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ABSTRACT
The degree-4 Sum-of-Squares (SoS) SDP relaxation is a powerful

algorithm that captures the best known polynomial time algorithms

for a broad range of problems including MaxCut, Sparsest Cut, all

MaxCSPs and tensor PCA. Despite being an explicit algorithm with

relatively low computational complexity, the limits of degree-4 SoS

SDP are not well understood. For example, existing integrality gaps

do not rule out a (2− ε)-algorithm for Vertex Cover or a (0.878+ ε)-
algorithm for MaxCut via degree-4 SoS SDPs, each of which would

refute the notorious Unique Games Conjecture.

We exhibit an explicit mapping from solutions for degree-2 Sum-

of-Squares SDP (Goemans-Williamson SDP) to solutions for the

degree-4 Sum-of-Squares SDP relaxation on boolean variables. By

virtue of this mapping, one can lift lower bounds for degree-2

SoS SDP relaxation to corresponding lower bounds for degree-

4 SoS SDPs. We use this approach to obtain degree-4 SoS SDP

lower bounds for MaxCut on random d-regular graphs, Sherington-
Kirkpatrick model from statistical physics and PSD Grothendieck

problem.

Our constructions use the idea of pseudocalibration towards

candidate SDP vectors, while it was previously only used to produce

the candidate matrix which one would show is PSD using much

technical work. In addition, we develop a different technique to

bound the spectral norms of graphical matrices that arise in the

context of SoS SDPs. The technique is much simpler and yields

better bounds in many cases than the trace method – which was

the sole technique for this purpose.

CCS CONCEPTS
•Mathematics of computing→ Random graphs; • Theory of
computation → Semidefinite programming.

KEYWORDS
Sum-of-Squares lower bounds, max cut on random d-regular graph,
random matrices, Sherrington-Kirkpatrick Model
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1 INTRODUCTION
Sum-of-Squares (SoS) semidefinite programming hierarchy is one

of the most powerful frameworks for algorithm design. Its founda-

tions lie in the so-called “Positivestellensatz" whose history dates

back to more than a century to the work of Hilbert and others.

The algorithmic insight of finding Sum-of-Squares proofs via the

technique of semi-definite programming was only codified at the

turn of the century by Parrillo [33] and Lasserre [23] (also see [36]).

Given a system of polynomial equations/inequalities P, the SoS

SDP hierarchy yields a sequence of semi-definite programming

relaxations to reason about the feasibility of P. The d-th relaxation

in the sequence is referred to as the degree-d SoS SDP relaxation.
Successive relaxations get increasingly accurate in reasoning about

P at the expense of computational complexity that grows exponen-

tially with the degree.

SoS SDP hierarchy is an incredibly powerful algorithmic tech-

nique. The best known approximation algorithms for a variety of

combinatorial optimization problems including Maximum Cut, all

Max-CSPs and Sparsest Cut are all subsumed by the first two lev-

els (degree-4) of the hierarchy. More recently, there has been a

flurry of work that uses SoS SDP hierarchy on problems in unsuper-

vised learning such as dictionary learning, estimating parameters

of mixtures of Gaussians, tensor PCA and linear regression.

The limits of SoS SDP hierarchy remain largely a mystery even at

degree four. The degree four SoS SDP relaxation could possibly yield

a (2− ε)-approximation for Minimum Vertex Cover or a (0.878+ ε)-
approximation for Maximum Cut and thereby refute the notorious

Unique Games Conjecture. Despite the immense consequences, the

integrality gap of degree-4 SoS SDP relaxations of Maximum Cut

and Vertex Cover remain unresolved.

Understanding the precise limits of SoS SDP hierarchy has com-

pelling implications even in the context of average case problems.

Specifically, the SoS SDP hierarchy can serve as a lens to under-

stand the terrain of average case complexity. For example, consider

the problem of refuting a random 3-SAT formula. Here the input

consists of a random 3-SAT formula Φ withm = pn clauses chosen

uniformly at random on n variables. For all densities p that are
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larger than some fixed constant, the formula Φ is unsatisfiable with

high probability. The goal of a refutation algorithm is to certify that

Φ is unsatisfiable. Formally, a refutation algorithm outputs 1 only

on instances that are unsatisfiable and it does so on a non-negligible

fraction of random 3-SAT formulae. Although the computational

complexity of refuting random 3-SAT formulae conceivably varies

with the density p of clauses, it seems difficult to glean this struc-

ture using reductions – the central tool in worst-case computational

complexity. In particular, it is quite difficult to devise reductions that

produce random instances from simple probability distributions

such as random 3-SAT, though this has been sometimes achieved

[4, 6]. In such a setting, the smallest degree of SoS SDP hierarchy
that can solve the refutation problem (henceforth referred to as just

“SoS degree") can serve as a proxy for computational complexity.

While SoS SDP hierarchy doesn’t capture all efficient algorithms in

every context, it unifies and subsumes many of the state-of-the-art

algorithms for basic combinatorial optimization problems.

This paradigm has been fruitful for random 3-SAT. Nearly match-

ing upper and lower bounds on SoS degree of refutation [15, 34, 35]

have been established, thereby painting a precise picture of how

the complexity of the problem changes with density of clauses.

Specifically, for all ω(1) < p < n3/2, the Sum-of-Squares degree is

Θ̃(n/p2), yielding a complexity of 2
Θ̃(n/p2)

.

There is a rich landscape of average case problems with many

having sharper computational thresholds than random 3-SAT. For

example, the random regular NAESAT promises to exhibit an abrupt

change in computational complexity as soon as the degree ex-

ceeds 13.5 [10]. Chromatic number of random d-regular graphs
and community detection on stochastic block models are two other

prominent examples with very sharp but conjectural computational

thresholds. Much is known about structural characterestics and

phase transitions in the solution space as one varies the underlying

parameters in these models. Heuristically, certain phase transitions

in the solution space are conjectured to be associated with abrupt

changes in the computational complexity. The Sum-of-Squares SDP

can be harnessed towards quantitatively demonstrating these phe-

nomena.

1.1 Our Results
Our main result is an explicit mapping from solutions to degree-2

SoS SDP to solutions to degree-4 SoS SDP for boolean optimization.

To formally state the theorem, let us begin by setting up some

notation.

First, the degree-d SoS SDP relaxation can be succinctly described
in terms of pseudodistributions. Intuitively, a pseudodistribution cor-

responds to a function that looks like an actual distribution over

solutions, to low degree polynomial squares. The definition is suc-

cinct and simple enough that we reproduce the formal definition

here.

Definition 1.1. Fix a natural number d ∈ N. A degree d pseudodis-
tribution µ is a function µ : {±1}n → R satisfying

(1) (Normalization)

Ex ∈{−1,1}n [µ(x)] = 1

(2) (Positivity) For all p ∈ R[x1, . . . ,xn ], deg(p) ⩽ d/2,

Ex ∈{−1,1}n [p
2(x) · µ(x)] ⩾ 0

While the above description of degree-d SoS SDP is accurate,

we will now describe the associated semidefinite programs for

degree two and four in detail. By the degree-2 SoS SDP for boolean

optimization, we refer to the Goemans-Williamson SDP relaxation,

first introduced in the context of theMaxCut problem. Specifically, a

feasible solution to the degree-2 SoS SDP solution is given by a p.s.d

matrix X ⪰ 0 whose diagonal entries are identically 1. Formally,

the set of degree-2 SoS SDP solutions denoted by SoS2 is given by,

SoS2 = {X ∈ Rn×n |X ⪰ 0 and Xii = 1 for all i ∈ [n]}

The solution to a degree-4 SoS SDP for boolean optimization

consists of a matrix M of dimension

( n
⩽2

)
= 1 +

(n
1

)
+

(n
2

)
. The

matrixM is indexed by subsets of [n] = {1, . . . ,n} of size at most

2. The set SoS4 is specified by the following SDP:

M[S,T ] =M[S ′,T ′] (1)

for all S,T , S ′,T ′ ∈

(
[n]

⩽ 2

)
such that S∆T = S ′∆T ′

M[∅, ∅] = 1 (2)

M ⪰ 0 (3)

The above semidefinite programs are equivalent to the definition

of SoS relaxations in terms of pseudodistributions. Specifically, the

entries of the matrixM are pseudomoments upto degree four of the
pseudodistribution µ. Formally, the entryM[S,T ] corresponds to
the following moment:

M[S,T ] = Ex ∈{−1,1}n
µ(x)

∏
i ∈S

xi
∏
j ∈T

x j


We are now ready to state the main theorem of this work.

