to: (i) (a,¢) = (0.11, 0.1) when the
output error is more important; (ii) (a, ) = (6.67,10) when the control effort is more important;
and (iii) (a,0) = (0.84, 1) when both control effort and output error are important. Bagheri and
Khaki-Sedigh*’ recommended setting (a, o) = (0.84,1), which provided a smoother response and
better setpoint tracking than the guidelines of Shridhar and Cooper * when applied to the pH

neutralization process. Neshasteriz et al. *

applied the same concept to GPC MPC based on a
SOPDT model. They conducted optimization and simulations, leading to the following equations

for setting p:

(p1 P2)™

= — bs
P (p1 + p2)P2

+ b3 (p1p2)Pio — o
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b, = —0.064, b, =08,  b;=20374, b, =20510, bs=0.0746
p = (w)’(w + &)P2 + by (w)P4c — aPs (18)
b, = —0.0342, b, = —0.0460, b; = 11365, b, = 0.0242,  bs = 0.0021

where ¢ = 1 in this study, and the parameters p;, p,, , and € represent the two poles, natural
frequency, and damping ratio of a second-order-plus-deadtime (SOPDT) plant. This tuning
guideline outperformed the guidelines of Clark and Mohtadi *° in terms of the integral of squared
error (ISE) and overshoot. This approach can be used in online tuning. Using the same approach,

Ebrahimi et al. *° developed the following closed form equation for the scalar p:

d 19
p = 0.317 112650422 oxp (—0.113;) (19)

0.202
+ 0.852 %92 exp(—208.06455°71) + 0.029 r1->51 (;)

where T is a user-set parameter that reflects the importance of the control effort, d is the plant dead

time in terms of number of sampling periods, and f (0 < 8 < 1) is the reference trajectory

parameter. The effectiveness of this approach was examined for both SISO and MIMO systems

with FOPDT models; it yielded a better performance (with less output ISE, no overshoot, and

faster response) compared to the guidelines of Sridhar and Cooper %,

Huusom et al. >

proposed an offset-free state-space SISO MPC based on a autoregressive
with exogenous terms (ARX) model. They suggested setting weight matrices Q = 0.5I, R = pl,
and A= 0, where p was obtained based on input and output variances of the closed-loop system.

Their approach involves calculating the variances at different values of p, from minimum variance

control to no control, and choosing the value of p corresponding to the inflection point of a log-

16



log plot of the variances. This p value was found to give a good balance between input and output

variance.

For state-space MPC, Yamashita ef al. * recommended setting Q = A= I and R = pl, and
using a very small value for p. They set p = 1072 in three different examples (a SISO system with
SOPDT model, where the tuning approach resulted in a shorter settling time; a Shell heavy oil
fractionator, where the controller achieved the desired setpoint tracking; and a crude distillation
unit, in which the tuning approach yielded a minimum control effort). Kokate et al. *! suggested
setting p to a small value such as 0.1 in DMC, which outperformed a well-tuned proportional—
integral—derivative (PID) controller in terms of overshoot, response smoothness, and robustness.

1. ®” suggested setting Q = CTC and R =

For a state-space implementation of MPC, Burgos ef a
pl. Since their feedback loop was disconnected with p = 0, they suggested using a small value

for p. This approach was applied to a quadrotor reference tracking problem and yielded satisfactory

setpoint tracking. Conversely, Tsoeu et al. >’ recommended setting p to a value close to 1.

Optimization-based tuning methods have been developed for different control methods

I. *® recommended setting Q = CTC and R =

including MPC. Based on optimization, Turki et a
pl . When applied to SISO and MIMO systems with FOPDT models, this tuning strategy was
found to yield better performance in terms of response smoothness and speed, compared to those
of Ebrahimi and Bagheri ® and Iglesias et al.®® Vallerio et al. ® employed a multi-objective
optimization approach to tune Q@ and R by minimizing the deviation of the measured input and
output from their references. This approach can also be used to tune  and A. Yamashita et al.
also used a multi-objective optimization approach to obtain the @, R, and A values that minimize

the Lo-norm of the errors (i.e., the setpoint error and the reference error for input) subject to the

upper and lower bounds on each tuning parameter (q;j, 77, and §;; elements). This approach was

