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ABSTRACT

We study polynomial-time algorithms for linear regression and co-
variance estimation in the absence of strong (Gaussian) assumptions
on the underlying distributions of samples, making assumptions
instead about only finitely-many moments. We focus on how many
samples are required to perform estimation and regression with
high accuracy and exponentially-good success probability in the
face of heavy-tailed data.

For covariance estimation, linear regression, and several other
problems in high-dimensional statistics, estimators have recently
been constructed whose sample complexities and rates of sta-
tistical error match what is possible when the underlying dis-
tribution is Gaussian, but known algorithms for these estima-
tors require exponential time. We narrow the gap between the
Gaussian and heavy-tailed settings for polynomial-time estima-
tors with: (a) a polynomial-time estimator which takes n samples
from a d-dimensional random vector X with covariance ¥ and pro-
duces 3 such that in spectral norm I ==l < é(d3/4/\/ﬁ) W.p.
1 — 274 where the information-theoretically optimal error bound
is é(\/m), while previous approaches to polynomial-time algo-
rithms were stuck at O(d/ 4/n) and (b) a polynomial-time algorithm
which takes n samples (Xj, Y;) where Y; = (u, X;) + ¢; where both
X and ¢ have a constant number of bounded moments and pro-
duces i such that the loss ||u — @||> < O(d/n) w.p. 1 - 27 for any
n > d3? poly log(d). This (information-theoretically optimal) error
is achieved by inefficient algorithms for any n > d, while previous
approaches to polynomial-time algorithms suffer loss Q(d?/n) and
require n > d2.

Our algorithms make crucial use of degree-8 sum-of-squares
semidefinite programs. Both apply to any X which has constantly-
many certifiably hypercontractive moments. We offer preliminary
evidence that improving on these rates of error in polynomial time
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is not possible in the median of means framework our algorithms
employ. Our work introduces new techniques to high-probability
estimation, and suggests numerous new algorithmic questions in
the following vein: when is it computationally feasible to do statistics
in high dimensions with Gaussian-style errors when data is far from
Gaussian?
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1 INTRODUCTION

Much work in theoretical computer science on algorithms for high-
dimensional learning and statistics focuses on the dependence of
rates of error (in estimation, regression, PAC learning, etc.) on the
number of samples n given to a learning/regression/estimation al-
gorithm and the dimension/number of features d of those samples’.
In statistics it is also of fundamental importance to understand the
dependence on the level of confidence 1 — § — predictions and esti-
mates made from samples are most useful if they come with small
confidence intervals. Classical estimators for elementary estima-
tion and regression problems often have error rates r(n, d, §) with
far-from-optimal dependence on § unless strong assumptions are
made on the underlying distribution of samples. In this work, we
study algorithms for high-dimensional statistics without strong
(sub-Gaussian) assumptions, focusing on achieving small errors
with high probability in polynomial time.

!For formal theorem statements and detailed proofs of results we refer the reader to
our full version in arXiv 1912.11071.
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Consider a prototypical estimation problem: the goal is to take
independent samples Xi,...,X, ~~ pg, where py is a member
of a family of d-dimensional probability distributions indexed by
parameters 6 and find 6 such that 1|16 — 6 || < r with probability
1 — ¢ for some norm || - || and some rate r(n, d, §). If we make only
a weak assumption on pg — e.g. that it has a small number of finite
moments — then the rates r(n, d, §) achieved by classical approaches
are typically exponentially-far from optimal with respect to § (i.e.
r(n,d, §) scales like 1/poly(5) rather than log(1/9)).

Since at least the 1980s it has been known that in low-
dimensional settings (e.g. d = 1) there are estimators for basic prob-
lems like estimating the mean which achieve rates r(n, §) whose de-
pendence on § under such weak assumptions is comparable to that
of classical estimators (the empirical mean) under (sub)-Gaussian
assumptions (up to constants). For instance, the median of means
estimator of the mean achieves the same r(n, §) as the empirical
mean does in the Gaussian setting but assuming only that py has
finite variance [AMS99a, JVV86, NY83b]. This immediately proved
useful in streaming algorithms [AMS99a].

Achieving similar guarantees for large dimensions d is much
more challenging, even without asking for computationally-
efficient algorithms. A series of exciting developments in the last
decade in statistics, however, constructs estimators with r(n, d, 5)
matching the rates achievable in the Gaussian case by classical
approaches but with much weaker assumptions. Such estimators
are now known for high dimensional mean estimation, covariance
estimation, (sparse) linear regression, and more [LM19b]. Unlike
their one-dimensional counterparts and classical approaches, how-
ever, naive algorithms to compute this new generation of optimal
estimators take time exponential in n,d, or both. This suggests a key
question applying to a wide range of estimation, regression, and
learning problems:

Are there efficiently computable estimators achieving
optimalr(n, d, §) under weak assumptions (like finitely-
many bounded moments) on underlying data?

Recent work in algorithms shows that such optimal and computa-
tionally efficient estimators do exist for the problem of estimating
the mean of a random vector X under only the assumption that X
has finite covariance [Hop18a, CFB19]. The resulting algorithms,
however, are heavily tailored to estimating the mean in #; although
they introduce useful techniques, it is unclear whether they suggest
any broader answers to the above.

