
Algorithms for Heavy-Tailed Statistics: Regression, Covariance
Estimation, and Beyond

Yeshwanth Cherapanamjeri

U.C. Berkeley

USA

yeshwanth@berkeley.edu

Samuel B. Hopkins

U.C. Berkeley

USA

hopkins@berkeley.edu

Tarun Kathuria

U.C. Berkeley

USA

tarunkathuria@berkeley.edu

Prasad Raghavendra

U.C. Berkeley

USA

raghahvendra@berkeley.edu

Nilesh Tripuraneni

U.C. Berkeley

USA

nilesh_tripuraneni@berkeley.edu

ABSTRACT
We study polynomial-time algorithms for linear regression and co-

variance estimation in the absence of strong (Gaussian) assumptions

on the underlying distributions of samples, making assumptions

instead about only finitely-many moments. We focus on how many

samples are required to perform estimation and regression with

high accuracy and exponentially-good success probability in the

face of heavy-tailed data.

For covariance estimation, linear regression, and several other

problems in high-dimensional statistics, estimators have recently

been constructed whose sample complexities and rates of sta-

tistical error match what is possible when the underlying dis-

tribution is Gaussian, but known algorithms for these estima-

tors require exponential time. We narrow the gap between the

Gaussian and heavy-tailed settings for polynomial-time estima-

tors with: (a) a polynomial-time estimator which takes 𝑛 samples

from a 𝑑-dimensional random vector 𝑋 with covariance Σ and pro-

duces Σ̂ such that in spectral norm ∥Σ̂ − Σ∥2 ≤ 𝑂̃ (𝑑3/4/
√
𝑛) w.p.

1 − 2
−𝑑

where the information-theoretically optimal error bound

is 𝑂̃ (
√
𝑑/𝑛), while previous approaches to polynomial-time algo-

rithms were stuck at 𝑂̃ (𝑑/
√
𝑛) and (b) a polynomial-time algorithm

which takes 𝑛 samples (𝑋𝑖 , 𝑌𝑖 ) where 𝑌𝑖 = ⟨𝑢,𝑋𝑖 ⟩ + 𝜀𝑖 where both

𝑋 and 𝜀 have a constant number of bounded moments and pro-

duces 𝑢 such that the loss ∥𝑢 − 𝑢∥2 ≤ 𝑂 (𝑑/𝑛) w.p. 1 − 2
−𝑑

for any

𝑛 ≥ 𝑑3/2 poly log(𝑑). This (information-theoretically optimal) error

is achieved by inefficient algorithms for any 𝑛 ≫ 𝑑 , while previous

approaches to polynomial-time algorithms suffer loss Ω(𝑑2/𝑛) and
require 𝑛 ≫ 𝑑2.

Our algorithms make crucial use of degree-8 sum-of-squares

semidefinite programs. Both apply to any 𝑋 which has constantly-

many certifiably hypercontractive moments. We offer preliminary

evidence that improving on these rates of error in polynomial time
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is not possible in the median of means framework our algorithms

employ. Our work introduces new techniques to high-probability

estimation, and suggests numerous new algorithmic questions in

the following vein: when is it computationally feasible to do statistics

in high dimensions with Gaussian-style errors when data is far from

Gaussian?
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1 INTRODUCTION
Much work in theoretical computer science on algorithms for high-

dimensional learning and statistics focuses on the dependence of

rates of error (in estimation, regression, PAC learning, etc.) on the

number of samples 𝑛 given to a learning/regression/estimation al-

gorithm and the dimension/number of features 𝑑 of those samples
1
.

In statistics it is also of fundamental importance to understand the

dependence on the level of confidence 1 − 𝛿 – predictions and esti-

mates made from samples are most useful if they come with small

confidence intervals. Classical estimators for elementary estima-

tion and regression problems often have error rates 𝑟 (𝑛,𝑑, 𝛿) with
far-from-optimal dependence on 𝛿 unless strong assumptions are

made on the underlying distribution of samples. In this work, we

study algorithms for high-dimensional statistics without strong

(sub-Gaussian) assumptions, focusing on achieving small errors

with high probability in polynomial time.

1
For formal theorem statements and detailed proofs of results we refer the reader to

our full version in arXiv 1912.11071.
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Consider a prototypical estimation problem: the goal is to take

independent samples 𝑋1, . . . , 𝑋𝑛 ∼∼ 𝑝𝜃 , where 𝑝𝜃 is a member

of a family of 𝑑-dimensional probability distributions indexed by

parameters 𝜃 and find
ˆ𝜃 such that ∥𝜃 − ˆ𝜃 ∥ ≤ 𝑟 with probability

1 − 𝛿 for some norm ∥ · ∥ and some rate 𝑟 (𝑛,𝑑, 𝛿). If we make only

a weak assumption on 𝑝𝜃 – e.g. that it has a small number of finite

moments – then the rates 𝑟 (𝑛,𝑑, 𝛿) achieved by classical approaches
are typically exponentially-far from optimal with respect to 𝛿 (i.e.

𝑟 (𝑛,𝑑, 𝛿) scales like 1/poly(𝛿) rather than log(1/𝛿)).
Since at least the 1980s it has been known that in low-

dimensional settings (e.g. 𝑑 = 1) there are estimators for basic prob-

lems like estimating the mean which achieve rates 𝑟 (𝑛, 𝛿) whose de-
pendence on 𝛿 under such weak assumptions is comparable to that

of classical estimators (the empirical mean) under (sub)-Gaussian

assumptions (up to constants). For instance, the median of means

estimator of the mean achieves the same 𝑟 (𝑛, 𝛿) as the empirical

mean does in the Gaussian setting but assuming only that 𝑝𝜃 has

finite variance [AMS99a, JVV86, NY83b]. This immediately proved

useful in streaming algorithms [AMS99a].

Achieving similar guarantees for large dimensions 𝑑 is much

more challenging, even without asking for computationally-

efficient algorithms. A series of exciting developments in the last

decade in statistics, however, constructs estimators with 𝑟 (𝑛,𝑑, 𝛿)
matching the rates achievable in the Gaussian case by classical

approaches but with much weaker assumptions. Such estimators

are now known for high dimensional mean estimation, covariance

estimation, (sparse) linear regression, and more [LM19b]. Unlike

their one-dimensional counterparts and classical approaches, how-

ever, naive algorithms to compute this new generation of optimal

estimators take time exponential in 𝑛,𝑑 , or both. This suggests a key

question applying to a wide range of estimation, regression, and

learning problems:

Are there efficiently computable estimators achieving

optimal 𝑟 (𝑛,𝑑, 𝛿) under weak assumptions (like finitely-

many bounded moments) on underlying data?

Recent work in algorithms shows that such optimal and computa-

tionally efficient estimators do exist for the problem of estimating

the mean of a random vector 𝑋 under only the assumption that 𝑋

has finite covariance [Hop18a, CFB19]. The resulting algorithms,

however, are heavily tailored to estimating the mean in ℓ2; although

they introduce useful techniques, it is unclear whether they suggest

any broader answers to the above.