17



applied to MPC of a crude distillation unit, leading to a lower controller computational cost and

less controller effort. Shah et al. *°

studied MPC tuning for SISO systems, via closed-loop pole
placement when constraints were not active. The relationships between the tuning parameters and
the desired closed-loop poles and zeros were derived and then an optimization problem that
minimized the difference between the desired closed-loop CP and process closed-loop CP was
solved to obtain optimal values of Q and R. This approach was applied to GPC of a reactor, leading
to a desired performance in terms of a rise time and overshoot. The same authors ¢ then presented
a systematic approach for determining MIMO GPC tuning parameters. This approach is based on
the description of a desired behavior of the closed-loop system. The robustness of the closed loop
system to model mismatch was studied using robust linear control theory. After developing desired
closed-loop transfer functions, the weight matrices Q and R were obtained in two steps. First, the
gain of the desired transfer function was obtained by minimizing the error between the true transfer
function and the desired transfer function. Second, the Q@ and R were obtained by solving an
optimization problem that also minimized the error between the true transfer function and the
desired transfer function. This approach was tested on a binary distillation column, and the
resulting control quality were satisfactory (less overshoot and a shorter rise time). Di Cairano et
al. "' developed two methods for selecting the MPC weight matrices. These methods are applicable
to MIMO plants and are based on matching an unconstrained linear model-predictive controller to
a desired unconstrained linear time-invariant (LTI) state feedback controller. The matching
problems were formulated as constrained optimization problems, the solutions of which are the

optimal values of the weight matrices, Q and R. Junior et al. *°

introduced an optimization-based
method to tune the parameters Q, R, P, and M of a constrained MPC with model uncertainty. Their

method considered a worst-case control scenario in terms of the resiliency index’? and the

18



condition number in the model uncertainty description. The user can choose desired performance
functions. The resulting mixed-integer constrained nonlinear multi-objective optimization
problem was solved using a particle swarm optimization technique. The ability of this tuning
method to handle plant-model mismatch was evaluated by testing the method on the Shell heavy
oil fractionator benchmark problem *; the controller provided a closed-loop performance close to

the nominal one even in the presence of model uncertainty. Yamashita et al. >

proposed two multi-
objective optimization-based tuning methods for the weight matrices Q and R in the state-space
formulation of MPC. One of the methods involve input-output pairing, normalizing manipulated
inputs and controlled outputs, and solving an optimization problem that minimizes the sum of the
squared errors between the output closed-loop response and a reference trajectory. The other
method considers the same performance index but finds feasible Q@ and R values that provide the
response closest to a desired feasible response. When applied to the Shell heavy oil fractionator
benchmark problem 7, the second method provided a closed-loop response similar to the one
reported in Ref. ®. Abrashov et al. " sought a robust multivariable generalized-predictive
controller, where a robust controller was defined as one having the same nominal performance for
a wide range of plant-model parameter values. Their optimization approach calculates the values
of the weight matrices Q and R that minimize the variance of a gain factor subject to constraints
on the deviation of the closed-loop plant-output response from a desired (reference) one. This
approach was applied to a steering-wheel position control problem, and a satisfactory performance
(maximum overshoot ratio of 15%) was achieved. Santos et al. ”° presented a method to tune MPC
for non-square systems. Their controller formulation included soft constraints on the controlled
variables to maintain the variables within their desired ranges. Their controller tuning approach

involved three steps: (i) the selection of a desired closed-loop response; (i1) the calculation of
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optimal scales for the manipulated variables; and (iii) the calculation of the weight matrices Q and
R via solving an optimization problem that minimizes both the deviation of the simulated closed-
loop plant output response from a desired reference response and soft constraint slack variables.
This approach can handle disturbances and model-plant mismatch. It provided satisfactory control
performance when it was tested on the Shell benchmark problem. Romero et al. ** developed an
MPC approach for tuning Q and R for the GPC formulation; they calculated optimal values of Q
and R by solving an optimization problem that minimized the gain margin subject to high-
frequency noise rejection, satisfactory output-disturbance rejection, robustness to variations in the
gain of the plant, and a limit on the phase margin. Olesen et al. ' 2 proposed an optimization-
based tuning approach for offset-free MPC based on a MIMO ARX model. By modifying the

stochastic part of the ARX model, an additional tuning parameter, @;, was introduced for each