Theorem 1.2 (Main theorem). There is an explicit map Φ :

SOS2 → SOS4 such that Φ(X )[i, j] 1 is given by

Φ(X )[i, j] =
Xi j + X

3

i j

1 +Cαmag · (1 + α
4

row
) · (1 + α2

spec
)

(4)

where αmag,αrow and αspec are the maximum off-diagonal entry,
maximum row norm and spectral norm respectively of the degree
two SDP solution X , and C is an absolute constant. Moreover for
every pair of subsets S,T ∈

([n]
⩽2

)
, Φ(X )[S,T ] is an explicit function

of {Xi j |i, j ∈ S ∪T }.

All the entries of Φ(X ) are explicit constant degree polynomials

in X . We refer the reader to Section 2 for the definition of Φ and

the proof of Theorem 1.2. Let us suppose we have an objective

value given by ⟨A,X ⟩ =
∑
i, j Ai jXi j for a Hermitian matrix A.

The corresponding objective value of degree-4 SoS SDP is given

by ⟨A,M⟩ =
∑
i, j Ai jM[i, j]. We show the following bound on

change in objective value (see Lemma 2.4 in Section 2):

Theorem 1.3. Let α B Cαmag · (1 + α4
row

) · (1 + α2
spec

) where
αmag,αrow and αspec are as defined in Theorem 1.2, then for any
Hermitian matrix A ∈ Rn×n , let Φ(2)(X ) be the restriction of Φ(X ) to
the degree-2 part,

⟨A,Φ(2)(X )⟩ ⩾
1

1 + α
⟨A,X ⟩ −

α

1 + α
·
(√
n∥A∥F − Trace (A)

)
1
We are using Φ(X )[i, j] to denote Φ(X )[{i }, {j }].
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The existence of a non-trivial and useful mapping from degree-2

SoS SDP solutions to degree-4 SoS SDP solutions comes as a surprise

to the authors. Consider the following immediate consequence of

such a mapping. Given the degree-2 SoS SDP on an instance of

MaxCut, the above theorem yields an easily computable lower

bound on the degree-4 SoS SDP value on the same instance. For

example, this yields an efficiently verifiable sufficient condition

(checkable in timeO(n2)) under which the degree-4 SoS SDP yields

no better bound than the degree-2 SoS.

We use the lifting theorem to recover lower bounds for degree-4

SoS SDP relaxations for a few average case problems – which was

the original motivation behind this work. The problems and the

corresponding lower bounds are described below.

Sherrington–Kirkpatrick Model. LetW be a random n × n ma-

trix with independent Gaussian entries, let G B 1√
2

(
W +W †

)
;

we say that G is sampled from GOE(n), a distribution known as

the Gaussian Orthogonal Ensemble. A fundamental model in the

study of spin glasses from statistical physics is the Sherrington–
Kirkpatrick (SK) model where the energy of a system of n particles

in a state x ∈ {−1,+1}n states is given by −x†Gx . The Sherrington-
Kirkpatrick (SK)model has been extensively studied in various areas

including the study of spin glasses, random satisfiability problems,

and learning theory [11, 24–27, 29].

For the SKmodel, a quantity of particular interest is theminimum

possible energy, i.e.,

OPT(G) = max

x ∈{−1,1}n
x†Gx .

In a highly influential work, Parisi predicted in [31, 32] thatOPT(G)

concentrates around 2 · P∗n3/2, where P∗ is an explicit constant

now referred to as the Parisi constant. The value of P∗ is roughly
0.763166. This prediction was eventually rigorously proven twenty

five years later in a celebrated work of Talagrand [37], thereby

confirming that OPT(G) ≈ (1.52633 . . . ) · n3/2.
This brings us to our natural average case refutation problem,

that of certifying an upper bound on x†Gx for x ∈ {−1, 1}n . A

natural refutation algorithm is the spectral refutation. Indeed

OPT(G) = max

x ∈{±1}n
x†Gx ⩽ n · max

∥x ∥=1
x†Gx = n · λmax(G),

the algorithmwhich outputs λmax(G) givenG as input is an efficient

refutation algorithm. Since λmax(G) concentrates around 2

√
n, it

certifies an upper bound OPT (G) ⩽ 2n3/2 which is larger than the

true value of the optimum OPT (G) = 2P∗ · n3/2 = 1.52 · n3/2.
This raises the question whether efficient algorithms can certify

an upper bound stronger than the simple spectral bound? In this

work, we show that the degree-4 SoS SDP fails to certify a bound

better than the spectral bound. To this end, we start with a feasible

solution to the degree-2 SoS SDP relaxation for the SK model and

apply our lifting theorem Theorem 1.2 to construct a degree-4 SoS

SDP solution.

Theorem 1.4 (Degree-4 SoS lower bound for Sherrington–Kirk-

patrick). LetG ∼ GOE(n). With probability 1 − on (1), there exists
a degree-4 SoS SDP solution with value at least (2 − on (1)) · n

3/2

In an independent and concurrent work, Kunisky and Bandeira

[22] also obtained a degree-4 SoS integrality gap for the Sherrington–

Kirkpatrick refutation problem.

MaxCut in random d-regular graphs. Akin to the Sherrington–

Kirkpatrick model, it is known from the work of Dembo et al. [8]

that the fraction of edges cut by the max-cut in a random d-regular
graphG on n vertices is concentrated around

1

2

+
P∗
√
d
+ od

(
1

√
d

)
+ on (1).

On the other hand, it was proved in [5, 13] that the spectral refu-

tation algorithm, which outputs the maximum eigenvalue of
LG
4m ,

certifies an upper bound of

1

2

+

√
d − 1

d
+ on (1).

Once again the question remains whether more sophisticated refu-

tation algorithms can beat the spectral bound. Through our lifting

theorem, we show that degree 4 SoS SDP is no better than spectral

algorithm asymptotically as d → ∞2
.

Theorem 1.5 (Degree-4 SoS lower bound forMaxCut in ran-

dom d-regular graphs). LetG be a random d-regular graph. For
every constant ε > 0 with probability 1 − on (1), there is a degree-4
SoS SDP solution with MaxCut value at least

1

2

+

√
d − 1

d

(
1 − ε −

γ (ε)

d1/2

)
for some constant γ that depends only on ε .

The degree-2 SoS SDP solution for the SK model on which we

apply our lifting theorem is presented in Theorem 4.8. Analogously,

Theorem 5.1 describes the degree 2 SoS SDP solution we use for

the MaxCut problem.

“Boolean Vector in Random Subspace” Problem. The refutation
problem for the SK model is closely tied to the following problem:

given a random subspaceV of dimensiond inRn , canwe certify that
there is no hypercube vector {±1}n ‘close’ toV in polynomial-time?

Formally, if ΠV denotes the projection operator onto a random

subspace, then let OPT(V ) denote the maximum correlation of a

boolean vector with V , i.e.,

OPT(V ) =
1

n
max

x ∈{−1,1}n
x†ΠV x .

Using a simple ε-net argument, one can show that with high prob-

ability OPT(V ) ∼ 2

π + γ (d/n) for some function γ : [0, 1] → R+

such that limε→0 γ (ε) = 0
3
. In other words, for a low dimensional

subspace with d ≪ n, OPT(V ) is close to 2/π with high probability

over choice of V .

The spectral algorithm can only certify OPT(V ) ⩽ ∥ΠV ∥ = 1

which is a trivial bound. A natural question is whether one can

2
We believe that Theorem 1.5 is not tight and conjecture that there should exist

pseudoexpectations with objective value
1

2
+ (1 − on (1))

√
d−1
d for all values of d .

3OPT(V ) = ∥AV ∥2
2→1

, where columns of AV are an orthogonal basis for V . So for

fixed unit x ∈ Rd , ∥AV x ∥1 concentrates around
√
2/π with a subgaussian tail. A

union bound over an ε -net of Rd completes the calculation.
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efficiently certify a stronger upper bound. We show that the degree-

4 SoS SDP fails to improve on the spectral bound by a non-negligible

amount.

Theorem 1.6 (Boolean Vector in Random Subspace). If V
is a random d-dimensional subspace where d ⩾ n.99, then with
probability 1 − on (1) there exists a degree-4 SoS SDP solution with
value at least 1 − on (1).

1.2 Related Work
Early work on lower bounds for Sum-of-Squares SDPs arose out

of the literature on proof complexity. In particular, these included

lower bounds on Sum-of-Squares refutations of Knapsack [14], Par-

ity principle (non-existence of a perfect matching in a complete

graph on odd number of vertices) [15] and 3XOR/3SAT [15]. For

3SAT/3XOR, it was proven by Grigoriev [15] and later indepen-

dently by Schoenbeck [35] that the polynomial time regime of

Sum-of-Squares fails to refute random instances whenever the den-

sity of clauses is o(
√
n). This lower bound for 3SAT is the starting

point of lower bounds for a host of other problems. Specifically, the

use of polynomial time reductions to convert integrality gaps for

one problem into another, first pioneered in [20], was shown to be

applicable to the SoS SDP hierarchy [38]. By harnessing the known

reductions, Tulsiani [38] recovers exponential lower bounds for

a variety of constraint satisfaction problems (CSP) starting from

3SAT.
More recently, Kothari et al. [21] obtained lower bounds for all

CSPs corresponding to predicates whose satisfying assignments

support a pairwise independent distribution. This class of CSPs is

well beyond the reach of current web of NP-hardness reductions.