In this work we tackle covariance estimation and linear re-
gression with these goals in mind. We contribute new algo-
rithms for both problems whose error rates r(n, d, §) improve by
poly(d,log(1/8)) factors on the previous best polynomial-time algo-
rithms when the underlying data is drawn from a distribution with
only finitely-many bounded moments. Unlike the situation in mean
estimation, however, our estimators do not achieve information-
theoretically optimal error rates. We offer evidence (by constructing
certain moment-matching distributions) that no efficient algorithm
using the median-of-means approach we use here can significantly
improve on rates achieved by our algorithms. This suggests the pos-
sibility that the computational landscape for covariance estimation
and regression is more complicated than for mean estimation: in
particular, it could be that these problems suffer from a novel kind
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of tradeoff between computational efficiency and error rate in the
small 5 regime. (By contrast in the regime § = Q(1) classical esti-
mators typically have r(n, d, §) which is information-theoretically
optimal with respect to n,d and are also efficiently computable.)
Whether there is indeed such a tradeoff is a fascinating open ques-
tion.

Why Weak Assumptions? We study polynomial-time algorithms
for high-dimensional statistics under weak assumptions on un-
derlying data. Both linear regression and covariance estimation
boast well-studied and computationally-efficient algorithms which
achieve statistically optimal rates r(n, d, §) with respect to both n
and 6 under (sub)-Gaussian assumptions on X (and ¢): ordinary
least squares regression and the empirical covariance, respectively.
These estimators are among the oldest in statistics: Gauss and Le-
gendre both studied the least-squares estimator for linear regression
around 1800 [Wik19a] and study of the empirical covariance dates
at least to Pearson’s invention of principal component analysis
[Pea01].

However, data cannot assumed to be Gaussian in every situation.
In this paper we only assume boundedness conditions on a small
number of moments of a random vector X (generally 8th moments).
Under such assumptions, the error rates of the empirical covariance
and ordinary least squares grow polynomially in 1/8, while optimal
error rates are logarithmic in 1/§. Beyond allowing us to address
basic questions about which error rates are achievable in polyno-
mial time, working under weak assumptions makes our algorithms
potentially useful in a variety of settings where classical estimators
break down.

First, our algorithms are useful in statistical settings involving
heavy-tailed data — data drawn from distributions with only a finite
number of bounded moments. Large networks, for instance, are well
known to generate heavy-tailed data, often following a power law
distribution. Other common heavy-tailed distributions in statistics
include the Student’s t distribution, and the Log-Normal distribution
— the latter describes a number of real-world phenomena, such as
the distribution of English sentence lengths, the distribution of ele-
ments in the Earth’s crust, the distribution of species’ abundances,
and more [Wik19b]. Even when data are not known to follow a par-
ticular heavy-tailed distribution, the conservative statistician may
wish to avoid a Gaussian assumption if also lacking good reason to
believe that the underlying population is Gaussian-distributed.

Second, it is often convenient to use algorithmic primitives for
basic tasks like covariance estimation and regression as parts of
more sophisticated algorithms. Algorithms for the complicated
high-dimensional statistics problems often studied in theoretical
machine learning can have many moving parts. In such situations,
the samples X1, ..., X, may themselves be the output of a complex
random process or another “upstream” algorithm. This can make
it it difficult or impossible to guarantee that X3, . .., X}, satisfy sub-
Gaussian concentration properties, but it can be much easier to
establish that the outputs of such upstream algorithms satisfy the
kind of weak finite-moment bounds required by our algorithms.
Indeed, one of the first uses of the median of means technique we
employ here (for estimation of frequency moments in a streaming
setting) was for exactly this purpose [AMS99b].



Algorithms for Heavy-Tailed Statistics: Regression, Covariance Estimation, and Beyond

1.1 Results

“Nice” distributions. Since the main goal of our work is to achieve
Gaussian-style error bounds while avoiding Gaussian assumptions
in high-dimensional parameter estimation, before we lay out our re-
sults, we must describe the class of distributions to which they apply.
Obtaining Gaussian-style error rates does require some assump-
tions on the underlying random variables, for information-theoretic
reasons — typically the existence of 2nd moments is a minimal re-
quirement [C*12]. (For covariance estimation this becomes 4th
moments of a random vector X, which are the 2nd moments of the
random matrix XX .)

In this paper we make an assumption called certifiable hyper-
contractivity: we assume that as a polynomial in variables u =
(uq, ..., ug), there exists a universal constant L such that,

L% (B(X, u)®)* —E(X u)8.

is a sum of squares of polynomials in «.? This in particular implies
the more standard 8th moment bound E(X, u)? < O(E(X, u}8)1/4.
We often call (2, 8) certifiably-hypercontractive distributions nice.
We emphasize that niceness is an “infinite-sample” assumption: it
concerns population moments E X ®8,

Certifiable hypercontractivity holds for numerous interesting
heavy-tailed distributions for which previous polynomial-time al-
gorithms could not have achieved Gaussian-style error guarantees.
For instance, any product of univariate distributions with bounded
8-th moments, and any linear transformation thereof (in partic-
ular for multivariate ¢-distributions) is certifiably hypercontrac-
tive. In fact, the certifiable hypercontractivity assumption has been
shown to hold for any distribution whose 8-th moments match
those of some strongly log-concave distribution [KSS18] (even if,
say, 9th moments do not exist). The certifiable hypercontractivity
assumption also underlies recent results in on polynomial-time
high-dimensional clustering of mixture models and several robust
parameter estimation problems [KSS18, HL18, KKM18].