5152 calculated the optimal values of the parameters

controlled output. Olesen et al.
qij (i =1,,ny; j=1,-+,P;— P, + 1), rij (=1, =, ngj=1, -, M), and aq; (] =
1, ,ny) by solving an optimization problem that minimized the integral of the absolute error
(IAE) in the presence of the setpoint and disturbance changes, subject to a; € [0,1] (j =
1,-+,n,), and q;(i=1,--,ny;j=1,,P—P +1)andr; (i=1, -, ngj=1, -
M;) being within their the lower and upper bounds. This approach was applied to the Wood—Berry
distillation column % and a cement mill process, and was shown to achieve better setpoint tracking

and disturbance rejection compared with nominal model-predictive controllers. Suzuki et al. 7

studied tuning of the weight matrices Q and R for SISO and MIMO FOPDT model-based MPC.
They obtained optimal values of the weight matrices by solving an optimization problem that
minimized the overshoot, steady-state error, settling time, and rise time subject to upper and lower

bounds on the elements of the penalty matrices. Francisco et al. > proposed a method to tune MPC
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by setting @ = I, while R and M were optimally obtained by solving an optimization problem that
minimizes the control effort and the disturbance effect subject to f < 1, where f was a function
of the co-norm of user-set weights and sensitivity functions between the load disturbance and the
output. This tuning approach was tested on the Benchmark Simulation Model no. 1 (BSM1) %3; the
results were satisfactory in terms of control effort and disturbance rejection. The weight-matrix
tuning guidelines that were reviewed in this section are summarized in Tables 4, 5 and 6, and

those reviewed in Ref. ! are presented in Tables S5 and S6 of the SI.

Table 4. Tuning guidelines for the weights on the controlled variable errors (PP = pole
placement; SA: sensitivity analysis).

Ref. Q Method
2627, 53 via PP DMC ¢, GPC 77,
State-space 33
30-31, 38, 55-56 Ji GPC
32,35-36, 44,74 via optimization GPC
33,57-58 1 State-space
46,51-52, 54,70, 77-78 via optimization State-space
30,79 1
48,67 cTc State-space
39-42, 66 Ji DMC

47,6971, 7576, 80 via optimization

il via SA
8 Ipg,0<p, <1 State-space
2 via PP State-space
¢ F(¢")

Cy: output covariance
» I SISO DMC

Table S. Tuning guidelines for the weights on the rates of change of inputs (PP = pole
placement; SA: sensitivity analysis).

Ref. R Method
2627.53 via PP DMC %, GPC 7/,
State-space 33

31 via PP GPC
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33,67

Ip, p is very small

State-space

46, 51-52, 54, 58,70, 77-78

via optimization

State-space

30

Ip

d
p = 0.317 I'126p0422 axp (—0.113 T—)
(o}

+ 0.852 %92 exp(—208.06455°71)

0.202

d
+0.029 11551 (—)
TC

GPC

32,35-36,44,74

via optimization

GPC

38

Ip

_ (p1 P)™
(p1 + p2)P2

b, = —0.064, b, = 0.8, bs = 2.0374, b,

= 2.0510, bs = 0.0746

p = (w)’(w + £)P2 + by X (w)?* X 0 — aPs
b, = —0.0342,b, = —0.0460, b; = 1.1365,
b, = 0.0242, bs = 0.0021

+ by X ()" X 0 — a5

GPC

30,79

0

39-40

Ip
0
p=al=+ 0.94)%15 % 09 x K2
C

DMC

69,71, 75-76 47, 80

via optimization

55

Ip
p achieves minimum input-output variance

GPC

56

Ip
p =0.01 for unconstrained MPC,
p =0.1 for constrained MPC

GPC

81

via SA

66

Ip, ®;, <p < Dy

DMC

82

Ip,, 0<p =<1

State-space

57

Ip, pclosetol

State-space

4 Ip, p=0.1 DMC
48 Ip, p VO State-space
3 via PP State-space

65

R =F(C;Y), C, = inputcovariance

42 via optimization DMC
9 Al SISO DMC
0.01467
A=TPk?, —— <k
011 + 7,

Table 6. Tuning guidelines for the weights on the magnitudes of inputs.

