Towards Event-Driven Decentralized Marketplaces on the
BlockChain

Akash Pateria
apateri@ncsu.edu
North Carolina State University
Raleigh, United States of America

ABSTRACT

Blockchains have become a popular technology for lowering the
trust-tax burden between transacting parties that cannot necessar-
ily trust each other. They are used as substitutes for the centralized
authorities typically incorporated in transactional workflows to per-
form verification tasks and have the advantage of being objective
and incorruptible. For applications such as supply chain market-
places, auxilliary functionalities beyond the core blockchain roles
of recording and validating transactions such as event detection
are important for enabling application participants be responsive
to business conditions. Unfortunately, existing blockchain event
frameworks are immature, syntactic, inflexible and not expressive
enough for many application needs.

In this paper, we propose an approach that involves an event
model which "semantifies blockchain transactions" and an imple-
mentation architecture that integrates a open-source blockchain
database BigChainDB with a semantic engine and publish-subscribe
messaging platform. Finally, we model and simulate a use-case in-
spired from the manufacturing domain and present usability and
preliminary performance results that demonstrate the discrimina-
tory ability of semantics-enabled event model.

CCS CONCEPTS

« Information systems — Computing platforms; Enterprise ap-
plications.

KEYWORDS

Blockchains, Decentralized Marketplaces, Semantic Events, Declar-
ative transactions

ACM Reference Format:

Akash Pateria and Kemafor Anyanwu. 2021. Towards Event-Driven De-
centralized Marketplaces on the BlockChain. In The 15th ACM Interna-
tional Conference on Distributed and Event-based Systems (DEBS °21), June
28-Fuly 2, 2021, Virtual Event, Italy. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3465480.3466921

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DEBS 21, June 28-July 2, 2021, Virtual Event, Italy

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8555-8/21/06...$15.00
https://doi.org/10.1145/3465480.3466921

Kemafor Anyanwu
kogan@ncsu.edu
North Carolina State University
Raleigh, United States of America

1 INTRODUCTION

Supply chains comprise of different interacting workflows covering
multiple phases in the business and production processes beginning
from procurement, through order processing, production, shipping
to delivery. The participants in the workflows are often a dynamic
set of humans and machines or automated processes that are man-
aged by separate and independent organizations. Depending on the
application domain, there can also be dynamism in terms of demand
and operational requirements which can further complicate matters.
For example, manufacturing companies operate in environments
characterized by constant change which may demand adaptations
to changes in design, configuration and processing functions, pro-
duction capacity, and dispatching of the orders [28]. Consequently,
there has been a dominant trend towards more digitization of pro-
cesses to help support improvement in responsiveness to business
demands while improving operational and cost efficiencies.
Blockchains are increasingly becoming an important compo-
nent of the technology ecosystem, particularly for complex supply
chain applications. Blockchains cooperatively maintain ledgers or
databases that are emerging as the so-called "technology of trust".
Being immutable and without centralized control, blockchains insu-
late against tampering of data (at least not without being noticed),
enabling data consumers to trust its data. This is in contrast to
the traditional data management model in which trust is typically
vested in a central entity (banks for managing financial data, regis-
tered entities for real estate escrow) without any guarantees against
such an entity going rogue. Popular blockchain platforms include
Bitcoin [32], Ethereum [10], Hyperledger[7] and so on. As an exam-
ple of its use in supply chains, the global furniture retailer IKEA [6]
has investigated the use of blockchains in the supply chain sector
where decentralization combined with immutability is expected to
enhance the transparency and robustness of transaction processing
drastically” [35]. IKEA’s goal was to use blockchains as a "transpar-
ent and trustworthy documentation of events in the supply chain,
where multiple organizations are involved, and where no entity
should be able to manipulate information without it being noticed"
[35]. To this end, its blockchain solution recorded all the events and
many participants handling different products in its supply chains
from creation to final ownership (28 event types associated with
Order creation, Product creation, Shipment, Logistics, Delivery,
etc.). Other efforts [31], [18], [21] go beyond the needs of a single
company to try to provide support for specific vertical services e.g.
procurement, by offering "decentralized marketplaces".
Decentralized marketplaces are digital platforms where match-
making is done between product and service requestors and ap-
propriate Suppliers using the blockchain rather than a central

https://doi.org/10.1145/3465480.3466921
https://doi.org/10.1145/3465480.3466921

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

1 pragma solidity *

jcontract Auction {
4 adress internal auction_owner;
uint256 public auction_start;
uint256 public auction_end;
uint256 public highestBid;
address public highestBidder;
9 enum auction_state {

0 CANCELLED, STARTED
11 }

] struct car {

14 String Brand;

15 String Rnumber;
6 }

car public Mycar;

address[] bidders;

mapping (address => uint) public bids;
auction_state public STATE;

modifier an_ongoing auction() {
require (now <= auction_end) ;

}

cl modifier only owner () {
require (msg.sender == auction_owner) ;

}

function bid() public payable returns (bool) {}
function withdraw() public returns (bool) {}
function cancel_auction() external returns (bool) {}

event BidEvent (address indexed highestBidder, uint256 highestBid) ;
event WithdrawalEvent (address withdrawer, uint256 amount) ;
event CanceledEvent (string message, uint256 time);

