Publications of the Astronomical Society of the Pacific, 133:093001 (18pp), 2021 September

© 2021. The Astronomical Society of the Pacific

OPEN ACCESS

https://doi.org/10.1088 /1538-3873 /ac20ac

CrossMark

Fitting Very Flexible Models: Linear Regression With Large Numbers of

Parameters

David W. Hoggl’z’3 “+ and Soledad Villar™®
Flatiron Institute, a division of the Simons Foundation, USA
2 Center for Cosmology and Particle Physics, Department of Physics, New York University, USA
3 Center for Data Science, New York University, USA
4 Max-Planck-Institut fiir Astronomie, Heidelberg, Germany
5 Department of Applied Mathematics & Statistics, Johns Hopkins University, USA
Mathematical Institute for Data Science, Johns Hopkins University, USA
Received 2021 June 18; accepted 2021 August 24; published 2021 September 14

Abstract

There are many uses for linear fitting; we consider here the interpolation and denoising of data, as when the goal is
to fit a smooth, flexible function to a set of noisy data points. Investigators often choose a polynomial basis, or a
Fourier basis, or wavelets, or something equally general. They also choose an order, or number of basis functions
to fit, and (often) some kind of regularization. We discuss how this basis-function fitting is done, with ordinary
least squares and extensions thereof. We emphasize that it can be valuable to choose far more parameters than
data points, despite folk rules to the contrary: Suitably regularized models with enormous numbers of parameters
generalize well and make good predictions for held-out data; over-fitting is not (mainly) a problem of having too
many parameters. It is even possible to take the limit of infinite parameters, at which, if the basis and regularization
are chosen correctly, the least-squares fit becomes the mean of a Gaussian process, or a kernel regression. We
recommend cross-validation as a good empirical method for model selection (for example, setting the number of
parameters and the form of the regularization), and jackknife resampling as a good empirical method for estimating
the uncertainties of the predictions made by the model. We also give advice for building stable computational

implementations.

Key words: Regression — Linear regression — Gaussian Processes regression

1. Introduction

In contexts in which we want to fit a flexible function to data,
for interpolation or denoising, we often perform linear fitting in
a generic basis, such as polynomials, Fourier modes, wavelets,
or spherical harmonics. This kind of linear fitting arises in
astronomy when, for example, we want to calibrate the
relationship between wavelength and position on the detector
in a spectrograph: We have noisy measurements of calibration
data and we want to fit a smooth function of position that
denoises and interpolates the calibration data. It also arises
when we want to make a data-driven interpolation, extrapola-
tion, or local averaging of data, as with light-curve de-trending,
continuum estimation, and interpolation or extrapolation of
instrument housekeeping (or other) data.

When faced with problems of this kind, investigators have
three general kinds of choices that they have to make: They
have to choose the basis in which they are working (Fourier,

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 3.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOL

polynomial, wavelet, etc.). They have to choose to what order
they extend the basis—that is, how many components to use in
the fit. And they have to decide how (or whether) to regularize
the fit, or discourage fit coefficients from getting out of line
when the data are noisy or the basis functions are close to (or
strictly) degenerate.

If you have encountered and solved problems like these, you
have made these three kinds of choices (sometimes implicitly).
The second choice—about the number of coefficients to fit—is
usually made heuristically, and often subject to the strongly
believed opinion that we must have fewer parameters than data
points. Here we show that this folk rule is not valid; we can go
to extremely large numbers of coefficients without trouble. But
like most folk rules, it has a strong basis in reality: There are
extremely bad choices possible for the number of coefficients,
and especially when the number of parameters is close or
comparable to the number of data points. As we will discuss
below, these choices ought to be made with care.

In many cases the third kind of choice—about regularization
—is made implicitly, not explicitly. Here we are going to
emphasize this choice and its importance, and its value in
improving results.

https://doi.org/10.1088/1538-3873/ac20ac
https://crossmark.crossref.org/dialog/?doi=10.1088/1538-3873/ac20ac&domain=pdf&date_stamp=2021-09-14
https://crossmark.crossref.org/dialog/?doi=10.1088/1538-3873/ac20ac&domain=pdf&date_stamp=2021-09-14
http://creativecommons.org/licenses/by/3.0/

Publications of the Astronomical Society of the Pacific, 133:093001 (18pp), 2021 September

Alternatively, if you are unhappy with the three choices of
basis, order, and regularization, you might decide to avoid such
decisions and go fully non-parametric: Instead of fitting a basis
expansion, you can use a strict interpolator (like a cubic spline),
or you can fit a Gaussian process to your data. Here we will
show that the choice of any Gaussian process kernel function is
equivalent to choosing a basis and a regularization and letting
the number of fit components go to infinity. That is, going non-
parametric does not really get you out of making these choices.
It just makes these choices more implicit. And it is a pleasure to
note that any time you have gone non-parametric you have
implicitly chosen to use a basis with way more fit parameters
than data points! The fact that non-parametrics work so well is
strong evidence against the folk rule about the number of
parameters needing to be less than the number of data points.

An important assumption or setting for the problems we are
addressing in this expository note will be that we care about
predicting new data or interpolating the data, but we explicitly
do not care about the parameters of the fit or the weights of the
basis functions per se. In this setting there are no important
meanings to the components of the model. That is—for us—
only the data exist. The details of the model are just choices
that permit high-quality interpolations and predictions in the
space of the data.

In what follows, we will look at applications that look like
interpolation; there are many other contexts in which regres-
sions have gone to very large numbers of parameters. For
example, there are contexts in which there are enormous
numbers of possible natural features, like for instance when the
data are images or videos: Every pixel of every frame of the
video—or any linear (or nonlinear) combination of pixels—can
become a feature for the regression. Also, there are contexts in
which features are generated randomly from, say, a space of
functions that can act on the natural features (Rahimi &
Recht 2007). These settings are not what we are addressing
here, but they are relevant and related (many good books exist,
for example, Bishop 2006; Hastie et al. 2009; Agresti 2015;
Gelman et al. 2020). In some ways, the most flexible of models
currently in use are deep networks, where it is both the case that
the input data often have enormous numbers of natural features,
and the deep network is capable of generating (effectively) far
more, internally.

In some contexts we have strong beliefs about the noise
affecting our measurements. In other cases we do not. In some
cases we have strong reasons to use a particular basis. In other
cases we do not. The differences in these beliefs and the
differences in our objectives will change what methods we
choose and how we use and analyze them.

This expository note delivers a theoretical and practical
discussion of linear regression and function interpolation; it does
not deliver new research results. Our only novel contribution is
to make an explicit connection between regularized linear
regression and Gaussian processes.

Hogg & Villar

Ordinary least squares is reviewed in Section 2. The
extensions of weighted least squares and ridge regression are
shown in Section 3. The over-parameterized case (more
parameters than data) is discussed in Section 4. The concept
of feature weighting for controlling regularization in over-
parameterized fits is introduced in Section 5. Cross-validation
is explained and used to choose the number of parameters in
Section 6, and the double descent phenomenon is shown. The
Gaussian Process appears as the limit of infinite parameters
in Section 7. Jackknife resampling is explained and used to
estimate uncertainties in Section 8. Numerical implementation
considerations are discussed in Section 9 and some final
remarks are made in Section 10.

2. Standard Linear Fitting: Ordinary Least Squares
with a Feature Embedding

Our setup will be that there are n scalar data points y;. Each
of these data points has an associated coordinate or location ¢;.
In the machine-learning lexicon, these will be our “training
data.” The location f; could be thought of as a time at which the
data point was taken, or a position, or it can be a higher
dimensional vector or blob of housekeeping data associated
with the data point. Critically, we are going to imagine that the
t; are known very well (not very uncertain or noisy), while the
y; are possibly very uncertain or noisy measurements. We will
return to these assumptions at the end.

We are going to fit these data y; with a linear sum of p basis
functions gi(#). These basis functions are functions of the
coordinates ¢. That is, our implicit generative model is

14
Y, = > Bj &%) + noise, (1)
J=1
where the p values ; are parameters or coefficients of the linear
fit. We can assemble the evaluations of the p functions g;() at
the n data coordinates #; into a n X p design matrix or feature
matrix X such that

[X1; = &) 2)

The transformation of the n locations ¢; into a n X p matrix X is
the opposite of a dimensionality reduction. It is called variously
a feature map or a feature embedding. The embedding raises
the dimensionality of the locations ¢ into the p-dimensional
space of the rows of X.

For a concrete example, one common choice is to make the
feature embedding functions g;(r) terms in a Fourier series

cosw;t forj odd
&) = 3)

sinw; t forj even

T|J
2L 4
wj lej’ “4)

where T is a (large) length-scale in the coordinate space (¢
space) and |j/2| indicates the floor of j/2 (integer division).

