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The H-frame (also known as H-Bot) architecture is a simple and elegant two-axis parallel positioning system used
to construct the XY stage of 3D printers. It holds potential for high speed and high dynamic performance due to
the use of frame-mounted motors that reduce the moving mass of the printer while allowing for the use of
(heavy) higher torque motors. However, the H-frame’s dynamic accuracy is limited during high-acceleration and
high-speed motion due to racking - i.e., parasitic torsional motions of the printer’s gantry due to a force couple.
Mechanical solutions to the racking problem are either costly or detract from the simplicity of the H-frame. In
this paper, we introduce a feedforward software compensation algorithm, based on the filtered B-splines (FBS)
method, that rectifies errors due to racking. The FBS approach expresses the motion command to the machine as
a linear combination of B-splines. The B-splines are filtered through an identified model of the machine dynamics
and the control points of the B-spline based motion command are optimized such that the tracking error is
minimized. To compensate racking using the FBS algorithm, an accurate frequency response function of the
racking motion is obtained and coupled to the H-frame’s and y-axis dynamics with a kinematic model. The result
is a coupled linear parameter varying model of the H-frame that is utilized in the FBS framework to compensate
racking. An approximation of the proposed racking compensation algorithm, that decouples the x- and y-axis
compensation, is developed to significantly improve its computational efficiency with almost no loss of
compensation accuracy. Experiments on an H-frame 3D printer demonstrate a 43% improvement in the shape
accuracy of a printed part using the proposed algorithm compared to the standard FBS approach without racking
compensation. The proposed racking compensation algorithm can be used in-conjunction with mechanical so-
lutions, or as a stand-alone solution, to improve the performance of H-frame architectures.

1. Introduction

mass of the end-effector, allowing for increased dynamic accuracy and
motion speed.

Fused filament fabrication (FFF) 3D printers, which represent
approximately 70% of the 3D printing market [1], manufacture parts by
extruding material from a heated nozzle onto a bed, with the help of
motion systems that move the nozzle and bed. The standard choice for
motion systems of FFF 3D printers is the so-called serial stack archi-
tecture, which generates motion using independent (i.e., decoupled)
actuators for each axis, and typically requires one of the axes and its
associated motor(s) to be “stacked” on another axis. This stacking leads
to high inertial loads and motion friction, which limit the dynamic ac-
curacy and the available torque during high-speed motions. Although
the serial stack architecture is still a popular choice, less conventional
motion systems such as the H-frame [2], delta [3], and Core XY [4]
architectures are designed using stationary motors to reduce the moving

The H-frame architecture, as seen in Fig. 1(a), has a simple parallel
axis design that consists of two motors mounted to the frame of the 3D
printer, which are connected to the end-effector through a single timing
belt. Translational motion in the x- and y-axis of the end-effector is
generated via the rotational motion of the frame-mounted motors,
which is transmitted by a timing belt and pulley configuration [2,5,6].
Since the motors are stationary, high-power (and, typically, heavy)
motors can be utilized to achieve high-speed and high-precision motion
without increasing the moving mass of the printer. For this reason, the
H-frame architecture has been used in several 3D printers, such as the
Stratasys Mojo [7], MakerBot Replicator Z18 [8], Creality Ender 4 [9],
and MIT’s Fast FFF [10] 3D printers. Using the H-frame as one of several
improvements to conventional FFF 3D printers, Go et al. [10]
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Fig. 1. (a) The H-frame architecture with stationary motors labeled M1 and M2 and the timing belt and pulley configuration that transmits rotational motion to XY
translational motion of the gantry and end-effector; (b) Unbalanced forces, F, that cause racking—parasitic torsional motions—of the gantry.

demonstrated 5-10 times improvements in build rate using the Fast FFF
printer compared to several printers of the same class. However, parts
printed with H-frame 3D printers suffer from quality defects caused by
parasitic error motions due to “racking” [4]: when the motors are
commanded to rotate in the same direction, corresponding to x-axis
motion of the end-effector, a force couple (pure moment) is imposed on
the gantry (Fig. 1(b)) which, depending on the speed, may create large
enough errors to distort the part shape.' The magnitude of these errors
also depends on the end-effector’s location along the x-axis, indicating a
parameter varying system [4].

Racking errors can be mitigated with mechanical solutions such as a
rigid linear guideway design or adding counterweights to offset the
racking, which add additional cost and weight to the gantry. A lower-
cost option, that does not add weight to the gantry, is to design a
modified configuration, such as the two-belt Core XY architecture [4],
which ensures the forces on the gantry do not create a force couple.
However, the Core XY and similar designs can be significantly more
complex than the H-frame’s design, and difficult to manufacture.
Additionally, other sources of error may surface, such as the errors
created on the Core XY when the two belts are not equally tensioned [4].

Conversely, software compensation (i.e., feedback and/or feedfor-
ward control algorithms) can be used to reduce or eliminate racking
errors, often without need to modify the mechanical architecture of the
printer. Although useful in a variety of applications, feedback (FB)
control, which depends on sensing to correct errors, is impractical for
racking compensation for the following reasons [6,11]: (1) It is not
applicable to a wide range of 3D printers that are stepper
motor-controlled in the open-loop (i.e., they have no position sensors);
(2) the position sensors available on some 3D printers are
motor-mounted, hence cannot sense racking at the end-effector; and (3)
adding sensors that can sense racking at the end-effector will lead to
non-collocated control systems that are prone to instability [12].