In this work we tackle covariance estimation and linear re-

gression with these goals in mind. We contribute new algo-

rithms for both problems whose error rates 𝑟 (𝑛,𝑑, 𝛿) improve by

poly(𝑑, log(1/𝛿)) factors on the previous best polynomial-time algo-

rithms when the underlying data is drawn from a distribution with

only finitely-many bounded moments. Unlike the situation in mean

estimation, however, our estimators do not achieve information-

theoretically optimal error rates. We offer evidence (by constructing

certain moment-matching distributions) that no efficient algorithm

using the median-of-means approach we use here can significantly

improve on rates achieved by our algorithms. This suggests the pos-

sibility that the computational landscape for covariance estimation

and regression is more complicated than for mean estimation: in

particular, it could be that these problems suffer from a novel kind

of tradeoff between computational efficiency and error rate in the

small 𝛿 regime. (By contrast in the regime 𝛿 = Ω(1) classical esti-
mators typically have 𝑟 (𝑛,𝑑, 𝛿) which is information-theoretically

optimal with respect to 𝑛,𝑑 and are also efficiently computable.)

Whether there is indeed such a tradeoff is a fascinating open ques-

tion.

Why Weak Assumptions? We study polynomial-time algorithms

for high-dimensional statistics under weak assumptions on un-

derlying data. Both linear regression and covariance estimation

boast well-studied and computationally-efficient algorithms which

achieve statistically optimal rates 𝑟 (𝑛,𝑑, 𝛿) with respect to both 𝑛

and 𝛿 under (sub)-Gaussian assumptions on 𝑋 (and 𝜀): ordinary

least squares regression and the empirical covariance, respectively.

These estimators are among the oldest in statistics: Gauss and Le-

gendre both studied the least-squares estimator for linear regression

around 1800 [Wik19a] and study of the empirical covariance dates

at least to Pearson’s invention of principal component analysis

[Pea01].

However, data cannot assumed to be Gaussian in every situation.

In this paper we only assume boundedness conditions on a small

number of moments of a random vector 𝑋 (generally 8th moments).

Under such assumptions, the error rates of the empirical covariance

and ordinary least squares grow polynomially in 1/𝛿 , while optimal

error rates are logarithmic in 1/𝛿 . Beyond allowing us to address

basic questions about which error rates are achievable in polyno-

mial time, working under weak assumptions makes our algorithms

potentially useful in a variety of settings where classical estimators

break down.

First, our algorithms are useful in statistical settings involving

heavy-tailed data – data drawn from distributions with only a finite

number of boundedmoments. Large networks, for instance, are well

known to generate heavy-tailed data, often following a power law

distribution. Other common heavy-tailed distributions in statistics

include the Student’s 𝑡 distribution, and the Log-Normal distribution

– the latter describes a number of real-world phenomena, such as

the distribution of English sentence lengths, the distribution of ele-

ments in the Earth’s crust, the distribution of species’ abundances,

and more [Wik19b]. Even when data are not known to follow a par-

ticular heavy-tailed distribution, the conservative statistician may

wish to avoid a Gaussian assumption if also lacking good reason to

believe that the underlying population is Gaussian-distributed.

Second, it is often convenient to use algorithmic primitives for

basic tasks like covariance estimation and regression as parts of

more sophisticated algorithms. Algorithms for the complicated

high-dimensional statistics problems often studied in theoretical

machine learning can have many moving parts. In such situations,

the samples 𝑋1, . . . , 𝑋𝑛 may themselves be the output of a complex

random process or another “upstream” algorithm. This can make

it it difficult or impossible to guarantee that 𝑋1, . . . , 𝑋𝑛 satisfy sub-

Gaussian concentration properties, but it can be much easier to

establish that the outputs of such upstream algorithms satisfy the

kind of weak finite-moment bounds required by our algorithms.

Indeed, one of the first uses of the median of means technique we

employ here (for estimation of frequency moments in a streaming

setting) was for exactly this purpose [AMS99b].
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1.1 Results
“Nice” distributions. Since the main goal of our work is to achieve

Gaussian-style error bounds while avoiding Gaussian assumptions

in high-dimensional parameter estimation, before we lay out our re-

sults, wemust describe the class of distributions to which they apply.

Obtaining Gaussian-style error rates does require some assump-

tions on the underlying random variables, for information-theoretic

reasons – typically the existence of 2nd moments is a minimal re-

quirement [C
+
12]. (For covariance estimation this becomes 4th

moments of a random vector 𝑋 , which are the 2nd moments of the

random matrix 𝑋𝑋⊤
.)

In this paper we make an assumption called certifiable hyper-

contractivity: we assume that as a polynomial in variables 𝑢 =

(𝑢1, . . . , 𝑢𝑑 ), there exists a universal constant 𝐿 such that,

𝐿2 · (E⟨𝑋,𝑢⟩2)4 − E⟨𝑋,𝑢⟩8 .
is a sum of squares of polynomials in 𝑢.2 This in particular implies

the more standard 8th moment bound E⟨𝑋,𝑢⟩2 ≤ 𝑂 (E⟨𝑋,𝑢⟩8)1/4.
We often call (2, 8) certifiably-hypercontractive distributions nice.
We emphasize that niceness is an “infinite-sample” assumption: it

concerns population moments E𝑋 ⊗8
.

Certifiable hypercontractivity holds for numerous interesting

heavy-tailed distributions for which previous polynomial-time al-

gorithms could not have achieved Gaussian-style error guarantees.

For instance, any product of univariate distributions with bounded

8-th moments, and any linear transformation thereof (in partic-

ular for multivariate 𝑡-distributions) is certifiably hypercontrac-

tive. In fact, the certifiable hypercontractivity assumption has been

shown to hold for any distribution whose 8-th moments match

those of some strongly log-concave distribution [KSS18] (even if,

say, 9th moments do not exist). The certifiable hypercontractivity

assumption also underlies recent results in on polynomial-time

high-dimensional clustering of mixture models and several robust

parameter estimation problems [KSS18, HL18, KKM18].

1.1.1 Covariance Estimation. Covariance estimation is the follow-

ing simple problem. Given samples𝑋1, . . . , 𝑋𝑛 from a𝑑-dimensional

random vector with covariance Σ, find Σ̂ with the smallest possible

spectral norm error ∥Σ̂−Σ∥2. For simplicity, let us focus for now on

the setting that Tr Σ ≤ 𝑂 (𝑑) and ∥Σ∥2 ≤ 𝑂 (1) and 𝛿 = 2
−𝑑

. (Our

main theorem for covariance estimation handles the case of general

Σ and 𝛿 .) We also assume throughout that E𝑋 = 0; otherwise one

may replace 𝑋 with (𝑋 −𝑋 ′)/
√
2 for pairs of independent samples

𝑋,𝑋 ′
without affecting the covariance and losing only a factor of 2

in the sample complexity.