Publications of the Astronomical Society of the Pacific, 133:093001 (18pp), 2021 September

Hogg & Villar

a few examples from the Fourier basis

g — ai1(t)

& — ga(t) |

3 — gs(t)
_/ B

o — ga(t)

g l— T T %)

O

§ \—/\/_ g17(t) -

0 gax(t)

[%)]

3 gs12(t)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

t

Figure 1. Examples of basis functions g;(r) from the basis given in Equation (3). This basis was constructed with length-scale parameter 7' = 3. The wavelength in the

location space decreases, and the frequency increases, with index j.

Example functions g;(¢) from this basis are shown in Figure 1.
Alternative common choices would be to make the embedding
functions g;(#) polynomials or other kinds of ordered basis
functions, such as wavelets or spherical harmonics (the latter if,
say, the t; are positions on the sphere). Another choice that is
not common in the natural sciences, but studied in machine
learning (for example, Rahimi & Recht 2007), is to choose the
features randomly from a distribution (rather than on a regular
grid in frequency, as we do here). That is beyond our scope, but
we come back to it in Section 10.

The idea of least-squares fitting is that the “best” values of
the parameters (; are the values that minimize the sum of
squares of the differences between the data and the linear
combination of features:

B:mgrrgnllY—Xﬁ\\%,)

where B is the p-vector (column vector) of the p best-fit values
f3; of the parameters 3, and ||¢|}3 denotes the squared L2-norm,
or the sum of squares of the components of a vector g

lqlz = 47q. (6)

This optimization objective (5) is convex and the optimization
problem has a solution in closed form’ as long as the number of
parameters (and features) p is less than the number of training

7 Note that Vs||Y — X8| = 2X"(Y — X3) so critical points are such that

XY = X"X[3. Since the objective is convex all these critical points are global
minima. Further analysis is given in Appendix.

points 7 (and the matrix X'X is invertible):
B=X"X)'X"y. (7

We will treat the case in which the matrix is not invertible
below. When the investigator knows uncertainties on the
training data y;, this expression will change a bit; we begin to
discuss that in the next section.

But recall our setting: We are using the linear fit to interpolate
the data, or de-noise the data, or predict new data. In these
contexts, we typically do not care about the parameter vector B
itself. We care only about the predictions at a set of new “test”
locations t,, which will usually be different from the training
locations #;. From the new test times 7, we create the test feature
matrix X, (by the same feature embedding functions g(#)). The
prediction Y, for the y values at the test locations #, becomes

Y%= XXTX) 1 XTY. (8)

Examples of OLS applied to some toy data® are shown in
Figure 2. This form (8) of the prediction of new test data is
called ordinary least squares (OLS). It has many good
properties, some of which are encoded in the Gauss—Markov
theorem. In particular, if the noise contributions in the model
given in Equation (1) are uncorrelated, have zero mean, and
equal variances for i =1,...,n then the Gauss—Markov
theorem states that the OLS estimator has the lowest variance
within the class of unbiased estimators that are linear in Y (see,
for example, Hastie et al. 2009, Ch. 3).

8 The algorithm by which the toy data were made—and indeed all of the code

used to make the figures for this expository note—is available online at https://
github.com/davidwhogg /FlexibleLinearModels.

https://github.com/davidwhogg/FlexibleLinearModels
https://github.com/davidwhogg/FlexibleLinearModels

Publications of the Astronomical Society of the Pacific, 133:093001 (18pp), 2021 September

Hogg & Villar

OLS withp<n

0.0 0.2 0.4 0.6

Figure 2. Ordinary least-squares (OLS) fits (continuous lines) to a set of example data points (black dots). Fits are shown for different values of the number of basis
functions p; there are n = 23 data points. Here (and in all the Figures to follow) we are using the Fourier basis functions in (3) and shown in Figure 1. The data y; were

generated using a function that does not reside in the function space spanned by the basis. Here the X, matrices used in the predictions ¥, were generated from a fine
grid of locations in the location coordinate f; the plots of the fine grid of predictions are the continuous lines. The fits with larger p have more flexibility to fit the data

than the fit with p = 3, but the fit at the highest p shows evidence of over-fitting.

3. Discussion and Extensions of OLS

The prediction (8) when p < n (the under-parameterized or
traditional regime) is affine invariant in that p-dimensional
rotations or rescalings of the rectangular feature matrix X do
not affect predictions. That is, if R is an invertible p X p
matrix, the prediction using X’ «+— X R will be identical to the
prediction using the original X. This affine invariance will be
modified in the over-parameterized regime, below.

Although the OLS prediction (8) is affine invariant with
respect to p-dimensional transformations, it is not affine invariant
with respect to n-dimensional transformations, such as a re-
weighting of the input data. Indeed, if we know weights or
inverse variances for our data points, conceptually we can put
them into a weight matrix C~' (written this way to emphasize
that reweighting is usually inverse-variance weighting) and write

Y= XeXTC LX) 1 XTC Y,)

where the weight matrix C~" is n x n (and often diagonal in
standard applications). The weight matrix C~' is sometimes
called the information tensor (or information matrix) and its
inverse C is often called the covariance matrix or the noise
variance tensor.

This form (9) of least squares is called weighted least squares
(WLS) because of the data weighting (not to be confused with
feature weighting, to appear below). It is also called chi-squared
fitting because it optimizes the scalar objective commonly called

chi-squared:
= -XpCci(Y-Xp. (10)

In Figure 3 a comparison of OLS and WLS is shown, for a case
of non-trivial data weights, where the data weights are set to be
the inverse squares of individual data point uncertainties.

We will say more about noisy data and the propagation of
uncertainties below in Section 8. It is true that in realistic
scenarios there are uncertainties not just in the data points y;,
but also often in the locations t; of the data as well. It turns out
that taking the latter into account is a much harder problem; we
will discuss this briefly in Section 8.

It is common to include a regularization that discourages the
fit from making use of large amplitudes (3;. There are many
options, but the simplest is ridge regression (or Tikhonov
regularization or L2 regularization), which (in the form that
does not have data weights) looks like

B:arnginIIYfXBH% + A 1815 (11)

where A > 0 is a regularization parameter that penalizes large
values for elements 3; of the parameter vector. This optim-
ization is also convex. The ridge-regularized prediction for new
data looks like

b= XXX+ AND'XTY, (12)

where I is the p X p identity (see Appendix). In the language of
Bayesian inference, A can be seen as the inverse of a prior

Publications of the Astronomical Society of the Pacific, 133:093001 (18pp), 2021 September Hogg & Villar

comparison of OLS and WLS at p=3

10_3 oLS
— WLS

gl | ®

6_

IR |
. . ++ é*é%
2 +++ ¢ o

0.0 0.2

0.6 0.8 1.0 1.2 1.4
t

Figure 3. Comparison of ordinary least-squares (OLS) and weighted least-squares (WLS) fits (continuous lines) to the example data (black dots). In order to illustrate
the differences, we assigned non-trivial error bars to the data. The error bars are ignored in the OLS fit, but in the WLS fit, the weight matrix C ™' is diagonal with the
diagonal entries set to the inverses of the squares of those error bars. The WLS fit “pays less attention to” the points on the left with the largest error bars.

comparison of OLS and ridge regression at p =21

oLS
—— ridge regression

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t
Figure 4. Comparison of ordinary least-squares (OLS) and ridge-regression fits (continuous lines) to the example data (black dots). In order to illustrate the

differences, we chose the p = 21-parameter fit, which shows evidence of over-fitting at the edges of the fit range. The regularized fit looks more sensible, though it fits
the individual data points less precisely. The choice of regularization parameter A matters; here we used A = 0.1 (chosen heuristically by hand).

variance for the parameters ;. The salutary effect of the ridge Ridge regression is not affine invariant in the sense that the
regularization is shown in Figure 4. standard OLS prediction (8) is; that is, the effect of the

The ridge brings with it a choice: How to set the hyper- regularization depends on the amplitudes and linear combina-
parameter A\? We generally recommend cross-validation, to be tions of features placed in the feature matrix. This will become
discussed below in Section 6; cross-validation gives good results important later when we consider feature weights below. It is
but it produces a slightly biased estimate (Liu & Dobriban 2019). also the case that the regularization need not be proportional to

Publications of the Astronomical Society of the Pacific, 133:093001 (18pp), 2021 September

the identity matrix: In principle any positive definite matrix A
could be used in place of A I; this makes sense to consider when
we have detailed prior beliefs about all the parameters 3; or if
those parameters are measured with different units (say).

Combining both the point weighting from WLS and the
generalized ridge regression into a weighted ridge yields to
estimates

Y= XoXTC'X + A1 XTC Y. (13)

This form has good properties for many real-world physics
applications, where data point error bars are often known, and
functions are often expected to be smooth. We will discuss this
form (13) more below in Section 5, but briefly we can say here
that it appears in Bayesian inference contexts where the data
points y; are treated as having Gaussian noise associated with
them (with known variance tensor or covariance matrix C) and
there is a Gaussian prior on the parameter vector 3 (with known
variance A~ '). We have discussed that model elsewhere (Hogg
et al. 2020).9 It is also useful sometimes to think of the “units”
or dimensions of the quantities in (13): In the Bayesian setting,
the units of C would be the square of the units of Y and the
units of A~ would be the square of the units of the ratio ¥/X
(the square of the units of ().