The challenges of FB control can be mitigated via feedforward (FF)
control, which compensates errors using a model of the controlled sys-
tem as opposed to sensing. Feedforward control has been shown to
improve motion accuracy in a host of manufacturing applications,
including 3D printing [13-21]. A popular FF control approach for
reducing motion errors is called smooth command generation [22]
where motion commands are generated to have little to no
high-frequency content by using, for example, low-pass filters [23] and
jerk-limited [24] trajectories. However, the attenuated high-frequency

1 An example of this phenomenon can be seen in the following video from the
YouTube account by K. Kamal: https://www.youtube.com/watch?v=2_w
Wr66bl6Q

content of smooth command generation implies loss of motion speed,
which adversely affects productivity [15]. Additionally, smooth com-
mand generation methods are sub-optimal because motion commands
are not generated with knowledge of the machine’s dynamics [25].
Hence, conservative acceleration and jerk limits are often adopted in
practice since there is no clear understanding of how to select the limits
to achieve a desired performance metric [26]. Input shaping [27-29],
another popular FF control method, eliminates vibration errors through
destructive interference by commanding a series of impulses that are
equal in magnitude but opposite in phase to the vibration errors of the
system. A major limitation of input shaping is that it introduces time
delays between the desired and actual motions, leading to large track-
ing/contouring errors and reduction of productivity [30]. Therefore,
while it works well for point-to-point motions, it exhibits poor perfor-
mance for the tracking/contouring motions prevalent in most AM ap-
plications. Another class of FF control methods is known as
model-inversion based FF control. Methods in this class compensate
motion errors by using the inverse of the motion system’s dynamics to
pre-filter motion commands. Model inversion-based FF control methods
do not introduce time delays and can theoretically lead to perfect
compensation of motion errors [31]. In practice, perfect compensation is
difficult to achieve due to modeling errors [32] and the prevalence of
nonminimum phase (or unstable) zeros, which become unstable poles
after inversion. Hence, approximate model inversion-based FF control-
lers are employed, several of which are available, as discussed exten-
sively in [31,33,34]. Of the available methods, the filtered basis
functions (FBF) approach has been shown to be versatile, compared to
others, regarding its applicability to any linear system dynamics [13,14,
35-38]. The FBF approach expresses motion commands as a linear
combination of basis functions, forward filters the basis functions using
the plant dynamics, and calculates the coefficients of the basis functions
such that motion errors are minimized. A version of FBF commonly used
for controlling manufacturing machines is the filtered B-splines (FBS)
method [13-15,32,35], where B-splines are selected as the basis func-
tions because they are amenable to the lengthy motion trajectories
common in manufacturing. The FBS method has been used to reduce the
printing time of serial stack FFF 3D printers by up to 54% without
sacrificing print quality, by compensating vibration-induced errors [13,
15,16]. However, the standard implementation of the FBS method used
in the aforementioned studies is not directly applicable to the compen-
sation of racking in H-frame 3D printers because it assumes that the
printer dynamics is linear time invariant (LTI) and decoupled, whereas
racking dynamics is linear parameter varying (LPV) and coupled.
Therefore, to enable compensation of racking errors in H-frame 3D
printers, this paper makes the following original contributions:
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Fig. 2. (a) Kinematic model of parasitic errors created by racking motions of H-frame 3D printers; (b) Dynamic model of H-frame 3D printers including effect of

parasitic y motions (dy) created by racking.
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Fig. 3. (a) Designed H-frame 3D printer (retrofitted from the Creality Ender 5
3D printer) used to validate H-frame dynamic model and conduct experiments
in Section 4; (b) schematic of racking motion due to the force couple F and
guideway compliance denoted by a spring.

1. It proposes an extension of the standard FBS controller designed to
compensate the coupled LPV racking dynamics of H-frame 3D
printers.

2. It develops a simplification (i.e., decoupled version) of the designed
coupled LPV FBS controller that significantly reduces its computa-
tional cost with little to no sacrifice to its racking compensation
accuracy.

3. It demonstrates the effectiveness and practicality of the developed
algorithm in compensating the racking errors through simulations
and experiments on an H-frame 3D printer.

The outline of the paper is as follows: Section 2 introduces and val-
idates a model of H-frame racking motion on an H-frame 3D printer.
Section 3 gives an overview of the standard FBS method and proposes a
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Fig. 4. Frequency response functions from x-axis command input to 6 output
(Gyy) measured with the end-effector positioned at x = 0, + 30, and +60 mm.
The differences between the FRFs are small. Therefore, they are modeled by a
single FRF shown in dashed lines.

coupled LPV FBS method for compensating racking errors. Section 3 also
demonstrates the increased computational cost of the proposed coupled
LPV FBS controller, relative to the standard FBS controller, and proposes
a simplification that reduces its computational cost with minimal sac-
rifice to its performance—hence facilitating its practicality. Section 4
presents simulations and experiments on the H-frame 3D printer that
demonstrate the effectiveness of the proposed approach, followed by
conclusions in Section 5.

