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ABSTRACT

The degree-4 Sum-of-Squares (SoS) SDP relaxation is a powerful
algorithm that captures the best known polynomial time algorithms
for a broad range of problems including MaxCut, Sparsest Cut, all
MaxCSPs and tensor PCA. Despite being an explicit algorithm with
relatively low computational complexity, the limits of degree-4 SoS
SDP are not well understood. For example, existing integrality gaps
do not rule out a (2 — ¢)-algorithm for Vertex Cover or a (0.878 + ¢)-
algorithm for MaxCut via degree-4 SoS SDPs, each of which would
refute the notorious Unique Games Conjecture.

We exhibit an explicit mapping from solutions for degree-2 Sum-
of-Squares SDP (Goemans-Williamson SDP) to solutions for the
degree-4 Sum-of-Squares SDP relaxation on boolean variables. By
virtue of this mapping, one can lift lower bounds for degree-2
SoS SDP relaxation to corresponding lower bounds for degree-
4 SoS SDPs. We use this approach to obtain degree-4 SoS SDP
lower bounds for MaxCut on random d-regular graphs, Sherington-
Kirkpatrick model from statistical physics and PSD Grothendieck
problem.

Our constructions use the idea of pseudocalibration towards
candidate SDP vectors, while it was previously only used to produce
the candidate matrix which one would show is PSD using much
technical work. In addition, we develop a different technique to
bound the spectral norms of graphical matrices that arise in the
context of SoS SDPs. The technique is much simpler and yields
better bounds in many cases than the trace method — which was
the sole technique for this purpose.
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1 INTRODUCTION

Sum-of-Squares (SoS) semidefinite programming hierarchy is one
of the most powerful frameworks for algorithm design. Its founda-
tions lie in the so-called “Positivestellensatz" whose history dates
back to more than a century to the work of Hilbert and others.
The algorithmic insight of finding Sum-of-Squares proofs via the
technique of semi-definite programming was only codified at the
turn of the century by Parrillo [33] and Lasserre [23] (also see [36]).

Given a system of polynomial equations/inequalities #, the SoS
SDP hierarchy yields a sequence of semi-definite programming
relaxations to reason about the feasibility of . The d-th relaxation
in the sequence is referred to as the degree-d SoS SDP relaxation.
Successive relaxations get increasingly accurate in reasoning about
P at the expense of computational complexity that grows exponen-
tially with the degree.

SoS SDP hierarchy is an incredibly powerful algorithmic tech-
nique. The best known approximation algorithms for a variety of
combinatorial optimization problems including Maximum Cut, all
Max-CSPs and Sparsest Cut are all subsumed by the first two lev-
els (degree-4) of the hierarchy. More recently, there has been a
flurry of work that uses SoS SDP hierarchy on problems in unsuper-
vised learning such as dictionary learning, estimating parameters
of mixtures of Gaussians, tensor PCA and linear regression.

The limits of SoS SDP hierarchy remain largely a mystery even at
degree four. The degree four SoS SDP relaxation could possibly yield
a (2 — ¢)-approximation for Minimum Vertex Cover or a (0.878 + ¢)-
approximation for Maximum Cut and thereby refute the notorious
Unique Games Conjecture. Despite the immense consequences, the
integrality gap of degree-4 SoS SDP relaxations of Maximum Cut
and Vertex Cover remain unresolved.

Understanding the precise limits of SoS SDP hierarchy has com-
pelling implications even in the context of average case problems.
Specifically, the SoS SDP hierarchy can serve as a lens to under-
stand the terrain of average case complexity. For example, consider
the problem of refuting a random 3-SAT formula. Here the input
consists of a random 3-SAT formula ® with m = pn clauses chosen
uniformly at random on n variables. For all densities p that are
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larger than some fixed constant, the formula ® is unsatisfiable with
high probability. The goal of a refutation algorithm is to certify that
® is unsatisfiable. Formally, a refutation algorithm outputs 1 only
on instances that are unsatisfiable and it does so on a non-negligible
fraction of random 3-SAT formulae. Although the computational
complexity of refuting random 3-SAT formulae conceivably varies
with the density p of clauses, it seems difficult to glean this struc-
ture using reductions — the central tool in worst-case computational
complexity. In particular, it is quite difficult to devise reductions that
produce random instances from simple probability distributions
such as random 3-SAT, though this has been sometimes achieved
[4, 6]. In such a setting, the smallest degree of SoS SDP hierarchy
that can solve the refutation problem (henceforth referred to as just
“SoS degree") can serve as a proxy for computational complexity.
While SoS SDP hierarchy doesn’t capture all efficient algorithms in
every context, it unifies and subsumes many of the state-of-the-art
algorithms for basic combinatorial optimization problems.

This paradigm has been fruitful for random 3-SAT. Nearly match-
ing upper and lower bounds on SoS degree of refutation [15, 34, 35]
have been established, thereby painting a precise picture of how
the complexity of the problem changes with density of clauses.
Specifically, for all w(1) < p < n3/2, the Sum-of-Squares degree is
©(n/p?), yielding a complexity of 20(n/p?),

There is a rich landscape of average case problems with many
having sharper computational thresholds than random 3-SAT. For
example, the random regular NAESAT promises to exhibit an abrupt
change in computational complexity as soon as the degree ex-
ceeds 13.5 [10]. Chromatic number of random d-regular graphs
and community detection on stochastic block models are two other
prominent examples with very sharp but conjectural computational
thresholds. Much is known about structural characterestics and
phase transitions in the solution space as one varies the underlying
parameters in these models. Heuristically, certain phase transitions
in the solution space are conjectured to be associated with abrupt
changes in the computational complexity. The Sum-of-Squares SDP
can be harnessed towards quantitatively demonstrating these phe-
nomena.

1.1 Our Results

Our main result is an explicit mapping from solutions to degree-2
SoS SDP to solutions to degree-4 SoS SDP for boolean optimization.
To formally state the theorem, let us begin by setting up some
notation.

First, the degree-d SoS SDP relaxation can be succinctly described
in terms of pseudodistributions. Intuitively, a pseudodistribution cor-
responds to a function that looks like an actual distribution over
solutions, to low degree polynomial squares. The definition is suc-
cinct and simple enough that we reproduce the formal definition
here.

Definition 1.1. Fix a natural number d € N. A degree d pseudodis-
tribution i is a function p : {£1}" — R satisfying
(1) (Normalization)
Exefoy1yn[p@)] =1
(2) (Positivity) For all p € R[x1, ..., xn], deg(p) < d/2,

Ecc(on,1ynlp?(x) - p(x)] =0
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While the above description of degree-d SoS SDP is accurate,
we will now describe the associated semidefinite programs for
degree two and four in detail. By the degree-2 SoS SDP for boolean
optimization, we refer to the Goemans-Williamson SDP relaxation,
first introduced in the context of the MaxCut problem. Specifically, a
feasible solution to the degree-2 SoS SDP solution is given by a p.s.d
matrix X > 0 whose diagonal entries are identically 1. Formally,
the set of degree-2 SoS SDP solutions denoted by SoS; is given by,

S0Sy = {X e R™"|X > 0 and X;; = 1 forall i € [n]}
The solution to a degree-4 SoS SDP for boolean optimization

consists of a matrix M of dimension (<n2) =1+ ('11) + (g) The

matrix M is indexed by subsets of [n] = {1, ..., n} of size at most
2. The set SoSy is specified by the following SDP:

M[S, T] = M[S'",T'] (0
forall S,T,S’, T e (Ln]z) such that SAT = S’AT’

M[0,0] =1 (2)

M=0 ®3)

The above semidefinite programs are equivalent to the definition
of SoS relaxations in terms of pseudodistributions. Specifically, the
entries of the matrix M are pseudomoments upto degree four of the
pseudodistribution p. Formally, the entry M(S, T] corresponds to
the following moment:

MIS,T] = Exe oy [p@) | [ [ |5

ieS jeT
We are now ready to state the main theorem of this work.