Ref. A Method
3 1 State-space
30,79 0
80 via optimization
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59 0 Stable Systems
with a FOPDT
Model

3.3 Reference Trajectory

The value of a reference trajectory parameter §; directly affects the speed of the response

of the controlled output y;. As defined by Eqs.(11)-(16), the values of 4, -+, ﬁny should be within

[0, 1]. As B — 1, the reference trajectory of y; and thus the closed-loop response of y; becomes

more sluggish .

Yamashita et al. 3* extended an existing method that considers a reference trajectory for
output tracking, to the case of zone control and input target. In the output zone control strategy,
instead of forcing a controlled output to be at its setpoint value, MPC forces the controlled output
to be within an output zone. Yamashita et al. > assumed that a real-time optimizer calculates and
supplies feasible setpoint targets to MPC. With this assumption, there will not be any conflicting

setpoint targets or output zone violations. Yamashita et al. 3 suggested setting each p; such that

t . . .
= |, where 7. is the apparent time constant of y; and Q; is a user-set performance
Tc Q] CJ J ]

J

b =on(-

factor. As (; increases, the speed of the response of y; decreases. The reference-trajectory tuning

guidelines that were reviewed in this section are summarized in Table 7.

Table 7. Tuning guidelines for the reference trajectory parameter.

33 tg
exp (‘ 7., 0 >
3079 F (I{RT :I{DR)
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4. Kalman Filter Gain and Covariance Matrices

The Kalman filter (KF) have been used widely for state estimation in the presence of
disturbances and model uncertainty . This section reviews methods that have been developed for
setting Kalman filter covariance matrices @Q,, and R,, since the publication of the review article by

Garriga and Soroush ' in 2009.

In the past decade, within the framework of MPC several approaches have been introduced
to estimate the covariance matrices Q,, and R,. These include covariance matching ** and
maximum likelihood #-%¢. Hredzak et al. 8" implemented state-space MPC on a hybrid battery-
ultracapacitor power source in real time. They proposed initially setting Q,, = I and R, =1. The
measurement covariance R,, was then set according to @I, where ¢ is a scalar. A small value was
recommended for ¢, since the larger is the ¢ value, the weaker is the measurement-based updating
state estimation. The value of ¢ was found through empirical tuning. As for @Q,,, which is a

diagonal matrix with q,,; elements, a good value for each element was found by observing the
performance of the state estimator (KF) both in simulations and in real time. A large value for g, ;
was recommended, since the larger gy, ; is, the stronger is the measurement-based updating state

estimation. Once R,, and @Q,, were found, the KF gain matrix was calculated as explained in Section
2. The controller was able to maintain the battery current and state of charge, and the ultracapacitor

current and voltage within their limits®’.

5. Self- (Auto-) Tuning Methods
Self-tuning has an apparent benefit; that is, a control engineer is no longer required to be

highly knowledgeable about the process system to tune a controller. Self-tuning methods update
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tuning parameters using an optimization method. Thus, controllers are optimally tuned. However,

this requires solving an additional complex optimization problem online at each time instant.