Consider the Gaussian setting𝑋 ∼ N(0, Σ). In this case, classical

results offer the following type of concentration bound for the

empirical covariance Σ = 1

𝑛

∑
𝑖≤𝑛 𝑋𝑖𝑋

⊤
𝑖

of 𝑛 independent samples:

for a universal constant 𝐶 ,

P

(

Σ − Σ



2
≥ 𝐶

(√
𝑑

𝑛
+ 𝑡

))
≤ exp(−𝑡2𝑛) . (1.1)

(This bound becomes meaningful only when 𝑛 ≥ 𝑑 .) Note that by

Eq. (1.1),



Σ − Σ



2
≤ 𝑂 (

√
𝑑/𝑛) with probability 1 − 2

−𝑑
.

2
Our algorithms also work if instead the inequality E⟨𝑋,𝑢 ⟩8 ≤ (E⟨𝑋,𝑢 ⟩2)4 has

an SoS proof of higher degree, at a commensurate cost in running time to allow for

higher-degree SoS relaxations.

Recent work by Mendelson and Zhivotovskiy [MZ18], building

on earlier works by Lugosi and Mendelson [LM18a] shows that

there is an estimator Σ̂ for the covariance Σwhichmatches this error

guarantee under only the assumption that 𝑋 has hypercontractive

4-th moments. (In all the following informal theorem statements

we assume Tr Σ ≤ 𝑂 (𝑑), ∥Σ∥2 ≤ 𝑂 (1).)

Theorem 1.1 ([MZ18]). There is an estimator Σ̂ = Σ̂(𝑋1, . . . , 𝑋𝑛)
which given 𝑛 independent samples from a random variable 𝑋 with

covariance Σ and which is (2, 4)-hypercontractive has the guarantee

Σ̂ − Σ



2
≤ 𝑂

(√
𝑑 log𝑑

𝑛

)
with probability at least 1 − 2

−𝑑 .

Up to logarithmic factors, this rate of error is information-

theoretically optimal, but no algorithm is known which achieves

this guarantee in polynomial time. Prior to this work, the strongest

result known for polynomial-time algorithms was weaker by a

poly(𝑑) factor:

Theorem 1.2 ([MW18]). Under the same hypotheses as Theo-

rem 1.1 there is a polynomial-time algorithm which finds Σ̂ such that

∥Σ̂ − Σ∥2 ≤ 𝑂 (𝑑/
√
𝑛) with probability at least 1 − 2

−𝑑
.

Our main result for covariance estimation in the setting Tr Σ ≈
𝑑, ∥Σ∥ ≈ 1 is the following.

Theorem 1.3 (Main Theorem on Covariance Estimation, In-

formal). There is an algorithm with running time poly(𝑛,𝑑) which
when given 𝑛 i.i.d. samples 𝑋1, . . . , 𝑋𝑛 from a nice random vector 𝑋

in 𝑑 dimensions returns an estimate Σ̂ of the covariance Σ of 𝑋 such

that 

Σ̂ − Σ



2
≤ 𝑂̃

(
𝑑3/4
√
𝑛

)
with probability at least 1 − 2

−𝑑 .

Here 𝑂̃ (·) hides logarithmic factors in the dimension 𝑑 .

The general statement of our main theorem obtains an error

rate which avoids explicit dependence on the ambient dimension

𝑑 (except for logarithmic factors); instead, it depends only on the

"effective" rank sr(Σ) =
Tr(Σ)
∥Σ∥2 ≤ 𝑑 and the operator norm ∥Σ∥2.

Thus if 𝑋 lies in or near a low-dimensional subspace, our algorithm

exploits this additional structure to estimate Σ with fewer samples.

Finally, we note that our algorithm assumes access to a small

number of additional parameters: bounds on Tr Σ, ∥Σ∥
2
, and (as

with all the algorithms described in this paper beyond empirical

averages) in the case of general confidence levels 1 − 𝛿 it depends

on the value of 𝛿 . The latter dependence may be intrinsic: it is not

information-theoretically possible to obtain Gaussian-style error

rates in the heavy-tailed setting with estimators which do not

depend on 𝛿 with minimal moment assumptions [C
+
12]. We expect

that techniques similar to those of [MZ18] can avoid the dependence

on Tr Σ, ∥Σ∥
2
by estimating them from samples.

The improvement from 𝑑/
√
𝑛 to 𝑑3/4/

√
𝑛 moves the algorithmic

state of the art for covariance estimation closer to information-

theoretic optimality. Of course the possibility of an information-

theoretically optimal covariance estimation algorithm is tantalizing,

but just as interesting from a complexity viewpoint is the possibility

that 𝑑3/4/
√
𝑛 cannot be improved upon in polynomial time. In

Section 1.1.4 we discuss evidence in this direction.
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1.1.2 Linear Regression. We study the following classical linear

regression problem. Let 𝑓 ∗ : R𝑑 → R be a linear function – that is

𝑓 ∗ (𝑥) = ⟨𝑓 ∗, 𝑥⟩ for some vector 𝑓 ∗ ∈ R𝑑 . Let 𝑋 be a 𝑑-dimensional

mean-zero random vector, and let 𝜀 be an R-valued random variable

with E 𝜀 = 0. To avoid a preponderance of parameters, in this paper

we focus on the case that E𝑋𝑋⊤ = Id and E 𝜀2 = 1.
3

The goal is to take 𝑛 independent samples of the form (𝑋𝑖 , 𝑌𝑖 ),
where 𝑌𝑖 = 𝑓 ∗ (𝑋𝑖 ) + 𝜀𝑖 , and find a linear function

ˆ𝑓 such that

∥ 𝑓 ∗ − ˆ𝑓 ∥ is as small as possible. Here the norm ∥ 𝑓 ∗ − ˆ𝑓 ∥ is the

2-norm induced by 𝑋 ; that is, (E(𝑓 ∗ (𝑋 ) − ˆ𝑓 (𝑋 ))2)1/2. However,
since we assume E𝑋𝑋⊤ = Id, this is identical to the Euclidean

norm of 𝑓 ∗ − ˆ𝑓 considered as a vector of coefficients.

In most respects the situation for linear regression is similar

to that for covariance estimation. The classical algorithm is em-

pirical risk minimization, also known in this setting as ordinary

least squares regression (OLS). The algorithm is simple: given

(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛), output ˆ𝑓 which minimizes the empirical loss

E𝑖∼[𝑛] (𝑓 (𝑋𝑖 ) − 𝑌𝑖 )2. This minimization problem is convex, so
ˆ𝑓

can be obtained in polynomial time; it also admits a closed-form

linear-algebraic solution.