THEOREM 1.2 (MAIN THEOREM). There is an explicit map @ :
SOS; — SOSy4 such that ®(X)[i, j] ! is given by
Xij + X3
®(X)[i,j] = =

1 5 4)
1+ Camag (T + o) - (1+ aspec)
where 0tmag, trow and dspec are the maximum off-diagonal entry,
maximum row norm and spectral norm respectively of the degree
two SDP solution X, and C is an absolute constant. Moreover for
every pair of subsets S, T € ([gn;) D(X)[S, T] is an explicit function
Of{Xij|i,j eSUT}.

All the entries of ®(X) are explicit constant degree polynomials
in X. We refer the reader to Section 2 for the definition of ® and
the proof of Theorem 1.2. Let us suppose we have an objective
value given by (A, X) = 3; j Aj;jXi; for a Hermitian matrix A.
The corresponding objective value of degree-4 SoS SDP is given
by (A M) = 3; j AijM[i, j]. We show the following bound on

change in objective value (see Lemma 2.4 in Section 2):

THEOREM 1.3. Let @ = Comag - (1 + ay,) - (1 + aszpec) where
Omag, Crow and aspec are as defined in Theorem 1.2, then for any
Hermitian matrix A € R"™", let ®2)(X) be the restriction of ®(X) to
the degree-2 part,

1
(A4.00()) > ——(AX) = —— - (VllAllp - Trace (4))

1We are using ®(X)[i, j] to denote ®(X)[{i}, {j}].
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The existence of a non-trivial and useful mapping from degree-2
SoS SDP solutions to degree-4 SoS SDP solutions comes as a surprise
to the authors. Consider the following immediate consequence of
such a mapping. Given the degree-2 SoS SDP on an instance of
MaxCut, the above theorem yields an easily computable lower
bound on the degree-4 SoS SDP value on the same instance. For
example, this yields an efficiently verifiable sufficient condition
(checkable in time O(n?)) under which the degree-4 SoS SDP yields
no better bound than the degree-2 SoS.

We use the lifting theorem to recover lower bounds for degree-4
SoS SDP relaxations for a few average case problems — which was
the original motivation behind this work. The problems and the
corresponding lower bounds are described below.

Sherrington—Kirkpatrick Model. Let W be a random n X n ma-
trix with independent Gaussian entries, let G = \/lE (W + WT);

we say that G is sampled from GOE(n), a distribution known as
the Gaussian Orthogonal Ensemble. A fundamental model in the
study of spin glasses from statistical physics is the Sherrington—
Kirkpatrick (SK) model where the energy of a system of n particles
in a state x € {1, +1}" states is given by —xTGx. The Sherrington-
Kirkpatrick (SK) model has been extensively studied in various areas
including the study of spin glasses, random satisfiability problems,
and learning theory [11, 24-27, 29].

For the SK model, a quantity of particular interest is the minimum
possible energy, i.e.,
xTGx .

OPT(G) = max

xe{-1,1}"

In a highly influential work, Parisi predicted in [31, 32] that OPT(G)
concentrates around 2 - P*n3/ 2 where P* is an explicit constant
now referred to as the Parisi constant. The value of P* is roughly
0.763166. This prediction was eventually rigorously proven twenty
five years later in a celebrated work of Talagrand [37], thereby
confirming that OPT(G) ~ (1.52633...) - n3/2,

This brings us to our natural average case refutation problem,
that of certifying an upper bound on xTGx for x € {-1,1}". A
natural refutation algorithm is the spectral refutation. Indeed

OPT(G) = max x'Gx <n- max x'Gx=n- Amax(G),
xe{£1}n [|x]]=1

the algorithm which outputs Amax(G) given G as input is an efficient
refutation algorithm. Since Ayax(G) concentrates around 24/n, it
certifies an upper bound OPT(G) < 2n/2 which is larger than the
true value of the optimum OPT(G) = 2P* - n3/2 = 1.52 . n3/2,

This raises the question whether efficient algorithms can certify
an upper bound stronger than the simple spectral bound? In this
work, we show that the degree-4 SoS SDP fails to certify a bound
better than the spectral bound. To this end, we start with a feasible
solution to the degree-2 SoS SDP relaxation for the SK model and
apply our lifting theorem Theorem 1.2 to construct a degree-4 SoS
SDP solution.

THEOREM 1.4 (DEGREE-4 SOS LOWER BOUND FOR SHERRINGTON—KIRK-

PATRICK). Let G ~ GOE(n). With probability 1 — 0,(1), there exists
a degree-4 SoS SDP solution with value at least (2 — 0,(1)) - n3/2
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In an independent and concurrent work, Kunisky and Bandeira
[22] also obtained a degree-4 SoS integrality gap for the Sherrington—
Kirkpatrick refutation problem.

MaxCut in random d-regular graphs. Akin to the Sherrington—
Kirkpatrick model, it is known from the work of Dembo et al. [8]
that the fraction of edges cut by the max-cut in a random d-regular
graph G on n vertices is concentrated around
P + ( ! ) +o0n(1)
— + 04 |—=| +on(1).
Vd val "

On the other hand, it was proved in [5, 13] that the spectral refu-

1
—+
2

tation algorithm, which outputs the maximum eigenvalue of ﬁ—r‘;,
certifies an upper bound of

1 + d-1

2 d
Once again the question remains whether more sophisticated refu-
tation algorithms can beat the spectral bound. Through our lifting
theorem, we show that degree 4 SoS SDP is no better than spectral
algorithm asymptotically as d — co?.

+ op(1).

THEOREM 1.5 (DEGREE-4 SOS LOWER BOUND FOR MaxCut IN RAN-
DOM d-REGULAR GRAPHS). Let G be a random d-regular graph. For
every constant € > 0 with probability 1 — o,(1), there is a degree-4
SoS SDP solution with MaxCut value at least

b_g_y@u

d1/2
for some constant y that depends only on ¢.

1 d-1

2 d

The degree-2 SoS SDP solution for the SK model on which we
apply our lifting theorem is presented in Theorem 4.8. Analogously,
Theorem 5.1 describes the degree 2 SoS SDP solution we use for
the MaxCut problem.

“Boolean Vector in Random Subspace” Problem. The refutation
problem for the SK model is closely tied to the following problem:
given a random subspace V of dimension d in R", can we certify that
there is no hypercube vector {+1}" ‘close’ to V in polynomial-time?
Formally, if Iy denotes the projection operator onto a random
subspace, then let OPT(V) denote the maximum correlation of a
boolean vector with V, i.e.,

OPT(V) = - ¥
(V)=—- max x'Ilyx.
n xe{-1,1}»

Using a simple e-net argument, one can show that with high prob-
ability OPT(V) ~ % + y(d/n) for some function y : [0,1] — R
such that lim,—,0 y(e) = 0°. In other words, for a low dimensional
subspace with d < n, OPT(V) is close to 2/ with high probability
over choice of V.

The spectral algorithm can only certify OPT(V) < ||IIy || = 1
which is a trivial bound. A natural question is whether one can

2 We believe that Theorem 1.5 is not tight and conjecture that there should exist
pseudoexpectations with objective value % + (1= o0n,(1)) \/?
*OPT(V) = ||Av |I5,,. where columns of Ay are an orthogonal basis for V. So for
fixed unit x € R?, ||Ay x||; concentrates around \/2/7 with a subgaussian tail. A

union bound over an -net of R¢ completes the calculation.

for all values of d.
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efficiently certify a stronger upper bound. We show that the degree-
4 SoS SDP fails to improve on the spectral bound by a non-negligible
amount.

THEOREM 1.6 (BOOLEAN VECTOR IN RANDOM SUBSPACE). IfV
is a random d-dimensional subspace where d > n-%?, then with
probability 1 — 0,(1) there exists a degree-4 SoS SDP solution with
value at least 1 — 0,(1).