2-CSPs such as MaxCut are not pairwise independent, and are thus

not within the realm of known lower bounds for SoS SDPs.

The problem of certifying the size of maximum clique on Erdos-

Renyi random graphs (closely related to the planted clique prob-

lem) has received much attention lately. Following a series of

works [9, 16] that obtained the tight lower bounds for degree four,

the breakthrough tour-de-force of Barak et al. [2] obtained lower

bounds for upto degree O(logn). In this work, Barak et al. [2] in-

troduced a heuristic technique for constructing candidate solutions

to Sum-of-Squares SDPs called pseudocalibration. Subsequently, the
pseudocalibration technique was used in [17] to show SoS lower

bounds for Tensor PCA and Sparse PCA. Building on ideas from

pseudocalibration, Hopkins and Steurer [18] recovered conjectured

computational thresholds in community detection, while [19] use

it towards showing LP extended formulation lower bounds for

Random 3SAT.
In an independent work, Kunisky and Bandeira [22] also obtained

a degree-4 SoS integrality gap for the Sherrington–Kirkpatrick

refutation problem.

1.3 Technical Overview
The mapping Φ alluded to in Theorem 1.2 is quite intricate and

we are unable to motivate the construction of the mapping in a

canonical fashion. Instead, we focus on how themapΦwas first con-

structed in the context of the Boolean Vector in Random Subspace

problem.

Fix a randomly chosen subspace V of dimension d in Rn . With

high probability, no boolean vector x ∈ {−1, 1}n is close toV (every

boolean vector x has correlation less than
2

π + on (1) with V ). To

prove that the degree 4 SoS SDP cannot refute the existence of a

boolean vector in V , we need to construct a degree 4 pseudodistri-

bution µ such that,

Ex ∈{−1,1}n [µ(x)x
†ΠV x] ≈ n .

In words, the pseudodistribution µ is seemingly supported on vec-

tors x in the subspace V .

Pseudocalibration. We will now use the pseudocalibration recipe

of Barak [3] to arrive at the pseudodistribution µ.
The idea is to construct a planted distribution Θ over pairs (x ,V )

where x ∈ {−1, 1}n , x ∈ V and the subspace V is a seemingly
random subspace. For example, a natural planted distribution Θ
would be given by the following sampling procedure:

• Sample x ∈ {−1, 1}n uniformly at random.

• Sample a uniformly random subspaceW of dimension d − 1

and set V = Span(W ∪ {x}).

It is clear that the pair (x ,V ) satisfies all the desired properties of

the planted distribution.

Let Gr(n,d) denote the space of all d-dimensional subspaces of

Rn . Let Θ denote the density associated with the planted distribu-

tion, i.e., Θ is a function over Gr(n,d) × {−1, 1}n . 4

For any specific V ∈ Gr(n,d) that contains a boolean vector in

the subspace, notice that the restriction ΘV (x) = Θ(x ,V ) is up to a

factor normalization, a valid probability distribution over {−1, 1}n .

Therefore, ΘV is a solution to the degree d SoS SDP relaxation

for all d , upto the normalization factor. Ignoring the issue of the

normalization factor for now, the candidate degree 4momentmatrix

would be given by,

M∗
V [S,T ] = Ex ∈{−1,1}n


(∏
i ∈S

xi

) ©­«
∏
j ∈T

x j
ª®¬ · Θ(x ,V )

 (5)

The matrixM∗
is clearly positive semidefinite for each V . To for-

mally construct the Cholesky factorization of M∗
, one defines

the vectors {VS : {−1, 1}n → R} to be the functions V ∗
S (x) =

Πi ∈Sxi · (Θ(x ,V ))1/2. The inner product between the vectors f ,д
is given by

⟨f (x),д(x)⟩ = Ex ∈{−1,1}n [f (x)д(x)] .

With these definitions, we will have

M∗[S,T ] = ⟨V ∗
S ,V

∗
T ⟩ (6)

as desired. While the above ideal SDP solution and vectors satisfies

most of the constraints, it fails the normalization. In fact, the nor-

malization factor ΓV = Ex ∈{−1,1}n [ΘV (x)] is very spiky, it is zero

on almost all instances V except being very large on subspaces V
containing a boolean vector.

The key insight of pseudocalibration is to project the planted

density Θ to low degree functions in Θ, or equivalently truncate

away the part of Θ that is high degree in the instance V . Let

Θ⩽D
denote the low degree truncation of the planted density

Θ. For any V ∈ Gr(n,d), the pseudo-calibrated pseudodensity

4
Technically, the density Θ needs to be represented by a distribution
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Θ⩽D [V ] : {−1, 1}n → R is given by Θ⩽D [V ](x) = Θ⩽D (V ,x).
More concretely, the candidate SDP solution specified by pseudo-

calibration is

MV [S,T ] = Ex ∈{−1,1}n

(∏
i ∈S

xi

) ©­«
∏
j ∈T

x j
ª®¬ · Θ⩽D [V ](x)

 (7)

for all S,T . The feasibility of MV needs to be established, which

often requires considerable technical work, especially the proof of

positive semidefiniteness ofMV .

A natural approach to prove psdness of MV is to construct

the corresponding SDP vectors (Cholesky factorization) by using a

low degree truncation of the ideal SDP vectors V ∗
S defined above.

SinceMV is obtained by truncating an ideal solutionM∗
to low

degree polynomials, it would be conceivable that the low degree

truncation of the ideal SDP vectors yield Cholesky factorization of

MV . Unfortunately, this hope does not come to fruition and to our

knowledge does not hold for any problem.

Representations. Executing the above strategy over Gr(n,d) is
technically challenging since low degree polynomials over Gr(n,d)
are complicated. To cope with the technical difficulty, it is bet-

ter to work with an explicit representation of the subspace V .

Specifically, V can be represented by a n × κ matrix Mκ in that

V = Col-Span(Mκ ). Any choice of κ ⩾ d would suffice to represent

a d-dimensional subspace V , and in our construction we will set

κ → ∞.

With this representation, a candidate planted distribution (x ,Mκ )

is sampled as follows:

• Sample x ∈ {−1, 1}n uniformly at random.

• Sample d − 1 vectorsw1, . . . ,wd−1 ∈ Rn from the standard

normal distributionN (0, 1)n . LetM be then×d matrix whose

columns are x andw1, . . . ,wd−1.

• LetUκ ∈ Rκ×κ be a random unitary matrix, and letU
⩽n
κ ∈

Rn×κ matrix denote the firstn rows ofUκ . SetMκ = M ·U
⩽n
κ

First, notice that x ∈ Col-Span(Mκ ) as needed. However, the rep-

resentations are not unique in that each subspace V has infinitely

many different representations. Further, the original SoS optimiza-

tion problem depends solely on the subspaceV , and is independent

of the matrixMκ representing V .

At first, these redundant representations or inherent symmetries

of the planted density, seem to be an issue to be dealt with. It turns

out that these redundancy in representations is actually useful in

constructing the SDP vectors!

Planted Distribution. Before proceeding, we will first simplify

our planted distribution even further. Since computations over

random unitary matrices are technically difficult, we will select a

much simpler finite subgroup of the unitary group to work with. In

particular, the planted distribution Θ over pairs (x ,M) is sampled

as follows:

• Sample x ∈ {−1, 1}n uniformly at random.

• Sample d − 1 vectorsw1, . . . ,wd−1 ∈ Rn from the standard

normal distributionN (0, 1)n . LetM be then×d matrix whose

columns are x andw1, . . . ,wd−1.

• Let H
⩽n
κ denote the n × κ matrix obtained by taking the

first n rows of the Hadamard matrix Hκ . Let Z ∈ Rκ×κ

denote a diagonal matrix with random {±1} entries. Set

Mκ = MH
⩽n
κ Z

The above construction uses HκZ instead of a unitary random

matrixUκ . In particular, the continous unitary group is replaced

with a finite set of 2
κ
transformations indexed by the familiar

{−1, 1}κ , making the calculations tractable.

Exploitingmultiple representations. Applying the pseudo-calibration
heuristic to the planted density (x ,Mκ ) defined above, we get a can-

didate ideal SDP solutionMMκ

M∗
Mκ

[S,T ] = Ex ∈{−1,1}n

(∏
i ∈S

xi

) ©­«
∏
j ∈T

x j
ª®¬ · Θ(Mκ ,x)

 (8)

This ideal SDP solution needs to be truncated to low degree with Θ

to be replaced by Θ⩽D
. The specifics of the low degree projection

used to define Θ⩽D
are intentionally left vague at this time.