4. Over-parameterization

We are taught folklore, that we can never fit for more
parameters than we have data. That is, we can never work at
p > n. This is not true! Not only is it the case that we can work
at p > n, in many cases we should work at p > n, and many
real-world regressions do. In the over-parameterized case, there
are typically many choices for the parameters §; that will
literally zero out the differences between the data Y and the
linear prediction X (. In the Introduction, we said that we are
considering the case of linear regression in which we do not
care about the values of the parameters. That is, the parameters
of our linear fits are just nuisance parameters. This means that
we do not have very detailed opinions about how these
redundancies in the model (redundancies that appear when
p > n) are resolved. The OLS solution, in this case, is defined
(somewhat arbitrarily) to be the minimum-norm parameter
vector (3 that interpolates the data:

(3 = argmin || 8|3 subjectto ¥ =X 3. (14)
8

Technically this formulation depends on an additional
assumption that the feature matrix X is full rank or that the
data Y lie in the subspace spanned by X. This is true almost
always when p > n. This optimization is again convex and has
a unique solution, although that solution will depend on feature
weights that we discuss in a moment. The under-parameterized

® Inour previous discussion of this product of Gaussians, the notation differs.
What's called A" here is called A in Hogg et al. (2020).

Hogg & Villar

and over-parameterized optimization statements (5) and (14)
can be unified into one form by considering the limit of light L2
regularization:

A

5= tim [argminy —x 9 + Al [as)
in the limit, this delivers the OLS solution in either case and
does not require the constraint in (14) to be satisfied.

In the over-parameterized case (p > n), the prediction looks
like

=X XT(X XY, (16)

provided that X X' is invertible (which will usually be the
case). Like (8), this prediction is also called OLS, or sometimes
“min-norm least-squares” to emphasize the point that it
is making the minimum-norm choice of (§ among many
degenerate solutions. Examples of OLS fits in the over-
parameterized regime are shown in Figure 5. Note that the fits
with different numbers of parameters p lead to very different
predictions, but they all go through the data exactly.

It is slightly off-topic to notice that in Figure 5, as p gets very
large, the OLS solution approaches y = 0 everywhere that it
can. This behavior is a direct consequence of using the Fourier
basis and Plancharel’s theorem, which states that the Fourier
transform is unitary (see for instance Folland 1994). This
means that the integral over frequency of the square of the
Fourier transform is equal to the integral over location of the
square of the original function. Thus the min-norm solution
delivered by OLS, which chooses the interpolating function
that minimizes the squares of the component amplitudes (3 in
the Fourier basis used to make Figure 5, will choose the
interpolating function y(f) that minimizes the mean square of
the value of the function in the location space. It will try to stay
as close to y = 0 as possible. That’s probably not desirable in
most applications! We will fix that problem in the next section.

The two equations for OLS—(8) and (16)—can be unified
into one equation (and also generalized to handle non-invertible
matrices X'X and X X") if we define the pseudo-inverse XT:

Y = Xe XT Y. (17)

The pseudo-inverse of a diagonal matrix is defined as the
diagonal matrix made by inverting the non-zero diagonal
entries. And for any non-diagonal (or any non-square) matrix X
the pseudo-inverse is defined by taking the singular-value
decomposition of X, X = U S V, with S diagonal and U, V
orthogonal, then X' = VTSt UT.

This pseudo-inverse form (17) of OLS is extremely general:
It works for both the p < n and p > n cases, and it works
when the X X' or X'X matrices are not invertible. There can
be significant numerical issues with implementing the pseudo-
inverse; we comment on those in Section 9.

Publications of the Astronomical Society of the Pacific, 133:093001 (18pp), 2021 September

Hogg & Villar

OLS withp>n
10 - — p=30
8 p=2049 n

0.0 0.2 0.4 0.6

Figure 5. Ordinary least-squares (OLS) or min-norm least-squares fits (continuous lines) to a set of example data points (black dots), but now for a few over-
parameterized cases. There are n = 23 data points. As in Figure 2, the data points y; were generated using a function that does not precisely reside in the function space
spanned by the basis. The three fits are very different, but they all go through all the data points exactly. As p gets large, the fit function approaches y = 0 almost
everywhere; this is a consequence of Plancharel’s Theorem and the use of the Fourier basis (see text).

5. Feature Weighting

The OLS prediction for p > n is not affine invariant with
respect to p-dimensional rotations or rescalings. That is, rotations
and scalings in the feature space will affect predictions. It
behooves us to re-scale the features (the p n-vectors of the
feature matrix X) in a sensible way, like for instance, to
encourage the fit to use low-frequency features more than high-
frequency features (Bah & Ward 2016; Rauhut & Ward 2016;
Xie et al. 2020). We can encode these feature weightsinap X p
diagonal weight matrix A~' and the prediction becomes

Y= Xe NIXT(X A X)Ly, (18)

This equation is a special case of the fully general form we will
give below in (24), and equivalent to a special case of (13)
above. This (18) can be seen as the prediction for new data
resulting from the following optimization (again, assuming the
data can be interpolated):

(= argmin ||A'/2 5|3 subjectto ¥ = X £, (19)
3

which—in analogy to the optimizations (14) and (15)—can
also be written as

A

5= tim [g% 1Y = X B + A A7 m%]. 20)
A—0T

This does not require the constraints in (19) to be satisfied.
This optimization penalizes more strongly the parameters [3;
corresponding to features g;(#) with larger values of [A/ 2]jj.

In the Fourier case this re-weighting can be very straightfor-
ward: Each of the p embedding functions g;(r) has an associated
frequency wj; we can control the fit by weighting the j features
by a function f(w). For demonstration purposes, we can choose

_
2w+ 1]

flw) = 21

where s is a hyper-parameter controlling the (inverse) width of

the weighting function in frequency space, and the frequency
input will be w; for each feature j. That is,

(A" = [f (WP (22)

We have chosen this form (21) for f(w) for specific reasons that
will become obvious below. The introduction of the feature
weights dramatically changes the predictions; this is shown in
Figure 6. High frequencies are suppressed and the prediction
becomes smooth.

This all illustrates that, while OLS is affine invariant in the
under-parameterized setting, the affine non-invariance in the
over-parameterized setting is a property that can be exploited.
When the different features are weighted or normalized
differently, the amplitudes of the components 3; of the
parameter vector 3 have to change in response, which in turn
changes its norm ||3|[3. That is, the details of the min-norm
data-fitting parameter vector depends on the details of how the
features are normalized or weighted. In feature-weighted OLS,
this property can be exploited to make the fits smooth, or meet
other desiderata.

Publications of the Astronomical Society of the Pacific, 133:093001 (18pp), 2021 September Hogg & Villar

comparison of OLS and feature-weighted OLS at p =1024

OLS
—— OLS with feature weights (s? w? + 1)1

0.0 0.2 0.4 0.6

Figure 6. Comparison of ordinary least squares (OLS) to OLS with a specific feature weighting. The feature-weighting function is given in the text in Equations (21)
and (22); in this and the following Figures, we (somewhat arbitrarily) set the width parameter to be s = 0.05. Because this weighting function penalizes more strongly
the higher-frequency features, the min-norm solution gives them smaller amplitudes, making the fit smoother.

If we think of the OLS choice B—the min-norm vector
among all vectors (3 that thread the data (satisfy X 0 = Y)—as
the result of a kind of light regularization, then the feature
weighting is an adjustment of the form of that regularization: It
asks the optimization to pull some components of 3 toward
zero harder than others. In our view, feature weighting should
be considered part of the investigator’s choice of regularization.
The feature weighting can be thought of as altering the details
of that choice, or it can be thought of as making the standard
min-norm choice but in a carefully chosen, rescaled basis.

In the most general case, you have not just a set of feature
weights A~', you also have a set of data point weights C '
(which, in standard settings, would be the inverses of the
variances of the noise affecting the data points y;). When you
put these all together, the feature-weighted, data-weighted least
squares predictions are given by either of these two equivalent
expressions:

Y= XeXTC'X + A IXTC Y (23)
=X NXTXNIXT +0O)L Y. (24)

The equivalence of these is due to the Woodbury matrix
identity (Henderson & Searle 1981). These expressions appear
in Bayesian-inference contexts (see, for example, Hogg et al.
2020) when A" is the variance of the prior on the parameter
vector 3 and C is the variance of the noise on the data vector Y.
They are solutions to the optimization

B =argmin|[C12(v = X B)[5 + A2 BB 25)

The units of C must be the units of Y squared, and the units of
A~ must be the square of the ratio of the units of ¥ to the units
of X (the square of the units of). These weighted-feature,
weighted-data least-square forms (23) and (24) are good
because (if the weightings are chosen appropriately) they lead
to smooth solutions that are not required to pass precisely
through every data point. This is appropriate in common, real
situations in which data are noisy and the world is smooth.
Which form to choose, between (23) and (24), depends on a
few things, but primarily p/n. If p < n it is both faster and
more stable to use (23); if p > n it is faster and more stable to
use (24). We show a toy example of a fit with both feature
weights A" and data weights C~' in Figure 7.