1.2 Related Work

Early work on lower bounds for Sum-of-Squares SDPs arose out
of the literature on proof complexity. In particular, these included
lower bounds on Sum-of-Squares refutations of Knapsack [14], Par-
ity principle (non-existence of a perfect matching in a complete
graph on odd number of vertices) [15] and 3XOR/3SAT [15]. For
3SAT/3XOR, it was proven by Grigoriev [15] and later indepen-
dently by Schoenbeck [35] that the polynomial time regime of
Sum-of-Squares fails to refute random instances whenever the den-
sity of clauses is o(+/n). This lower bound for 3SAT is the starting
point of lower bounds for a host of other problems. Specifically, the
use of polynomial time reductions to convert integrality gaps for
one problem into another, first pioneered in [20], was shown to be
applicable to the SoS SDP hierarchy [38]. By harnessing the known
reductions, Tulsiani [38] recovers exponential lower bounds for
a variety of constraint satisfaction problems (CSP) starting from
3SAT.

More recently, Kothari et al. [21] obtained lower bounds for all
CSPs corresponding to predicates whose satisfying assignments
support a pairwise independent distribution. This class of CSPs is
well beyond the reach of current web of NP-hardness reductions.
2-CSPs such as MaxCut are not pairwise independent, and are thus
not within the realm of known lower bounds for SoS SDPs.

The problem of certifying the size of maximum clique on Erdos-
Renyi random graphs (closely related to the planted clique prob-
lem) has received much attention lately. Following a series of
works [9, 16] that obtained the tight lower bounds for degree four,
the breakthrough tour-de-force of Barak et al. [2] obtained lower
bounds for upto degree O(log n). In this work, Barak et al. [2] in-
troduced a heuristic technique for constructing candidate solutions
to Sum-of-Squares SDPs called pseudocalibration. Subsequently, the
pseudocalibration technique was used in [17] to show SoS lower
bounds for Tensor PCA and Sparse PCA. Building on ideas from
pseudocalibration, Hopkins and Steurer [18] recovered conjectured
computational thresholds in community detection, while [19] use
it towards showing LP extended formulation lower bounds for
Random 3SAT.

In an independent work, Kunisky and Bandeira [22] also obtained
a degree-4 SoS integrality gap for the Sherrington—Kirkpatrick
refutation problem.

1.3 Technical Overview

The mapping @ alluded to in Theorem 1.2 is quite intricate and
we are unable to motivate the construction of the mapping in a
canonical fashion. Instead, we focus on how the map ® was first con-
structed in the context of the Boolean Vector in Random Subspace
problem.
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Fix a randomly chosen subspace V of dimension d in R”. With
high probability, no boolean vector x € {—1,1}" is close to V (every
boolean vector x has correlation less than % + 0p(1) with V). To
prove that the degree 4 SoS SDP cannot refute the existence of a
boolean vector in V, we need to construct a degree 4 pseudodistri-
bution p such that,

Exe(-1,1yn[uCox My x| ~ n.
In words, the pseudodistribution y is seemingly supported on vec-
tors x in the subspace V.

Pseudocalibration. We will now use the pseudocalibration recipe
of Barak [3] to arrive at the pseudodistribution p.

The idea is to construct a planted distribution © over pairs (x, V)
where x € {-1,1}", x € V and the subspace V is a seemingly
random subspace. For example, a natural planted distribution ©
would be given by the following sampling procedure:

e Sample x € {1, 1}" uniformly at random.
e Sample a uniformly random subspace W of dimension d — 1
and set V = Span(W U {x}).
It is clear that the pair (x, V) satisfies all the desired properties of
the planted distribution.

Let Gr(n, d) denote the space of all d-dimensional subspaces of
R™. Let © denote the density associated with the planted distribu-
tion, i.e., © is a function over Gr(n,d) x {-1,1}".*

For any specific V € Gr(n, d) that contains a boolean vector in
the subspace, notice that the restriction Oy (x) = O(x, V) isup to a
factor normalization, a valid probability distribution over {—1, 1}".
Therefore, Oy is a solution to the degree d SoS SDP relaxation
for all d, upto the normalization factor. Ignoring the issue of the
normalization factor for now, the candidate degree 4 moment matrix
would be given by,

]_[ xi|-e@v)| )

jeT

My (S, T] = Exc_g,1yn (n xi)

ieS

The matrix M* is clearly positive semidefinite for each V. To for-

mally construct the Cholesky factorization of M*, one defines

the vectors {Vs : {~1,1}" — R} to be the functions V{(x) =

;esx; - (©(x, V))Y/2. The inner product between the vectors f, g
is given by

(f(x),9(x)) = Exe1,1yn [f(x)g(x)].
With these definitions, we will have

ME[S,T] = (VE, V) )

as desired. While the above ideal SDP solution and vectors satisfies
most of the constraints, it fails the normalization. In fact, the nor-
malization factor Iy = Eye(_1,1}n [Oy (x)] is very spiky, it is zero
on almost all instances V except being very large on subspaces V
containing a boolean vector.

The key insight of pseudocalibration is to project the planted
density © to low degree functions in ©, or equivalently truncate
away the part of © that is high degree in the instance V. Let
OSP denote the low degree truncation of the planted density
©. For any V € Gr(n,d), the pseudo-calibrated pseudodensity

4Technically, the density © needs to be represented by a distribution
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osPv] - {-1,1}" — R is given by @gD[V](x) = OSP(v,x).
More concretely, the candidate SDP solution specified by pseudo-
calibration is

[ x| esPviw| o

jeT

My [S,T] = Exe(-1,1}n (n xi)

ieS

for all S, T. The feasibility of My needs to be established, which

often requires considerable technical work, especially the proof of
positive semidefiniteness of My .

A natural approach to prove psdness of My is to construct
the corresponding SDP vectors (Cholesky factorization) by using a
low degree truncation of the ideal SDP vectors V§ defined above.
Since My is obtained by truncating an ideal solution M* to low
degree polynomials, it would be conceivable that the low degree
truncation of the ideal SDP vectors yield Cholesky factorization of
My . Unfortunately, this hope does not come to fruition and to our
knowledge does not hold for any problem.

Representations. Executing the above strategy over Gr(n, d) is
technically challenging since low degree polynomials over Gr(n, d)
are complicated. To cope with the technical difficulty, it is bet-
ter to work with an explicit representation of the subspace V.
Specifically, V can be represented by a n X k matrix My in that
V = Col-Span(My). Any choice of k > d would suffice to represent
a d-dimensional subspace V, and in our construction we will set
K — oo

With this representation, a candidate planted distribution (x, My )
is sampled as follows:

e Sample x € {—1, 1}" uniformly at random.

e Sample d — 1 vectors wy, ..., wy_; € R" from the standard
normal distribution N(0, 1)". Let M be the nxd matrix whose
columns are x and wy, ..., wg_q.

e Let U € R**¥ be a random unitary matrix, and let UE" €
R™ ¥ matrix denote the first n rows of Uy. Set M, = M-U,f"

First, notice that x € Col-Span(M,) as needed. However, the rep-
resentations are not unique in that each subspace V has infinitely
many different representations. Further, the original SoS optimiza-
tion problem depends solely on the subspace V, and is independent
of the matrix M, representing V.

At first, these redundant representations or inherent symmetries
of the planted density, seem to be an issue to be dealt with. It turns
out that these redundancy in representations is actually useful in
constructing the SDP vectors!

Planted Distribution. Before proceeding, we will first simplify
our planted distribution even further. Since computations over
random unitary matrices are technically difficult, we will select a
much simpler finite subgroup of the unitary group to work with. In
particular, the planted distribution © over pairs (x, M) is sampled
as follows:

e Sample x € {—1, 1}" uniformly at random.

e Sample d — 1 vectors wy, ..., wg_; € R"” from the standard
normal distribution N(0, 1)". Let M be the nxd matrix whose
columns are x and wy, ..., wWg_q.

o Let H,§n denote the n X k matrix obtained by taking the
first n rows of the Hadamard matrix Hy. Let Z € R¥*¥
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denote a diagonal matrix with random {+1} entries. Set
My = MHS"Z
The above construction uses Hy Z instead of a unitary random
matrix Uy. In particular, the continous unitary group is replaced
with a finite set of 2¥ transformations indexed by the familiar
{-1,1}*, making the calculations tractable.