Analogously to the empirical covariance in the previous section,

when 𝑋 and 𝜀 are Gaussian, OLS achieves small error with high

probability. Concretely, one has the following:
4

∥ ˆ𝑓OLS − 𝑓 ∗∥2 ≤ 𝑂

(
𝑑

𝑛

)
with probability 1− 2

−𝑑
so long as 𝑛 ≫ 𝑑 .

We focus for now on the setting of regression with confidence

1 − 2
−𝑑

: this regime provides a useful litmus test because it is the

highest probability for which the 𝑂 (𝑑/𝑛) guarantee holds for OLS.
When 𝑋 or 𝜀 has only a finite number of bounded moments, the

error bound on ∥ ˆ𝑓OLS − 𝑓 ∗∥ degrades badly, becoming
exp(𝑂 (𝑑))

𝑛

for confidence 1 − 2
−𝑑

.

Recent work by Lugosi and Mendelson [LM16] shows that a

guarantee matching that of OLS in the Gaussian setting is possible

without Gaussian assumptions. Concretely we have the following:

Theorem 1.4 ([LM16], Informal). There exists an (exponential-

time) estimator
ˆ𝑓 which given 𝑛 independent samples

(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛) where 𝑌 = 𝑓 ∗ (𝑋 ) + 𝜀, E𝑋𝑋⊤ = Id, 𝑋

is (2, 4)-hypercontractive, and E 𝜀2 = 1, has
5


 ˆ𝑓 − 𝑓




2 ≤ 𝑂

(
𝑑

𝑛

)
with probability 1 − 2

−𝑑
so long as 𝑛 ≫ 𝑑 .

Once again, the state of the art for polynomial-time algorithms is

somewhat worse (though still far better than OLS). Until this paper,

the polynomial-time algorithm with smallest error guarantees in

the 1 − 2
−𝑑

probability regime were achieved by an algorithm of

[HS16b].

3
It is trivial to show that our results also work if E 𝜀2 = 𝜎2

, with appropriate depen-

dence of the error rates on 𝜎 . We also believe that our techniques will be useful in

designing algorithms which achieve small errorE( ˆ𝑓 (𝑋 )− 𝑓 ∗ (𝑋 ))2 whenE𝑋𝑋⊤ = Σ
for general Σ, but we defer this challenge to future work. If 𝑋 is not mean zero then it

can be replaced with𝑋 −𝑋 ′
for pairs of samples 𝑋,𝑋 ′

, so this assumption is without

loss of generality.

4
It is traditional here to state bounds on ∥ ˆ𝑓 − 𝑓 ∥2 rather than ∥ ˆ𝑓 − 𝑓 ∥; note that the
bound𝑂 (𝑑/𝑛) represents the so-called fast rate for regression – in this paper we are

exclusively concerned with fast rates, rather than the slow rate𝑂 (
√
𝑑/𝑛) .)

5
The results of [LM16] apply to a wide variety of convex function classes rather than

just linear regression; we state here the special case for linear regression.

Theorem 1.5 ([HS16b], Informal). There is a polynomial-time

algorithm which computes an estimator
ˆ𝑓 which given 𝑛 i.i.d. samples

(𝑋𝑖 , 𝑌𝑖 ) where 𝑋 is (2, 4 + 𝛿)-hypercontractive for some 𝛿 > 0 and

𝑌 = 𝑓 ∗ (𝑋 ) + 𝜀 for some linear function 𝑓 ∗ for a random variable 𝜀

with E 𝜀 = 0 and E 𝜀2 = 1 achieves


 ˆ𝑓 − 𝑓




2 ≤ 𝑂

(
𝑑2

𝑛

)
with probability 1 − 2

−𝑑
so long as 𝑛 ≫ 𝑑2 .

Note that the error guarantees of Theorem 1.5 are weaker than

what is information-theoretically possible (Theorem 1.4) in two

key ways: first of all, the error scales with 𝑑2 rather than with

𝑑 , and second, the error rate does not kick in until 𝑛 ≫ 𝑑2. Our

main theorem on regression completely fixes the first problem

and partially fixes on the second (but does not reach information-

theoretic optimality), for nice 𝑋 .

Theorem 1.6 (Main Theorem on Linear Regression, Infor-

mal). There is an algorithm with running time poly(𝑛,𝑑) with the

following guarantees. Suppose 𝑋 is nice, 𝜀 is a univariate random

variable with E 𝜀2 = 1 and E 𝜀 = 0, and 𝑓 ∗ is a linear function. Given
𝑛 i.i.d. samples (𝑋𝑖 , 𝑌𝑖 ) of the form 𝑌𝑖 = 𝑓 ∗ (𝑋𝑖 ) + 𝜀𝑖 , the algorithm

finds a linear function
ˆ𝑓 such that


 ˆ𝑓 − 𝑓 ∗




2 ≤ 𝑂

(
𝑑

𝑛

)
with probability 1 − 2

−𝑑

so long as 𝑛 ≫ 𝑑3/2 · (log𝑑)𝑂 (1) .

Our main result (and all the prior work) gracefully tolerates

confidence levels other than 1 − 2
−𝑑

.

1.1.3 Faster Algorithms for Mean Estimation in General Norms.
Our final algorithmic result concerns the problem of estimating

the mean of a random vector 𝑋 on R𝑑 with respect to an arbitrary

norm ∥ · ∥. Our starting point is the following theorem of Lugosi

and Mendelson which constructs an estimator of the mean with

respect to any norm ∥ · ∥ on R𝑑 . In such a general setting the

question of information-theoretic optimality is somewhat murky.

Nonetheless, for many natural norms (ℓ2 and spectral norm, for

instance) one may see that the guarantees of their estimator match

those of the empirical mean in the Gaussian setting. We refer the

reader to [LM18a] for further interpretation of the guarantees of

the following theorem.

Theorem 1.7 ([LM18a], Informal, Id-Covariance case). For

every 𝑛,𝑑 ∈ N and 𝛿 > 2
−𝑛

and norm ∥ · ∥ on R𝑑 there is an estimator

with the following guarantee. Given 𝑛 i.i.d. samples 𝑋1, . . . , 𝑋𝑛 of a

random vector 𝑋 with mean 𝜇 and covariance Id, it finds 𝜇 such that

∥𝜇 − 𝜇∥ ≤ 1

√
𝑛
·𝑂

(
E






∑
𝑖≤𝑛

𝜎𝑖𝑋𝑖






 + 𝑅
√
log(1/𝛿)

)
with probability at least 1 − 𝛿

where 𝜎1, . . . , 𝜎𝑛 ∼ {±1} are independent signs and 𝑅 =

sup∥𝑥 ∥∗=1 ∥𝑥 ∥2 is the norm-equivalence constant between the dual

norm ∥ · ∥∗ and ℓ2. Note that the first term is essentially the expected
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error achieved by the empirical mean for the norm ∥ · ∥, and in partic-
ular is independent of 𝛿 , while the second term determines the decay

of the bound as 𝛿 becomes small.
6

The naive algorithm to compute the estimator 𝜇 from Theo-

rem 1.7 requires brute-force search for a point in a non-convex

set in 𝑑 dimensions, taking exp(Ω(𝑑)) time. We slightly modify

the estimator from Theorem 1.7 and show that subject to a mild

computational assumption on the norm ∥ · ∥ it can be computed by

an algorithm whose running time is exponential only in log(1/𝛿)
rather than in 𝑑 .