The construction thus far is essentially the pseudocalibration

heuristic albeit on a somewhat complicated planted distribution. It

is at this time that we will exploit the symmetries of the planted

density. Recall that the underlying subspace V depends only on

Col-Span(Mκ ) = Col-Span(M), and so does the underlying SoS

SDP relaxation. Therefore, it is natural to average out the above

pseudocalibrated solution over the various representations of V ,

i.e., define the solutionMV as,

M∗
V [S,T ] = EZ ,x ∈{±1}n


(∏
i ∈S

xi

) ©­«
∏
j ∈T

x j
ª®¬ · Θ[MH

⩽n
κ Z ](x)


(9)

Analogous to the ideal SDP vectors (6), one can define SDP

vectors V ∗
S here, but this time as functions over both x and Z . That

is if we let V ∗
S (x ,Z ) = (Πi ∈Sxi ) ·

√
Θ[MH

⩽n
κ Z ](x) then,

M∗
V [S,T ] = ⟨V ∗

S (x ,Z ),V
∗
T (x ,Z )⟩

where ⟨f (x ,Z ),д(x ,Z )⟩ = EZ Ex ∈{−1,1}n [f (x ,Z )д(x ,Z )].
The above construction looks similar to (7) and (6) with one

important difference. The quantities are a function of the matrixM
defining the subspace and a set of redundancies in representation

given by Z . In particular, low degree truncation Θ⩽D
can include

truncation in the degree overM and over Z separately.

Somewhat mysteriously, it turns out that by choosing a low

degree truncation (in both M and Z ) of both the ideal SDP solu-

tion M∗
and the ideal vectors V ∗

S , we can recover SDP solution

alongwith an approximate Cholesky factorization (analogous to (6)).

While the above discussion describes how we arrive at the defini-

tion of the mapping. The proof that the mapping works amounts to

showing that the truncated vectors yield an approximate Cholesky

factorization of the pseudo-calibrated matrix, which forms the tech-

nical heart of the paper. We defer the details of the construction to

Section 2.

Bounding Spectral Norm. We exhibit a candidate SoS SDP so-

lution M(1)
, and show that there exists a positive semi-definite

matrix M(2)
that is close in spectral norm to M(2)

. The difference

M(1)−M(2)
is matrix with entries that are low degree polynomials
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in the inputM , and our goal is to upper bound the spectral norm

∥M(2) −M(1)∥.

As is typical, this involves obtaining spectral norm bounds onma-

trices whose entries are low degree polynomials. Earlier works on

Planted Clique [2, 9] and others have developed technical machin-

ery based on the trace method towards bounding spectral norms.

We present a simpler factorization based technique to obtain bounds

on spectral norms here. Owing to its simplicity, it is broadly appli-

cable to more complicated ensembles of random matrices such as

those arising in sparse d-regular random graphs. Furthermore, in

some cases, the technique yields tighter bounds than trace method.

For example, consider the following random matrix. Let A ∈ Rn×n

be a random symmetric matrix with Aii = 0 for all i and Ai j being
independent {±1} entry otherwise. Consider the random matrix

B ∈ R[n]
2×[n]2

defined as,

B[(i1, i2), (j1, j2)] = Ai1 j1 · Ai2 j1 · Ai2 j2 .

The best known bounds for ∥B∥ using the trace method imply that

∥B∥ ⩽ n · (logn)c for some constant c [9]. On the other hand, the

factorization technique outlined in Section 3 can be easily used to

obtain a Θ(n) upper bound (specifically, an upper bound of 4n).
All our spectral norm bounds are obtained via the factorization

method, starting from bounds on the norm of the original matrix A.

2 LIFTS OF A DEGREE-2
PSEUDOEXPECTATION

In this section, we describe how to obtain a degree-4 pseudoexpec-

tation Ẽ4 from a degree-2 pseudoexpectation Ẽ2. We specify Ẽ4 via
its pseudomoment matrixM whose rows and columns are indexed

by sets of size at most 2, withM[S,T ] = Ẽ4
[
xS∆T

]
. LetM ′

be the

following n × n submatrix of the degree-2 pseudomoment matrix:

M ′[{i}, {j}] B Ẽ2[xix j ] i, j ∈ [n].

SinceM ′
is positive semidefinite, we can writeM ′

in its Cholesky

decompositionMM†
whereM is some n × n matrix.

For each κ ⩾ n that is a power of 2, let H
⩽n
κ denote the n × κ

matrix obtained by taking the first n rows of the Hadamard matrix

Hκ . We first define a n × κ matrix Mκ B MH
⩽n
κ . A key property

ofM we use is:

Fact 1. ⟨M[i],M[j]⟩ = ⟨Mκ [i],Mκ [j]⟩ where M[t] denotes the
t-th row ofM since the rows of H⩽n

κ are orthogonal unit vectors.

Fix a set of indeterminates z1, . . . , zκ obeying z2i = 1. For each

i ∈ [n], we define “seed polynomials”

qi,κ (z) B
∑
j ∈[κ]

Mκ [i, j]zj

− 2

∑
{j1, j2, j3 }⊆[κ]

Mκ [i, j1]Mκ [i, j2]Mκ [i, j3]zj1zj2zj3

and for each subset S ⊆ [n] define “set polynomials”

qS,κ (z) B
∏
i ∈S

qi,κ (z).

We now define matrixM(1)
as follows:

M(1)[S,T ] B lim

κ→∞
Ez∼{±1}κ [qS∆T ,κ (z)] (10)

We pick our pseudomoment matrixM as a mild adjustment to

M(1)
. Specifically, we define

M B (1 − η)M(1) + η · Id.

where we choose η later.

It is clear that M satisfies the “Booleanness” and “symmetry”

constraints. It remains to prove that M is positive semidefinite for

appropriate choice of η.

Towards doing so, we define a new matrixM(2)
. Define “trun-

cated polynomials”

pS,κ (z) B qS,κ (z)
⩽ |S |

where qS,κ (z)
⩽τ

denotes the projection of qS,κ onto the space of

polynomials spanned by χT where |T | ⩽ τ . And define M(2)
as:

M(2)[S,T ] B lim

κ→∞
Ez∼{±1}κ [pS,κ (z)pT ,κ (z)] (11)

Once again, we defer the proof that the limit on the right-hand

side exists to the full paper. M(2)
is PSD as it is the limit of second

moment matrices, each of which is PSD.

To show M is PSD, we first bound the spectral norm of M(1) −

M(2)
.

Lemma 2.1. Let αspec B ∥M ′∥2, αmag B maxi, j :i,j M
′[i, j],

αrow B maxi ∈[n]

√
Σj,iM ′[i, j]2. There is an absolute constantC >

0 such that α B Cαmag ·(1+α
4

row
)·(1+α2

spec
) and ∥M(1)−M(2)∥2 ⩽

α .

Lemma 2.1 is an immediate consequence of Lemma 3.1, which

Section 3 is dedicated to proving.

Corollary 2.2. Let α be as in the statement of Lemma 2.1. Then
λmin(M

(1)) ⩾ −α .

Set η B α
1+α . The PSDness ofM follows from Corollary 2.2 and

the fact that adding η · Id to any matrix increases all its eigenvalues

by η.

Theorem 2.3. M ⪰ 0.

Lemma 2.4. Let α be as in the statement of Lemma 2.1. For any
Hermitian matrix A ∈ Rn×n ,

Ẽ4[x†Ax] ⩾
(
1 −

α

1 + α

)
(̃E2[x†Ax] − α

√
n∥A∥F )

+
α

1 + α
Trace (A) .

3 SPECTRAL NORM BOUNDS
This section is dedicated to proving Lemma 2.1. We first make some

structural observations about E BM(1) −M(2)
.

Observation 1. Suppose |S∆T | is odd. Then E[S,T ] = 0.

Proof. Since qi,κ (z) is a sum over odd degree terms in z, so is
qS∆T ,κ (z) when |S∆T | is odd, and so the expected value of each

term over the choice of random z is 0. Thus,M
(1)
κ [S,T ] = 0, and by

extensionM(1)[S,T ] = 0. Note that for any set S all terms in pS,κ
have the same parity as |S |, and thus all terms in pS,κpT ,κ have the

same parity as |S | + |T |, whose parity is the same as |S∆T |. Thus,

M
(2)
κ [S,T ] = 0 and consequentlyM(2)[S,T ] = 0. □
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Observation 2. Suppose S = ∅ or T = ∅. Then E[S,T ] = 0.

Thus, we can split E into four parts.

E(1)[S,T ] :=

{
E[S,T ] S = T

0 otherwise

E(2)[S,T ] :=

{
E[S,T ] if |S | = |T | = 1, |S ∩T | = 0

0 otherwise

E(3)[S,T ] :=

{
E[S,T ] if |S | = |T | = 2, |S ∩T | = 1

0 otherwise

E(4)[S,T ] :=

{
E[S,T ] if |S | = |T | = 2, |S ∩T | = 0

0 otherwise

Since E = E(1) + E(2) + E(3) + E(4)
, proving a spectral norm bound

on each individual piece also gives a bound of the spectral norm

of E via the triangle inequality. In later parts of the section, the

following are proved.