Exploiting multiple representations. Applying the pseudo-calibration
heuristic to the planted density (x, M) defined above, we get a can-
didate ideal SDP solution My,

[Tx] @0 0| @)

JjeT

My (8. T] = Exeoq1yn (l_[ xi)

ieS

This ideal SDP solution needs to be truncated to low degree with ©

to be replaced by ©<D The specifics of the low degree projection
used to define ©SP are intentionally left vague at this time.

The construction thus far is essentially the pseudocalibration
heuristic albeit on a somewhat complicated planted distribution. It
is at this time that we will exploit the symmetries of the planted
density. Recall that the underlying subspace V depends only on
Col-Span(M,) = Col-Span(M), and so does the underlying SoS
SDP relaxation. Therefore, it is natural to average out the above
pseudocalibrated solution over the various representations of V,
i.e., define the solution My as,

[ 1] O[MHS"Z](x)

ieS jeT

M*V [S.T]= Ez xe{z1}n (Hxi)

Analogous to the ideal SDP vectors (6), one can define SDP
vectors VS* here, but this time as functions over both x and Z. That

is if we let V3 (x, Z) = (Tjesx;) - \/O[MHS"Z](x) then,
M3y [S.T] = (Vi (x, 2), Vi(x, 2))

where <f(x’ Z)7 9(x7 Z)> = EZExE{—l,l}” [f(x7 Z)g(x’ Z)]

The above construction looks similar to (7) and (6) with one
important difference. The quantities are a function of the matrix M
defining the subspace and a set of redundancies in representation
given by Z. In particular, low degree truncation ©<P can include
truncation in the degree over M and over Z separately.

Somewhat mysteriously, it turns out that by choosing a low
degree truncation (in both M and Z) of both the ideal SDP solu-
tion M* and the ideal vectors VS* , we can recover SDP solution
along with an approximate Cholesky factorization (analogous to (6)).
While the above discussion describes how we arrive at the defini-
tion of the mapping. The proof that the mapping works amounts to
showing that the truncated vectors yield an approximate Cholesky
factorization of the pseudo-calibrated matrix, which forms the tech-
nical heart of the paper. We defer the details of the construction to
Section 2.

Bounding Spectral Norm. We exhibit a candidate SoS SDP so-
lution M@, and show that there exists a positive semi-definite
matrix M® that is close in spectral norm to M@ The difference
MD — M@ is matrix with entries that are low degree polynomials
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in the input M, and our goal is to upper bound the spectral norm
(IM®@ - MO

As is typical, this involves obtaining spectral norm bounds on ma-
trices whose entries are low degree polynomials. Earlier works on
Planted Clique [2, 9] and others have developed technical machin-
ery based on the trace method towards bounding spectral norms.
We present a simpler factorization based technique to obtain bounds
on spectral norms here. Owing to its simplicity, it is broadly appli-
cable to more complicated ensembles of random matrices such as
those arising in sparse d-regular random graphs. Furthermore, in
some cases, the technique yields tighter bounds than trace method.
For example, consider the following random matrix. Let A € R™*"
be a random symmetric matrix with A;; = 0 for all i and A;; being
independent {+1} entry otherwise. Consider the random matrix
B e RIMXInI defined as,

B[(i1,12), (1,J2)] = Aiyj, - Aiyjy - Ay, -

The best known bounds for ||B|| using the trace method imply that
|IB]| < n- (logn)€ for some constant ¢ [9]. On the other hand, the
factorization technique outlined in Section 3 can be easily used to
obtain a ©(n) upper bound (specifically, an upper bound of 4n).

All our spectral norm bounds are obtained via the factorization
method, starting from bounds on the norm of the original matrix A.

2 LIFTS OF A DEGREE-2
PSEUDOEXPECTATION

In this section, we describe how to obtain a degree-4 pseudoexpec-

tation E4 from a degree-2 pseudoexpectation Eg. We specify Eq via

its pseudomoment matrix M whose rows and columns are indexed

by sets of size at most 2, with M[S, T] = E4 [xSAT]. Let M’ be the

following n X n submatrix of the degree-2 pseudomoment matrix:

M[i% ) = Balinj] j€ [n).
Since M’ is positive semidefinite, we can write M’ in its Cholesky

decomposition MM' where M is some n X n matrix.

For each k¥ > n that is a power of 2, let H,f" denote the n X x
matrix obtained by taking the first n rows of the Hadamard matrix

Hy.. We first define a n X k matrix My = MHE". A key property
of M we use is:

Fact 1. (M[i], M[j]) = (Mg[i], Mx[j]) where M[t] denotes the
t-th row of M since the rows of H" are orthogonal unit vectors.

Fix a set of indeterminates z1, . . ., zx obeying z? = 1. For each
i € [n], we define “seed polynomials”

qi,x(2) = Z MK[i’j]Zj
Jjelx]
-2 Mk[isjl]MK[iij]MK[isj3]Zj1ijzj3
{jt.2-J3 FElx]

and for each subset S C [n] define “set polynomials”
95.x(2) = | | qix(@-
ieS
We now define matrix M) as follows:

MWDI[S, T] = (10)

Kli_r)lgo EZ~{J_,1}K[CISAT,K(7—)]
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We pick our pseudomoment matrix M as a mild adjustment to

MO Specifically, we define
M:=(1- 17)/\/((1) +n-1d.
where we choose 7 later.

It is clear that M satisfies the “Booleanness” and “symmetry”
constraints. It remains to prove that M is positive semidefinite for
appropriate choice of 7.

Towards doing so, we define a new matrix M@ Define “trun-
cated polynomials”

Ps.(2) = gs,c(2) S

where gg, «(2)S7 denotes the projection of gs, , onto the space of
polynomials spanned by yr where |T| < 7. And define M® as:

MP[S.T] = lim E.qyys[ps.c@prc@] (1)

Once again, we defer the proof that the limit on the right-hand
side exists to the full paper. M(?) is PSD as it is the limit of second
moment matrices, each of which is PSD.

To show M is PSD, we first bound the spectral norm of MO —
M@,

LEMMA 2.1. Let aspec = ||M|l2, mag = max; j.izj M'[i,]],
Grow = MaX;e[n] 3 j#iM[i, j12. There is an absolute constant C >
0 such thata = Camag-(1+afow)-(1+a52pec) and IMBD-MP ||, <
a.

Lemma 2.1 is an immediate consequence of Lemma 3.1, which
Section 3 is dedicated to proving.

COROLLARY 2.2. Let « be as in the statement of Lemma 2.1. Then
Amin(M®) > —at.

Set 1 := 2. The PSDness of M follows from Corollary 2.2 and
the fact that adding - Id to any matrix increases all its eigenvalues
by 7.

THEOREM 2.3. M > 0.

LEMMA 2.4. Let o be as in the statement of Lemma 2.1. For any
Hermitian matrix A € R™",
_ a —_ -
Eilxax] > (1 - ) Balx"Ax] - avallAll)

a
T A).
o race (A)

+
1

3 SPECTRAL NORM BOUNDS

This section is dedicated to proving Lemma 2.1. We first make some
structural observations about & := M) — M®@).

OBSERVATION 1. Suppose |SAT| is odd. Then E[S,T] = 0.

ProoOF. Since g; (2) is a sum over odd degree terms in z, so is
qsAT,«(z) when |SAT| is odd, and so the expected value of each
term over the choice of random z is 0. Thus, Mg)[S, T] =0, and by
extension M([S, T] = 0. Note that for any set S all terms in pg
have the same parity as |S|, and thus all terms in pg ,pT, « have the
same parity as |S| + |T|, whose parity is the same as |[SAT|. Thus,
Mff)[s, T] = 0 and consequently M®P[s,T] = 0. O
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OBSERVATION 2. SupposeS =0 orT = 0. Then E[S,T] = 0.

Thus, we can split & into four parts.