2. Model of parasitic racking motion of H-frame

The racking motion of the gantry on the H-frame is caused by a force
couple (pure moment) which creates an angular displacement in rota-
tional axis, 6, on the gantry. Let {x, y} be the end-effector’s output po-
sition. It can be decomposed into two portions: {x’, ¥}, where x’ is the
shifted x-axis position with racking errors accounted for, and y’ is the
desired y-axis position of the end-effector without the racking errors (see
Fig. 2(a)), and {Ax,Ay}, which are the errors created by racking angle 6
as shown in Fig. 2(a). Thus, we have that x = x'+ Ax and y = y'+ Ay.
Using the small angle approximation (i.e., cosd ~ 1, sinf ~ ), Ax ~ 0
and we can write the x- and y-axis locations as:

x~x =xcosf, y =y + xsind ~ y + x0 @))

This kinematic model can be used to create a coupled dynamic model
including racking, as shown in the block diagram in Fig. 2(b), where
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Fig. 5. Measured and curve fit FRFs for (a) Gx and (b) Gyy.
Table 1
Numerators of fitted transfer functions in Eq. (3).
bg b; be bs bs by by bo
axx(z) - - - - 0.07632 —0.231 0.236 —0.0813 —2193x 10713
E;Xg(z> 4.246 —29.27 87.51 — 147 149.9 - 92.76 32.26 — 4.865 1.808 x 1071°
ayy (2) - - 0.1646 — 0.8951 1.975 — 2.199 1.231 — 0.2764 —9173x 10713

{x4, Yya}represent the desired position of the end-effector. The transfer
functions from x4 to x, and y; to y’  are represented by G, and G,
respectively, whereas, G,y represents the racking contribution (i.e., the
transfer function from x, to ).

In addition to the small angle approximation, two other assumptions
are implied in the model of Fig. 2(b). The first is that the H-frame dy-
namics can be approximated as linear. Therefore, x, y', and & can be
derived from transfer functions G.x, Gy, and Gy, respectively. This
assumption has been found to be reasonable in prior work [5,6,11,
13-16]. The second assumption is that the transfer function G,y does not
vary as a function of end-effector position, which implies that the inertia
of the gantry is not significantly affected by the position of the
end-effector as will be validated later in this section.

Remark 2.1. The model shown in Fig. 2(b) is nonlinear because Ay =
x0 is generated from the product of two outputs. It can be approximated
as linear parameter varying (LPV) by assuming that x =~ x; when
determining Ay. This assumption is reasonable because the tracking
errors, xq — X, caused by Gy, are typically much smaller than the
magnitude of x. Therefore, they have insignificant contributions to Ay.
Accordingly, Ay = x40is assumed in the rest of this paper, for the sake of
simplicity, resulting in a coupled LPV model for H-frame 3D printers.

The 3D printer shown in Fig. 3(a) is used to validate the H-frame
model of Fig. 2. It is fabricated by adapting a Creality Ender 5 3D printer
into its H-frame predecessor, the Ender 4. (The Ender 4 was discontinued
by Creality, hence was unavailable for purchase.) The designed H-frame
configuration” is actuated by two NEMA 17 stepper motors via a 2-mm
pitch, 6-mm wide, rubber timing belt used for motion transmission. The
motors are controlled by Pololu DRV8825 high-current stepper motor
drivers configured to give a step resolution of 2 milli-radians per step
which is transmitted through a pulley with radiusr = 5.15 mm to give a

2 Ender 5 Modified to H-Bot (Ender 4), Thingiverse (2020), https://www.thin
giverse.com/thing:4425748.

x- and y-axis resolution of 20.6 ym per step. The motion range of the x
and y axes are 280 and 295 mm, respectively. Real-time control of the x,
y and z axes and extrusion motors is performed using dSPACE Micro-
LabBox (RTI 1202) with stepping frequency of 40 kHz and sampling
frequency of 1 kHz. Commands to the printer are generated in MATLAB
and sent to the MicroLabBox through a MATLAB Simulink interface.

To validate the model of Fig. 2, sine sweep signals at various fre-
quencies were commanded in the x direction of the printer by applying
acceleration commands X4 to the stepper motors and measuring y-axis
accelerations at the locations marked P; and P, in Fig. 3(b) using two
ADXL335 three-axis accelerometers. The racking angular acceleration is
estimated (based on small angle rotations) as

H5_Y1 =N
0= Lo (2)
where y, and y, are the y-axis accelerations measured at P; and P, at
each end of the bridge (Fig. 3(b)) and L¢ is the perpendicular distance
between P; and P,. Accordingly, the frequency response function (FRF)
Gy is computed using X4 as input and & as output. Fig. 4 shows Gy
determined with the end-effector positioned at x = 0, 4+ 30, and +60
mm. The discrepancy between the FRFs is small, supporting the
assumption that the end-effector position does not significantly influ-
ence Gyg. Similarly, Gy and G,, (Fig. 5) are determined by using ac-
celeration commands in the x and y directions, respectively, as inputs
and acceleration output measured in the x and y directions with the
gantry at x = 0 mm.

By curve-fitting the FRFs for Gyy (Fig. 4), Gx (Fig. 5(a)), and G,y
(Fig. 5(b)), discrete transfer functions for each FRF are obtained in the
form

~ byt + by 1207 + -+ biz+ by

G(z) = 3
@) a2 et aiztag ®

where the " accent is used to denote a model of the actual dynamics, z is
the discrete-time forward shift operator, g and d are the degrees of the
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Table 2
Denominators of fitted transfer functions in Eq. (3).
ag azy as as ag as a a ap
8“(2) - - - - — 3.577 4.774 —2.815 0.6175 1.934 x 10733
Guolz) — 5.866 14.86 —21 17.83 —9.06 2.535 —0.2987 —2.125 x 1077 2.404 x 10734
5yy (z) - - —4.813 9.386 —9.344 4.845 - 114 0.06512
Desired Control Points Optimization ™ \ .
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Fig. 6. Block diagram of standard FBS method applied to x-axis of a decoupled multi-axis system.

numerator and denominator polynomials, respectively, and the co-
efficients of each transfer function are given in Tables 1 and 2. Note that
the FRF measured with x at 0 mm is used to fit the transfer function G,y.