1.1.1  Covariance Estimation. Covariance estimation is the follow-
ing simple problem. Given samples Xj, . . ., X}, from a d-dimensional
random vector with covariance %, find 3 with the smallest possible
spectral norm error || — %||z. For simplicity, let us focus for now on
the setting that Tr= < O(d) and ||Z|lz < O(1) and § = 24 (Our
main theorem for covariance estimation handles the case of general
> and §.) We also assume throughout that EX = 0; otherwise one
may replace X with (X — X’)/V2 for pairs of independent samples
X, X’ without affecting the covariance and losing only a factor of 2
in the sample complexity.

Consider the Gaussian setting X ~ N (0, X). In this case, classical
results offer the following type of concentration bound for the
empirical covariance 3, = % Di<n X,-XI.T of n independent samples:
for a universal constant C,

P (”f— 2“2 >C (\/g+ t)) < exp(—tzn). (1.1)

(This bound becomes meaningful only when n > d.) Note that by
Eq. (1.1), || = 3||, < O(y/d/n) with probability 1 — 27¢.

2Qur algorithms also work if instead the inequality B(X,u)® < (B(X,u)?)* has
an SoS proof of higher degree, at a commensurate cost in running time to allow for
higher-degree SoS relaxations.
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Recent work by Mendelson and Zhivotovskiy [MZ18], building
on earlier works by Lugosi and Mendelson [LM18a] shows that
there is an estimator 3. for the covariance ¥ which matches this error
guarantee under only the assumption that X has hypercontractive
4-th moments. (In all the following informal theorem statements
we assume Tr X < O(d), ||Z]2 < 0(1).)

THEOREM 1.1 ([MZ18]). There is an estimator 3 = 3(X1, . . ., Xn)
which given n independent samples from a random variable X with
covariance X and which is (2, 4)-hypercontractive has the guarantee

. [dlogd
||Z - ZHZ <0 ( o_g) with probability at least 1 — 24
n

Up to logarithmic factors, this rate of error is information-
theoretically optimal, but no algorithm is known which achieves
this guarantee in polynomial time. Prior to this work, the strongest
result known for polynomial-time algorithms was weaker by a
poly(d) factor:

THEOREM 1.2 ([MW18]). Under the same hypotheses as Theo-
rem 1.1 there is a polynomial-time algorithm which finds 3 such that
I3 - =|la < O(d/~/n) with probability at least 1 — 27<.

Our main result for covariance estimation in the setting Tr ¥ ~
d, ||IZ|| = 1is the following.

THEOREM 1.3 (MAIN THEOREM ON COVARIANCE ESTIMATION, IN-
FORMAL). There is an algorithm with running time poly(n, d) which
when given n i.i.d. samples X1, ..., Xy from a nice random vector X
in d dimensions returns an estimate 3. of the covariance % of X such
that

-3, <0

d3/4 d
—— | with probability at least 1 —27% .
\n

Here O(-) hides logarithmic factors in the dimension d.

The general statement of our main theorem obtains an error
rate which avoids explicit dependence on the ambient dimension
d (except for logarithmic factors); instead, it depends only on the
"effective” rank sr(2) = % < d and the operator norm ||Z|f.
Thus if X lies in or near a low-dimensional subspace, our algorithm
exploits this additional structure to estimate ¥ with fewer samples.

Finally, we note that our algorithm assumes access to a small
number of additional parameters: bounds on Tr 2, ||2||5, and (as
with all the algorithms described in this paper beyond empirical
averages) in the case of general confidence levels 1 — § it depends
on the value of §. The latter dependence may be intrinsic: it is not
information-theoretically possible to obtain Gaussian-style error
rates in the heavy-tailed setting with estimators which do not
depend on § with minimal moment assumptions [C*12]. We expect
that techniques similar to those of [MZ18] can avoid the dependence
on Tr %, ||Z||, by estimating them from samples.

The improvement from d/+/n to a3/ 4 /A/n moves the algorithmic
state of the art for covariance estimation closer to information-
theoretic optimality. Of course the possibility of an information-
theoretically optimal covariance estimation algorithm is tantalizing,
but just as interesting from a complexity viewpoint is the possibility
that d3/%/+y/n cannot be improved upon in polynomial time. In
Section 1.1.4 we discuss evidence in this direction.
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1.1.2  Linear Regression. We study the following classical linear
regression problem. Let f* : RY — R be a linear function - that is
*(x) = (f*, x) for some vector f* € RY. Let X be a d-dimensional
mean-zero random vector, and let ¢ be an R-valued random variable
with E ¢ = 0. To avoid a preponderance of parameters, in this paper
we focus on the case that EXX ' =Id and E¢? = 1.3

The goal is to take n independent samples of the form (X;, Y;),
where Y; = f*(Xj) + ¢;, and find a linear function f such that
ILf* - f|| is as small as possible. Here the norm ||f* — f|| is the
2-norm induced by X; that is, (E(f*(X) — f(X))z)l/z. However,
since we assume EXXT = Id, this is identical to the Euclidean
norm of f* — f considered as a vector of coefficients.

In most respects the situation for linear regression is similar
to that for covariance estimation. The classical algorithm is em-
pirical risk minimization, also known in this setting as ordinary
least squares regression (OLS). The algorithm is simple: given
(X1, Y1), ..., (Xp, Yp), output f which minimizes the empirical loss
Eioin) (f(X3) - Y;)2. This minimization problem is convex, so f
can be obtained in polynomial time; it also admits a closed-form
linear-algebraic solution.