E[S, T] S=T
g0y, 1 = {1571 ,

0 otherwise

E[S,T] if|S|=|T|=1,|SNT|=0
g, [EIST) HISI=ITI=1.150T]

0 otherwise

if S| = |T| =2,|SNT| =1

&[S, T
B8, 1) :={ [5.7] ,
0 otherwise

8(4) [S,T] := {f[s’ T]

Since & = &M + 8@ + £6) 1 &), proving a spectral norm bound
on each individual piece also gives a bound of the spectral norm
of & via the triangle inequality. In later parts of the section, the
following are proved.

if S| = |T|=2,|SNT| =0

otherwise

LEMMA 3.1. The following spectral norm bounds hold:
1D < O(etmag)
IEP] < Oaon - mag)
||8(3)|I < O(@tmag - (1 + aspec + arzow))
6@ < O(amag - (1 + ar ) (1+ Ofszpec))-
In particular, this implies |5 ]| < Octmag - (1+ @) - (1 + ayec).

The full for this lemma is highly mechanical and technical, and
we defer the interested readers to the full version of this paper
while we give an outline of the graphical matrices, an important
ingredient in our analysis.

3.1 Graphical Polynomials and Graphical
Matrices

Akin to [2], we give a way to associate matrices with constant sized
graphs. To motivate studying graphical matrices, we start with
some simple examples. Let H be some graph with vertex set [n].
Now, consider the graph G in the figure below.

A
N

Figure 1: Graph G

Next, define an nxn? matrix Qg, which is the “graphical matrix”
of G with rows and columns indexed by size-2 subsets of [n] where

Qgl{i.j}. {k. t}] :==#{subgraphs of H isomorphic to G
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so that a1, ag, as, a4 map to i, j, k, (}.

Our reason for considering matrices that encode ‘constant-sized
graph statistics’ such as the above, which we call graphical matrices,
is that we are able to naturally view MD and M® as a sum of
simple graphical matrices®. Thus, a natural way to obtain a handle
on the spectral norm of M1 — M® is understanding the spectral
behavior of the graphical matrices that constitute it.

3.1.1  Sketch of Graphical Matrices. We dig into the specific graph-
ical matrices that arise in this section. We view the matrix M, as a
weighted bipartite graph with left vertex set [n] and right vertex
set [k], where the weight of the edge between i € [n] and j € [«]
is My[i, j] — we call this Bipartite(M, ). Now, let G be a bipartite
graph on constant number of vertices where each left vertex of
G is one or two of two colors, row or column, and each right ver-
tex is uncolored. The graphical matrix associated with G is the
nlrow(@)| i pleolum(G)] matrix Qg with rows and columns indexed
by subsets of [n] of size |row(G)| and |column(G)| respectively
where we obtain the S, T entry in the following way.

Enumerate over all subgraphs of Bipartite(M, ) that
are isomorphic to G, and vertices colored row map
into S and the vertices colored column map into T,
take the product of edge weights of each subgraph,
and then take the sum over all subgraphs enumerated
over.

Symbolically,
Q G x[S:T] =

> [1 Mmclil
‘H subgraph of Bipartite(M,) {i,j}eH
H isomorphic to G
row(G) maps into S

column(G) maps into T
3.1.2  Definitions.

Definition 3.2 (Half-Glyph). Ahalf-glyph H G is a bipartite (multi-
)graph with a left vertex set L(HG) = {¢1, ..., | (Hg)|}, a middle
vertex set M(HG) = {m1,...,mp(wg) } and edges E(HG). We
use HG, p to represent the number of edges between £, and my.

Definition 3.3 (Half-Glyph Labeling). For a half-glyph HG, we
call S : L(HG) — [n] a valid labeling if

(1) It is a injective map from L(HG) to [n].

(2) S(¢;) < S(¢j) if and only if i < i

REMARK 1. For simplicity, we represent each valid labeling as a

size-|L(H@G)| subset of [n].

Definition 3.4 (Cluster of M(HG)). For a half-glyph HG, we call
a set of vertices {v1, ... ,v|B|} in cluster B if they have the same
neighborhood on L(HG), i.e., Vi,j € B, HG((,i) = HG({, j) for
any { € L(HG). Welet B(HG) = (Bi, . . ., B) be the set of clusters
in HG where k < «k is the number of clusters.

SWhere H is replaced with a complete (n, L)-bipartite graph, and the edges are
equipped with weights from the matrix M.

®We will use circles to represent vertices in L(HG) (and later L(G) and R(G)) that
should be thought as vertices in [n] and square to represent vertices in M(G) that
should be thought as indeterminates z.

7This “order-preserving” requirement is an artifact of our proof.
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4

2

(a) Half-Glyph HG,

151

%)

(b) Half-Glyph HG:

Figure 2: Half-Glyphs ©

Definition 3.5 (z-labeling of half-glyph). We say = : M(HG) —
[k] is a z-labeling if it is injective, and if for each cluster B; €
B(HG) and mg, my, € B;, m(mg) < m(my) if and only if a < b. We
denote the set of z-labelings by II(HG).

Definition 3.6 (k-Graphical Polynomial of a Half-Glyph). For any
k, every half-glyph H G with a valid labeling S is associated with a

polynomial over indeterminates z = (z1, . . ., z«) given by
Brgrs@ = Y, Teng []| MelSG.7()]
nell(HG) JEM(HG)
2 ()19

Definition 3.7 (Glyph). A glyph G is a multi-graph on the ver-
tex set V(G) = L(G)UM(G)UR(G) and edge set E(G), where L(G)U
R(G) = {v1,v2,. .., v (g)uR(g)|} and M(G) = {m1, m2, ..
We use G, j to represent the number of edges between v, and my,.

REMARK 2. Our definition of cluster and z-labeling for half-glyph
extends naturally to glyph.

We will refer to L(G) as left vertices, M(G) as middle vertices,
and R(G) as right vertices of the glyph. We emphasize that L(G)
and R(G) need not be disjoint; in particular some vertices can be
both left and right vertices. In the following figure, G1 and G, are
different glyphs because L and R intersect in G; but not in G».

Observe that any glyph can be seen as being "composed" of two
half-glyphs: the left half-glyph £(G) which is the induced subgraph
on L(G)UM(G), and the right half-glyph R(G) which is the induced
subgraph on R(G)UM(G). We now extend the definition of labeling
and graphical polynomial to glyphs.

Definition 3.8 (Glyph Labeling). For any glyph G, let S be a valid
labeling for £(G), and T be a valid labeling for R(G), S and T
are G-compatible if they agree on L(G) N R(G), i.e. S|y (g)nr(g) =
TIr(g)nRr(g) and are disjoint on their symmetric difference, i.e.
S(L(G) \ R(@)) N T(R(G) \ L(G)) = 0. For two G-compatible la-
belings Sand T, let So T : L(G) U R(G) — [n] denote the joint
labelling induced by both.

Smmg) -
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V1 U1
V2 (%
(a) Glyph G,

U1 V4
V2 3

(b) Glyph G,

Figure 3: Glyphs

Definition 3.9 (x-Graphical Polynomial of a Glyph). For any , for
a glyph G with half-glyphs £(G) and R(G) and a pair of compatible
labelings S, T, we associate it with a polynomial over indeterminates
z = (z1,...,2x) given by

BG..so1(@) = Y [T Mels o TG), ()]
7€ll(G) i€L(G)UR(G) jeM(G)
. zﬂ(j))givf
Definition 3.10. A glyph G is called well-glued if every middle

vertex has even degree.

REMARK 3. The k-graphical polynomial of a well-glued glyph does
not depend on z. Specifically,

BG.soT = |

n€ll(G) ieL(G)UR(G) jeM(G)
Definition 3.11 (x-Graphical Matrix of a Well-Glued Glyph). For

[n]
1(g) %

Mi[S o T(i), n(j)| 7

each well-glued glyph G, we associate a matrix indexed by (
( R[(rg)) defined as

Qg «[S.T] == 1[S, T are G-compatible] - Bg x soT
which we call the k-graphical matrix of G.