6. How to Set the Number of Parameters and the
Double Descent Phenomenon

There is a lot of literature analyzing the performance of
linear regressions as a function of the sizes n and p,
regularization strengths and forms, and so on (for example,
Dobriban & Wager 2018; Bartlett et al. 2020; Hastie et al.
2019). They often refer to the “risk,” which is a statistics term
for the expected squared error (mistake) made when predicting
new data not in the training set. In order to deliver values or
bounds on the risk, this literature depends on knowing how the
data were generated, or the family of distributions from which
the data (X and Y in our nomenclature) were drawn. When
working with real data, we do not get this luxury (real data
comes without documentation). Indeed, understanding the
generating process of the world is the goal of investigations

Publications of the Astronomical Society of the Pacific, 133:093001 (18pp), 2021 September Hogg & Villar

comparison of feature-weighted OLS and WLS at p =1024

10 4 ‘ OLS with feature weights (s? w? + 1)1
—— WLS with both data and feature weights
8 - ®
6 -
> 44
2 .
//
0 o
. ¢ 9
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

Figure 7. Comparison of the feature-weighted OLS shown in Figure 6 to the same but also including data weights C~", as in Equations (23) and (24). Similarly to
Figure 3, the data weights on the diagonal of C~" are the inverses of the squares of the uncertainties shown as vertical error bars. The feature weights encourage the
prediction to be smooth; the data weights permit it to be even smoother because they permit the prediction to miss the training data. Prediction results now depend on
the specific amplitude or prefactor multiplying the feature weights; a particular value of 0.07 £ (w) was chosen for the diagonal of the feature weight matrix A~" for

this demonstration.

in the natural sciences (such as astronomy); the investigator
does not know the generating process at the outset.

Given a data set (location—data pairs f;, y;), what is the best
way to empirically estimate, from those data, the out-of-sample
prediction error? That is, how do we estimate how well we are
likely to predict new data? A reasonable answer to this is cross-
validation: In cross-validation, we leave out a part of the data
(in the most extreme form, leave out one single data point at a
time), train the model using all but the left-out part, and predict
the left-out part. Then this process is iterated over all choices of
what part (or point) to leave out. This process is illustrated in
Figure 8, where we show 23 fits, each of which is trained to the
22 points remaining when we leave one of the n = 23 points
out. Also shown is the prediction, in each leave-one-out fit, for
the left-out point.

The prediction for the mean-squared error (MSE) for new data
is the mean of the square of the differences between the leave-
one-out predictions and the left-out data. This leave-one-out
cross-validation MSE (CVMSE) will be different for different
choices for the basis, size (p), and regularization (including
feature-weight functions) of the fits you do. It is a fairly reliable
and well-studied method for assessing predictive accuracy (see,
for example, Stone 1974), although it does depend on some
assumptions (for example, that data points are not duplicated or
strongly corrrelated, and that the predictive information in the
data is distributed among multiple individual data points). An
example of CVMSE for two models (the feature-weighted OLS
and the ridge regression) are shown for our toy data, as a

function of the number of features p, in Figure 9. The predictive
accuracy is indeed a very strong function of p.

In particular, the CVMSE for the feature-weighted OLS fits is
bad when p = n, and much better at p < n and p > n. This
phenomenology is not particular to this problem. It is extremely
general. There is an effect known in many kinds of regression
called “double descent” or “peaking phenomenon” or “‘jamming”
in which predictive accuracy becomes very poor when the
number of free parameters p comes close to the number of data
points n (Jain & Chandrasekaran 1982; Spigler et al. 2019;
Belkin et al. 2019; Geiger et al. 2019). For linear models, the
“risk”—the out-of-sample prediction erro—blows up when the
model capacity just becomes excessive at p = n (Hastie et al.
2019). The fundamental reason for this phenomenon is that the
ordinary least-squares estimates (8) and (16) require computation
of the inverses (X'X)™!' and (X X7)~! respectively, which are
very badly conditioned around p = n. This translates to a large
variance for the estimator B which implies a large risk. One way
to think about this is that when the condition number of the
matrix XX or X X' is large, some directions in the data space
—some linear combinations of the elements of the data vector Y
—are very strongly amplified.'® This makes the regression

10 The condition number comes back up below in Section 9. It turns out that
when the condition number is large, not only do the output predictions become
very sensitive to the input training data, but also the numerical (computational)
stability of the linear algebra can also be badly affected. But we emphasize here
that the risk goes bad when the condition number is large even if it is possible
to perform the linear algebra correctly at high precision.

Publications of the Astronomical Society of the Pacific, 133:093001 (18pp), 2021 September Hogg & Villar

leave-one-out cross-validation at p =15

* ® data points
leave-one-out fits
g - ‘\ O predictions of held-out data points |

0.0 0.2

Figure 8. A demonstration of leave-one-out cross-validation for one particular model. The 23 lines are the 23 fits, for each of which one data point was held out. Also
plotted on each of the 23 lines is the prediction made for that fit’s held-out data point. Some of the predictions do not appear within the plot window, because the
predictions obtain large amplitudes at the edges.

cross-validation estimates of error

10° @ OLS with weighted features at
O ridge regression with A =0.1 ® oo
10° ; @
5 Gaussian process ' .
z (]
©
g
© | 4 []
-]
O
2 [
© ([]
= ®
OOOOO
oo g 9000 ooo o° {
t—.‘-é 0 600009 00 00000000

10° 10! 107
number of parameters p

Figure 9. Leave-one-out cross-validation estimates of mean squared prediction error for the feature-weighted OLS fits, as a function of the number of features p. Also
shown are the same for ridge regression with A = 0.1 and also the Gaussian process that we will introduce in Section 7 and show in Figure 10; the GP result is shown
as a flat line because it does not have an associated number p. In detail the first (lowest-7) and last (highest-7) data points were not used in computing the mean squared
error; that choice is debatable, but we are imagining an assessment of the quality of the interpolations, not extrapolations, of these models. Note that the OLS
predictions are much, much worse at p &~ n (check out all the orders of magnitude on the vertical axis) than they are at very low or very high p, but that ridge
regression does not show this behavior.

unreasonably sensitive to noise in the data. The high-risk (Hastie et al. 2019), and dimensionality reduction (Huang et al.
behavior at p ~ n disappears with certain kinds of regulariza- 2020).

tion. These include the ridge regularization shown in Figure 9 Sometimes the word “over-fitting” is used to describe
(also known as Tikhonov regression), but also early stopping models that are too flexible. In our view, a model is properly

Publications of the Astronomical Society of the Pacific, 133:093001 (18pp), 2021 September

called “over-fit” when the prediction of the regression on held-
out data—what the statisticians call “risk”—is bad. So over-
fitting happens not universally when the number of parameters
is large, but instead when the number of parameters is
comparable to the number of data points, and (also) the
regularization is inappropriate. Figure 9 shows that models with
both small and large numbers p of parameters can make good
predictions for held-out data, and that regularization can also
protect a model from over-fitting, even when p ~ n. We do not
mean to imply that over-fitting is not a problem in regression; it
can be! Our recommendation is just that the problem of over-
fitting be analyzed empirically through cross-validation, not
through intuitive ideas about the number of parameters.

The CVMSE gets better and worse at different values of p.
That’s not surprising; there are places where the fit basis and
size and feature weighting are all more appropriate for your
specific problem. These good-CVMSE places are the best
places to work, if we can afford to search for them and find
them. In general, if we care about predictive accuracy, it is
worth doing a search for the values of p (and other hyper-
parameters, like regularization strengths and feature-weighting
function parameters) that minimize the CVMSE. The mini-
mum-CVMSE choices for p and the hyper-parameters will
generally be very close to the choices that lead to the best
predictions for new data.

That said, there is one more point to make about over-fitting,
which is that, when our data set is small, it is possible to over-
fit the cross-validation. This problem is beyond the scope of
this expository note; all we will say here is that it is not possible
to make precise settings of many hyper-parameters through
cross validation. Because in cross validation we are making use
of our data to set the properties of our regression, there are
dangers of over-adapting our method to our data. It is safer to
have a fully independent validation data set, but this is rarely
practical (and it does not completely protect us either; see
Recht et al. 2018).