Analogously to the empirical covariance in the previous section,
when X and ¢ are Gaussian, OLS achieves small error with high
probability. Concretely, one has the following:*

||fOLS -f12<o0 (g) with probability 1 — 27 5o longasn>d.
We focus for now on the setting of regression with confidence
1 — 27%: this regime provides a useful litmus test because it is the
highest probability for which the O(d/n) guarantee holds for OLS.
When X or ¢ has only a finite number of bounded moments, the
error bound on || fOLS — f*|| degrades badly, becoming w
for confidence 1 — 274,

Recent work by Lugosi and Mendelson [LM16] shows that a
guarantee matching that of OLS in the Gaussian setting is possible
without Gaussian assumptions. Concretely we have the following:

THEOREM 1.4 ([LM16], INFORMAL). There exists an (exponential-

time) estimator f which given n independent samples
(X1, Y1), ..oy (X V) where Y = f*(X) + ¢ EXXT = Id, X
is (2, 4)-hypercontractive, andE¢* = 1, has®

A 2
Hf - f“ <0 (El) with probability 1 —27¢ so longasn>d.
n

Once again, the state of the art for polynomial-time algorithms is
somewhat worse (though still far better than OLS). Until this paper,
the polynomial-time algorithm with smallest error guarantees in
the 1 — 279 probability regime were achieved by an algorithm of
[HS16b].

31t is trivial to show that our results also work if E ¢ = %, with appropriate depen-
dence of the error rates on 0. We also believe that our techniques will be useful in
designing algorithms which achieve small error E(f(X) —f*(X))? whenEXXT =3
for general 3, but we defer this challenge to future work. If X is not mean zero then it
can be replaced with X — X’ for pairs of samples X, X”, so this assumption is without
loss of generality.

“It is traditional here to state bounds on Hf' — f||? rather than Hf' — fl; note that the
bound O(d/n) represents the so-called fast rate for regression — in this paper we are
exclusively concerned with fast rates, rather than the slow rate O(m))

5The results of [LM16] apply to a wide variety of convex function classes rather than
just linear regression; we state here the special case for linear regression.
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THEOREM 1.5 ([HS16B], INFORMAL). There is a polynomial-time
algorithm which computes an estimatorf which given n i.i.d. samples
(Xi, Y;i) where X is (2,4 + 0)-hypercontractive for some § > 0 and
Y = f*(X) + ¢ for some linear function f* for a random variable ¢
withEe = 0 and E ¢? = 1 achieves

. 2 2
“f —fH <0 (d—) with probability 1 — 27 50 long asn > d?.
n

Note that the error guarantees of Theorem 1.5 are weaker than
what is information-theoretically possible (Theorem 1.4) in two
key ways: first of all, the error scales with d? rather than with
d, and second, the error rate does not kick in until n > d2. Our
main theorem on regression completely fixes the first problem
and partially fixes on the second (but does not reach information-
theoretic optimality), for nice X.

THEOREM 1.6 (MAIN THEOREM ON LINEAR REGRESSION, INFOR-
MAL). There is an algorithm with running time poly(n, d) with the
following guarantees. Suppose X is nice, € is a univariate random
variable withBe?> = 1 and Ee = 0, and f* is a linear function. Given
n i.id. samples (Xj, Y;) of the form Y; = f*(X;) + ¢;, the algorithm
finds a linearfunctionf such that

|7-s

solong asn > d°/% - (logd)°V) .

2 d . . _d
< O|—| with probability 1 — 2
n

Our main result (and all the prior work) gracefully tolerates
confidence levels other than 1 — 279,

1.1.3  Faster Algorithms for Mean Estimation in General Norms.
Our final algorithmic result concerns the problem of estimating
the mean of a random vector X on R? with respect to an arbitrary
norm || - ||. Our starting point is the following theorem of Lugosi
and Mendelson which constructs an estimator of the mean with
respect to any norm || - || on R%. In such a general setting the
question of information-theoretic optimality is somewhat murky.
Nonetheless, for many natural norms (£, and spectral norm, for
instance) one may see that the guarantees of their estimator match
those of the empirical mean in the Gaussian setting. We refer the
reader to [LM18a] for further interpretation of the guarantees of
the following theorem.

THEOREM 1.7 ([LM184a], INFORMAL, Id-COVARIANCE CASE). For
everyn,d € Nandd > 27" and norm || - || on R9 there is an estimator
with the following guarantee. Given n i.i.d. samples X1, ...,Xp of a
random vector X with mean u and covariance 1d, it finds [i such that

Z 0iXi

i<n

with probability at least 1 — §

1
—il<—=-0|E
[l = all N

+R 10g(1/5))

where o1,...,0p {£1} are independent signs and R
SUP ||xc[|, =1 [|x|l2 is the norm-equivalence constant between the dual
norm || - ||« and £,. Note that the first term is essentially the expected
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error achieved by the empirical mean for the norm || - ||, and in partic-
ular is independent of §, while the second term determines the decay
of the bound as § becomes small.®

The naive algorithm to compute the estimator /i from Theo-
rem 1.7 requires brute-force search for a point in a non-convex
set in d dimensions, taking exp(Q(d)) time. We slightly modify
the estimator from Theorem 1.7 and show that subject to a mild
computational assumption on the norm || - || it can be computed by
an algorithm whose running time is exponential only in log(1/6)
rather than in d.

THEOREM 1.8 (INFORMAL, Id-COVARIANCE CASE). With the same
setting and guarantees as Theorem 1.7, under the additional assump-
tion that there is a polynomial-time separation oracle for the dual ball
of || - ||, there is an algorithm to compute [i in time poly(n,d, 1/6).