Cram 1. Let G be a well-glued (A, B)-glyph. The limitlimy 00 Qg x
exists.

We defer the proof of the claim to Appendix ??.

Definition 3.12 (Graphical matrix of a well-glued glyph). For a
well-glued glyph G, we call the matrix
Qg = Klij%o Qg

the graphical matrix of G.

Definition 3.13. Given a well-glued glyph G and a length-2 walk
that starts at u € L(G) U R(G), takes an edge to middle vertex
m € M(G), and takes a different edge from m to u’ € L(G) U R(G).
We call the length-2 walk a cyclic walk if u = u’; otherwise, we call
it an acyclic walk.
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We also give an explicit expression for the entries of Qg.

LEMMA 3.14. Let G be a well-glued glyph. Suppose any middle
vertex of G has degree > 4, Qg = 0. Suppose all middle vertices
of G have degree 2 and S o T is a valid labeling of G and fori,j €
L(G) U R(G) let P; j be the collection of length-2 walks from i to j.
Then:

(M[S o T(i)], M[S o T()]) |7
[P, ;1! '

QglS. Tl = igjer(g)ur(g)

3.2 Glyph Factorization and Spectral Norm
Bound

A useful ingredient towards our goal is a generic way to bound the
spectral norm of a graphical matrix. In Lemma 3.14, we show that
the entries of the graphical matrix of a well-glued graph can be
written as a product of inner products. We use this insight to factor
the graphical matrices we need to deal with into simpler matrices.
We start with a few basic definitions of types of simple matrices we
encounter.

Definition 3.15 (Growth and shrinkage matrices). We call a matrix
a growth matrix if it is block-diagonal and each block is a subrow
of MMT. We define a shrink matrix as one that can be written as
the transpose of a growth matrix.

Definition 3.16 (Swap matrices). We call a matrix a swap matrix
if it is block diagonal and each block can be written as either (a)
W —1d where W is a principal submatrix of MM?, or (b) W where
W is a (not necessarily principal) submatrix of MM

Definition 3.17 (Residue matrices). We call a matrix a residue
matrix if it is a diagonal matrix and each entry is an off-diagonal
entry of MMT.

LEmMA 3.18. If L is a growth/shrinkage matrix, its spectral norm
is bounded by arow; if it is a swap matrix, its spectral norm is bounded
by aspec; and if it is a residue matrix, its spectral norm is bounded by
Omag-

Before jumping into the full proof, we illustrate the efficacy of
our method on the following toy example that will appear in our
analysis of &), Consider the following glyph G with entries:

Qgl{i.j} (k. (3] = %(M[i],M[kDS(M[j],M[f])

for i, j, k,¢ € [n] distinctand i < j, k < £.

Figure 4: Glyph G
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Qg can be written as a product of simpler matrices — define
matrices L1, L2, L3, L4 as follows. For all i, j, k, ¢ distinct in [n]
with i < jand k < ¢,

Lil{i, g} {5 ), k3] = (M[i], MIK])
Lo[{i, ), kY. {i.j, k}] = (M[i], M[k])
La[{i. ).k}, {. k}] = (M[i], M[k])
La[{), k} {k, €3] = (M[j], M[£])

The above matrices are set to 0 wherever they are undefined. It can
be verified that

Qg=L1-Ly L3 Ly

A major advantage of glyph factorization is that it offers a unified
framework to bound the spectral norm of graphical matrices of the
complex glyphs in terms of spectral norms of simpler matrices. In
our example, we have

Qg < Ll - 1Lzl - 11311 - 11 Lall -

We wrap up by giving spectral norm bounds on £;, and we
will generalize from them all the basic glyphs that we will use
throughout this section.

Bounding || L1]| and || L3]|. £1 and L3 are growth and shrinkage
matrices respectively and hence their spectral norms are bounded
by arow-

Bounding || L2]|. L2 is a residue matrix and hence its spectral
norm is at most amag.

Bounding || L4]|. L4 is a swap matrix and hence its spectral norm

is at most dspec.
Combining the above gives [|Qgll < aZ, - @mag - @spec. More

generally:

LEMMA 3.19. Let G be a well-glued glyph whose graphical ma-
trix factorizes as Qg = Ly - ... L where each L; is either a
growth/shrinkage/swap residue matrix. Let the number of growth (or
shrinkage) matrices be t1, the number of residue matrices be t», and
the number of swap matrices be t3, then

”QQH < alfcl)w : ar%ag : astf)ec-
4 DEGREE-4 SOS LOWER BOUND FOR THE
SHERRINGTON-KIRKPATRICK
HAMILTONIAN

4.1 Gaussian Concentration

In this section, we give a brief review of standard concentration
results related to Gaussian random variables, vectors, and matrices.
As in previous sections, let M be a n X d matrix where each entry

is independently sampled from NV (O, é) and assume d < n.

LEMMA 4.1 (CONCENTRATION OF SINGULAR VALUES OF GAUSSIAN
. .7: 12
MATRICES, [39, COROLLARY 5.35]). Except with probability 2 exp (— 7),

Vn—Vd-t

n+Vd+t
7 AR A

Vd

< Smin(M) < spax(M) <
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COROLLARY 4.2. Except with probability 2 exp (’th)

n+d+2Vdn + £ + 2(Vd + \n)t
d

COROLLARY 4.3. Except with probability n™1%, for all i,

1 1
(M, M;) € [1 - 100\/%,1 + 100,/%]

LEMMA 4.4. Except with probability at least n='%, for all pairs of

distinct i, J,
1 1
(M;. M) € [—wow/ 05”,1004 05"}.

LEmMA 4.5 (%MM T APPROXIMATES A PROJECTION MATRIX). With
probability at least 1 — 2e_d/2,for allx e R™,

£

IMMT|| < M) <

“xTMMTx.
n

+ -1 .
x'M(MTM) Mix=|1z0

-1
Note: M (MMT) MTx is the projection matrix onto the column
space of M.

LEMMA 4.6. With probability at least 1 — Ze_tz/z,

1_4@)

n2

Vi | d

4.2 Degree-2 Pseudoexpectation for
SubspaceBooleanVector

o >

We call the following problem SubspaceBooleanVector. Given a
n X d matrix M where each entry is independently sampled from
N (O, %), certify an upper bound on x" MM x over the boolean hy-
percube. Let M be a n X d matrix where each entry is independently
sampled from N (0, %) The degree-2 Sum-of-Squares relaxation is
as follows:

max E[xTMMTx]

B s.t. E[xlz] =1.
E degree-2

LEMMA 4.7. Except with probability n=%

doexpectation E with pseudomoment matrix M such that its maxi-
logn

d

, there is a degree-2 pseu-

mum magnitude off-diagonal entry is at most 100 the £y norms

of its rows are bounded by "1(3%

n
124, and

, its spectral norm is bounded by

R

ProoF. A degree-2 pseudoexpectation E (that is due to [28]) can

P
“ElxTMMTx] > (1 -0
n

be constructed in the following way. Let y := 100 k’sn.
1 when [S| =0
E[xs] =40 when |S]| =1

(1-y)(MM")[i,j] whenS = {i,j}
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The pseudomoment matrix M of E can thus be written as

1 0
0 (1-yMM'+D

where D is some diagonal matrix.

It remains to prove that E is a valid Boolean pseudoexpectation.
It is clear that E satisfies the Booleanness and symmetry constraints.
It remains to prove that M is PSD. And to do so, it suffices to show
that (1 — y)MM" + D is PSD. D[i,i] = 1 — (1 — y)MM][i, i]. From
Corollary 4.3 along with a union bound over all diagonal entries
of D we can conclude that for alli € [n], 1 > D[i,i] > 0 with
probability at least 1 — n~%° which means D is PSD. (1 — y) MM is
clearly PSD, which means M is PSD.

Next, we determine the objective value attained by E[-].

g'ﬁ[x*MM*x] = §<MMT, (1-y)MM' + D)
= C;l ((1 — (MM, MMy + (MMT,D))

d
> —(1-y)IMM|Z.