3. Decoupled LTI and proposed coupled LPV filtered B-splines
approaches

3.1. Overview of the decoupled LTI FBS approach (i.e., FBS without
racking compensation)

Fig. 6 shows the block diagram of the standard filtered B-splines
(FBS) approach for the x-axis of a decoupled multi-axis system, i.e.,
without racking compensation, as introduced in [36]. It controls a
decoupled LTI discrete-time system given by Gy, the lifted system (or
matrix) representation of transfer function Gy, through a feedforward
controller C, (see Appendix A for details on the lifted system
representation).

As shown in Fig. 6, let x4 = [x4(0) x4(1) x4(E)]" represent
E + 1 discrete time steps of the x-component of a desired trajectory of a
multi-axis machine. Assume that the machine has look-ahead capabil-
ities such that the E + 1 steps of x4 are known in advance. Furthermore,

assume that the modified but un-optimized motion command xg, =

[%gm(0)  Xxgm(1) xgn(E)|" is parameterized using B-splines such
that
Xdm (O) NO.m (50) Nl.m (50) Nn.m (‘50) Px0
Xam (1) Now(&1)  Nim(&)) Nuw(&1) | | P
. . . . . (4)
Xdm (E) NO.,m(gE) Nl,m (5)2) Nn.m (éE) Pxn
N Px

where N is the matrix representation of B-spline basis functions of de-
gree m, p, is a vector of n + 1 unknown coefficients (or control points),
j=10,1,..,n and £€[0,1] is the spline parameter, representing
normalized time, which is discretized to E + 1 uniformly spaced points
£0.¢1, ..., &g. The real-valued basis functions, Njn,(£), are given by [39].

_8ime1 — &

N',m 5 = 7N‘.rn— é + N; m— é )
J ( ) Sim — & J 1( ) Giimt — &1 j+1 1( )
()
I, g <&<gmn
Njo = .
0, otherwise

where g = (g0 &1 - gm+n+1]T is a normalized knot vector defined over
[0,1]. For convenience, g is assumed to be uniformly spaced, i.e.,

0, 0<j<m
j—m )
.= 1<) < 6
g p— m+1<j<n ©)]
1, n+1<j<m+n+1
Let x represent the E + 1 discrete steps of x, the motion output of the
machine’s x-axis. Accordingly, based on the definition of x4, in Eq.
(4), x can be written as
x = N.p, @)

where Ny is the filtered B-spline matrix, acquired by filtering each
column of N through Gy (i.e., the matrix product of N and G,y). Using x
and x4, the tracking error can be defined as

e, =X; — X =X; — N,p,. (8)

The optimal control points p; are calculated by minimizing the
square of the L,-norm of the tracking error

~ T ~
P s (T _ : _ _
p. = argngn(ex e) = argn;in((xd Nx).px) (xd Nxxpx)) ©
giving the well-known least squares solution

T~ N\~ ~t
P = (NI ) Noxs = Nox, (10)
where the { in the superscript represents the Moore-Penrose inverse (or
pseudoinverse) of the matrix. The result can then be used to calculate the
optimized motion command x};,, = Np;. The same procedure is followed
to find the optimal control input for other axes, e.g., y-axis.

Remark 3.1. The limited-preview version of FBS (LPFBS) [13] relaxes
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Fig. 7. Rectangular path (with 120 mm length and 20 mm width) used to
simulate the time response of the H-frame 3D Printer. The motion command
starts at {0,0} and traverses the rectangle in the counterclockwise direction as
indicated by the arrows.

the assumption that x4 is known in advance and instead uses small
windows (batches) of x; to achieve on-line implementable control. A
brief overview of LPFBS is included in Appendix B.

The decoupled LTI implementation of FBS discussed above has two
issues due to the introduction of racking. The first is that the motion of
the x-axis affects the y-axis due to racking. Therefore, the y-axis cannot
be controlled independent of the x-axis. The second issue is that the
control of the y-axis depends on the position of the end-effector on the
x-axis. Therefore, a coupled LPV FBS approach is needed to include
racking dynamics in H-frame 3D printer control.

3.2. Proposed coupled LPV FBS approach (i.e., FBS with racking
compensation)

Noting that the racking model from Section 2 can be used to predict
the error Ay from Eq. (1), we can use the product of the B-splines matrix

N and G,y to obtain ng. Therefore, using Egs. (4) and (7), we have

0 = Nyp, an
and

4y =D, Nyp, 12
where D,, = diag(xq). The tracking error for each axis can then be

expressed as

€, Xg —X=Xy4 — N)CXP{] _
e = y,—y=y,— (Dy,Nyp, +N,p,)

13)

and the optimal control points can be calculated to minimize the squared
Ly-norm of sum of the tracking errors

p’ = argmin(eTe) as

T
where e = [e, e, ]|, which gives

! < i
* p)» N 0 :| |: Xy :|
- = o . (15)
P { {DMNW N Ly

P

The formulation of the coupled LPV FBS controller in Eq. (15) can be
computationally cumbersome during on-line implementation due to the
size of the matrix that is inverted. Furthermore, when using LPFBS, since
the H-frame is an LPV system, we cannot pre-invert the matrix as is done
with LTI FBS, to reduce the computational load (see Appendix B).
Therefore, we can decouple the matrices to eliminate the need to
compute the pseudoinverse of large matrices during implementation by
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computing the control points sequentially: first p; using Eq. (10), then p;
by rearranging Eq. (13) and considering p; as a known input

& I~ N
P, =N, (yd fDx[,prx> : (16)

Note that in the decoupled approximation using Eqs. (10) and (16),
we are inverting the same matrices from LTI FBS, and can pre-invert the
matrices for on-line implementation. In Section 3.3 below, we consider
the effects of this decoupled approximation on the tracking accuracy and
computational complexity of the proposed controller.