7. The Gaussian Process: The Limit of Infinite
Features

The Gaussian process (GP; see Rasmussen & Williams 2005
for a complete introduction) is a non-parametric regression that
takes training data y; at coordinates #;, plus a kernel function,
and makes predictions ¥, for new data at new positions f,. The
Gaussian process mean prediction looks like

Y= Ky K'Y, (26)

where K is a square n X n kernel matrix between training
locations and themselves

[Kliir = k(1 1), (27)

and K, is the same except it is the rectangular kernel matrix
between test locations ¢, and training locations ¢; the function
k(-,) is a symmetric, positive semi-definite kernel function.

Hogg & Villar

Stated this simply, the GP looks like magic; our goal here is to
connect this to the feature-weighted OLS from Section 5.

First, what does it mean for a kernel function k(-,-) to be
positive semi-definite? It means that for all sets of n locations
{t;}_, the n x n kernel matrix K made from the function
according to (27) has only non-negative, real eigenvalues. The
kernel function must be positive semi-definite because, among
other things, it is describing the variance of a process, and
variances are always non-negative. It turns out that we can
guarantee that a kernel function is positive semi-definite if we
can show that it is, itself, the Fourier transform of a non-
negative function (Bochner’s Theorem, see for example
Folland 1994)."!

Although the kernel matrix K is, by construction, always
positive semi-definite, it can have extremely bad or even
infinite condition number. That is, it can lead your code or
implementation into very unstable linear-algebra operations.
We discuss how to handle these issues below in Section 9.

Above, we called the GP prediction the “mean.” This is
because the Gaussian process is a model for a mean and
variance in function space. In addition to the mean)
predicted'” in (26), the GP also predicts a variance in the Y,
space around that mean. In this expository note, we are going to
treat the GP as producing only a mean prediction, where the
shape of the kernel function matters, but the amplitude of the
kernel function does not (the prediction is a ratio of kernel
matrices, so the kernel amplitudes cancel). However, in
Bayesian-inference contexts the amplitude of the GP kernel is
important, and the predicted variances are important. When we
consider only the mean prediction of the GP, as we do here,
then the GP is a kind of linear filter that operates on data Y and
predicts or interpolates to new data Y. Classically, this linear
filter is sometimes called kernel regression, a Wiener filter, or
kriging (possibly because of Krige 1951).

Importantly for us, there is a strong connection between the
feature-weighted OLS and the GP. In particular, when we take
the limit of infinite features (p — oo; provided the limit exists)
we get kernel matrices K in place of the X A™' X7 matrix
products:

lim X A'XT =K (28)
p—00
lim Xy A1 X" = K, (29)

p—00

where A" is the diagonal matrix of weights, and element i, i’
of K is obtained by evaluating a kernel function k(z, f;).

" Tt is not required that the function & (-,-) itself be non-negative; non-negative
definiteness is a different condition entirely from non-negativity.

12 There is an additional point worthy of mention here, which is that the
expression (26) is implicitly for a GP with a zero prior mean. There is a more
general expression that subtracts a prior mean function from the Y values and
adds the prior mean back in to the Y values. See Rasmussen & Williams
(2005) for all the math.

Publications of the Astronomical Society of the Pacific, 133:093001 (18pp), 2021 September

Equivalently, the limit is

P
lim Y [AY; g(0g (1)) = k(. 1),

P00y

(30)

where we have used the diagonality of A to make a single sum
over j. The specific form of the kernel function k(-,-) depends
on the basis (the features) we choose, and the weighting of the
basis functions in the OLS.

The connection between the infinite basis chosen (the form
and weighting of the features) and the kernel function is
governed by Mercer’s theorem (see Minh et al. 2000).
However, if the basis is Fourier, as we chose above in (3),
and the spacing between modes (Aw = w1, — w;) is small
enough, the kernel approximates the Fourier transform of the
square of the weighting function f(w) we use to weight the
features. The convergence of the minimum weighted norm
interpolation solution to the kernel-induced solution is formally
discussed in recent work (Li 2020).

In the case of the specific example of weight function f(w)
given in Equation (21), we can connect our feature-weighted
OLS to an equivalent GP if we know the Fourier transform of
the square of f(w). We chose that specific form for f(w) because
it has a square that is a member of a Fourier-transform pair:

FIFO] = [f WP €29

F@) = F(l + ﬂ)exp—m.
8 S K

This latter function is also known as the Matém 3/2 kernel
function; it will become the kernel function for the Gaussian
process when we take the limit. In the limit Aw — 0 the specific
example of the p — oo feature-weighted OLS given here
becomes a GP with kernel function F(-) (under the mild
assumptions that guarantee that the discrete Fourier transform
converges to the continuous Fourier transform, see Epstein 2005):

k(t, i) — F(t; — ty) (33)
i

\/7(|t — ti’l) i —
=/—|1+ —|exp——
8 K)

Technically, the kernel function k(:,-) converges to the Fourier
transform of the square of the weighting function f2(-) in
the limit Aw — 0 (the definition of k(.,-) already assumes
p — 00). However, provided that the spacing of the Fourier
modes in frequency space is Aw < 1/Atn. and the
maximum frequency is |p/2]| Aw > 1/ min(s, Aty;,), where

(32)

(34)

Atmin = min|t; —] 35)
i=j

Atmax = maxlti - tj|, (36)
i

it will be true that the OLS with feature weights f(w) will
closely approximate the mean of a GP with kernel k(Af) =
Z [£?] (Epstein 2005). The comparison of the OLS and GP is
shown in Figure 10.

Hogg & Villar

In our toy examples, we use the feature weighting that
generates the Matérn 3/2 kernel. It is important to emphasize
that there are literally infinite alternative choices that can be
made here, and hundreds even if you restrict to kernels with
known closed forms. Indeed, any function F (¢ — t’) that has a
finite, all-positive Fourier transform f2(w) can be substituted
for the Matérn kernel and associated frequency weighting
function we use here.

The particular kernel we obtain in Equation (34) is a
stationary kernel, meaning it depends only on absolute values
of time differences |r — /|. Not all p — oo kernels will be
stationary. The limit p — oo of X A”' X in (29) leads to a
stationary kernel k(-,-) in this case because the feature
embedding in X is a set of sines and cosines. Sines and cosines
form a basis for translation-invariant function spaces. If we had
made a different choice for our basis, such as polynomials or
wavelets, we would have obtained a non-stationary kernel in
the p — oo limit.

At the end of Section 5, we discussed including not just
feature weights in a matrix A~ but also data weights in a
matrix C~'. The GP also permits this, and it is often a very
good idea. The generalization of Equations (23) and (24) to the
GP case is

Yo = K«(K + O)'Y. (37)

As before, in contexts where we have independent uncertainties
on each element y; of our training data ¥, C~' would naturally
be set to the diagonal matrix containing the inverses of the
variances of those uncertainties (so C would contain the
variances). This form (37) is used a lot in astronomy and
cosmology (for example, Zaroubi et al. 1995; Aigrain et al.
2016; Foreman-Mackey et al. 2017) and it is also the standard
form given for the Wiener filter, where the kernel function
generating K is the Fourier transform of the “signal power” and
the kernel function generating C is the Fourier transform of the
“noise power.” In this form, the amplitude of the kernel
function matters, because it is competing, in some sense, the
variance K of the GP against the variance C of the noise. It is
not sufficient to get the shape of the kernel function right to
make a stable prediction of the mean, when using form (37).
We remark that a naive implementation of the regularized
regression using (37) has an O(n?) time complexity. However,
Gaussian processes can be implemented in something close to O
(n) for certain classes of one-dimensional models (Ambikasaran
et al. 2015; Foreman-Mackey et al. 2017). Given this, you might
ask: Why use O(n®) feature-weighted over-parameterized
regressions when you could just use a fast GP? Unfortunately
there are not algorithms that are so fast for higher dimensional
GPs, and there are no good algorithms at all for many situations
(for example GPs on the surface of a sphere). Furthermore, the
standard GP implementations focus on stationary GPs, which do
not encompass all the options that one might construct with non-
stationary basis functions. Given all this, it is often the case that

Publications of the Astronomical Society of the Pacific, 133:093001 (18pp), 2021 September

Hogg & Villar

comparison of feature-weighted OLS at p =1024 and a GP

OLS
10 A . .
—— OLS with feature weights (s?w? + 1)~}
8 A GP with Matérn 3/2 kernel
6 .
S
2 .
0 .
_2 .
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

Figure 10. Comparison of feature-weighted ordinary least squares with a Gaussian process. The figure shows the OLS fit, the feature-weighted version with the
particular feature weighting given in (21), and the GP fit using the kernel (32) that is the Fourier transform of the square of the feature weighting. The feature-weighted

fit and the GP are essentially identical, as expected.

one should or must use linear-regression frameworks, when
appropriate GPs are not available.