Taeib et al. ¥

calculated the tuning parameters (P, M, R, and Q) via the minimization of a
weighted sum of the squared output error and the squared control effort, subject to both Q and R
being positive and the horizons being positive integers. This approach was tested on a nonlinear
chemical reactor. This study showed that the tuning method provides a faster and less oscillatory
closed-loop controlled output response. He et al. ** 7 proposed a two degrees of freedom
automated tuning approach for MPC of SISO systems. They added two filters to the reference
trajectory — a reference tracking filter with a tuning parameter, Az, and a disturbance rejection
filter with a tuning parameter, Apz. The weight matrices were then set according to: Q = I and
R = A = 0. An optimization method was applied to minimize the settling time to obtain the
Arr and Apg values, subject to constraints on the overshoot and the rates of change of the
controlled variables. This approach was applied to an industrial paper-making process and yielded
a very smooth response. Waschl ez al. '’ also proposed a self-tuning approach for tuning Q and R
for state-space MPC. In their approach, Q and R are optimally obtained by solving an optimization
problem that minimized the tracking error and the applied actuator energy is subject to Q@ > 0 and
R > 0. This approach requires a predefined tracking performance and control action scenarios. It
was tested on an integral gas engine, where the compressor was subjected to a load change and a
setpoint change. The performance of model-predictive controller tuned using this approach was
then compared to that of a model-predictive controller tuned offline by an expert control engineer.
MPC tuned using this approach shows optimal performance in MIMO systems. Waschl et al. 78
extended this work to obtain offset-free state-space MPC. Their MPC formulation included a well-

tuned proportional-integral (PI) controller as a reference. This approach yielded an impressive
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increase in the efficiency and performance of MPC when applied to the Wood and Berry

distillation column example ®*.

1. 8

Tran et a used the settings Q = I and R = p I, where p was obtained by solving an

optimization problem that minimized the variance of the output error; this yielded excellent

. * obtained an

tracking behavior when applied to a binary distillation column. Jeronymo et a
optimal p value for a SISO plant with a FOPDT model-based DMC by solving two optimization
problems. The first problem minimized the imaginary part of the zeros to null and minimized the
absolute value of the poles to achieve the shortest T;. The optimal p value resulting from the first
problem was applied as an initial solution to the second problem, which minimized a weighted
sum of the setpoint tracking error and control effort to obtain an optimal value of p. When applied

to a nonlinear control valve, this approach showed a better setpoint tracking performance than the

tuning guidelines of Shridhar and Cooper %,

Moumouh et al.* proposed an optimization-based approach to tune parameters of MPC for
constrained second-order SISO processes. Their approach uses particle-swarm optimization (PSO)
and machine learning to tune the control and prediction horizons and the weights on the rate of
change of the manipulated input while assuming Q = I. They tested their approach on a FOPDT
process, which showed a satisfactory MPC performance in terms of the level of overshoot, the
integral of squared error, the response time, and the rise time. Turki et al. *° proposed an MPC
tuning approach for SISO linear time-variant systems. Their approach guarantees closed-loop
stability and is computationally efficient. It determines the control and prediction horizons and the
weights on the rate of change of the manipulated input while assuming Q = I. It determines the
control horizon by solving a linear matrix inequality problem. The approach was tested on an

example with a second-order transfer function.
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Santos et al.”! extended their previous work 7 to propose an optimization-based tuning
approach for robust MPC of constrained square systems. They showed the performance of MPC
tuned using this approach by implementing MPC on a spherical tank system and on a continuous

1.2 studied auto-tuning of

stirred tank reactor with a separation column and a recycle. Ira et a
MIMO MPC using a neural network model that described the dependence of the closed-loop MPC
performance in terms of control quality measures such overshoot and settling time, on the MPC

weights. They demonstrated the control quality obtained using this tuning approach through

simulating MPC of air path in a diesel engine.

6. Constrained MPC Tuning Guidelines

A major advantage of MPC is that its output (control action) is optimal in the presence of
constraints; the action is the solution to a desired constrained optimization problem that is solved
at each time instant. MPC tuning guidelines that consider the impacts of constraints on the closed-
loop performance have also been developed. Huusom et al.” studied tuning of SISO MPC in the
presence of magnitude and rate-of-change input constraints. They set Q = 0.5I, R = pl, A=
0,8, =0,F, = 1,and M; = P,. They suggested using a sufficiently large value for the prediction
horizon P, by inspecting the open-loop response of the plant. They proposed using input and output
variances of the closed-loop system to set p automatically. Their approach involves calculating the
variances at different values of p, from minimum variance control to no control, and choosing the
value of p corresponding to the inflection point of a log-log plot of the variances. This p value was

found to give a good balance between input and output variance.