Remark 3.2. The LPFBS form of the proposed FBS controller with
racking compensation is discussed in Appendix C.

3.3. Tracking accuracy and computational complexity of coupled and
decoupled LPV controllers

The system with racking can be expressed in the lifted system rep-
resentation (see Appendix A) as

G, 0

G = {ny Gvy:| 17)
where Gy, = Dy, Gy. The inverse of G is given by

O G,/ 0
G = “1¢ -1 -1 (18)

-G,'6,G; G,

and the optimal control inputs xj, and y},, are given by
X, = Glxg

" e oty 4 G (19)
Yin = _G_v)’ G")'Gxx Xq + G,\‘y Ya

It can be shown (see [36]) that forn = E, I(Ixx = Gy, I(Iyy = Gy, and
the pseudoinversion in Egs. (10) and (16) become matrix inversion of
Gy and Gy, respectively. Therefore, for n = E, the motion command for
the decoupled controller, proposed in Section 3.2 can be expressed as

~1
G,u X4,

fG;y] (;n.(};I x; + Gy,

yy

* —
Xim =

* f—
Yin =

(20)

Note that Egs. (19) and (20) are identical which shows that the
decoupled LPV FBS approach is exactly the same as the inversion of the
coupled LPV system when n = E. When n < E, it approximates the
coupled LPV system using the FBS approach. Egs. (10) and (16) are,
therefore, another way of approximating the coupled LPV system using
the FBS approach.

The computational complexity of the Moore-Penrose inverse,
computed using singular value decomposition, is given by O(Iv?) where [
and v are the number of rows and columns, respectively, of the matrix to
be inverted [40]. We note that the size of the coupled LPV FBS matrix
from the Section 3.2 is 2(E+ 1) x (ny + ny, + 2), where we consider the
number of basis functions in the x and y axes independently, and the size
of the decoupled matrices are (E+ 1) x (n, +1) and (E+ 1) x (n, + 1).
Assuming n = n, = n, = E, the computational complexity of the
coupled and decoupled LPV FBS approaches are

0.(2E)(2n)°) =
O4(En* +En*) =

O4(E(n* +n*)) = O4(En*) = 04(n*)

where O, and Oy are the computational orders of the coupled and
decoupled approximations, respectively. The expressions in Eq. (21)
indicate that the decoupled matrix approximation has much lower
computational complexity. The implications of using the decoupled or
coupled approximations of the LPV dynamics on racking compensation
accuracy and computation time are explored further via simulations in
the following section.
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Table 3 4. Simulations and experiments
Summary of speed, acceleration, and jerk limits of the baseline and high-speed
trajectories. 4.1. Simulations

Baseline High-speed

Fig. 7 shows the 120-by-20 mm rectangular motion path used for our

Speed 60 mm/s 150 mm/s . X o R K A
Acceleration 1 x 10° mm/s? 1% 10¢ mmys? simulations. IF was select?d to hlghl.lght the raFklng motlc.)n which are
5 5 prevalent during changes in the x-axis acceleration. The trajectory along
Jerk 5 x 107 mm/s 5 x 107 mm/s . . .. . X
the path was generated using a jerk-limited motion profile for the two
600 T T i i 1600 o
—e— Decoupled /
_500F =0~ Coupled || 1400 | /]
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330 S 800¢ _®
S IS} -
3 200 3 600r &=
g €
S)
¥ 8 400
100 |
200
0 : . : : 0 . ‘ . .
0 100200 300 400 500 0 100 200 300 400 500
Number of Basis Functions () Number of Basis Functions (n)
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Fig. 8. (a) RMS contour errors and (b) computation times for the simulated time response of the decoupled (solid line) and coupled (dashed line) LPV FBS H-frame
controllers as a function of the number of basis functions used to parameterize the trajectory.
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Fig. 9. Simulated output response of the “baseline” (60 mm/s, 1 x 10° mm/s>) case on the H-frame 3D printer for the uncompensated trajectory (dotted line) as well
as the trajectories generated using FBS controllers without racking compensation (dot-dash line) and with racking compensation (dashed line).
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Fig. 10. Simulated output response of the “high-speed” (150 mm/s, 1 x 10* mm/s?) case on the H-frame 3D printer for the uncompensated trajectory (dotted line) as
well as the trajectories generated using FBS controllers without racking compensation (dot-dash line) and with racking compensation (dashed line).

Table 4

Root-mean-square (RMS) and maximum contour errors along the baseline (low-
speed) and the high-speed cases for all compensation strategies. The FBS with
racking compensation controller leads to significant improvements in both the
RMS and maximum contour errors for all cases.

Contour error [ym] (RMS
/ maximum)

High-speed (150 mm/s,
1 x 10* mm/s?)

Baseline (60 mm/s, 1 x
103 mm/s%)

Uncompensated 127.39 /341.85

94.02 / 257.84

180.01 / 1374.3

FBS without racking 117.53 / 516.04
compensation
FBS with racking

compensation

0.16 / 1.92 3.24 /2821

f o 120 mm i

10 mm

4 s I -

P

Fig. 11. CAD model of the part in Ultimaker Cura®.

cases presented in Table 3. The first is the baseline case which uses the
standard (low) speed and acceleration employed on desktop 3D printers
to avoid excessive vibration: 60 mm/s and 1 x 103 mm/s?, respectively,
with a jerk limit of 5 x 107 mm/s°. The second is a high-speed case,
which uses 2.5 times and 10 times the standard speed and acceleration:
150 mm/s and 1 x 10* mm/s?, respectively, together with a jerk limit of
5 x 107 mm/s°. The trajectory was sampled at T, = 1 ms, leading to E -+
1 =4970 and 1944 trajectory points for the baseline (low-speed) and

Table 5

Print parameters for the baseline and high-speed cases of the rectangular block

shown in Fig. 11.