From Lemma 4.6, the above is at least (1-y) (1 -0 (\/g)) n except

with probability at most n=1%,

Finally, we establish bounds on the maximum absolute off-diagonal
entry, the row norm, and the spectral norm of M.
From Corollary 4.4 except with probability n=1% all off-diagonal

entries of M are bounded in magnitude by 100 losn

with the fact that the diagonal entries are equal to 1, we see that

; combined

nlogn
—
of |MM7|| is bounded by 1.1% and each D[i, i] is between 0 and
1 except with with probability at most n71%°, Thus, the spectral

norm of M is bounded by 1.2% except with probability at most
-100
n= v,

the £, norm of each row is bounded by The spectral norm

[m]

4.3 Degree-2 Pseudoexpectation for the
Sherrington—-Kirkpatrick Hamiltonian

Recall that G ~ GOE(n) and M is a n X d matrix where each entry

is independently sampled from N (O, %)

THEOREM 4.8. With probability 1 — on(1), there is a degree-2
Boolean pseudoexpectation E such that
1 ~
— F[xT -
57 E[x'Gx] > 2 — 0,(2).
The pseudomoment matrix M satisfies the following:
(1) The off-diagonal entries of M are bounded in magnitude by

1004/ %28

799

(2) The £y norms of rows of M are bounded by \/n-%1 log n.
(3) The spectral norm of M is at most 1.2n-%%.

Towards proving Theorem 4.8 we first recall the following facts
from random matrix theory.

Fact 2 ([12, SEc. 1.14]). The empirical distribution of eigenvalues
of any G ~ GOE(n) follows a universal pattern, namely the Wigner
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Semicircle Law. For any real numbers a < b,
1 b
Vi 2 e bl = (2 0,) [ pue(ids
a

with probability 1 — 0,(1), where psc(x) = %\/max(4 - x2,0).

COROLLARY 4.9. Foreverye > 0, thereis$ > 0 such thatA5,(G) >
(2 — e)/n with probability 1 — op(1). In particular ,,.99 > (2 —
on(1))Vn.

LEMMA 4.10. The distribution of the column space of M is that of
a d-dimensional uniformly random subspace in R™.

LEMMA 4.11 ([30]). Let G ~ GOE(n). Its sequence of normalized
eigenvectors v, vy, ..., vn has the same distribution as choosing a
uniformly random orthonormal basis of R", i.e., the distribution of
first choosing unit vy uniformly at random on S™~1, then choosing
unit va uniformly at random orthogonal to vy, then choosing unit v3
uniformly at random orthogonal to span{vi, v2} and so on.

LEMMA 4.12. Let V be a uniformly random subspace of R" of
dimension d, and let I1y be the projection matrix onto V. With prob-
ability 1 —o0p,(1) there is a degree-2 pseudoexpectation operator Ey [-]
over polynomials in x on the hypercube {+1}" such that

EV [XTHVx] > (1=-o0n(D))n.

Additionally, the pseudomoment matrix of E satisfies identical bounds
on its off-diagonal entries, its row norms and its spectral norm as M
from the statement of Lemma 4.7.

PROOF OF THEOREM 4.8. Let {A1,...,A,.99} be the top dn eigen-
values of G, let V be the subspace spanned by the top n-%° eigen-
vectors of G, and let IIy be the projection matrix onto V. By
Lemma 4.11, V is a uniformly random n-°°-dimensional subspace of
R"™. Let EV be the promised pseudoexpectation from Lemma 4.12.

1 ~ ~ [A,.9
i n t
2 Ey [x'Gx] > Ey 32 Iy, xx )]
= [ Amin(G)
+Ey %mw,xm]

). .99 ~
_ n i _
> (1-0n(1) "4 Ey [x Hvx] on(1)

A .99
> (1-op(1)) ﬁ

> 2 — 0,(1).(by Corollary 4.9)

— op(1)(by Lemma 4.12)

The bounds on off-diagonal entries, row norms and spectral norm
of the pseudomoment matrix of Ey follow by plugging in d = n-%°
into the bounds from Lemma 4.12. ]

4.4 Wrap-up
The degree-4 Sum-of-Squares lower bound is then an immedi-

ate consequence of Theorem 4.8 and our lifting theorem Theo-
rem 1.2/Theorem 1.3

THEOREM 4.13 (RESTATEMENT OF THEOREM 1.4). LetG ~ GOE(n).
With probability 1 — o,(1), there exists a degree-4 SoS SDP solution
with value at least (2 — 0,,(1)) - n3/2,
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5 DEGREE-4 SOS LOWER BOUND FOR MaxCut
IN RANDOM d-REGULAR GRAPHS

In this section, we first give a degree-2 pseudoexpectation for
MaxCut in random d-regular graphs, which is used as a “seed”
to derive a degree-4 pseudoexpectation from Theorem 1.2 and The-
orem 1.3.

This degree-2 pseudoexpectation is only a slight variant of the
known construction of [7, 28].

THEOREM 5.1. Let G be a random d-regular graph. For every con-
stant € > 0 with probability 1 — 0,(1) there is a degree-2 Boolean
pseudoexpectation E such that:

Elx"(=Ag)x] = (1 - 2¢ — 0p(1))2Vd — 1n.
Additionally, the pseudomoment matrix M of E satisfies the following:

(1) Its row norms are bounded by a constant y(¢) which only
depends on ¢.
(2) Its spectral norm is bounded by constant y’(¢) which only

depends on ¢.
v’ ()
Vd

(3) Its off-diagonal entries are bounded in magnitude by

where y"’(¢) is some constant that only depends on ¢.

We first develop some tools and then prove Theorem 5.1 in
Section 5.6.

5.1 The [7, 28] Construction

We first revisit the degree-2 pseudoexpectation for Max Cut due
to [7, 28]. Given a random d-regular graph G on n vertices, we
state the moment matrix of a degree-2 pseudoexpectation. We call
a vertex C-good if its radius-(2C + 1) neighborhood is a tree, and
C-bad otherwise.

First, we define vector x;, corresponding to vertex v. Let p,C,
be constants that we’ll set later. If v is C-bad, then we let

[u] 1 ifu=v
xolu] =
¢ 0 ifu#o,
otherwise, we let
a-p®®?) if do(u,v) < C
xolu] = .
0 otherwise.

Finally, we also define a vector x¢ which is orthogonal to all {x4 } ;¢ -

Once p, C are chosen, we pick a so that the vectors x,, for C-
good v have unit norm. The degree-2 pseudomoment matrix M is
indexed by pairs of sets S, T such that |S|, |T| < 1 and is defined as
follows:

M[S, T] = (xs,xT)-
A nice feature of this solution is that one can derive a closed

form for (x4, x,) when {v, w} is an edge between two C-good
vertices.

LEmMA 5.2. Let {v, w} be an edge in G. If v, w are both C-good,
then

d-1

<Xz), xW> =2 (T) P (l - (Zzpzcd(d - l)C_l)

otherwise, (xy,Xy) = 0.
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1-¢
Vd-1’

an edge between C-good vertices {v, w} we would have

Nd—1(1-¢) , [ d c
— -(l—a-(—)'(l—f) ))-

REMARK 4. Forany0 < ¢ < 1, if we choose p = — then for

(xp, Xw) = — d-1
One can make (1 — €)€ arbitrarily small by increasing C, and addi-
tionally, increasing C only makes o smaller. Further, since % < %
ford > 3, there exists a choice for C depending only on ¢ such that

2Vd -1
IR

(X0, X) < —(1 - 2¢)

For the purposes of our proof, we will also need bounds on
[{xy, Xw)| when v and w are within distance C of each other. A
similar calculation to that in the proof of Lemma 5.2 lets us show:

LEMMA 5.3. Let v and w be any two vertices. We have

|96 @ W) (dg (v, w) + 1) dg(v,w) < C

0 otherwise

[{(x0, xw)| < {

Proor. If v or w are C-bad, then (x,, x,,) = 0, in which case
the bound holds. Thus, for the rest of the proof we will assume v
and w are both C-good. Let a be a C-good vertex and b be a vertex
with distance at most C from a. We use P,;, denote the unique path
of length at most C between vertices a and b.