Turki et al. *® also suggested an optimization approach for tuning predication horizons in

MPC of linear controllable MIMO plants with active constrains. Their optimization problem has
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three performance indices (a stability degree index, an error index, and a rapidity index). Based on

the optimization, Turki et al. *® recommended setting Q = CTC and R = pI .

Junior et al. * introduced a method to optimally tune constrained MPC with model
uncertainty. Their method requires solving a multi-objective optimization problem that provides
robust tuning. They solved the optimization problem using a PSO technique and tested the tuning
guidelines on the Shell heavy oil fractionator benchmark example 7* with a large process-model
mismatch. They reported that the controller was able to achieve a closed-loop response close to
the nominal behavior even in the presence of model uncertainty. Waschl et al. ”® extended the
work to obtain offset-free state-space MPC, where the MPC used a well-tuned proportional—
integral (PI) controller as a reference in the closed loop to ensure an offset-free MPC. This
approach yielded an impressive increase in the efficiency and performance of MPC by reducing

computation when applied to the Wood—Berry distillation column problem .

6. Case Study I: Wood and Berry Distillation Column

We also consider the Wood and Berry binary (methanol-water) pilot-scale distillation
column example %. The column has eight trays, a total condenser, and a basket-type reboiler. The
overhead and bottom methanol compositions (xp and xg, wt. %) are controlled by adjusting the
reflux flowrate and the bottom steam flowrate (R and S, Ib/min). This example has been used in
many benchmark control studies. The manipulated variables are assumed to have the following
ranges: 1.15 < R < 1.35 Ib/min and 1.15 < § < 1.35 Ib/min. Within MATLAB, Simulink and
the MPC toolbox were used to simulate the process under a model-predictive controller. For this
example, the MPC tuning guidelines proposed in Ref.?* 3! ¢7- 78 yielded the controllable tunable

parameter values given in Table 8.
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Table 8. Controller tuning parameter values for the distillation column.

Parameter Ref.? Ref.”! Ref.’ Ref.”®
Poy)Po, 1 1 1 1
PP, 108 400 300 300
My, M, 2 300 5 30
1 0 1 0]
Q I 87[0 5;8] I 140,000[0 2.0
8.7 1.4/
1 0 1 0 1 0 ]
R 71[0 23-5] 49,000[0 6.9 0.1/ 39,000[0 1.0
7.1 4.9 39.0.
A 0 0 0 0
B, B2 0 0 0 0

Figures 1 and 2 compare the distillation column input and output closed-loop responses
obtained under MPC with the four sets of tunable parameter values (Table 8). In the case of a step
change (from 70 to 90 at t = 0) in the xp setpoint (Figure 1), the best responses of both controlled
variables were achieved using the tuning guidelines proposed in Ref. ¢’ 78, which penalized the
rates of change of the manipulated inputs least (which have the highest controlled-variable weight
to input-rate-of-change weight ratios [10, 10; 140/39, 200, respectively]). However, the worst
controlled variable responses were obtained with the guidelines suggested in Ref. >*, which has the
lowest controlled-variable weight to input-rate-of-change weight ratios of 87/49,000 and
58/69,000. As expected from the controlled variable responses, the controller actions were initially

f 67, 78

most aggressive when the tuning guidelines proposed in Re were used, and were most

sluggish when the guidelines in Ref. ** were employed.
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Figure 1. Input and output responses of the distillation column under MPC tuned with the
four tuning approaches (Shridhar and Cooper?2, Olesen et al.>!, Burgos et al.”, and

Waschl et al.”®) when a step change was made in the xp set point.

In the case of a step change (from 10 to 60 at t = 0) in the x3 setpoint (Figure 2), best x3
responses of both controlled variables were achieved using the tuning guidelines proposed in Ref.