Lemma 3.1. The following spectral norm bounds hold:

∥E(1)∥ ⩽ O(αmag)

∥E(2)∥ ⩽ O(α2
row

· αmag)

∥E(3)∥ ⩽ O(αmag · (1 + αspec + α
2

row
))

∥E(4)∥ ⩽ O(αmag · (1 + α
4

row
) · (1 + α2

spec
)).

In particular, this implies ∥E∥ ⩽ O(αmag · (1 + α
4

row
) · (1 + α2

spec
)).

The full for this lemma is highly mechanical and technical, and

we defer the interested readers to the full version of this paper

while we give an outline of the graphical matrices, an important

ingredient in our analysis.

3.1 Graphical Polynomials and Graphical
Matrices

Akin to [2], we give a way to associate matrices with constant sized

graphs. To motivate studying graphical matrices, we start with

some simple examples. Let H be some graph with vertex set [n].
Now, consider the graph G in the figure below.

a1

a2 a4

a3

b1

b2

b3

b4

Figure 1: Graph G

Next, define ann2×n2 matrixQG , which is the “graphical matrix”

of G with rows and columns indexed by size-2 subsets of [n] where

QG[{i, j}, {k, ℓ}] B#{subgraphs of H isomorphic to G

so that a1,a2,a3,a4 map to i, j,k, ℓ}.

Our reason for considering matrices that encode ‘constant-sized

graph statistics’ such as the above, which we call graphical matrices,
is that we are able to naturally view M(1)

and M(2)
as a sum of

simple graphical matrices
5
. Thus, a natural way to obtain a handle

on the spectral norm of M(1) −M(2)
is understanding the spectral

behavior of the graphical matrices that constitute it.

3.1.1 Sketch of Graphical Matrices. We dig into the specific graph-

ical matrices that arise in this section. We view the matrixMκ as a

weighted bipartite graph with left vertex set [n] and right vertex

set [κ], where the weight of the edge between i ∈ [n] and j ∈ [κ]
is Mκ [i, j] — we call this Bipartite(Mκ ). Now, let G be a bipartite

graph on constant number of vertices where each left vertex of

G is one or two of two colors, row or column, and each right ver-

tex is uncolored. The graphical matrix associated with G is the

n |row(G) | ×n |column(G) |
matrix QG with rows and columns indexed

by subsets of [n] of size |row(G)| and |column(G)| respectively
where we obtain the S,T entry in the following way.

Enumerate over all subgraphs of Bipartite(Mκ ) that

are isomorphic to G, and vertices colored row map

into S and the vertices colored column map into T ,
take the product of edge weights of each subgraph,

and then take the sum over all subgraphs enumerated

over.

Symbolically,

QG,κ [S,T ] B
∑

H subgraph of Bipartite(Mκ )
H isomorphic to G

row(G) maps into S
column(G) maps into T

∏
{i, j }∈H

Mκ [i, j].

3.1.2 Definitions.

Definition 3.2 (Half-Glyph). Ahalf-glyphHG is a bipartite (multi-

)graph with a left vertex set L(HG) B {ℓ1, . . . , ℓ |L(HG)|}, a middle

vertex setM(HG) B {m1, . . . ,m |M (HG)|} and edges E(HG). We

use HGa,b to represent the number of edges between ℓa andmb .

Definition 3.3 (Half-Glyph Labeling). For a half-glyphHG, we

call S : L(HG) → [n] a valid labeling if

(1) It is a injective map from L(HG) to [n].
(2) S(ℓi ) < S(ℓj ) if and only if i < j.7

Remark 1. For simplicity, we represent each valid labeling as a
size-|L(HG)| subset of [n].

Definition 3.4 (Cluster ofM(HG)). For a half-glyphHG, we call

a set of vertices {v1, . . . ,v |B |} in cluster B if they have the same

neighborhood on L(HG), i.e., ∀i, j ∈ B, HG(ℓ, i) = HG(ℓ, j) for
any ℓ ∈ L(HG). We letB(HG) = (B1, . . . ,Bk ) be the set of clusters
in HG where k ⩽ κ is the number of clusters.

5
Where H is replaced with a complete (n, L)-bipartite graph, and the edges are

equipped with weights from the matrix Mκ .
6
We will use circles to represent vertices in L(HG) (and later L(G) and R(G)) that

should be thought as vertices in [n] and square to represent vertices in M (G) that

should be thought as indeterminates z .
7
This “order-preserving” requirement is an artifact of our proof.
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ℓ1

ℓ2

(a) Half-Glyph HG1

ℓ1

ℓ2

(b) Half-Glyph HG2

Figure 2: Half-Glyphs 6

Definition 3.5 (z-labeling of half-glyph). We say π : M(HG) →

[κ] is a z-labeling if it is injective, and if for each cluster Bi ∈

B(HG) andma ,mb ∈ Bi , π (ma ) < π (mb ) if and only if a < b. We

denote the set of z-labelings by Π(HG).

Definition 3.6 (κ-Graphical Polynomial of a Half-Glyph). For any
κ, every half-glyphHG with a valid labeling S is associated with a

polynomial over indeterminates z = (z1, . . . , zκ ) given by

βHG,κ,S (z) B
∑

π ∈Π(HG)

Πi ∈L(HG)

∏
j ∈M (HG)

(Mκ [S(i),π (j)]

· zπ (j))
HGi, j

Definition 3.7 (Glyph). A glyph G is a multi-graph on the ver-

tex setV (G) = L(G)∪M(G)∪R(G) and edge set E(G), where L(G)∪
R(G) = {v1,v2, . . . ,v |L(G)∪R(G) |} andM(G) = {m1,m2, . . . ,m |M (G) |}.

We use Ga,b to represent the number of edges between va andmb .

Remark 2. Our definition of cluster and z-labeling for half-glyph
extends naturally to glyph.

We will refer to L(G) as left vertices, M(G) as middle vertices,
and R(G) as right vertices of the glyph. We emphasize that L(G)
and R(G) need not be disjoint; in particular some vertices can be

both left and right vertices. In the following figure, G1 and G2 are

different glyphs because L and R intersect in G1 but not in G2.

Observe that any glyph can be seen as being "composed" of two

half-glyphs: the left half-glyph L(G)which is the induced subgraph

on L(G)∪M(G), and the right half-glyph R(G)which is the induced

subgraph on R(G)∪M(G). We now extend the definition of labeling

and graphical polynomial to glyphs.

Definition 3.8 (Glyph Labeling). For any glyph G, let S be a valid

labeling for L(G), and T be a valid labeling for R(G), S and T
are G-compatible if they agree on L(G) ∩ R(G), i.e. S |L(G)∩R(G) =

T |L(G)∩R(G) and are disjoint on their symmetric difference, i.e.

S(L(G) \ R(G)) ∩ T (R(G) \ L(G)) = ∅. For two G-compatible la-

belings S and T , let S ◦ T : L(G) ∪ R(G) → [n] denote the joint
labelling induced by both.

v1 v1

v2 v3

(a) Glyph G1

v1 v4

v2 v3

(b) Glyph G2

Figure 3: Glyphs

Definition 3.9 (κ-Graphical Polynomial of a Glyph). For any κ, for
a glyph G with half-glyphsL(G) and R(G) and a pair of compatible

labelings S,T , we associate it with a polynomial over indeterminates

z = (z1, . . . , zκ ) given by

βG,κ,S◦T (z) B
∑

π ∈Π(G)

∏
i ∈L(G)∪R(G)

∏
j ∈M (G)

(Mκ [S ◦T (i),π (j)]

· zπ (j))
Gi, j

Definition 3.10. A glyph G is called well-glued if every middle

vertex has even degree.

Remark 3. The κ-graphical polynomial of a well-glued glyph does
not depend on z. Specifically,

βG,κ,S◦T =
∑

π ∈Π(G)

∏
i ∈L(G)∪R(G)

∏
j ∈M (G)

Mκ [S ◦T (i),π (j)]Gi, j

Definition 3.11 (κ-Graphical Matrix of a Well-Glued Glyph). For
each well-glued glyph G, we associate a matrix indexed by

( [n]
L(G)

)
×( [n]

R(G)

)
defined as

QG,κ [S,T ] B 1[S,T are G-compatible] · βG,κ,S◦T

which we call the κ-graphical matrix of G.

Claim 1. LetG be awell-glued (A,B)-glyph. The limit limκ→∞ QG,κ
exists.

We defer the proof of the claim to Appendix ??.

Definition 3.12 (Graphical matrix of a well-glued glyph). For a
well-glued glyph G, we call the matrix

QG B lim

κ→∞
QG,κ

the graphical matrix of G.