8. Uncertainties on the Predictions

Often we need to compute not just a prediction, but also an
uncertainty on that prediction. How faithfully we must compute
that uncertainty will depend strongly on the context in which
we are doing the fitting or interpolation. However, it is often
the case in the physical sciences that predictions are required to
come with good or conservative estimates of uncertainty. There
are four-ish sources of uncertainty in the predictions we are
making in problems like these: (A) The data points y; we have
are individually noisy. (B) There are finitely many of those
data points (there are n of them) and there are gaps between
them in the location space ¢. (C) The data points might have
uncertain locations or location measurements 7;. (D) And the
predictions we make depend on hyper-parameter choices, such
as the form of the basis, the number of parameters p, and any
regularization or feature weighting. These four different
sources of uncertainty propagate differently and are differently
“simple” to deal with. In particular it turns out that the easiest
sources of uncertainty to understand and propagate are those
coming from (A) the noise in the y; and (B) the number n and
locations #; of the data. The uncertainties coming from
(O) uncertainties in the locations #;, and (D) model choices,
are both much harder to model and propagate.

In the best-case scenario, we might have accurate estimates
of the variances [C]; = a,-2 of the noise contributions affecting
our training data values y;, the noise might be Gaussian with
zero mean, we might have locations f; that are extremely

accurately known, and we might have justifiable prior
variances [A™']; on our parameters §;. In this case, we can
assume that the linear model with p parameters is a good model
for our data, and write down a likelihood function and a prior.
In this case, we can turn the Bayesian crank and deliver a
posterior density for the predicted values Y, at the test
locations t,.. The second derivative of the natural logarithm of
the posterior density can then be processed into a standard error
on the predictions Y, (or we can deliver full posterior densities
somehow). The details of this are way beyond the scope of this
expository note, but this (or a closely related) problem is
discussed in some detail by us elsewhere (Hogg et al. 2020).

That scenario is best-case, but it does involve a lot of
assumptions. That is, if we do not trust our estimates of the
noise variances, or if we think the noise might be non-
Gaussian, then the likelihood approaches will give poor
uncertainty estimates. In this sense, it is more conservative to
make use of more empirical methods for uncertainty estima-
tion. The leading candidates are jackknife or bootstrap
resamplings (for example, Efron 1979). Here we will focus
on jackknife.

The idea of jackknife resampling is that we make k&
subsamples of the data, in each of which we have dropped
(or held out) a unique fraction 1/k of the data. The variance of
the results (in this case the prediction Y;) across the jackknife
samples can be transformed into an estimate of the variance of
the estimator acting on the full data set. In the most extreme
form—Ieave-one-out jackknife—we set k = n. In this case, the
jackknife estimate $4 of the variance of the best-fit predictions

Publications of the Astronomical Society of the Pacific, 133:093001 (18pp), 2021 September

Y, is given by

i*:n—l

ST G — BB — B, (38)

nooio

where Y; is the estimate of Y, made after leaving out the one
training point #, y;, and Y, is the estimate made using all the
data. The pre-factor (n — 1) /n in (38) comes from the fact that
the jackknife subsamples are extremely correlated; the pre-
factor is computed to amplify the jackknife variance into an
unbiased estimate of the variance of the estimator ﬁk The
square-root of the trace of this uncertainty variance Sy (that is,
what we might call the jackknife estimate of the standard error)
is shown in Figure 11. Note the similarity between jackknife
and cross-validation; it is relevant and important: These
empirical estimates of uncertainty and prediction error are
closely related.

One issue with jackknife that is worth noting is that it
(effectively) assumes that the data being held out are
uncorrelated in a measurement sense. And yet, many data we
take might have spatial or time correlations in the measurement
uncertainties. If you suspect that your data include local
correlations in measurement uncertainties (from, say, calibra-
tion, or instrument drift), it is more responsible to jackknife by
holding out groups of correlated points, rather than individual
points. A full discussion of responsible jackknife design is
beyond our scope, but many good references exist (for
example, Efron 1982).

These methods—full likelihood analysis and jackknife—
take into account (A) the noise in the data y; and (B) the
number and spacing of the training data points. They do not, by
themselves, take into account (C) the uncertainties on the
locations #;. There are no simple methods for uncertainty
propagation from the locations #; into the predictions Y. One
option is to resample the #; according to our uncertainty
estimates, and re-do the fits. That’s potentially expensive, and
overly conservative (because it ignores the information about
the #; coming from the y;). Another is to linearize the first
derivative of the best-fit curve y(f) and propagate uncertainty
using those derivatives. This is not conservative, because it
only works if the location uncertainties are small relative to
substantial changes in the slope of the predictions with ¢. The
most extreme option would be to simultaneously fit for the
prediction Y and all of the noisily measured #;. That’s a great
idea, but that fit would be extremely computationally
expensive, and no reasonable fit objective would be convex.
All of these ideas are out of scope here.

Finally, in order to take account of (D) the uncertainty
coming from our choices of basis, number p, and regulariza-
tion, we might have to know (or learn) the distribution over
these things. Since these choices are hyper-parameters, any
inference that propagates uncertainties coming from these

Hogg & Villar

choices would have to be hierarchical in structure. That is also
out of scope.

9. Implementation Notes

All of the code used to make the figures for this expository
note is available publicly.'® Although the examples are toys,
the implementation of everything can be generalized for real-
data situations. In our code, there are some aspects of the
linear-algebra implementation that might seem odd. Here are
some comments.

Mostly, linear algebra stability comes down to the condition
number of the matrix in question. The condition number, for
our purposes, is the ratio of the largest eigenvalue (for non-
negative definite matrices) to the smallest non-zero eigenvalue.
For rectangular feature matrices it is the ratio of the largest
singular value to the smallest nonzero singular value.

When the condition number is large, different linear-algebra
approaches will differ. For example, the function call solve
(A, b) should give us the best estimate it can for the product
A1 b, whereas the function call dot (inv (2), b), which is
the same on paper, will give us the dot product between b and
the best estimate that inv () can find for the inverse of A.
When the condition number of A is large, these two values can
be very different, and the solve () will be better.'* We
recommend to use solve (A, b) and never dot (inv (A),
b) unless there are compelling code-structure reasons to use
the latter, such as repeated calls (but even then, a Cholesky
decomposition followed by repeated Cholesky solves is
probably a more stable solution).

If our condition number gets very large, even solve () can
give bad results, because very small eigenvalues of the matrix
are being poorly estimated and then inverted. That’s unstable. It
is better to zero out those small eigenvalues—it is better to
destroy bad information than to use it—and perform a pseudo-
inverse in those cases. So if we really want to be safe (and we
do, here) we should really use 1stsqg (A, b, rcond=tiny)
instead of solve (A, b). The 1stsqg() function requires a
rcond input, which says at what (dimensionless) precision to
zero-out low eigenvalues. It usually makes sense to set this
dimensionless rcond input to something like machine
precision, which is about 1e-16 for our current hardware—
software setups.

One might think that all of this is academic, but it really is
not when the number of features p is close to the number of
data points n. For example, in our toy-data OLS experiments in
this paper with n = 23, the matrix X' X has a condition number
(ratio of largest eigenvalue to smallest nonzero eigenvalue) that

13 https://github.com/davidwhogg/FlexibleLinearModels

This claim contradicts what is stated in the abstract of Druinsky & Toledo
(2012), but this claim is based on our real numerical experiments on real
matrices, so we stand by it. What is uncontroversial is that solve (A, b) will
always perform non-worse than dot (inv (&), b); sometimes it will perform
far better.

https://github.com/davidwhogg/FlexibleLinearModels

Publications of the Astronomical Society of the Pacific, 133:093001 (18pp), 2021 September

Hogg & Villar

jackknife resampling atp=5

leave-one-out fits
jackknife-estimated one-sigma region

0.0 0.2

Figure 11. The jackknife-estimated uncertainty on an ordinary least squares fit. What is shown is the diagonal of the empirical jackknife estimate 34 of the variance

tensor on the prediction Y of an OLS fit. In other words, the off-diagonal entries of Sy are being ignored here; there are important covariances that are hard to visualize
(and beyond our scope). The 1o region is larger than the span of the jackknife trials; this is because the jackknife trials are strongly correlated; the jackknife formula

(38) compensates for those correlations.

saturates machine precision for the entire range 12 < p < 50.
And that’s for n = 23; things generally get worse as n gets
larger.

Related to this, if we have a choice between formulations
that involve an inverse of a square, like (X'X)"'X"Y, and
formulations that involve a pseudo-inverse, like Xy, you
should do the latter, because X'X has the square of the
condition number of X. When we want to execute X' Y, as we
do in (17), we should again use 1stsq (), which was literally
designed for these applications; we use lstsqg(X, Y,
rcond=tiny) . This function returns the best estimate it
can for X' Y, so it should be better than computing a pseudo-
inverse pinv (X) and then matrix-multiplying pinv (X) with
Y. Again here it usually makes sense to set this rcond input to
something like machine precision.