1.1.4  Roadblock to Improved Error Rates: Single-Spike Block Mix-
tures. Our main results on covariance estimation and linear regres-
sion (Theorems 1.3 and 1.6) push the state of the art in terms of error
rates achievable for heavy-tailed statistics in polynomial time, but
they do not achieve information-theoretic optimality. Our covari-
ance estimation algorithm in the setting of Tr2 < O(d), ||IZ]|, <
O(1) achieves error |2 - 2|z < é(d3/4/\/ﬁ), while in exponen-
tial time it is possible to achieve é(m) (Similarly, our linear
regression algorithm requires n > d3/2 rather than n > d.)

It is a fascinating open problem to understand whether these
gaps can be closed. We offer here some evidence that this is unlikely
to be possible with techniques in the present paper. We focus on
covariance estimation — the relation to linear regression is more
subtle. The key subroutine in our covariance estimation algorithm
is an algorithm for the following problem:

ProBLEM 1.9 (FIND HIGH-VARIANCE DIRECTION). Given
S1,..,24 € RdXd, withX; > 0, find a unit vector x € R9 such that
(x,Zix) > r for at least d/4 matrices X;, or certify that none exists.

In fact, Problem 1.9 must be solved when X1, ..., X%, are empiri-
cal covariance matrices by any algorithm performing covariance
estimation using the median-of-means framework, which is the
dominant approach in constructing high-dimensional estimators
with optimal r(n, d, §) (even ignoring running time considerations).
It will have to wait until Section 1.2 to see in more detail why an
algorithm solving Problem 1.9 is useful for covariance estimation.
For now, let us note that our subroutine solves Problem 1.9 when
3 is the empirical covariance of n/d samples from the heavy-tailed
distribution whose covariance we are estimating, and the X;’s are
all independent. Problem 1.9 gets easier as r gets larger, but it turns
out that the value of r for which we can solve it translates directly to
the error rate of our covariance estimation algorithm. Summarizing:
in the case of estimating the covariance ¥ of a random variable X
with Tr X ~ d, ||Z||2 = 1, our key subroutine solves Problem 1.9 with
3; being the empirical covariance of n/d of the samples X1, . .., Xn
andr < O(d*/*//n).

Improving the error rates of our algorithm (or any other median-
of-means-based algorithm) would thus seem to require solving

In [LM18a] this theorem is stated with an extra term in the error guarantee (which is
typically dominated by the first term); we provide a simplified proof which also shows
that the additional term is unnecessary.
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Problem 1.9 with smaller r. To investigate whether this may be
possible in polynomial time, we consider an easier variant, which
we call the single-spike block mixtures problem. It is easier in two
respects: it is a decision problem rather than a search problem,
and the underlying random variable X is distributed in a known,
Gaussian fashion. (Note that it appears no longer relevant that
we were initially interested in heavy-tailed random vectors — we
believe computational hardness for Problem 1.9 appears even when
3;’s are empirical covariances formed from Gaussian samples.)

Definition 1.10 (Single-Spike Block Mixtures). Let d,m € N and

1 > A > 0. In the single-spike block mixtures testing problem the

goal is to distinguish, given vectors y1, .. ., Ymg € RY, between the

following two cases:

NULL: Y1, ..., Yma ~ N(0,1d) i.i.d.

PLANTED: First x ~ {+1/Vd}? and si,...,s4 ~ {1}. Then,
Y. Yym ~ NOId + siAxxT) and Ymst,.. . Yoam ~
N (0,+s2Axx "), and so forth. That is, each block of vectors
Yims - - -» Y(i+1)m—1 has either slightly larger variance in the
x direction (if s; = 1) or slightly lesser variance (if s; = —1)
than they would in the null case.

It turns out that so long as A > 1/4/m = m (where n = md)
it is possible to distinguish NULL from PLANTED in exponential
time. (This is closely related to the fact that heavy-tailed mean
estimation can be solved with error rate (3(\/%)) But what about
polynomial time? A consequence of our main subroutine is the
following theorem:

THEOREM 1.11 (INFORMAL). IfA > (d3/%//m) poly log(d, m) then
there is a polynomial-time algorithm which distinguishes NULL from
PLANTED with high probability.

We make the following conjecture regarding optimality of this
algorithm.

CoNJECTURE 1.12. If A < d*/4=2W) /\/n then no polynomial time
algorithm solves the single-spike block mixture problem.

In support of Conjecture 1.12, we prove a lower bound against
a certain class of restricted algorithms, called low degree tests. A
degree-D test is a function f : R%™d _ R such that as a poly-
nomial deg f < D and Ey=y,,.y,.g~vuow f(Y) = 0. We say the
test is successful if By —panten f(Y)/ By -nuw f(Y)?)/2 — oo as
d,m — oo.

While such low degree tests (for D relatively small - say at most
(md)°V) would seem to be a quite restrictive model compared to
the class of all polynomial time algorithms, it turns out that the ex-
istence of a successful low degree test solving a hypothesis testing
problem is a remarkably accurate predictor for the existence of any
polynomial time algorithm. For instance, successful low degree tests
(of logarithmic degree) appear exactly at the predicted computa-
tional thresholds for the planted clique problem (clique size Q(+/n)),
the random 3-SAT problem ((number of variables)3/ 2 clauses), the
k-community stochastic block model (the Kesten-Stigum threshold),
the sparse PCA problem (the k% sample threshold) and beyond.
Lower bounds on low degree tests are technically distinct from but
conceptually similar to statistical query lower bounds. They are
also closely related to the pseudocalibration technique for proving
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lower bounds against SoS algorithms. For further discussion, see
[Hop18b, KWB19].