Print Parameters

Baseline

High-speed

Wall speed
Maximum acceleration
Maximum jerk

Print material
Nozzle diameter

Extrusion rate

Filament volumetric flow

60 mm/s
1 x 10 mm/s?
5 x 107 mm/s®

Polylactic acid (PLA)
0.4 mm

72 steps / mm
1.74 x 10°3 mm® /

150 mm/s
1 x 10* mm/s?
5 x 10”7 mm/s®

Polylactic acid (PLA)
0.4 mm

72 steps / mm
1.74 x 1073 mm® /

rate step step
Nozzle temperature 205 °C 205 °C
Bed temperature 60 °C 60 °C
Layer height 0.1 mm 0.1 mm
Wall thickness 0.8 mm 0.8 mm

high-speed cases, respectively. The model derived and presented in
Section 2 was used as the dynamics to simulate the time response of the
H-frame in MATLAB.

4.1.1. Comparison of decoupled and coupled FBS strategies for racking
compensation

Before discussing the simulation results, we begin our numerical
analysis of the proposed racking compensation algorithm by comparing
the tracking accuracy and computational complexity of its decoupled
and coupled implementation strategies discussed in Section 3.2. The
high-speed case is used for the comparison in this subsection since it is
more aggressive and likely to induce racking errors. We compare its
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Uncompensated
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L

X

FBS with racking compensation

Fig. 12. Examples of the baseline parts printed (a) without any compensation,
(b) using FBS without racking compensation, and (c) using FBS with racking
compensation. At low speed, print quality differences are hardly distinguishable
between the uncompensated and compensated control approaches.

(2)

Uncompensated

(b)

FBS without racking compensation

(©

82 L
%
FBS with racking compensation

Fig. 13. Examples of the high-speed parts printed (a) without any compensa-
tion, (b) using FBS without racking compensation, and (c) using FBS with
racking compensation. Layer shifts can be seen in the uncompensated part
when compared to the FBS compensated parts. Differences between the FBS
without racking compensation and FBS with racking compensation parts can be
seen in the enlarged corner view comparison in Fig. 14.

Baseline High-speed
Uncompensated .
FBS without racking
compensation
FBS with racking
compensation

Fig. 14. Enlarged corner view comparison of the baseline and high-speed cases
using the uncompensated, FBS without racking compensation, and FBS with
racking compensation control approaches. The vibration and racking errors
cause layer shifting and waviness along the edge, respectively, for the un-
compensated and the FBS without racking compensation approaches applied to
the high-speed case. The proposed FBS with racking compensation approach
eliminates these errors.
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tracking accuracy for each strategy—when n < E—by examining the
root-mean-square (RMS) contour errors (i.e., path deviation) of the
output trajectory (Fig. 8(a)). The number of basis functions was selected
to span fractional values of E, namely n = [0.01,0.05,0.1,0.15,0.2,
0.25|E (rounded to the nearest integer), the B-spline degree was iden-
tical for both implementation strategies (m = 5), and the knot vector was
defined as in Section 3.1. Consistent with the analysis in Section 3.3,
note that the RMS contour error between the two methods is similar for
all the n values (Fig. 8(a)), indicating that using the decoupled approach
yields similar tracking performance to the coupled approach for a
reasonable selection of n. We also validated the computational
complexity analysis from Section 3.3 by comparing the computation
time of the controller between the two approaches in Fig. 8(b). Note that
the coupled approach requires significantly more computation time as n
increases—approximately 3x more time in the worst case. Based on the
analysis in Section 3.3 and the results shown in Fig. 8, the decoupled
implementation of the coupled LPV FBS controller (i.e., FBS with rack-
ing compensation) will be used in all simulations and experiments
hereinafter.

4.1.2. Comparison of FBS controller with and without racking
compensation

The simulated response of the H-frame machine using the baseline
and high-speed cases, controlled with n = 0.1E B-spline basis functions,
are shown in Figs. 9 and 10, respectively. Racking errors can be seen at
the corners and edges of the rectangle as the trajectory is traversed using
the uncompensated case or FBS without racking compensation. Notice
also that the severity of the vibration and racking errors are much less
with the baseline case compared to the high-speed case. Hence, vibra-
tion and racking, when not compensated, limit the achievable speed of
H-frame 3D printers if loss of print quality is unacceptable. Racking
errors are reduced using the proposed FBS controller with racking
compensation, which leads to an output that follows the desired path
more accurately for both trajectories. Table 4 shows the RMS and
maximum contour errors for both cases compared across the compen-
sation approaches. Here, the maximum contour error indicates whether
a part will reach its tolerance specification. Note that, as expected, the
baseline has lower maximum contour errors as compared to the high-
speed case. For both cases, the uncompensated approach has the high-
est maximum contour. Comparisons between FBS without racking
compensation and FBS with racking compensation show a 99% and 94%
reduction in maximum contour error for the baseline and high-speed
cases, respectively.