Definition 3.13. Given a well-glued glyph G and a length-2 walk

that starts at u ∈ L(G) ∪ R(G), takes an edge to middle vertex

m ∈ M(G), and takes a different edge fromm to u ′ ∈ L(G) ∪ R(G).
We call the length-2 walk a cyclic walk if u = u ′; otherwise, we call
it an acyclic walk.
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We also give an explicit expression for the entries of QG .

Lemma 3.14. Let G be a well-glued glyph. Suppose any middle
vertex of G has degree ⩾ 4, QG = 0. Suppose all middle vertices
of G have degree 2 and S ◦T is a valid labeling of G and for i, j ∈
L(G) ∪ R(G) let Pi, j be the collection of length-2 walks from i to j.
Then:

QG[S,T ] = Πi⩽j ∈L(G)∪R(G)

⟨M[S ◦T (i)],M[S ◦T (j)]⟩ |Pi, j |

|Pi, j |!
.

3.2 Glyph Factorization and Spectral Norm
Bound

A useful ingredient towards our goal is a generic way to bound the

spectral norm of a graphical matrix. In Lemma 3.14, we show that

the entries of the graphical matrix of a well-glued graph can be

written as a product of inner products. We use this insight to factor

the graphical matrices we need to deal with into simpler matrices.

We start with a few basic definitions of types of simple matrices we

encounter.

Definition 3.15 (Growth and shrinkage matrices). We call a matrix

a growth matrix if it is block-diagonal and each block is a subrow

of MM†
. We define a shrink matrix as one that can be written as

the transpose of a growth matrix.

Definition 3.16 (Swap matrices). We call a matrix a swap matrix

if it is block diagonal and each block can be written as either (a)

W − Id whereW is a principal submatrix ofMM†
, or (b)W where

W is a (not necessarily principal) submatrix ofMM†
.

Definition 3.17 (Residue matrices). We call a matrix a residue
matrix if it is a diagonal matrix and each entry is an off-diagonal

entry ofMM†
.

Lemma 3.18. If L is a growth/shrinkage matrix, its spectral norm
is bounded by αrow; if it is a swap matrix, its spectral norm is bounded
by αspec; and if it is a residue matrix, its spectral norm is bounded by
αmag.

Before jumping into the full proof, we illustrate the efficacy of

our method on the following toy example that will appear in our

analysis of E(4)
. Consider the following glyph G with entries:

QG[{i, j}, {k, ℓ}] =
1

3!

⟨M[i],M[k]⟩3⟨M[j],M[ℓ]⟩

for i, j,k, ℓ ∈ [n] distinct and i < j, k < ℓ.

i

j ℓ

k

Figure 4: Glyph G

QG can be written as a product of simpler matrices — define

matrices L1,L2,L3,L4 as follows. For all i, j,k, ℓ distinct in [n]
with i < j and k < ℓ,

L1[{i, j}, {i, j,k}] B ⟨M[i],M[k]⟩

L2[{i, j,k}, {i, j,k}] B ⟨M[i],M[k]⟩

L3[{i, j,k}, {j,k}] B ⟨M[i],M[k]⟩

L4[{j,k}, {k, ℓ}] B ⟨M[j],M[ℓ]⟩

The above matrices are set to 0 wherever they are undefined. It can

be verified that

QG = L1 · L2 · L3 · L4

Amajor advantage of glyph factorization is that it offers a unified

framework to bound the spectral norm of graphical matrices of the

complex glyphs in terms of spectral norms of simpler matrices. In

our example, we have

QG



 ⩽ ∥L1∥ · ∥L2∥ · ∥L3∥ · ∥L4∥ .

We wrap up by giving spectral norm bounds on Li , and we

will generalize from them all the basic glyphs that we will use

throughout this section.

Bounding ∥L1∥ and ∥L3∥. L1 and L3 are growth and shrinkage

matrices respectively and hence their spectral norms are bounded

by αrow.

Bounding ∥L2∥. L2 is a residue matrix and hence its spectral

norm is at most αmag.

Bounding ∥L4∥. L4 is a swap matrix and hence its spectral norm

is at most αspec.

Combining the above gives ∥QG ∥ ⩽ α2
row

· αmag · αspec. More

generally:

Lemma 3.19. Let G be a well-glued glyph whose graphical ma-
trix factorizes as QG = L1 · . . . · Lk where each Li is either a
growth/shrinkage/swap residue matrix. Let the number of growth (or
shrinkage) matrices be t1, the number of residue matrices be t2, and
the number of swap matrices be t3, then

∥QG ∥ ⩽ α t1
row

· α t2
mag

· α t3
spec
.

4 DEGREE-4 SOS LOWER BOUND FOR THE
SHERRINGTON–KIRKPATRICK
HAMILTONIAN

4.1 Gaussian Concentration
In this section, we give a brief review of standard concentration

results related to Gaussian random variables, vectors, and matrices.

As in previous sections, letM be a n×d matrix where each entry

is independently sampled from N

(
0, 1d

)
and assume d < n.

Lemma 4.1 (Concentration of singular values of Gaussian

matrices, [39, Corollary 5.35]). Except with probability 2 exp
(
− t 2

2

)
,

√
n −

√
d − t

√
d

⩽ smin(M) ⩽ smax(M) ⩽

√
n +

√
d + t

√
d

.
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Corollary 4.2. Except with probability 2 exp

(
−t 2
2

)
,

∥MM†∥ ⩽ ∥M ∥2 ⩽
n + d + 2

√
dn + t2 + 2(

√
d +

√
n)t

d

Corollary 4.3. Except with probability n−100, for all i ,

⟨Mi ,Mi ⟩ ∈

[
1 − 100

√
logn

d
, 1 + 100

√
logn

d

]
Lemma 4.4. Except with probability at least n−100, for all pairs of

distinct i, j,

⟨Mi ,Mj ⟩ ∈

[
−100

√
logn

d
, 100

√
logn

d

]
.

Lemma 4.5 (
d
nMM†

approximates a projection matrix). With
probability at least 1 − 2e−d/2, for all x ∈ Rn ,

x†M
(
M†M

)−1
M†x =

(
1 ±O

(√
d

n

))
d

n
x†MM†x .

Note: M
(
MM†

)−1
M†x is the projection matrix onto the column

space ofM .

Lemma 4.6. With probability at least 1 − 2e−t
2/2,


MM†




2
F
⩾

(
1 − 4

√
d + t
√
n

)
n2

d

4.2 Degree-2 Pseudoexpectation for
SubspaceBooleanVector

We call the following problem SubspaceBooleanVector. Given a

n × d matrixM where each entry is independently sampled from

N

(
0, 1d

)
, certify an upper bound on x†MM†x over the boolean hy-

percube. LetM be a n×d matrix where each entry is independently

sampled fromN

(
0, 1d

)
. The degree-2 Sum-of-Squares relaxation is

as follows:

max

Ẽ degree-2

Ẽ[x†MM†x] s.t. Ẽ[x2i ] = 1.

Lemma 4.7. Except with probability n−90, there is a degree-2 pseu-
doexpectation Ẽ with pseudomoment matrixM such that its maxi-

mummagnitude off-diagonal entry is at most 100
√

logn
d , the ℓ2 norms

of its rows are bounded by
√

n logn
d , its spectral norm is bounded by

1.2nd , and

d

n
Ẽ[x†MM†x] ⩾

(
1 −O

(√
logn

d

)
−O

(√
d

n

))
n.

Proof. A degree-2 pseudoexpectation Ẽ (that is due to [28]) can

be constructed in the following way. Let γ B 100

√
logn
d .

Ẽ[xS ] =


1 when |S | = 0

0 when |S | = 1

(1 − γ ) (MM†)[i, j] when S = {i, j}

The pseudomoment matrixM of Ẽ can thus be written as[
1 0

0 (1 − γ )MM† + D

]
where D is some diagonal matrix.

It remains to prove that Ẽ is a valid Boolean pseudoexpectation.

It is clear that Ẽ satisfies the Booleanness and symmetry constraints.

It remains to prove thatM is PSD. And to do so, it suffices to show

that (1 − γ )MM† + D is PSD. D[i, i] = 1 − (1 − γ )MM[i, i]. From
Corollary 4.3 along with a union bound over all diagonal entries

of D we can conclude that for all i ∈ [n], 1 ⩾ D[i, i] ⩾ 0 with

probability at least 1 − n−99 which means D is PSD. (1 − γ )MM†
is

clearly PSD, which meansM is PSD.

Next, we determine the objective value attained by Ẽ[·].

d

n
Ẽ[x†MM†x] =

d

n
⟨MM†, (1 − γ )MM† + D⟩

=
d

n

(
(1 − γ )⟨MM†,MM†⟩ + ⟨MM†,D⟩

)
⩾

d

n
(1 − γ )∥MM†∥2F .