We rule out the existence of successful low degree tests for
D= (md)o(l) when A < d3/4_Q(1)/\/ﬁ. Obtaining an impossibil-
ity result for such large D is relatively strong: in this low-degree
test model the typical proxy for polynomial time is D of degree
logarithmic in the input size (in this case md?).

THEOREM 1.13 (INFORMAL). IfA < d3/4=Q() /\/n then there is no
successful degree (md)°D test for the single-spike block mixtures
problem.

1.2 Techniques

For purposes of this technical overview, we focus on covariance
estimation. Our algorithm for linear regression employs broadly
similar ideas.

The Median of Means Framework. Let us first explain the basic
median-of-means trick in one dimension. Consider the problem of
estimating the mean p € R of a one-dimensional random variable
X from independent samples, and suppose E(X — y1)? < 1, but make
no further assumptions on X. In this setting, the empirical mean
#= 3", X; of n independent samples has P(| — p| > t) < 1/t?n
by Chebyshev’s inequality, and no tighter bound is possible. By
contrast, if X were Gaussian, we would have the exponentially-
better bound P(|f — p| > t) < exp(—t%n/2).

The simplest median-of-means trick offers a family of estimators
jis foreach § > 270917 syuch that P(|is—pu| > 100+/log(1/8)/n) < 6.
First we place X1, ..., X, into ©(log(1/0)) equal-size buckets. In
each bucketi < O(log(1/5)) we let Z; be the average of the samples
in bucket i. Then we let 1i5 be the median of Z1, ... ., Zg(10g(1/5))-

The analysis is a straightforward use of Chebyshev’s inequality
to show that each Z; has |Z;—pu| < O(+/log(1/6)/n) with probability
at least 0.9, followed by a binomial tail bound ensuring that with
probability at least 1 — § at least a 0.7 fraction of the Z;’s satisfy
this inequality. Then the key step: if more than half of Z3,. .., Z;
have distance at most r to y, then so does their median.

Medians in High Dimensions. Extending this idea to high dimen-
sional settings requires surmounting several hurdles. The first one
is to design an appropriate high-dimensional notion of median.
In the last few years, however, the techniques to do this have be-
come relatively well understood in statistics [LM19b]. For example,
the key notion in recent heavy-tailed estimators of the mean of
a random vector in d dimensions with respect to Euclidean dis-
tance is the following: for a set of points Z1,...,Z; € R? and
r>0,x¢€ RY is an r-median if for every unit direction u we have
[{Zi,u) — {x,u)| < r for at least a 0.51-fraction of Z3,...,Z;. It
turns out that using the median of means trick with this notion
of median leads to an information-theoretically optimal estimator
of the mean in d dimensions assuming only that the underlying
random vector has finite covariance.

For covariance estimation the appropriate notion of median was
first defined in [LM18a] and fully analyzed in [MZ18]. We will call
M an r-median for matrices Zi,...,Z; if for all unit x € RY it
holds that |[(Z;, xxT) — (M, xx )| < r for at least a 0.51-fraction of
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Z1,...,Zx. Then (ignoring some technical details regarding trun-
cation of large samples) one may design a nearly information-
theoretically optimal covariance estimator for random vectors X
with bounded 4th moments as follows. Given samples X7, ..., Xy, as
before, place them in ~ log(1/5) buckets. Let 2; be the empirical co-
variance in bucket i, and output an r-median of 21, . . ., Zg(10g(1/5))
for the least r for which such an r-median exists.

How to Compute a Median in High Dimensions. The next hurdle is
computational: naive algorithms to compute the medians described
above would seem to require exponential time in n or d. Hopkins
[Hop18a] uses the sum of squares method to compute the relevant
median for mean estimation in £,. Our main technical contribution
for covariance estimation is an algorithm to compute the relevant
median for values of r somewhat larger (hence making finding the
median easier) than information-theoretically optimal (but exponen-
tial time) algorithms would do. We stress that our algorithm only
outputs a valid r-median when the Xj, ..., X, are sampled i.i.d.
from a nice distribution.

The key difficulty in computing a median is knowing when we
have found one. We first aim to solve a simpler certification problem.
Suppose given X, ..., X which are the empirical covariances of
independent bucketed copies Xj, . .., Xj of a random vector X with
covariance ¥, and suppose also given . How can we certify, for as
small a value of r as possible, that ¥ is an r-median of 31, ..., 3 ?
That is, we aim to find a certificate that for all unit directions u
we have |[(Z;,uu") — (Z,uu")| < r for at least a 0.51-fraction of
31, ..., 2k. To leverage the power of the median-of-means trick to
obtain estimators whose error is small with high probability, we
need to successfully find such a certificate with high probability,
1—27% (This need for a high-probability guarantee will play the
same role in the algorithmic and high-dimensional context as the
simple binomial concentration bound does in the one-dimensional
median-of-means estimator.)

To certify that ¥ is an r-median for X1, . .., £ we start by setting
up an optimization problem in variables b1, . .., by € {0,1} and
u € RY with ||u||? = 1.

maxZ bi st bi(S;i — S,uu') = bir, |Jul|?

i<k

Lb?=b;. (12

Notice that a feasible solution of value 0.52k to the above problem
corresponds to a subset of 0.52k of 21, ..., 2 and a unit direction
u such that for all 3; in the subset, [(Z;,uu’) — (S,uu’)| > r.
Ruling out such solutions (i.e. placing an upper bound on the value
of the optimization problem) would thus certify that ¥ is an r-
median (ignoring some small technical issues about the sign of
i =>uum)).