4.2. Experiments

The same rectangular profile used in Section 4.1 was extruded to a
height of 10 mm and printed on the H-frame 3D printer. The CAD model
of the rectangular prism can be seen in Fig. 11. The G-code for the tra-
jectory was generated using the open-source Ultimaker Cura® software.
As with the simulations, two cases were considered in experiments: the
baseline and high-speed cases, with wall speed, maximum acceleration
and maximum jerk values reported in Table 5, along with other print
parameters. To ensure adhesion to the bed, the first four layers in both
cases were printed at a speed of 20 mm/s.

Figs. 12 and 13 compare the rectangular block printed for the
baseline and high-speed cases, respectively, using no compensation, FBS
without racking compensation and the proposed FBS with racking
compensation. The limited-preview version of FBS, i.e., LPFBS, was used
in both FBS cases, with parametersn,, = 11,nc = 22,L¢ = 220,
m = 5,andL = 20 (see Appendix B and C for more details). As can be
seen from Fig. 12(a), the baseline case without compensation yields
high-quality prints (in terms of vibration and racking) which are hardly
distinguishable from those with compensation (Fig. 12(b) and (c)). This
observation highlights why printers with vibration and racking prob-
lems often yield excellent print quality at low speeds (albeit at the cost of
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Fig. 15. Acceleration measurements of the racking motion of the gantry during high-speed printing on the H-frame 3D printer without any compensation (dotted
line), using FBS without racking compensation (dot-dash line), and using FBS with racking compensation (dashed line). The positions of high acceleration are

highlighted.
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Fig. 16. Box-and-whisker plot of measured absolute width error, Aw, of printed
parts compared to the desired width of 20 mm for each of the compensation
strategies applied to the high-speed case: (1) no compensation, (2) FBS without
racking compensation, and (3) FBS with racking compensation. The red hori-
zontal lines represent the median of Aw, which is overlaid with root-mean-
square width error, Awy,s (diamonds).

productivity). However, as seen from Fig. 13(a), the situation is different
with the high-speed case. The part printed without compensation suf-
fered from printing layer shifts during the printing process (as also
observed in [13]). The FBS approach without racking compensation
(Fig. 13(b)) provides sufficient compensation to remove the layer shifts
from the printed part. However, the quality of the part is still degraded
relative to the baseline case, as is evident from the waviness along the
edges of the part in Fig. 14 (that were also see in the simulation results of
Fig. 10). The proposed FBS with racking compensation rectifies both the
layer shifting and waviness due to racking leading much better print
quality (see Fig. 14).

To quantify the improvements to the high-speed case due to the
proposed approach, the acceleration of the gantry was measured using
the ADXL335 accelerometers positioned at P; and P, in Fig. 3(b) during
the print motion of the high-speed case. This measurement can be
thought of as a proxy for the position errors since the 3D printer is not

10

equipped with position sensors on the gantry or nozzle. Fig. 15 shows
the acceleration measurements for one side of the gantry as a function of
the position along the rectangular path of one layer during the print
motion for (1) an uncompensated part, (2) a part printed using FBS
without racking compensation and (3) a part printed using FBS with
racking compensation. (Note that the path of the measurements starts at
the {x, y} position of {60, 0} mm instead of {0, 0} as in Fig. 7.) The RMS
acceleration of the gantry during the three high-acceleration portions
highlighted in Fig. 15 are 3.63, 4.25, and 5.61 m/s? for the uncom-
pensated approach, 2.41, 2.62, and 2.63 m/s? for FBS without racking
compensation, and 1.10, 1.04, and 2.21 m/s® for FBS with racking
compensation. These data indicate that the additional acceleration
created by racking in the uncompensated trajectory and the trajectory
using FBS without racking compensation are significantly reduced by
the proposed racking compensation approach, leading to greater posi-
tional accuracy.

To further quantify how the racking errors affect the final component
for the high-speed case, we printed 15 copies of the rectangular prism
using the three different compensation approaches (5 copies for each).
The width, w, of each of the 15 printed parts was measured at the left,
middle, and right side using Husky digital calipers (model# 1467 H, 10
um resolution) and compared to the desired width of wy 20 mm.
Fig. 16 shows a box-and-whisker plot of the absolute value of the width
error (Aw = |wg — w|) overlaid with the RMS width error, Aw,. The
proposed FBS controller with racking compensation improved the me-
dian Aw by 61% when compared to FBS without racking compensation,
from 210 ym to 80 ym, and by 78% when compared to no compensation
from 370 pm to 80 ym. The proposed controller also improved Aw,,; by
43% (216 um to 122 ym) and 68% (388 ym to 122 ym) compared to FBS
without racking compensation and no compensation, respectively. Note
that even though print quality depends on several factors (e.g., material,
extrusion rate, extrusion temperature, etc.), in the comparisons dis-
cussed above for the baseline and high-speed cases, all other factors are
maintained constant except for the compensation approach. Therefore,
the differences in print quality are primarily due to the effects of
compensation approach.
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5. Conclusion

H-frame 3D printer architectures hold potential to achieve higher
speeds and improved dynamic performance compared to traditional
serial stack 3D printers due to their use of stationary motors. However,
these benefits come at the cost of racking errors, caused by parasitic
torsional motions, which limit their static and dynamic accuracy. This
paper proposes a purely software-based approach for compensating
racking errors on H-frame 3D printers using the filtered B-splines (FBS)
feedforward controller that has been used to improve the performance of
3D printers in prior work [13,15,19]. However, to compensate racking
errors, the proposed FBS controller is designed to address coupled linear
parameter varying dynamics rather than decoupled linear time invariant
dynamics addressed in prior work. A decoupled approximation of the
proposed coupled FBS controller, which significantly reduces compu-
tational complexity with little or no sacrifice to error compensation
accuracy, is developed and validated analytically and numerically. The
decoupled FBS controller with racking compensation is benchmarked in
simulation and experiments on an H-frame 3D printer against the
standard FBS controller without racking compensation. Using the pro-
posed approach, racking errors are significantly reduced and a 43%
improvement in the shape accuracy of a high-speed printed part is
observed in experiments compared to the standard FBS controller.