Theorem 1.8 (Informal, Id-Covariance Case). With the same

setting and guarantees as Theorem 1.7, under the additional assump-

tion that there is a polynomial-time separation oracle for the dual ball

of ∥ · ∥, there is an algorithm to compute 𝜇 in time poly(𝑛,𝑑, 1/𝛿).

1.1.4 Roadblock to Improved Error Rates: Single-Spike Block Mix-
tures. Our main results on covariance estimation and linear regres-

sion (Theorems 1.3 and 1.6) push the state of the art in terms of error

rates achievable for heavy-tailed statistics in polynomial time, but

they do not achieve information-theoretic optimality. Our covari-

ance estimation algorithm in the setting of Tr Σ ≤ 𝑂 (𝑑), ∥Σ∥
2
≤

𝑂 (1) achieves error ∥Σ̂ − Σ∥2 ≤ 𝑂̃ (𝑑3/4/
√
𝑛), while in exponen-

tial time it is possible to achieve 𝑂̃ (
√
𝑑/𝑛). (Similarly, our linear

regression algorithm requires 𝑛 ≫ 𝑑3/2 rather than 𝑛 ≫ 𝑑 .)

It is a fascinating open problem to understand whether these

gaps can be closed. We offer here some evidence that this is unlikely

to be possible with techniques in the present paper. We focus on

covariance estimation – the relation to linear regression is more

subtle. The key subroutine in our covariance estimation algorithm

is an algorithm for the following problem:

Problem 1.9 (Find High-Variance Direction). Given

Σ1, . . . , Σ𝑑 ∈ R𝑑×𝑑 , with Σ𝑖 ⪰ 0, find a unit vector 𝑥 ∈ R𝑑 such that

⟨𝑥, Σ𝑖𝑥⟩ ≥ 𝑟 for at least 𝑑/4 matrices Σ𝑖 , or certify that none exists.

In fact, Problem 1.9 must be solved when Σ1, . . . , Σ𝑑 are empiri-

cal covariance matrices by any algorithm performing covariance

estimation using the median-of-means framework, which is the

dominant approach in constructing high-dimensional estimators

with optimal 𝑟 (𝑛,𝑑, 𝛿) (even ignoring running time considerations).

It will have to wait until Section 1.2 to see in more detail why an

algorithm solving Problem 1.9 is useful for covariance estimation.

For now, let us note that our subroutine solves Problem 1.9 when

Σ𝑖 is the empirical covariance of 𝑛/𝑑 samples from the heavy-tailed

distribution whose covariance we are estimating, and the Σ𝑖 ’s are
all independent. Problem 1.9 gets easier as 𝑟 gets larger, but it turns

out that the value of 𝑟 for which we can solve it translates directly to

the error rate of our covariance estimation algorithm. Summarizing:

in the case of estimating the covariance Σ of a random variable 𝑋

with Tr Σ ≈ 𝑑, ∥Σ∥2 ≈ 1, our key subroutine solves Problem 1.9 with

Σ𝑖 being the empirical covariance of 𝑛/𝑑 of the samples 𝑋1, . . . , 𝑋𝑛

and 𝑟 ≤ 𝑂̃ (𝑑3/4/
√
𝑛).

Improving the error rates of our algorithm (or any other median-

of-means-based algorithm) would thus seem to require solving

6
In [LM18a] this theorem is stated with an extra term in the error guarantee (which is

typically dominated by the first term); we provide a simplified proof which also shows

that the additional term is unnecessary.

Problem 1.9 with smaller 𝑟 . To investigate whether this may be

possible in polynomial time, we consider an easier variant, which

we call the single-spike block mixtures problem. It is easier in two

respects: it is a decision problem rather than a search problem,

and the underlying random variable 𝑋 is distributed in a known,

Gaussian fashion. (Note that it appears no longer relevant that

we were initially interested in heavy-tailed random vectors – we

believe computational hardness for Problem 1.9 appears even when

Σ𝑖 ’s are empirical covariances formed from Gaussian samples.)

Definition 1.10 (Single-Spike Block Mixtures). Let 𝑑,𝑚 ∈ N and

1 > 𝜆 > 0. In the single-spike block mixtures testing problem the

goal is to distinguish, given vectors 𝑦1, . . . , 𝑦𝑚𝑑 ∈ R𝑑 , between the

following two cases:

null: 𝑦1, . . . , 𝑦𝑚𝑑 ∼ N(0, Id) i.i.d.
planted: First 𝑥 ∼ {±1/

√
𝑑}𝑑 and 𝑠1, . . . , 𝑠𝑑 ∼ {±1}. Then,

𝑦1, . . . , 𝑦𝑚 ∼ N(0, Id + 𝑠1𝜆𝑥𝑥
⊤) and 𝑦𝑚+1, . . . , 𝑦2𝑚 ∼

N(0, +𝑠2𝜆𝑥𝑥⊤), and so forth. That is, each block of vectors

𝑦𝑖𝑚, . . . , 𝑦 (𝑖+1)𝑚−1 has either slightly larger variance in the

𝑥 direction (if 𝑠𝑖 = 1) or slightly lesser variance (if 𝑠𝑖 = −1)
than they would in the null case.

It turns out that so long as 𝜆 ≫ 1/
√
𝑚 =

√
𝑑/𝑛 (where 𝑛 = 𝑚𝑑)

it is possible to distinguish null from planted in exponential

time. (This is closely related to the fact that heavy-tailed mean

estimation can be solved with error rate 𝑂̃ (
√
𝑑/𝑛).) But what about

polynomial time? A consequence of our main subroutine is the

following theorem:

Theorem 1.11 (Informal). If 𝜆 ≥ (𝑑3/4/
√
𝑛) poly log(𝑑,𝑚) then

there is a polynomial-time algorithm which distinguishes null from

planted with high probability.

We make the following conjecture regarding optimality of this

algorithm.

Conjecture 1.12. If 𝜆 ≤ 𝑑3/4−Ω (1)/
√
𝑛 then no polynomial time

algorithm solves the single-spike block mixture problem.

In support of Conjecture 1.12, we prove a lower bound against

a certain class of restricted algorithms, called low degree tests. A

degree-𝐷 test is a function 𝑓 : R𝑑×𝑚𝑑 → R such that as a poly-

nomial deg 𝑓 ≤ 𝐷 and E𝑌=𝑦1,...,𝑦𝑚𝑑∼null 𝑓 (𝑌 ) = 0. We say the

test is successful if E𝑌∼planted 𝑓 (𝑌 )/(E𝑌∼null 𝑓 (𝑌 )2)1/2 → ∞ as

𝑑,𝑚 → ∞.