We will pass to an efficiently-computable convex relaxation of
the optimization problem above. In particular, we use the degree-
8 Sum of Squares (SoS) semidefinite programming relaxation of
Eq. (1.2). Sum of Squares semidefinite programs are convex re-
laxations of polynomial optimization problems — they have seen
extensive recent use in algorithm design for high-dimensional sta-
tistics. (See e.g. [RSS18a, Hop18b].) Roughly speaking, to show that
SoS SDPs can efficiently certify a bound on the optimum of the
above optimization problem, we need to prove such an upper bound
using only arguments involving low-degree polynomials in u, b;. Now
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we sketch that proof, which is the technical heart of our algorithm
for covariance estimation.

First, we show by applying a bounded-differences concentration
inequality to the value of the SoS SDP that the optimum value of
the relaxation of Eq. (1.2) concentrates around its expectation with
high probability (1 — 27X). (This bounded-differences step appears
in the non-algorithmic context in [LM18b] and in the algorithmic
context in [Hop18a].) Then we bound the expected value of the
above problem via

1/2
1 1
Zbi < ; Zbi(zi —Z,uuT) < ; . \/E (Z<2i —Z,MuT>2) N

i<k i<k i<k

where we have used Cauchy-Schwarz.

The polynomial on the right-hand side is a degree-4 polynomial
in u with random coefficients; the goal is to upper bound its ex-
pected maximum on the unit sphere (via an argument which applies
also to the SoS relaxation, which rules out standard approaches
using e-nets). In fact, since we need the bound 0.51k on the }}; <4 b;,
we will eventually take r large enough to compensate for whatever
is our bound on ¥; < (Z; — =, uu" )2. We want to keep r small, so
we want the tighest bound possible.

Note that 3; < (3; — %, uuT)? is a sum of i.i.d. random polyno-
mials. A standard approach to analyze the performance of SoS for
such random polynomials is to first “unfold” the polynomial to
a matrix (in this case Y;<x(Z; — 2)®?) and then use matrix con-
centration inequalities to analyze the maximum eigenvalue of this
random matrix. Such eigenvalue bounds will also apply to the SoS
relaxation we work with in the end.

We use a similar approach, with a key technical twist: in previous
applications of this idea, it was usually necessary to have an explicit
expression for E M, where M is the random matrix analogous to
(i — %)®?, and typically also for its inverse, in order to correctly
“precondition” the random matrix before analyzing its top eigen-
value. Such an explicit representation would be easily accessible if
the underlying data X were Gaussian or had independent coordi-
nates, for example, which was the case in previous applications of
SoS to random degree-4 polynomials. We do not have this luxury,
since we only make the niceness assumption on the underlying
random vector X.

Nonetheless, we are able to carry out the preconditioning strat-
egy (which removes spurious large eigenvalues of (Z; — %)®?) for
any nice random variable X. Along the way we prove a new (albeit
simple) SoS Bernstein inequality which may be of independent
use (and in particular allows for simplifed proofs of some previous
applications of SoS to random degree-4 polynomials — e.g. that
of [BBH"12a]). See the full version of our paper for the SoS Bern-
stein inequality and our application to the random polynomial
Zi<k(Zi -2, uuT>2-

Certification to Search. Using similar techniques as [CFB19] de-
veloped for the case of £, mean estimation, we turn our certification
into an algorithm to find an r-median. Suppose that instead of
knowing the true covariance X as above, in its place we have some
guess M € R4 _1f the certification algorithm certifies that M is a
median, then we can output M as our estimator for 3. If not, we
show that by rounding the above SoS relaxation we can instead
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update M to make it closer to X — we can replace it with M + A such
that |M+A - 3| < ||M - Z||.

1.3 Related Work

Robust Statistics. The questions we address here are distinct
from those addressed by a recent flurry of algorithmic work in
robust statistics [DKK* 16, LRV16] (see also [Li18, Ste18] for further
references). In the latter setting, one studies statistics when the
list of samples Xj, ..., X, contains a small constant fraction ¢ of
adversarially-chosen outliers, and the primary focus is on achiev-
ing statistical error nearly as small as would be achieved by the
classical estimators when ¢ = 0. By contrast, our goal is to beat
the error rate of the classical estimators when Gaussianity is vio-
lated. One consequence is that we give estimators which come with
small confidence intervals even for error probabilities as low as 274,
this high-probability regime is not addressed by the adversarial
corruptions model.”

Median of Means. In heavy-tailed (constantly-many moments
exist) settings, estimators based on empirical averages typically
have poor statistical performance, because they are sensitive to
large outliers. Our work falls in a long line which develop the
median of means technique for high-probability estimators in the
face of heavy tails. The median of means framework was first
developed to estimate univariate heavy-tailed random variables
[NY83a, JVV86, AMS99a]. Recent extensions to the multivariate
case typically have two flavors: they are polynomial-time com-
putable (e.g. [HS16a, LO11, Min15]) but statistically suboptimal,
or statistically optimal ([LM19a, LM18a, LM16]) but apparently re-
quire exponential computation time. The first major exceptions to
this rule came in 2018, starting with a polynomial-time statistically-
optimal algorithm for mean estimation in £, [Hop18a]. Because
of reliance on high-degree sum of squares semidefinite programs,
this algorithm has an enormous polynomial running time. The
subsequent work [CFB19] brought the running time much closer
to practicality by replacing some of the sum of squares tools with
a gradient-descent style algorithm. ([LLVZ19, LD19] brought the
running times down even further.) The present work builds sub-
stantially on ideas from both these papers.