A major practical benefit of the proposed software-based approach
for racking error compensation is that it reduces racking errors without
requiring mechanical modification of a 3D printer. Hence, it can be
applied to existing H-frame 3D printers. It can also be used to augment
other mechanical or software-based approaches for addressing racking
errors, like the use of stiffer guideways, counterweights, dampers, and

Appendix A. Lifted system representation of a digital filter

Consider filter p, input signal u, and output signal y defined as:

P = {p-2 p-1 po p1 P2}
u = {up u ur},
y = {}’0 Vi yl}

Additive Manufacturing 47 (2021) 102290

feedback controllers. This paper shows the potential of software-based
compensation approaches to improve the dynamic performance of
parallel-axis motion-stage architectures (often used on 3D printers).
Future work will explore the application of the FBS approach to other
parallel-axis motion-stage architectures that suffer from coupled dy-
namics and parasitic errors, like delta 3D printers.
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(22)

Signals y and u and filter p are related by the convolution operator as follows:

y=ux*xp
From Egs. (22) and (23)

Yo = Pollo +p-1uy + poit
Yi = Ppiuo+ polty + p_ua,
Y2 = Ppaug + piuty + polz

This can be expressed in matrix form as

Yo Po P-1 P2 Uo
Yi| = |Pt Po P U
Y2 P2 D Po U

(23)

(24

(25)

Note that the main diagonal element (p,) represents the influence of the current input on the current output; the first upper diagonal element (p-;)
represents the influence of the succeeding input on the current output and the second upper diagonal element (p-,) represents the influence of the
second succeeding input on the current output. Similarly, the first (p;) and second lower (p,) elements represent the influence of the first and second
preceding inputs on the current output, respectively. Hence, the discrete time (or 2) transform of p obtained from Eq. (25) is given by

Pzt pizt +pol +pad +pad

which is in accordance with the time-domain definition given in Eq. (22).

(26)

Appendix B. Standard implementation of limited-preview filtered B-splines approach

This appendix presents a brief discussion of the limited-preview filtered B-splines approach. For more details, interested readers can refer to [13].
The limited-preview FBS approach aims to generate optimal feedforward control inputs in sequential windows (batches) of the desired trajectory xg4.
Since x4 is not assumed to be fully known a priori, an un-normalized and open-ended knot vector is used and defined as
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_ { 0, 0<j<m @7)

STV (G-—mLT,, j<m+1

where j and m are as defined in Section 3, and L > 1 represents the uniform spacing of the knot vector elements as an integer multiple of the sampling
time T;. With the un-normalized knot vector, N;, is expressed as a function of time t by replacing £ with t and g with g; in Eq. (5), and the function is

sampled at tp, = kT, to formulate N as in Eq. (4). The tracking problem is solved in batches as
_ ep Xqp N 0 0[P
e=x;—Npe e | = [Xec| = [Nec Nc 0 Pc (28)
€r Xy F 0 Ne Ne| [Pe

where subscripts 'P’, ’C’, and "F’ denote the past, current, and future batches, respectively, and the bar on the matrices and vectors indicates that the
impulse response of the transfer function used for filtering the B-splines is truncated. Using local least squares, the optimal coefficients of the current
batch can be computed as

o
Pc = (NZ;NC> Né <Xd.C - NPcﬁp) (29)

where p, denotes the coefficients calculated in the last batch. Note that the information from the future batch is not considered while calculating
coefficients for the current batch. Also note that the matrix N¢ can be pre-inverted once and applied to all batches.

The dimensions of the current window are defined by L¢ and n¢, where L is the number of trajectory points considered in the current batch and n¢
is the number of B-spline coefficients. Note that although n¢ coefficients are computed, only n,, are updated in each window (see Fig. B.1).

N (< ]Vj,m R
N [Npp " ie— nc—

. nup |

NPC I !
up

NCF N

Fig. B1. Illustration for LPFBS.

Next

Appendix C. Limited-preview filtered B-splines for coupled LPV controller

From Egs. (16) and (28), a natural extension of LPFBS can be made for the coupled LPV system. The tracking error is given by

o €p Tap _Nr.P _0 0 Prp
3 —Nip,o [€c| = [Tac| = |Npc N 0 P.c (30)
€.F Tar N.cr N P.r
wherery = [x4 yq ]T, and the subscript r denotes matrices and vectors related to ry. Expanding the tracking error of the current batch as
B B P.r
— X4,c Nipc 0 Nic 0 ﬁyAP
ec = - = — l R 31
< { Yac } Dy Nxe rc Nypc Dy, CNxe ¢ Nyc BX.C (31)
Pyc

the coefficients for the current batch are calculated as

_ t _
|:gx.C:| - |:Xd‘C:| |:ExAP:| . (32)
Pyc Yac Pyp
The coefficients in the decoupled approximation can be calculated sequentially. First, we calculate p, . using p in Eq. (29) applied to the x-axis,
and use the obtained coefficients to obtain p, ; as

NXC _0
D, Noc Nye

X4c

Ny 0
D NXB PC Ny,PC

Xd,pC

12
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- — — -
Pc =N ¢ (Yac — DrypeNaopcPep + Dy NuocPrc) — NypeDyp)-
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