While such low degree tests (for 𝐷 relatively small – say at most

(𝑚𝑑)𝑜 (1) ) would seem to be a quite restrictive model compared to

the class of all polynomial time algorithms, it turns out that the ex-

istence of a successful low degree test solving a hypothesis testing

problem is a remarkably accurate predictor for the existence of any

polynomial time algorithm. For instance, successful low degree tests

(of logarithmic degree) appear exactly at the predicted computa-

tional thresholds for the planted clique problem (clique size Ω(
√
𝑛)),

the random 3-SAT problem ((number of variables)3/2) clauses), the
𝑘-community stochastic block model (the Kesten-Stigum threshold),

the sparse PCA problem (the 𝑘2 sample threshold) and beyond.

Lower bounds on low degree tests are technically distinct from but

conceptually similar to statistical query lower bounds. They are

also closely related to the pseudocalibration technique for proving
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lower bounds against SoS algorithms. For further discussion, see

[Hop18b, KWB19].

We rule out the existence of successful low degree tests for

𝐷 = (𝑚𝑑)𝑜 (1) when 𝜆 ≤ 𝑑3/4−Ω (1)/
√
𝑛. Obtaining an impossibil-

ity result for such large 𝐷 is relatively strong: in this low-degree

test model the typical proxy for polynomial time is 𝐷 of degree

logarithmic in the input size (in this case𝑚𝑑2).

Theorem 1.13 (Informal). If 𝜆 ≤ 𝑑3/4−Ω (1)/
√
𝑛 then there is no

successful degree (𝑚𝑑)𝑜 (1) test for the single-spike block mixtures

problem.

1.2 Techniques
For purposes of this technical overview, we focus on covariance

estimation. Our algorithm for linear regression employs broadly

similar ideas.

The Median of Means Framework. Let us first explain the basic

median-of-means trick in one dimension. Consider the problem of

estimating the mean 𝜇 ∈ R of a one-dimensional random variable

𝑋 from independent samples, and suppose E(𝑋 −𝜇)2 ≤ 1, but make

no further assumptions on 𝑋 . In this setting, the empirical mean

𝜇 =
∑𝑛
𝑖=1 𝑋𝑖 of 𝑛 independent samples has P( |𝜇 − 𝜇 | > 𝑡) ≤ 1/𝑡2𝑛

by Chebyshev’s inequality, and no tighter bound is possible. By

contrast, if 𝑋 were Gaussian, we would have the exponentially-

better bound P( |𝜇 − 𝜇 | > 𝑡) ≤ exp(−𝑡2𝑛/2).
The simplest median-of-means trick offers a family of estimators

𝜇𝛿 for each 𝛿 ≥ 2
−0.01𝑛

such that P( |𝜇𝛿−𝜇 | > 100

√
log(1/𝛿)/𝑛) ≤ 𝛿 .

First we place 𝑋1, . . . , 𝑋𝑛 into Θ(log(1/𝛿)) equal-size buckets. In
each bucket 𝑖 ≤ Θ(log(1/𝛿)) we let𝑍𝑖 be the average of the samples

in bucket 𝑖 . Then we let 𝜇𝛿 be the median of 𝑍1, . . . , 𝑍Θ(log(1/𝛿)) .
The analysis is a straightforward use of Chebyshev’s inequality

to show that each𝑍𝑖 has |𝑍𝑖−𝜇 | ≤ 𝑂 (
√
log(1/𝛿)/𝑛)with probability

at least 0.9, followed by a binomial tail bound ensuring that with

probability at least 1 − 𝛿 at least a 0.7 fraction of the 𝑍𝑖 ’s satisfy

this inequality. Then the key step: if more than half of 𝑍1, . . . , 𝑍𝑘
have distance at most 𝑟 to 𝜇, then so does their median.

Medians in High Dimensions. Extending this idea to high dimen-

sional settings requires surmounting several hurdles. The first one

is to design an appropriate high-dimensional notion of median.

In the last few years, however, the techniques to do this have be-

come relatively well understood in statistics [LM19b]. For example,

the key notion in recent heavy-tailed estimators of the mean of

a random vector in 𝑑 dimensions with respect to Euclidean dis-

tance is the following: for a set of points 𝑍1, . . . , 𝑍𝑘 ∈ R𝑑 and

𝑟 > 0, 𝑥 ∈ R𝑑 is an 𝑟 -median if for every unit direction 𝑢 we have

|⟨𝑍𝑖 , 𝑢⟩ − ⟨𝑥,𝑢⟩| ≤ 𝑟 for at least a 0.51-fraction of 𝑍1, . . . , 𝑍𝑘 . It

turns out that using the median of means trick with this notion

of median leads to an information-theoretically optimal estimator

of the mean in 𝑑 dimensions assuming only that the underlying

random vector has finite covariance.

For covariance estimation the appropriate notion of median was

first defined in [LM18a] and fully analyzed in [MZ18]. We will call

𝑀 an 𝑟 -median for matrices 𝑍1, . . . , 𝑍𝑘 if for all unit 𝑥 ∈ R𝑑 it

holds that |⟨𝑍𝑖 , 𝑥𝑥⊤⟩ − ⟨𝑀,𝑥𝑥⊤⟩| ≤ 𝑟 for at least a 0.51-fraction of

𝑍1, . . . , 𝑍𝑘 . Then (ignoring some technical details regarding trun-

cation of large samples) one may design a nearly information-

theoretically optimal covariance estimator for random vectors 𝑋

with bounded 4th moments as follows. Given samples𝑋1, . . . , 𝑋𝑛 , as

before, place them in ≈ log(1/𝛿) buckets. Let Σ𝑖 be the empirical co-

variance in bucket 𝑖 , and output an 𝑟 -median of Σ1, . . . , ΣΘ(log(1/𝛿))
for the least 𝑟 for which such an 𝑟 -median exists.

How to Compute a Median in High Dimensions. The next hurdle is

computational: naive algorithms to compute the medians described

above would seem to require exponential time in 𝑛 or 𝑑 . Hopkins

[Hop18a] uses the sum of squares method to compute the relevant

median for mean estimation in ℓ2. Our main technical contribution

for covariance estimation is an algorithm to compute the relevant

median for values of 𝑟 somewhat larger (hence making finding the

median easier) than information-theoretically optimal (but exponen-

tial time) algorithms would do. We stress that our algorithm only

outputs a valid 𝑟 -median when the 𝑋1, . . . , 𝑋𝑛 are sampled i.i.d.

from a nice distribution.

The key difficulty in computing a median is knowing when we

have found one. We first aim to solve a simpler certification problem.