From Lemma 4.6, the above is at least (1−γ )

(
1 −O

(√
d
n

))
n except

with probability at most n−100.
Finally, we establish bounds on themaximum absolute off-diagonal

entry, the row norm, and the spectral norm ofM.

From Corollary 4.4 except with probability n−100 all off-diagonal

entries of M are bounded in magnitude by 100

√
logn
d ; combined

with the fact that the diagonal entries are equal to 1, we see that

the ℓ2 norm of each row is bounded by

√
n logn

d . The spectral norm

of ∥MM†∥ is bounded by 1.1nd and each D[i, i] is between 0 and

1 except with with probability at most n−100. Thus, the spectral

norm of M is bounded by 1.2nd except with probability at most

n−100. □

4.3 Degree-2 Pseudoexpectation for the
Sherrington–Kirkpatrick Hamiltonian

Recall thatG ∼ GOE(n) andM is a n × d matrix where each entry

is independently sampled from N

(
0, 1d

)
.

Theorem 4.8. With probability 1 − on (1), there is a degree-2
Boolean pseudoexpectation Ẽ such that

1

n3/2
Ẽ[x†Gx] ⩾ 2 − on (1).

The pseudomoment matrix M satisfies the following:
(1) The off-diagonal entries ofM are bounded in magnitude by

100

√
logn
n .99 .

(2) The ℓ2 norms of rows ofM are bounded by
√
n.01 logn.

(3) The spectral norm of M is at most 1.2n.01.

Towards proving Theorem 4.8 we first recall the following facts

from random matrix theory.

Fact 2 ([12, Sec. 1.14]). The empirical distribution of eigenvalues
of anyG ∼ GOE(n) follows a universal pattern, namely the Wigner
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Semicircle Law. For any real numbers a ⩽ b,

1

n
#{i : λi ∈ [a,b]} = (1 ± on (1))

∫ b

a
ρsc (x)dx

with probability 1 − on (1), where ρsc (x) B 1

2π

√
max(4 − x2, 0).

Corollary 4.9. For every ε > 0, there isδ > 0 such that λδn (G) ⩾
(2 − ε)

√
n with probability 1 − on (1). In particular λn .99 ⩾ (2 −

on (1))
√
n.

Lemma 4.10. The distribution of the column space ofM is that of
a d-dimensional uniformly random subspace in Rn .

Lemma 4.11 ([30]). LetG ∼ GOE(n). Its sequence of normalized
eigenvectors v1,v2, ...,vn has the same distribution as choosing a
uniformly random orthonormal basis of Rn , i.e., the distribution of
first choosing unitv1 uniformly at random on Sn−1, then choosing
unitv2 uniformly at random orthogonal tov1, then choosing unitv3

uniformly at random orthogonal to span{v1,v2} and so on.

Lemma 4.12. Let V be a uniformly random subspace of Rn of
dimension d , and let ΠV be the projection matrix onto V . With prob-
ability 1−on (1) there is a degree-2 pseudoexpectation operator ẼV [·]

over polynomials in x on the hypercube {±1}n such that

ẼV
[
x†ΠV x

]
⩾ (1 − on (1))n.

Additionally, the pseudomoment matrix of Ẽ satisfies identical bounds
on its off-diagonal entries, its row norms and its spectral norm as M
from the statement of Lemma 4.7.

Proof of Theorem 4.8. Let {λ1, ...,λn .99 } be the top δn eigen-

values of G, let V be the subspace spanned by the top n.99 eigen-
vectors of G, and let ΠV be the projection matrix onto V . By

Lemma 4.11,V is a uniformly random n.99-dimensional subspace of

Rn . Let ẼV be the promised pseudoexpectation from Lemma 4.12.

1

n3/2
ẼV [x†Gx] ⩾ ẼV

[
λn .99

n3/2
⟨ΠV ,xx

†⟩

]
+ ẼV

[
λmin(G)

n3/2
⟨ΠV ⊥ ,xx†⟩

]
⩾ (1 − on (1))

λn .99

n3/2
ẼV

[
x†ΠV x

]
− on (1)

⩾ (1 − on (1))
λn .99

√
n

− on (1)(by Lemma 4.12)

⩾ 2 − on (1).(by Corollary 4.9)

The bounds on off-diagonal entries, row norms and spectral norm

of the pseudomoment matrix of ẼV follow by plugging in d = n.99

into the bounds from Lemma 4.12. □

4.4 Wrap-up
The degree-4 Sum-of-Squares lower bound is then an immedi-

ate consequence of Theorem 4.8 and our lifting theorem Theo-

rem 1.2/Theorem 1.3

Theorem 4.13 (Restatement of Theorem 1.4). LetG ∼ GOE(n).
With probability 1 − on (1), there exists a degree-4 SoS SDP solution
with value at least (2 − on (1)) · n

3/2.

5 DEGREE-4 SOS LOWER BOUND FOR MaxCut
IN RANDOM d-REGULAR GRAPHS

In this section, we first give a degree-2 pseudoexpectation for

MaxCut in random d-regular graphs, which is used as a “seed”

to derive a degree-4 pseudoexpectation from Theorem 1.2 and The-

orem 1.3.

This degree-2 pseudoexpectation is only a slight variant of the

known construction of [7, 28].

Theorem 5.1. LetG be a random d-regular graph. For every con-
stant ε > 0 with probability 1 − on (1) there is a degree-2 Boolean
pseudoexpectation Ẽ such that:

Ẽ[x†(−AG )x] ⩾ (1 − 2ε − on (1))2
√
d − 1n.

Additionally, the pseudomoment matrixM of Ẽ satisfies the following:
(1) Its row norms are bounded by a constant γ (ε) which only

depends on ε .
(2) Its spectral norm is bounded by constant γ ′(ε) which only

depends on ε .
(3) Its off-diagonal entries are bounded in magnitude by γ ′′(ε )

√
d

where γ ′′(ε) is some constant that only depends on ε .

We first develop some tools and then prove Theorem 5.1 in

Section 5.6.

5.1 The [7, 28] Construction
We first revisit the degree-2 pseudoexpectation for Max Cut due

to [7, 28]. Given a random d-regular graph G on n vertices, we

state the moment matrix of a degree-2 pseudoexpectation. We call

a vertex C-good if its radius-(2C + 1) neighborhood is a tree, and

C-bad otherwise.

First, we define vector xv corresponding to vertex v . Let ρ,C,α
be constants that we’ll set later. If v is C-bad, then we let

xv [u] B

{
1 if u = v

0 if u , v,

otherwise, we let

xv [u] B

{
α · ρdG (u,v)

if dG (u,v) ⩽ C

0 otherwise.

Finally, we also define a vectorx∅ which is orthogonal to all {xv }v ∈G .

Once ρ,C are chosen, we pick α so that the vectors xv for C-
good v have unit norm. The degree-2 pseudomoment matrix M is

indexed by pairs of sets S,T such that |S |, |T | ⩽ 1 and is defined as

follows:

M[S,T ] B ⟨xS ,xT ⟩.

A nice feature of this solution is that one can derive a closed

form for ⟨xv ,xw ⟩ when {v,w} is an edge between two C-good
vertices.

Lemma 5.2. Let {v,w} be an edge in G. If v,w are both C-good,
then

⟨xv ,xw ⟩ = 2 ·

(
d − 1

d

)
· ρ ·

(
1 − α2ρ2Cd(d − 1)C−1

)
otherwise, ⟨xv ,xw ⟩ = 0.
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Remark 4. For any 0 < ε ⩽ 1, if we choose ρ = − 1−ε√
d−1

, then for
an edge between C-good vertices {v,w} we would have

⟨xv ,xw ⟩ = −
2

√
d − 1(1 − ε)

d
·

(
1 − α2 ·

(
d

d − 1

)
· (1 − ε)C )

)
.

One can make (1 − ε)C arbitrarily small by increasing C , and addi-
tionally, increasing C only makes α smaller. Further, since d

d−1 ⩽ 3

2

for d ⩾ 3, there exists a choice for C depending only on ε such that

⟨xv ,xw ⟩ ⩽ −(1 − 2ε)
2

√
d − 1

d
.

For the purposes of our proof, we will also need bounds on

|⟨xv ,xw ⟩| when v and w are within distance C of each other. A

similar calculation to that in the proof of Lemma 5.2 lets us show:

Lemma 5.3. Let v andw be any two vertices. We have

|⟨xv ,xw ⟩| ⩽

{
|ρ |dG (v,w )(dG (v,w) + 1) dG (v,w) ⩽ C

0 otherwise

Proof. If v or w are C-bad, then ⟨xv ,xw ⟩ = 0, in which case

the bound holds. Thus, for the rest of the proof we will assume v
andw are both C-good. Let a be a C-good vertex and b be a vertex

with distance at mostC from a. We use Pab denote the unique path

of length at most C between vertices a and b.