67.78 "and the best xp response of was achieved using the tuning guidelines proposed in Ref. 8!
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However, the worst xz response was obtained with the guidelines suggested in Ref. >*, which is the

same as what was observed in the case of a step change in the xp setpoint. The controller actions

f 67,78

were initially most aggressive when the tuning guidelines proposed in Re were used, and

were most sluggish when the guidelines in Ref. >* were employed.
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Figure 2. Input and output responses of the distillation column under MPC tuned with the
four tuning approaches (Shridhar and Cooper?2, Olesen et al.>!, Burgos et al.”, and Waschl

et al.”®) when a step change was made in the x; set point.
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7. Case Study II: Shell Heavy QOil Fractionator
We considered the Shell heavy oil fractionator described in Ref.>. This control problem

has been used widely in the process control literature to evaluate a variety of control methods. The

fractionator is described by the following 3x3 transfer function matrix:

4.05e727S  1.77e7%85 5.88e7275]
50s +1 60s +1 50s+1
5.39¢7185 5 72¢714s  §,90e7158
G(s) =
50s +1 60s +1 40s +1
4387205 4427228 7.2
L 335+ 1 445 + 1 19s + 1 A

where the manipulated variables (u4,u,, and u3) are the top drawn flow rate, the side drawn flow
rate, and the bottoms reflux heat duty, respectively. Two controlled variables (y; and y,) are the
top and side end point compositions, respectively, and the third controlled variable (y3) is the
bottoms reflux temperature. The variables are all in the deviation form, and thus: y;(t = 0) =
y,(t = 0) = y;(t = 0) = 0. The manipulated and controlled variable constraints are: —0.4 <
u; <0.4,i=1,2, 3. Simulation studies were carried out to study the performance of MPC tuned
using the guidelines given in Ref. 3% %577 in the presence of a step change in each setpoint at ¢ =
1 min, while the other two setpoints remained unchanged. Two cases were considered: nominal
case (no process-model mismatch) and uncertainty case (when all nine steady-state gains of the
model used in the controller are higher by 10%). MATLAB, Simulink and the MPC toolbox were
used to simulate the process under model-predictive control. For this example, the MPC tuning
guidelines given in Ref.3%*37-67 yielded the controllable tunable parameter values given in Table

9.
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able 9. Controller tuning parameter values for the Shell Fractionator.

Parameter Ref .30 Ref>* Ref. ®7 | Ref’
PollP021P03 1 1 1 1
P;,P,, Py 250 100 300 400
My, M,, My 222 5 3 200
I 5 0 0 1 1
Q 0 496 0
0 0 291
1.705 0 0 0.001 0 0 0.0017 | 0.9971
R 0 1.702 0 0 0.0239 0
0 0 1.6805 0 0 0.98
A 0 0 0 0
B1, B2, B3 0 0 0 0

Figures 3-5 compare the fractionator input and output closed-loop responses obtained
under MPC with the four sets of tunable parameter values given in Table 9 and in the absence of
any process-model mismatch. Figure 3 shows the fractionator input and output responses to a +0.7
step change in the y; setpoint; the four tuning approaches provide similarly good (in terms of the
integral of squared error) y; responses. However, they yielded different y, and y; responses; the
approach of Ref. ®” provided the best y, response, while the approaches of Ref.>% 7 yielded equally
superior y; responses. Figure 4 shows the fractionator input and output responses to a +0.6 step
change in the y, setpoint. It depicts that the tuning approaches of Ref.*® %’ provided similarly better
V1, V2 and y3 responses. Figure 5 shows the fractionator input and output responses to a +0.35
step change in the y;setpoint. It illustrates that the tuning approaches of Ref.3% %’

provided

similarly superior y; and y, responses, and that of Ref.>* provided the best y; response.
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Figure 3. Input and output responses of the Shell fractionator under MPC tuned with the
four tuning approaches (Ebrahimi et al. 3, Yamashita et al. 5%, Burgos et al.*’, and Tsoeu
and Koetje *7) when the step change was made in the y, set point (no model-process

mismatch).
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Figure 4. Input and output responses of the Shell fractionator under MPC tuned with the
four tuning approaches (Ebrahimi et al. 3, Yamashita et al. 3%, Burgos et al.*’, and Tsoeu
and Koetje *7) when the step change was made in the y, set point (no model-process

mismatch).
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Figure 5. Input and output responses of the Shell fractionator under MPC tuned with the
four tuning approaches (Ebrahimi et al. 3, Yamashita et al. 3%, Burgos et al.*’, and Tsoeu
and Koetje *7) when the step change was made in the y; set point (no model-process