Suppose given Σ1, . . . , Σ𝑘 which are the empirical covariances of

independent bucketed copies 𝑋1, . . . , 𝑋𝑛 of a random vector 𝑋 with

covariance Σ, and suppose also given Σ. How can we certify, for as

small a value of 𝑟 as possible, that Σ is an 𝑟 -median of Σ1, . . . , Σ𝑘?
That is, we aim to find a certificate that for all unit directions 𝑢

we have |⟨Σ𝑖 , 𝑢𝑢⊤⟩ − ⟨Σ, 𝑢𝑢⊤⟩| ≤ 𝑟 for at least a 0.51-fraction of

Σ1, . . . , Σ𝑘 . To leverage the power of the median-of-means trick to

obtain estimators whose error is small with high probability, we

need to successfully find such a certificate with high probability,

1 − 2
−𝑘

. (This need for a high-probability guarantee will play the

same role in the algorithmic and high-dimensional context as the

simple binomial concentration bound does in the one-dimensional

median-of-means estimator.)

To certify that Σ is an 𝑟 -median for Σ1, . . . , Σ𝑘 we start by setting

up an optimization problem in variables 𝑏1, . . . , 𝑏𝑘 ∈ {0, 1}𝑘 and

𝑢 ∈ R𝑑 with ∥𝑢∥2 = 1.

max

∑
𝑖≤𝑘

𝑏𝑖 s.t. 𝑏𝑖 ⟨Σ𝑖 − Σ, 𝑢𝑢⊤⟩ ≥ 𝑏𝑖𝑟, ∥𝑢∥2 = 1, 𝑏2𝑖 = 𝑏𝑖 . (1.2)

Notice that a feasible solution of value 0.52𝑘 to the above problem

corresponds to a subset of 0.52𝑘 of Σ1, . . . , Σ𝑘 and a unit direction

𝑢 such that for all Σ𝑖 in the subset, |⟨Σ𝑖 , 𝑢𝑢⊤⟩ − ⟨Σ, 𝑢𝑢⊤⟩| ≥ 𝑟 .

Ruling out such solutions (i.e. placing an upper bound on the value

of the optimization problem) would thus certify that Σ is an 𝑟 -

median (ignoring some small technical issues about the sign of

⟨Σ𝑖 − Σ, 𝑢𝑢⊤⟩).
We will pass to an efficiently-computable convex relaxation of

the optimization problem above. In particular, we use the degree-

8 Sum of Squares (SoS) semidefinite programming relaxation of

Eq. (1.2). Sum of Squares semidefinite programs are convex re-

laxations of polynomial optimization problems – they have seen

extensive recent use in algorithm design for high-dimensional sta-

tistics. (See e.g. [RSS18a, Hop18b].) Roughly speaking, to show that

SoS SDPs can efficiently certify a bound on the optimum of the

above optimization problem, we need to prove such an upper bound

using only arguments involving low-degree polynomials in 𝑢,𝑏𝑖 . Now
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we sketch that proof, which is the technical heart of our algorithm

for covariance estimation.

First, we show by applying a bounded-differences concentration

inequality to the value of the SoS SDP that the optimum value of

the relaxation of Eq. (1.2) concentrates around its expectation with

high probability (1 − 2
−𝑘 ). (This bounded-differences step appears

in the non-algorithmic context in [LM18b] and in the algorithmic

context in [Hop18a].) Then we bound the expected value of the

above problem via

∑
𝑖≤𝑘

𝑏𝑖 ≤
1

𝑟

∑
𝑖≤𝑘

𝑏𝑖 ⟨Σ𝑖 − Σ, 𝑢𝑢⊤⟩ ≤ 1

𝑟
·
√
𝑘 ·

(∑
𝑖≤𝑘

⟨Σ𝑖 − Σ, 𝑢𝑢⊤⟩2
)
1/2

,

where we have used Cauchy-Schwarz.

The polynomial on the right-hand side is a degree-4 polynomial

in 𝑢 with random coefficients; the goal is to upper bound its ex-

pected maximum on the unit sphere (via an argument which applies

also to the SoS relaxation, which rules out standard approaches

using 𝜀-nets). In fact, since we need the bound 0.51𝑘 on the

∑
𝑖≤𝑘 𝑏𝑖 ,

we will eventually take 𝑟 large enough to compensate for whatever

is our bound on

∑
𝑖≤𝑘 ⟨Σ𝑖 − Σ, 𝑢𝑢⊤⟩2. We want to keep 𝑟 small, so

we want the tighest bound possible.

Note that

∑
𝑖≤𝑘 ⟨Σ𝑖 − Σ, 𝑢𝑢⊤⟩2 is a sum of i.i.d. random polyno-

mials. A standard approach to analyze the performance of SoS for

such random polynomials is to first “unfold” the polynomial to

a matrix (in this case

∑
𝑖≤𝑘 (Σ𝑖 − Σ)⊗2) and then use matrix con-

centration inequalities to analyze the maximum eigenvalue of this

random matrix. Such eigenvalue bounds will also apply to the SoS

relaxation we work with in the end.

We use a similar approach, with a key technical twist: in previous

applications of this idea, it was usually necessary to have an explicit

expression for E𝑀 , where 𝑀 is the random matrix analogous to

(Σ𝑖 − Σ)⊗2, and typically also for its inverse, in order to correctly

“precondition” the random matrix before analyzing its top eigen-

value. Such an explicit representation would be easily accessible if

the underlying data 𝑋 were Gaussian or had independent coordi-

nates, for example, which was the case in previous applications of

SoS to random degree-4 polynomials. We do not have this luxury,

since we only make the niceness assumption on the underlying

random vector 𝑋 .

Nonetheless, we are able to carry out the preconditioning strat-

egy (which removes spurious large eigenvalues of (Σ𝑖 − Σ)⊗2) for
any nice random variable 𝑋 . Along the way we prove a new (albeit

simple) SoS Bernstein inequality which may be of independent

use (and in particular allows for simplifed proofs of some previous

applications of SoS to random degree-4 polynomials – e.g. that

of [BBH
+
12a]). See the full version of our paper for the SoS Bern-

stein inequality and our application to the random polynomial∑
𝑖≤𝑘 ⟨Σ𝑖 − Σ, 𝑢𝑢⊤⟩2.

Certification to Search. Using similar techniques as [CFB19] de-

veloped for the case of ℓ2 mean estimation, we turn our certification

into an algorithm to find an 𝑟 -median. Suppose that instead of

knowing the true covariance Σ as above, in its place we have some

guess𝑀 ∈ R𝑑×𝑑 . If the certification algorithm certifies that𝑀 is a

median, then we can output 𝑀 as our estimator for Σ. If not, we
show that by rounding the above SoS relaxation we can instead

update𝑀 to make it closer to Σ – we can replace it with𝑀 +Δ such

that ∥𝑀 + Δ − Σ∥ ≪ ∥𝑀 − Σ∥.