Once p is large enough, if we are using a feature weighting
with A~! with diagonal entries [A*I]jj that decrease to zero with
J» at some point, at machine precision, the additional columns
we are adding to X are effectively all zeros. They will literally
underflow the linear-algebra representation. That’s not a
problem if we implement our linear algebra well (that is, use
1stsq () appropriately), but it does mean that our predictions
and cross-validations will saturate at some p (as we see them do
in Figure 9).

In multiple places, but especially (23) and (24), we are
performing operations on matrices that are diagonal (C and A
and their inverses are all diagonal). We avoid ever constructing
diagonal matrices. We multiply X or X' by a diagonal matrix

by just multiplying the rows (or columns) by the diagonal
entries. And we invert by just inverting the diagonal entries.
We recommend to avoid constructing and operating on
operators that are almost entirely zeros, unless we are using a
very efficient sparse linear algebra implementation.

And finally, it is most numerically stable to operate on the
smallest matrices we can. For example, when you have the
choice between the formulation in Equation (23) and that in
Equation (24), we should choose the former when p < n and
the latter when p > n. That way we are always doing the heavy
linear algebra (solve () and lstsqg() function calls) at a
size min(p, n), which is both faster and more stable than linear
algebra at max(p, n). And it is much faster when we make
these choices correctly: Linear algebra scales naively as the
dimension cubed. (In practice—with excellent packages—it
actually scales with a power more like 2.6 than 3, but still!)

10. Discussion

This expository note is about linear fitting with very flexible
models, for interpolation, prediction, and de-noising of data.
We make a case for considering using very big models, but
being intentional about regularization. These settings (over-
parameterized, but carefully regularized) are adaptive and
useful, and they connect, as we showed, to Gaussian processes
in the limit, which are well-studied workhorses of machine
learning and data science.

At the present day, most important regression techniques
involve nonlinear fitting, with the key example being deep

Publications of the Astronomical Society of the Pacific, 133:093001 (18pp), 2021 September

learning (LeCun et al. 2015, for example). We did not discuss
any of that. However, many of the high-level lessons in this
expository note carry over: All of these tools work well when
the function space is flexible but also carefully regularized
(Belkin et al. 2019). In these nonlinear settings, regularization
takes many additional new forms, like early stopping (Yao
et al. 2007), dropout (Srivastava et al. 2014), and restricted
network structure (such as convolutional; see for example
Bishop 2006).

We only considered the setting in which we care about
predicting new data Y, and never the setting in which we care
about the internal parameters (3 of the linear fit. However, if we
are, say, measuring the power spectrum of a process (as we are,
often, in cosmology), then we care about these amplitudes
themselves. In this case, any regularization we apply takes the
role of a prior or prior information. That prior must be chosen
(in those cases) with great care, because the answers we get
will be influenced by that choice; when it does not properly
conform to our true beliefs, our answers will be distorted in bad
ways. And, technically, when we take this view (that the
parameters [matter), we also have to get serious about the
noise model on the data. That is, the beliefs encoded in the data
noise variance tensor C also must represent our true beliefs if
we do not want our answers distorted in bad ways. All of that is
out of scope here, but we say things about it all elsewhere (for
example, Hogg et al. 2010).

In many cases, when the goal is just to interpolate or
de-noise data, investigators use running means (or medians),
low-pass filters, or explicit interpolators (like cubic spline
interpolation). These methods all have close relationships with
what is written here. Indeed, a running mean, a low-pass filter,
and a cubic-spline interpolator can all be written as a linear
operator (the details of which depends on the locations ¢; of the
data) acting on the input data vector Y, just like our linear fits
produce linear operators. This means that in many cases, these
methods can be translated into versions of the methods we have
presented in this expository note. A full translation is beyond
our scope, though. And our view is that the value of making
explicit investigator choices about basis and the regularization
makes the linear fitting approach better in general.

Regularization was perhaps the biggest theme of this
expository note. But we only really considered variants of
L2 regularization (or ridge or Tikhonov). There are other
regularizations, even other convex regularizations. A valuable
and useful option is L1 or the lasso (Tibshirani 1996), which
encourages sparsity—it encourages parameters J; to take the
value §; = 0 exactly, where possible. This kind of regulariza-
tion makes sense when we have prior beliefs that the functional
forms we seek will in fact be sparse in our chosen basis.
Usually this kind of consideration is less important in
interpolation, prediction, and de-noising settings, but it is not
unheard of. A nice recent result is that the feature weighting
that we employ here can be used with L1 regularization to

Hogg & Villar

obtain simultaneously smoothness and sparsity (Rauhut &
Ward 2016).

We discussed deterministic, ordered expansions like Fourier
series and polynomials, but there is another class of random
features methods (see, for example, Rahimi & Recht 2007) that
we did not discuss. Briefly, the idea with random features is
that instead of weighting features that are regularly spaced in
frequency space with a weighting function f(w), we could have
generated unweighted features but randomly from a probability
distribution ocf? (w). The same Gaussian process limit appears
as p — oo (provided we choose those features with appro-
priately random phases too). These random-feature approaches
have rarely been used in the natural sciences, but they are
potentially of interest in many applications.

In the toy examples used throughout this expository note, we
considered data with locations ¢; in a one-dimensional location
space or ambient space. This was a choice for simplicity of
visualization; in principle the locations #; could be higher
dimensional, or live in a different kind of space. The most
important consideration about the dimensionality and range of
the locations is that the functions g(r) have to sensibly take the
locations #; as input. In astronomy and cosmology contexts, it is
common for the locations #; to be positions on the sphere, and it
is common for the natural basis functions to be spherical
harmonics, for example.

The methods in this expository note are all discriminative, in
the sense that we took the locations ¢; to be prior or primary; the
goal was to find a function of locations ¢; that predicts data y;.
This asymmetry between the locations and the data led to
concerning statements in Section 8§ when we considered the
possibility that the locations #; themselves might be noisy or
uncertain. An alternative formulation to these discriminative
models are generative models, in which the model attempts not
just to predict the y; from the #; but instead predicts both the ¢
and the y;. A model that generates both can be used to make
predictions y, at new locations ¢, by executing an inference or
inverse problem on the generative model. Generative models
are generally non-convex—and harder to execute—if we want
the relationship between the #; and the y; to be nonlinear (for an
example of this in astronomy, see, for example, Ness et al.
2015). In these cases we do not get closed-form solutions, and
there are not known guarantees (like the Gauss—Markov
theorem) about performance. But they are more general, and
often more appropriate, especially when both the locations #;
and the data y; are comparably noisy measurements.

In our toy examples, we used a Fourier series. That is just
one choice among many. However, it is often a great choice.
When we choose the Fourier basis (and—importantly—for
every cosine term you include the corresponding sine term), the
matrix X A' X" (and the limiting kernel matrix K at p — ©0)
has the property that every matrix element [X A'X'];
depends on (or can be calculated from) just the absolute

Publications of the Astronomical Society of the Pacific, 133:093001 (18pp), 2021 September

difference |t; — #y|. That is, in this basis, all fitting methods
become technically stationary. This all relates to the transla-
tion-independence properties of the Fourier basis. So although
the Fourier basis is just one choice among manyi, it is the right
choice when we think our problem has (or might have) certain
kinds of translation invariances.

It is a pleasure to thank Viviana Acquaviva (CUNY), Jed
Brown (CU Boulder), Edgar Dobriban (UPenn), Nestor
Espinoza (STScl), Dan Foreman-Mackey (Flatiron), Alessandro
Gentilini, Teresa Huang (JHU), Weilin Li (NYU), Sam Roweis
(deceased), Adrian Price-Whelan (Flatiron), Bernhard Scholkopf
(MPI-IS), Kate Storey-Fisher (NYU), Rachel Ward (UT Austin),
and Lily Zhao (Yale) for valuable conversations and input.
S.V.’s work on this project was supported by NSF DMS
2044349, EOARD FA9550-18-1-7007, and the NSF-Simons
Research Collaboration on the Mathematical and Scientific
Foundations of Deep Learning (MoDL) (NSF DMS-2031985).
All code and data used in this project are available at https://
github.com/davidwhogg/FlexibleLinearModels.

Appendix
Optimization Arguments

As mentioned in the main text, the optimal solutions of the
unconstrained objectives (5) and (11) can be obtained by
computing the first-order critical points. The first-order critical
points are global minima because all the objectives considered
are convex in the regression coefficients (.

To derive the optimal solutions of the constrained optim-
ization (14) and similar, we use a classical result in quadratic
optimization (see for instance Nocedal & Wright 2006, Ch. 16):
Consider the quadratic optimization problem

arg min %xTG x4+ xTc subjectto Ax =b. (A1)
X
The first-order necessary conditions for x* to be a solution of
(A1) is that there is a vector X* (known as Lagrange multipliers)
such that the following system of equations is satisfied:

2 oI -00
Ao flx] Lol
Equation (A2) is typically known as the Karush—-Kuhn-Tucker
conditions (KKT). If the objective function in (A1) is convex,
the KKT conditions are also sufficient for optimality.'