mismatch).
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Figures 6-8 compare the fractionator input and output closed-loop responses obtained
under MPC with the four sets of tunable parameter values given in Table 9 and in the presence of
the process-model mismatch. They show that MPC tuned using the four approaches provided the
same relative control performances as in the case of no model-process mismatch. Furthermore,

they point to the similar robustness of MPC tuned using the four approaches.
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Figure 6. Input and output responses of the Shell fractionator under MPC tuned with the
four tuning approaches (Ebrahimi et al. 3, Yamashita et al. 3%, Burgos et al.*’, and Tsoeu
and Koetje 7) when the step change was made in the y; set point (in the presence of model-

process mismatch).
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Figure 7. Input and output responses of the Shell fractionator under MPC tuned with the
four tuning approaches (Ebrahimi et al. 3°, Yamashita et al. 5%, Burgos et al.*’, and Tsoeu
and Koetje °7) when the step change was made in the y; set point (in the presence of model-

process mismatch).
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Figure 8. Input and output responses of the Shell fractionator under MPC tuned with the
four tuning approaches (Ebrahimi et al. 3, Yamashita et al. 3%, Burgos et al.*’, and Tsoeu
and Koetje °7) when the step change was made in the y; set point (in the presence of model-

process mismatch).
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8. Conclusion

A review of various MPC tuning strategies introduced since 2009 was presented. The
review covers different MPC implementations including DMC, GPC and the state space.
Optimization-based MPC tuning methods offer flexibility, as they allow for customized
accounting for desired closed-loop properties and important process constraints. With the
availability of increasingly faster computers and more powerful numerical methods, auto tuning
MPC methods are becoming attractive. A tuning guideline that is implemented should suit the
MPC formulation. The use of an accurate dynamic process model eases MPC tuning. When a
model-predictive controller shows poor performance, the process model used in the MPC design

should first be inspected to ensure its adequate accuracy in predicting the controlled variables.
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Notation

a User-set parameter >’
A Plant state matrix

B Plant input matrix
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Plant output matrix
Number of sampling periods of dead time
Input constraint matrix

Covariance matrix of the estimation error

Function of the co-norm of user-set weights and the sensitivity function between a

load disturbance and an output in Ref.>®

Lower triangular matrix of estimated model coefficients

Coefficient of a step response model

Outputs constraint matrix

Smallest output constraint bound

Linear time-invariant controller

Sampling instance

Steady-state gain

Vector of control horizons

Number of manipulated variables

Number of state variables

Number of controlled variables

Degree of the characteristic polynomial

Vector of model horizons

Vector of the upper limits of the prediction horizons
Vector of the lower limits of the prediction horizons
ith pole

Matrix of weights on controlled variables
Covariance matrix of w

Covariance matrix of v

Weights on the rates of change of manipulated inputs
Process rise time, s

Largest controlled variable settling time in open loop, s
Sampling period, s

Vector of manipulated variables
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=

p
P1

Vector of state variables

Vector of state variables estimates

Vector of model outputs/controlled variables
Vector of measurements of the controlled variables

Setpoint for the controlled variable y;
Reference trajectory for the controlled variable y;

Predicted value of the controlled variable y;

Parameter of a filtered white noise process in the stochastic part of the ARX model in
Ref.>12
Reference trajectory parameter

User-set parameter in Ref.*

Matrix of weights on manipulated variables magnitudes

User-set tuning parameter representing control importance in Ref.>
Damping ratio

Scalar quantity

Disturbance rejection filter parameter in Ref %7
Reference tracking filter parameter in Ref. 3% 7°
User-set performance factor in Ref.*?

Natural frequency of oscillation

Process time constant

Scalar quantity

Value of p obtained from the first optimization in Ref.*?

Poptimar  Optimal value of p found in Ref.*

0

Dead time of a SISO plant in terms of time, s
ijth dead time of a MIMO plant in terms of time (6;; is the deadtime between the ith

controlled variable and the jth manipulated variable), s
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