(X0, Xy) = xp[u] - xy[u]
ueV(G)
=P Z Z pdc(v,w)pZdG(s,u)
$EPor uev(G)
dg(u,v), dg(u,w)<C
s€Pyy, SEPy
C
< D ol Y d@ -1
SE€EP, =0

D, lpjte@)

SE€EP,qy

p|%@W) . (dg (v, w) + 1)

5.2 Nonbacktracking Polynomials
We define a sequence of polynomials gg, g1, . . . which we call non-

backtracking polynomials below (see, for example, [1]):

Definition 5.4. Let the nonbacktracking polynomials be the fol-
lowing sequence of polynomials defined recursively below.

go(x) =1
g1(x) = x
go(x) = x?—d

g1 (x) = xg;—1(x) — (d — 1)gr—2(x) fort > 3.

An elementary fact about nonbacktracking polynomials, which
earns them their name is:

Fact 3. For any d-regular graph G,
(12)

gi (AG)yo = # of nonbacktracking walks from u to v.
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We will be interested in g;(4) for eigenvalues A of Ag. The fol-
lowing can be extracted from [1, Proof of Lemma 2.3]:

LEMMA 5.5. When x € [-2Vd —1,2Vd — 1], |gi(x)| < 2( +

1(d - 1)L
By a simple continuity argument, this implies:

COROLLARY 5.6. For any ¢ > 0, there exists § > 0 such that

|gi(x)] < 2(i+1)\/(d — 1) +& whenx € [-2Vd — 1-65,2Vd — 1+8].

5.3 Random Graphs

We need the following two facts about random regular graphs.

LEMMA 5.7 (EASY CONSEQUENCE OF [40, THEOREM 2.5]). Letd > 3
be a fixed constant, let G be a random d-regular graph on n vertices,
and let C be any constant. Then w.h.p. the number of C-bad vertices
in G is O(log n).

THEOREM 5.8 (FRIEDMAN’S THEOREM [5, 13]). Letd > 3 be a fixed
constant, and let G be a random d-regular graph on n-vertices. Then
with probability 1 — 0, (1):

max{42(G), [An(G)|} < 2Vd — 1 + on(1).

5.4 Construction

Stage 1. First choose constant ¢ > 0, and let p,C, a be cho-
sen according to Remark 4 so that each x; is a unit vector, and

(X0, Xw) < —(1 - 25)2—'3_1 for every edge {v, w} between two
C-good vertices v and w. Next, define polynomial g as follows:

C
9(x) = a ) plgi(x).
i=0

1if
Stage 2. Let W := g(Ag)® — g(d)* - (T)

Cramm 2. ‘W > 0. (Proof deferred to the full version of our paper.)

Stage 3. Let Sg be the collection of C-bad vertices in G. Let ‘W’
be the matrix obtained by zeroing out all rows and columns in Sg
and then setting ‘W’[v, v] to 1 for all v € V(G). Symbolically,

1 ifo=w
Wo, w]

0 otherwise

W lv,w]: ifv#wando,w¢ Sg

REMARK 5. ‘W’ is a PSD matrix since it is a 2 X 2 block diagonal
matrix where each block is PSD. In particular one block, W’ [Sg, Sg ],
is an identity matrix and is thus PSD. The other block can be seen to

satisfy:
W [V(G)\ SG.V(G)\ Sg] = W[V(G)\ 56, V(G) \ Sg].

Thus, the other block is also PSD since it PSD-dominates a principal
submatrix of the PSD matrix ‘W.

REMARK 6. Note that while the vectors {xy},ev(c) didn’t play
an explicit role in the construction, they have a role in the analysis.
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5.5 Various Norm Bounds

In this section, we give bounds on the £, norm of a subset of indices
of rows/columns of ‘W’ and the spectral norm of ‘W’.

OBSERVATION 3. For any pair of vertices v, w,

k(e d)

n

W v, w]| <

|<xv9 Xw) —
where the k(e, d) is a constant depending on ¢ and d.

LEMMA 5.9. Let ‘W'[u] be the u-th row of ‘W’. Then when n, the
number of vertices in the graph is large enough,

<y(o)

where y(¢) > 0 is a constant that depends only on ¢ chosen in Stage 1
of the construction in Section 5.4.

W [u, V(G) \ {u}]ll2

Next, we upper bound the spectral norm of W’.

LEMMA 5.10. When n, the number of vertices in V(G) is large
enough, ||'W’|| < y’(¢) where y’(¢) is a constant that depends only
on ¢ chosen in Stage 1 of the construction in Section 5.4.

Proor. First, recall the notation Sg to denote the set of C-bad
vertices in G and that up to permutation of rows and columns, ‘W’
has the following block diagonal structure:

, _|A 0
W= [0 B
where A = W[V(G)\Sg,V(G)\Sg ]+ %d)z -Id and B is an identity

matrix. Thus, ||W’| < max{||A]],||B||}. We already know that
||B|| < 1, and thus it remains to obtain a bound on ||A]|.

d
4l = IWIV(6)\ Sg. V(©)\ Sl + £ y

< IWI + on(1)

n N
= > g)*viv]
i=2

max  g(2i(G))* + on(1).
{2,....n}

+ 0p(1)

<

= .
i

Now, recall Friedman’s theorem Theorem 5.8, according to which
whp 12(G), ..., An(G) are allin [
Thus it suffices to bound |g(x)| on the specified interval. For the
below calculation, assume x € [—

|g<x>|\az(
Z (z+1>(

=0
C

aZ(i +1)(1—e)! +on(1)

i=0

) lgi ()

\/_) V(d = 1)E +0,(1)

which bounds [|A|| by a constant y’(¢) only depending on ¢ (as C
also depends only on ¢) when n is large enough. ]

2Vd = 1-0,(1), 2Vd — 1+0p,(1)].
2Vd — 1 - 0n(1), 2Vd — 1 + 0n(1)].
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5.6 MaxCut Wrap-Up

We are now finally ready to prove Theorem 5.1 and Theorem 1.5.

PrOOF OF THEOREM 5.1. Define E in the following way:

1 if|S|=0
E[x5]1=10 if S| = 1
W’ lu,v] ifS = {u,v}.
Its pseudomoment matrix is then
el

and hence is PSD. The bounds on the row norms and spectral norm
on M follow from Lemma 5.9 and Lemma 5.10 respectively and
the bound on the magnitude of off-diagonal entries follows from
Lemma 5.3 and Observation 3. Finally, we show that the objective
value is indeed at least (1 — 2¢ — 0,(1))2Vd — 1n. Our choice of
parameters combined with Observation 3 tells us that E[xuxv] <
—(1-2¢- on(l))Z\/+Tl for edges {u, v} between C-good vertices.
Since we additionally know that the number of C-bad vertices is
O(log n), the fraction of edges that are between C-good vertices is
1 - 0,(1). Consequently, it follows that

ElxT(—Ag)x] = (1 - 26 — 0,(1))2Vd — 1n.
m]
THEOREM 5.11 (RESTATEMENT OF THEOREM 1.5). Let G be a ran-
dom d-regular graph. For every constant ¢ > 0 with probability

1—0y(1), there is a degree-4 SoS SDP solution with MaxCut value at
least

2 d

for some constant y that depends only on ¢.

1 d—1(

Proor. By applying our lifting theorem Theorem 1.2 to the
degree-2 pseudoexpectation E; from Theorem 5.1, we obtain a
degree-4 pseudoexpectation E4 such that

Ealx"(—Ag)x] = (1 - 2¢ — Yf/; )2Vd - 1n (13)
where y(¢) is a constant that depends only on ¢. As a result:
ElxT _ i
1E©) Eq[x"(Dg - Ag)x] = 4|E(G)| +Eq[x"(-Ag)x]
1 d-1 y(e)
> 5 + d (l —&— m)
m]
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