Using this formulation it is easy to check that the solution of

(14) leads to predictions in (12), and the solution of (19)
produce (18). For instance, in order to show the latter we

(A2)

15 The KKT conditions can also characterize optimality in more general cases.
For instance, if A has full row rank and Z is the nullspace of A, if Z'G Z is
positive semidefinite the KKT conditions are sufficient for optimality. If Z'G Z
is positive definite we also have that the solution of (A1) is unique (which is
typically the case in the under-parameterized linear regression but not in the
over-parameterized).

Hogg & Villar

consider
(= argmin ||[A/2 |} subjectto ¥ =X 3, (A3)
B
or equivalently
B = arg min% B'A 3 subjectto X 5 =7, (A4)
I5]

obtaining the formulation in (Al) for G=A, c=0,A =X,
b = Y and x = (3. Using the KKT conditions we obtain

Bl_[A xT 1[0]
X X 0 Yl
(assuming the KKT matrix is invertible). Luckily there exists a
complete characterization for the inverse of 2 x 2 block

matrices (see, for example, Lu & Shiou 2002). In particular if A
and D — CA™'B are invertible matrices we have

A B!
C D
[Aat'+A'B(D - caA'By'cATt —A'B(D — CA'B)!
—(D — CA'B)'cA! (D — CA'By!

(AS5)

(A6)

In the particular case of (AS) it suffices to compute the top
right block the inverse. If both A and X A~'XT are invertible we
obtain

B=N'XT(X NXT) Y. (A7)

References

Agresti, A. 2015, Foundations of Linear and Generalized Linear Models (New
York: Wiley)

Aigrain, S., Parviainen, H., & Pope, B. J. S. 2016, MNRAS, 459, 2408

Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D. W, &
O’Neil, M. 2015, ITPAM, 38, 252

Bah, B., & Ward, R. 2016, ITSP, 64, 3145

Bartlett, P. L., Long, P. M., Lugosi, G., & Tsigler, A. 2020, PNAS, 117, 30063

Belkin, M., Hsu, D., Ma, S., & Mandal, S. 2019, PNAS, 116, 15849

Bishop, C. M. 2006, Pattern Recognition and Machine Learning (Berlin:
Springer)

Dobriban, E., & Wager, S. 2018, AnSta, 46, 247

Druinsky, A., & Toledo, S. 2012, arXiv:1201.6035

Efron, B. 1979, AnSta, 7, 1

Efron, B. 1982, The Jackknife, the Bootstrap and Other Resampling Plans
(Philadelphia, PA: SIAM)

Epstein, C. L. 2005, CPAM, 58, 1421

Folland, G. B. 1994, A Course in Abstract Harmonic Analysis (Boca Raton,
FL: CRC Press)

Foreman-Mackey, D., Agol, E., Ambikasaran, S., & Angus, R. 2017, AJ,
154, 220

Geiger, M., Spigler, S., d’Ascoli, S., et al. 2019, PhRVE, 100, 012115

Gelman, A., Hill, J., & Vehtari, A. 2020, Regression and Other Stories
(Cambridge: Cambridge Univ. Press)

Hastie, T., Montanari, A., Rosset, S., & Tibshirani, R. J. 2019, arXiv:1903.
08560

Hastie, T., Tibshirani, R., & Friedman, J. 2009, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction (2nd ed.; Berlin: Springer)

Henderson, H. V., & Searle, S. R. 1981, SIAMR, 23, 53

https://github.com/davidwhogg/FlexibleLinearModels
https://github.com/davidwhogg/FlexibleLinearModels
https://doi.org/10.1093/mnras/stw706
https://ui.adsabs.harvard.edu/abs/2016MNRAS.459.2408A/abstract
https://doi.org/10.1109/TPAMI.2015.2448083
https://ui.adsabs.harvard.edu/abs/2015ITPAM..38..252A/abstract
https://doi.org/10.1109/TSP.2016.2543211
https://ui.adsabs.harvard.edu/abs/2016ITSP...64.3145B/abstract
https://doi.org/10.1073/pnas.1907378117
https://doi.org/10.1073/pnas.1903070116
http://arxiv.org/abs/1201.6035
https://doi.org/10.3847/1538-3881/aa9332
https://ui.adsabs.harvard.edu/abs/2017AJ....154..220F/abstract
https://ui.adsabs.harvard.edu/abs/2017AJ....154..220F/abstract
https://doi.org/10.1103/PhysRevE.100.012115
https://ui.adsabs.harvard.edu/abs/2019PhRvE.100a2115G/abstract
http://arxiv.org/abs/1903.08560
http://arxiv.org/abs/1903.08560
https://doi.org/10.1137/1023004

Publications of the Astronomical Society of the Pacific, 133:093001 (18pp), 2021 September

Hogg, D. W., Bovy, J., & Lang, D. 2010, arXiv:1008.4686

Hogg, D. W., Price-Whelan, A. M., & Leistedt, B. 2020, arXiv:2005.14199

Huang, N., Hogg, D. W., & Villar, S. 2020, arXiv:2011.11477

Jain, A. K., & Chandrasekaran, B. 1982, Handbook of Statistics, Vol. 2
(Amsterdam: Elsevier), 835

Krige, D. G. 1951, Journal of the Southern African Institute of Mining and
Metallurgy, 52, 119

LeCun, Y., Bengio, Y., & Hinton, G. 2015, Natur, 521, 436

Li, W. 2020, SIMODS, 3, 414

Liu, S., & Dobriban, E. 2019, arXiv:1910.02373

Lu, T.-T., & Shiou, S.-H. 2002, CMwA, 43, 119

Minh, H. Q., Niyogi, P., & Yao, Y. 2006, Int. Conf. on Computational
Learning Theory (Berlin: Springer), 154

Ness, M., Hogg, D. W., Rix, H. W, Ho, A. Y. Q., & Zasowski, G. 2015, ApJ,
808, 16

Nocedal, J., & Wright, S. 2006, Numerical Optimization (Berlin: Springer)

18

Hogg & Villar

Rahimi, A., & Recht, B. 2007, in NIPS’07: Proc. 20th Int. Conf. on Neural
Information Processing Systems (Red Hook, NY: Curran), 1177

Rasmussen, C. E., & Williams, C. K. I. 2005, Gaussian Processes for Machine
Learning (Cambridge, MA: MIT Press)

Rauhut, H., & Ward, R. 2016, Appl. Comput. Harmon. Anal., 40, 321

Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. 2018, arXiv:1806.00451

Spigler, S., Geiger, M., d’Ascoli, S., et al. 2019, JPhA, 52, 474001

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., & Salakhutdinov, R.
2014, The Journal of Machine Learning Research, 15, 1929

Stone, M. 1974, Journal of the Royal Statistical Society:
(Methodological), 36, 111

Tibshirani, R. 1996, Journal of the Royal Statistical Society: Series B
(Methodological), 58, 267

Xie, Y., Ward, R., Rauhut, H., & Chou, H.-H. 2020, arXiv:2006.08495

Yao, Y., Rosasco, L., & Caponnetto, A. 2007, Constr. Approx., 26, 289

Zaroubi, S., Hoffman, Y., Fisher, K. B., & Lahav, O. 1995, ApJ, 449, 446

Series B

http://arxiv.org/abs/1008.4686
http://arxiv.org/abs/2005.14199
http://arxiv.org/abs/2011.11477
https://doi.org/10.1038/nature14539
https://ui.adsabs.harvard.edu/abs/2015Natur.521..436L/abstract
https://doi.org/10.1137/20M1359912
http://arxiv.org/abs/1910.02373
https://doi.org/10.1088/0004-637X/808/1/16
https://ui.adsabs.harvard.edu/abs/2015ApJ...808...16N/abstract
https://ui.adsabs.harvard.edu/abs/2015ApJ...808...16N/abstract
https://doi.org/10.1016/j.acha.2015.02.003
http://arxiv.org/abs/1806.00451
https://doi.org/10.1088/1751-8121/ab4c8b
https://ui.adsabs.harvard.edu/abs/2019JPhA...52U4001S/abstract
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://arxiv.org/abs/2006.08495
https://doi.org/10.1007/s00365-006-0663-2
https://doi.org/10.1086/176070
https://ui.adsabs.harvard.edu/abs/1995ApJ...449..446Z/abstract

	1. Introduction
	2. Standard Linear Fitting: Ordinary Least Squares with a Feature Embedding
	3. Discussion and Extensions of OLS
	4. Over-parameterization
	5. Feature Weighting
	6. How to Set the Number of Parameters and the Double Descent Phenomenon
	7. The Gaussian Process: The Limit of Infinite Features
	8. Uncertainties on the Predictions
	9. Implementation Notes
	10. Discussion
	AppendixOptimization Arguments
	References