⟨xv ,xw ⟩ =
∑

u ∈V (G )

xv [u] · xw [u]

= α2
∑

s ∈Pvw

∑
u ∈V (G )

dG (u,v), dG (u,w )⩽C
s ∈Pvu , s ∈Pwu

ρdG (v,w )ρ2dG (s,u)

⩽
∑

s ∈Pvw

|ρ |dG (v,w )
C∑
ℓ=0

d(d − 1)ℓ−1ρ2ℓ

=
∑

s ∈Pvw

|ρ |dG (v,w )

= |ρ |dG (v,w ) · (dG (v,w) + 1)

□

5.2 Nonbacktracking Polynomials
We define a sequence of polynomials д0,д1, . . . which we call non-
backtracking polynomials below (see, for example, [1]):

Definition 5.4. Let the nonbacktracking polynomials be the fol-
lowing sequence of polynomials defined recursively below.

д0(x) = 1

д1(x) = x

д2(x) = x2 − d

дt (x) = xдt−1(x) − (d − 1)дt−2(x) for t ⩾ 3.

An elementary fact about nonbacktracking polynomials, which

earns them their name is:

Fact 3. For any d-regular graph G,

дi (AG )uv = # of nonbacktracking walks from u to v . (12)

We will be interested in дi (λ) for eigenvalues λ of AG . The fol-

lowing can be extracted from [1, Proof of Lemma 2.3]:

Lemma 5.5. When x ∈ [−2
√
d − 1, 2

√
d − 1], |дi (x)| ⩽ 2(i +

1)
√
(d − 1)i .

By a simple continuity argument, this implies:

Corollary 5.6. For any ε > 0, there exists δ > 0 such that
|дi (x)| ⩽ 2(i+1)

√
(d − 1)i +ε when x ∈ [−2

√
d − 1−δ , 2

√
d − 1+δ ].

5.3 Random Graphs
We need the following two facts about random regular graphs.

Lemma 5.7 (Easy conseqence of [40, Theorem 2.5]). Letd ⩾ 3

be a fixed constant, letG be a random d-regular graph on n vertices,
and let C be any constant. Then w.h.p. the number of C-bad vertices
inG is O(logn).

Theorem 5.8 (Friedman’s theorem [5, 13]). Let d ⩾ 3 be a fixed
constant, and letG be a random d-regular graph on n-vertices. Then
with probability 1 − on (1):

max{λ2(G), |λn (G)|} ⩽ 2

√
d − 1 + on (1).

5.4 Construction
Stage 1. First choose constant ε > 0, and let ρ,C,α be cho-

sen according to Remark 4 so that each xv is a unit vector, and

⟨xv ,xw ⟩ ⩽ −(1 − 2ε) 2
√
d−1
d for every edge {v,w} between two

C-good vertices v andw . Next, define polynomial д as follows:

д(x) B α
C∑
i=0

ρiдi (x).

Stage 2. LetW B д (AG )2 − д(d)2 ·

(
®1®1†

n

)
.

Claim 2. W ⪰ 0. (Proof deferred to the full version of our paper.)

Stage 3. Let SG be the collection of C-bad vertices inG. Let W ′

be the matrix obtained by zeroing out all rows and columns in SG
and then setting W ′[v,v] to 1 for all v ∈ V (G). Symbolically,

W ′[v,w] B


1 if v = w

W[v,w] if v , w and v,w < SG
0 otherwise

Remark 5. W ′ is a PSD matrix since it is a 2 × 2 block diagonal
matrix where each block is PSD. In particular one block,W ′ [SG , SG ],
is an identity matrix and is thus PSD. The other block can be seen to
satisfy:

W ′ [V (G) \ SG ,V (G) \ SG ] ⪰ W [V (G) \ SG ,V (G) \ SG ] .

Thus, the other block is also PSD since it PSD-dominates a principal
submatrix of the PSD matrixW.

Remark 6. Note that while the vectors {xu }u ∈V (G ) didn’t play
an explicit role in the construction, they have a role in the analysis.
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5.5 Various Norm Bounds
In this section, we give bounds on the ℓ2 norm of a subset of indices

of rows/columns ofW ′
and the spectral norm ofW ′

.

Observation 3. For any pair of vertices v,w ,��⟨xv ,xw ⟩ −W ′[v,w]
�� ⩽ κ(ε,d)

n

where the κ(ε,d) is a constant depending on ε and d .

Lemma 5.9. LetW ′[u] be the u-th row ofW ′. Then when n, the
number of vertices in the graph is large enough,

∥W ′[u,V (G) \ {u}]∥2 ⩽ γ (ε)

where γ (ε) > 0 is a constant that depends only on ε chosen in Stage 1
of the construction in Section 5.4.

Next, we upper bound the spectral norm ofW ′
.

Lemma 5.10. When n, the number of vertices in V (G) is large
enough, ∥W ′∥ ⩽ γ ′(ε) where γ ′(ε) is a constant that depends only
on ε chosen in Stage 1 of the construction in Section 5.4.

Proof. First, recall the notation SG to denote the set of C-bad
vertices inG and that up to permutation of rows and columns,W ′

has the following block diagonal structure:

W ′ =

[
A 0

0 B

]
whereA =W[V (G)\SG ,V (G)\SG ]+

д(d )2
n · Id and B is an identity

matrix. Thus, ∥W ′∥ ⩽ max{∥A∥, ∥B∥}. We already know that

∥B∥ ⩽ 1, and thus it remains to obtain a bound on ∥A∥.

∥A∥ = ∥W[V (G) \ SG ,V (G) \ SG ]∥ +
д(d)2

n
⩽ ∥W∥ + on (1)

=






 n∑
i=2

д(λi )
2viv

†
i






 + on (1)
⩽ max

i ∈{2, ...,n }
д(λi (G))2 + on (1).

Now, recall Friedman’s theorem Theorem 5.8, according to which

whp λ2(G), . . . , λn (G) are all in [−2
√
d − 1−on (1), 2

√
d − 1+on (1)].

Thus it suffices to bound |д(x)| on the specified interval. For the

below calculation, assume x ∈ [−2
√
d − 1 − on (1), 2

√
d − 1 + on (1)].

|д(x)| ⩽ α
C∑
i=0

(
1 − ε
√
d − 1

)i
|дi (x)|

⩽ α
C∑
i=0

2(i + 1)

(
1 − ε
√
d − 1

)i √
(d − 1)i + on (1)

⩽ 2α
C∑
i=0

(i + 1)(1 − ε)i + on (1)

which bounds ∥A∥ by a constant γ ′(ε) only depending on ε (as C
also depends only on ε) when n is large enough. □

5.6 MaxCutWrap-Up
We are now finally ready to prove Theorem 5.1 and Theorem 1.5.

Proof of Theorem 5.1. Define Ẽ in the following way:

Ẽ[xS ] =


1 if |S | = 0

0 if |S | = 1

W ′[u,v] if S = {u,v}.

Its pseudomoment matrix is then

M =

[
1 0

0 W ′

]
and hence is PSD. The bounds on the row norms and spectral norm

on M follow from Lemma 5.9 and Lemma 5.10 respectively and

the bound on the magnitude of off-diagonal entries follows from

Lemma 5.3 and Observation 3. Finally, we show that the objective

value is indeed at least (1 − 2ε − on (1))2
√
d − 1n. Our choice of

parameters combined with Observation 3 tells us that Ẽ[xuxv ] ⩽

−(1 − 2ε − on (1))
2

√
d−1
d for edges {u,v} between C-good vertices.

Since we additionally know that the number of C-bad vertices is

O(logn), the fraction of edges that are between C-good vertices is

1 − on (1). Consequently, it follows that

Ẽ[x†(−AG )x] ⩾ (1 − 2ε − on (1))2
√
d − 1n.

□

Theorem 5.11 (Restatement of Theorem 1.5). LetG be a ran-
dom d-regular graph. For every constant ε > 0 with probability
1 − on (1), there is a degree-4 SoS SDP solution withMaxCut value at
least

1

2

+

√
d − 1

d

(
1 − 2ε −

γ (ε)

d1/2

)
for some constant γ that depends only on ε .

Proof. By applying our lifting theorem Theorem 1.2 to the

degree-2 pseudoexpectation Ẽ2 from Theorem 5.1, we obtain a

degree-4 pseudoexpectation Ẽ4 such that

Ẽ4[x†(−AG )x] ⩾ (1 − 2ε −
γ (ε)

d1/2
)2
√
d − 1n (13)

where γ (ε) is a constant that depends only on ε . As a result:

1

4|E(G)|
Ẽ4[x†(DG −AG )x] =

dn

4|E(G)|
+ Ẽ4[x†(−AG )x]

⩾
1

2

+

√
d − 1

d

(
1 − ε −

γ (ε)

d1/2

)
□
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