Covariance Estimation. There is a long and rich literature on the
problem of covariance estimation (see [FLL16] for an expository re-
view). However, strong high-confidence guarantees for many such
estimators rely on the assumption that the samples are drawn from
a sub-Gaussian distribution. The problem of robustly estimating
covariance only assuming boundedness of low-order moments on
the underlying distribution has also received attention; however
many rigorous theoretical results in this vein are either asymptotic
(i.e. concern only the n — oo limit for fixed dimensions d) and/or
often impose strong parametric assumptions on the underlying
distribution (i.e. requiring elliptical symmetry). See [T*87, FLL16]
for example, for a coverage of several such results.

7One recent work, [LD19], shows that while the adversarial robustness model and
the ones we consider here are incomparable, under some circumstances the same
algorithm can give information-theoretically optimal estimates in both models. This
work, however, does not address covariance estimation or linear regression - it is an
interesting direction to understand to what extent algorithms for covariance estimation
and linear regression can perform well across different models.
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The state-of-the-art results for the problem we consider
here have been recently achieved in the works of [MW18]
and [MZ18]. These results have come in two flavors, par-
alleling recent work in the problem of heavy-tailed mean
estimation: [MW18][Corollary 4.1] provides computationally-
efficient but information-theoretically suboptimal estimators while
[MZ18][Theorem 1.9] provides statistically-optimal estimators that
require exponential time (in n, d) to compute.

Linear Regression. Like covariance estimation, linear regression
is an old and well-studied topic and a thorough survey is out of
the scope of this paper. Regression in the heavy-tailed and high-
dimensional setting has been studied via the median-of-means
framework in [LM16, HS16b, LM17]. There are also efficient outlier-
robust algorithms for linear regression which use techniques be-
sides median-of-means estimation — for instance, the iterative meth-
ods of [SBRJ19] — but none are yet known to achieve information-
theoretically optimal error. In particular we are not aware of any
which improve on the guarantees of [HS16b] in our setting, while
our algorithms offer poly(d) improvements on the error rates of
[HS16b].

Sum of Squares Algorithms for High-Dimensional Statistics. There
has been a significant amount of recent work using the sum of
squares (SoS) semidefinite programming hierarchy to design com-
putationally efficient algorithms for unsupervised learning prob-
lems (see [RSS18b] for a survey). By now, SoS algorithms are the
only ones known which gives state-of-the-art statistical perfor-
mance among polynomial-time algorithms for a wide range of prob-
lems: dictionary learning, tensor decomposition, high-dimensional
clustering, robust parameter estimation and regression, and more
[BKS15, HL18, KSS18, MSS16, KKM18, BM16].

We note that one of our techniques for exploiting 8-th moments
is inspired by a certain approach to using the Cauchy-Schwarz in-
equality in SoS proofs for bounding degree-3 random polynomials
by degree-4 random polynomials. This technique is in turn inspired
by refutation algorithms for random constraint satisfaction prob-
lems [FOO07], and has been used in the design of SoS algorithms for
several learning problems [GM15, HSS15, BM16]. We also note that
the certify-or-gradient paradigm used by our algorithms, where
gradients are furnished by solving SDPs, has previously appeared
in robust and heavy-tailed mean estimation [CDG19, CFB19]; these
works do not combine this technique with SoS SDPs of degree
greater than 2.

Our algorithms using the SoS hierarchy run in polynomial
time, but because of their reliance on solving large semindefi-
nite programs they are impractical. However, numerous slow-but-
polynomial-time SoS algorithms for high-dimensional statistics
have led to algorithms with practical nearly-linear running times
[SS17, DHL19, HSSS16, LD19, HSS19, CFB19]. We therefore hope
that additional investigation can lead to SoS-inspired and practical
algorithms with improved guarantees for heavy-tailed covariance
estimation and regression.

Certifiable Hypercontractivity. Our algorithms for covariance
estimation and linear regression assume the underlying random
vector X is (2, 8) certifiably hypercontractive. The certifiable hyper-
contractivity assumption was introduced in [KSS18, HL18] where
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it was used in designing algorithms for robust estimation and mix-
ture model clustering. It has been used in the context of regres-
sion by [KKM18]. Previous work using certifiable hypercontractiv-
ity assumptions (for example in clustering mixture models) typi-
cally assumed the presence of a poly(d)-factor more samples than
information-theoretically necessary in order to ensure the conver-
gence of empirical moments to these population averages. Since
we are interested in fine-grained questions about the number of
samples required to achieve certain rates of statistical error, a major
portion of the technical work in our paper is to show that SoS algo-
rithms can exploit structure in the population moments even with
relatively few samples. [HL19, BBH" 12b] investigate computational
hardness questions surrounding certifiable hypercontractivity.
Recent work by [LM19c] designs an (inefficient) mean estimator
not based on the median-of-means framework; instead the estimator
is constructing by trimming the mean estimate. It is an interesting
and open question to see whether generalizations of this trimmed
estimator can be adapted to the problem of covariance estimation
considered herein, and be made computable in poly-time.
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