1.3 Related Work
Robust Statistics. The questions we address here are distinct

from those addressed by a recent flurry of algorithmic work in

robust statistics [DKK
+
16, LRV16] (see also [Li18, Ste18] for further

references). In the latter setting, one studies statistics when the

list of samples 𝑋1, . . . , 𝑋𝑛 contains a small constant fraction 𝜀 of

adversarially-chosen outliers, and the primary focus is on achiev-

ing statistical error nearly as small as would be achieved by the

classical estimators when 𝜀 = 0. By contrast, our goal is to beat

the error rate of the classical estimators when Gaussianity is vio-

lated. One consequence is that we give estimators which come with

small confidence intervals even for error probabilities as low as 2
−𝑑

;

this high-probability regime is not addressed by the adversarial

corruptions model.
7

Median of Means. In heavy-tailed (constantly-many moments

exist) settings, estimators based on empirical averages typically

have poor statistical performance, because they are sensitive to

large outliers. Our work falls in a long line which develop the

median of means technique for high-probability estimators in the

face of heavy tails. The median of means framework was first

developed to estimate univariate heavy-tailed random variables

[NY83a, JVV86, AMS99a]. Recent extensions to the multivariate

case typically have two flavors: they are polynomial-time com-

putable (e.g. [HS16a, LO11, Min15]) but statistically suboptimal,

or statistically optimal ([LM19a, LM18a, LM16]) but apparently re-

quire exponential computation time. The first major exceptions to

this rule came in 2018, starting with a polynomial-time statistically-

optimal algorithm for mean estimation in ℓ2 [Hop18a]. Because

of reliance on high-degree sum of squares semidefinite programs,

this algorithm has an enormous polynomial running time. The

subsequent work [CFB19] brought the running time much closer

to practicality by replacing some of the sum of squares tools with

a gradient-descent style algorithm. ([LLVZ19, LD19] brought the

running times down even further.) The present work builds sub-

stantially on ideas from both these papers.

Covariance Estimation. There is a long and rich literature on the

problem of covariance estimation (see [FLL16] for an expository re-

view). However, strong high-confidence guarantees for many such

estimators rely on the assumption that the samples are drawn from

a sub-Gaussian distribution. The problem of robustly estimating

covariance only assuming boundedness of low-order moments on

the underlying distribution has also received attention; however

many rigorous theoretical results in this vein are either asymptotic

(i.e. concern only the 𝑛 → ∞ limit for fixed dimensions 𝑑) and/or

often impose strong parametric assumptions on the underlying

distribution (i.e. requiring elliptical symmetry). See [T
+
87, FLL16]

for example, for a coverage of several such results.

7
One recent work, [LD19], shows that while the adversarial robustness model and

the ones we consider here are incomparable, under some circumstances the same

algorithm can give information-theoretically optimal estimates in both models. This

work, however, does not address covariance estimation or linear regression – it is an

interesting direction to understand to what extent algorithms for covariance estimation

and linear regression can perform well across different models.
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The state-of-the-art results for the problem we consider

here have been recently achieved in the works of [MW18]

and [MZ18]. These results have come in two flavors, par-

alleling recent work in the problem of heavy-tailed mean

estimation: [MW18][Corollary 4.1] provides computationally-

efficient but information-theoretically suboptimal estimators while

[MZ18][Theorem 1.9] provides statistically-optimal estimators that

require exponential time (in 𝑛,𝑑) to compute.

Linear Regression. Like covariance estimation, linear regression

is an old and well-studied topic and a thorough survey is out of

the scope of this paper. Regression in the heavy-tailed and high-

dimensional setting has been studied via the median-of-means

framework in [LM16, HS16b, LM17]. There are also efficient outlier-

robust algorithms for linear regression which use techniques be-

sides median-of-means estimation – for instance, the iterative meth-

ods of [SBRJ19] – but none are yet known to achieve information-

theoretically optimal error. In particular we are not aware of any

which improve on the guarantees of [HS16b] in our setting, while

our algorithms offer poly(𝑑) improvements on the error rates of

[HS16b].

Sum of Squares Algorithms for High-Dimensional Statistics. There

has been a significant amount of recent work using the sum of

squares (SoS) semidefinite programming hierarchy to design com-

putationally efficient algorithms for unsupervised learning prob-

lems (see [RSS18b] for a survey). By now, SoS algorithms are the

only ones known which gives state-of-the-art statistical perfor-

mance among polynomial-time algorithms for a wide range of prob-

lems: dictionary learning, tensor decomposition, high-dimensional

clustering, robust parameter estimation and regression, and more

[BKS15, HL18, KSS18, MSS16, KKM18, BM16].

We note that one of our techniques for exploiting 8-th moments

is inspired by a certain approach to using the Cauchy-Schwarz in-

equality in SoS proofs for bounding degree-3 random polynomials

by degree-4 random polynomials. This technique is in turn inspired

by refutation algorithms for random constraint satisfaction prob-

lems [FO07], and has been used in the design of SoS algorithms for

several learning problems [GM15, HSS15, BM16]. We also note that

the certify-or-gradient paradigm used by our algorithms, where

gradients are furnished by solving SDPs, has previously appeared

in robust and heavy-tailed mean estimation [CDG19, CFB19]; these

works do not combine this technique with SoS SDPs of degree

greater than 2.

Our algorithms using the SoS hierarchy run in polynomial

time, but because of their reliance on solving large semindefi-

nite programs they are impractical. However, numerous slow-but-

polynomial-time SoS algorithms for high-dimensional statistics

have led to algorithms with practical nearly-linear running times

[SS17, DHL19, HSSS16, LD19, HSS19, CFB19]. We therefore hope

that additional investigation can lead to SoS-inspired and practical

algorithms with improved guarantees for heavy-tailed covariance

estimation and regression.

Certifiable Hypercontractivity. Our algorithms for covariance

estimation and linear regression assume the underlying random

vector 𝑋 is (2, 8) certifiably hypercontractive. The certifiable hyper-
contractivity assumption was introduced in [KSS18, HL18] where

it was used in designing algorithms for robust estimation and mix-

ture model clustering. It has been used in the context of regres-

sion by [KKM18]. Previous work using certifiable hypercontractiv-

ity assumptions (for example in clustering mixture models) typi-

cally assumed the presence of a poly(𝑑)-factor more samples than

information-theoretically necessary in order to ensure the conver-

gence of empirical moments to these population averages. Since

we are interested in fine-grained questions about the number of

samples required to achieve certain rates of statistical error, a major

portion of the technical work in our paper is to show that SoS algo-

rithms can exploit structure in the population moments even with

relatively few samples. [HL19, BBH
+
12b] investigate computational

hardness questions surrounding certifiable hypercontractivity.

Recent work by [LM19c] designs an (inefficient) mean estimator

not based on themedian-of-means framework; instead the estimator

is constructing by trimming the mean estimate. It is an interesting

and open question to see whether generalizations of this trimmed

estimator can be adapted to the problem of covariance estimation

considered herein, and be made computable in poly-time.
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