}

Figure 1: Car Auction Smart Contract Example

authority. In this context, blockchains can be used to record im-
portant aspects of the negotiation activity between requestors and
providers as well as to maintain a historical log of provider activities
as a means of verification of stated capability by the provider. The
experience during the early phase of the COVID pandemic where
there was an acute shortage of PPE created significant demand for
any manufacturers with the required manufacturing capabilities
and capacity for PPE (regardless of whether those entities produced
PPE as their core business as long as purported capability could
be verified). Online marketplaces like "American Makes"[1] offer
a service with which hospitals could enter their PPE needs, man-
ufacturers submit what they can make and general users share
designs of products to be 3D printed. Other centralized manufac-
turing marketplaces do exist [8], [12]. However, the limitations of a
centralized entity are that it is vulnerable to risks of bias, collusion
between the entity and some of its users. In general, there is signif-
icant interest in enabling these sorts of digital and automated, but
trustworthy marketplaces because the existing approach for match-
making is lengthy (on the order of up to a year sometimes), manual,
tedious, and expensive, particularly in high stake domains like air-
craft manufacturing. Here, a major manufacturer that needs to vet
potential suppliers or subcontractors engages in a manual process
of reviewing certifications and job history, inspecting plants, and
so on. Consequently, such major manufacturers find it difficult to
diversify their supplier pool or to find niche area suppliers and to
resort to sticking with a few well-known ones, creating a signifi-
cant barrier to entry for other potential suppliers. Finally, in the
context of public procurement, government regulations often de-
mand fair competition and transparency between the participants
in the bidding and selection process for an awardee of a public
contract. Other efforts [31] [18] [17] have focused on developing
blockchain-enabled marketplaces, particularly in the IoT domain.

Akash Pateria and Kemafor Anyanwu

While blockchain platforms have as their primary function to
process, validate and record transactions, important auxilliary func-
tions need to be incorporated into the application ecosystem to
provide broader support of business functions. Event frameworks
which enable application participants be notified of relevant trans-
actional activity is critical for a business’s responsiveness and its
ability to maintain operational efficiency and competitive advan-
tage. For example, it will be important for suppliers of products or
services to be informed as soon as there are requests that match
their offerings in order for them to submit proposal bids in a timely
manner. Such event frameworks should support discriminatory
filtering of events, so that event subscribers are not being bom-
barded with irrelevant events. Currently, the main method for users
to discover about transactional activity is to constantly poll the
blockchain using querying tools such as [4], [3], [22], [19], [20] to
scan and parse blockchain data and logs. A few efforts like Even-
teum [5] have integrated a publish-subscribe mechanism into the
architecture, allowing users to subscribe to events of interest. How-
ever, both the querying and subscription-based approaches have
significant limitations with respect to the needs of applications like
the sort of marketplaces we are considering. Existing event models
and frameworks have:
¢ Limited expressiveness in event representation: events are

typically represented as static and limited declarativeness signa-
tures. Each event is a predefined event name/identifier with a fixed
set of associated values. Figure 1 shows some examples event
signatures for a Car Auction smart contract e.g. BidEvent(..) to
represent an auction bid. For one thing, event consumers must
not only be aware of the keyword used to identify an event, but
also the role and semantics of associated values or parameters
in the event signature given that the degree of declarative-ness
is with respect to data typing. This approach may be sufficient
for single-provider marketplaces and very narrow vertical ap-
plications where assuming that event consumers know event
specification in sufficient detail may be reasonable.

However, for many-many marketplaces (many providers, many

consumers), different users will need to have the flexibility to ex-

press their needs in a way that suits their requirements (not a one-
signature-fits-all). For example, different REQUEST_FOR_QUOTEs
for manufacturing services may be described with varying details
including maybe material to be used for manufacturing, the prod-
uct shape to be made, color etc., because these features have an
impact manufacturing capability. Such flexibility in event specifi-
cation requires declarative, extensible and semantic specification
mechanisms so that users can add as much detail as desired and
what information is added can be properly interpreted. Unfor-
tunately, in addition to the already mentioned limitations, the
event models supported in platforms like Ethereum only allow
maximum of 4 keywords as event signatures (each a maximum
of 32 bytes, and one dedicated to event name, leaving only three
values of parameters possible). This is as result of the memory
structure of the virtual machine used to execute "smart contracts”

[14] in which events are hosted.

e Limited discriminatory ability: a direct consequence of the
limited expressiveness of event representation is the fact that
rich or complex events will have to assume such generalized
representations that their discriminatory ability with respect to

Towards Event-Driven Decentralized Marketplaces on the BlockChain

subscription will be limited. For example, if appropriate details
of REQUEST_FOR_QUOTE are missing in a such an event, then
event consumers may have to receive all REQUEST_FOR_QUOTE
and the locally process to filter out if the request is relevant to
them. Indeed, in Eventeum [5], all application events are received
by subscribers in single topic. The only level of discriminatory
ability is discriminating between system and application events.
In this paper, we focus on enabling a many-many requestors-
suppliers marketplace as opposed to a single requestor or provider
marketplace in which there is a single predefined way to communi-
cate requests. For a many-many marketplace, maximum flexibility
must be provided for different users to express their needs as they
deem fit. In other words, (i.) requestors should be able to present
their needs and requests in as much or little detail as desired using
vocabulary of choice while (ii.) suppliers must express interests
in receiving notifications about such requests in a from that is de-
coupled from request descriptions both in form and conceptual
models.
Specifically, we present:

(1) an implementation architecture that integrates a distributed
publish-subscribe platform, Apache Kafka, and a semantic en-
gine StarDog with a blockchain database based on BigChainDB.

(2) "semanticizing" a topic-based publish-subscribe event descrip-
tion space as well as BigChainDB’s declarative and extensible
transaction model to be used as a foundation for blockchain
marketplace transaction types. This approach effectively decou-
ples event specifications from event subscriptions meeting the
desired flexibility requirement.

(3) an ontology-based semantic framework for mediating between
the decoupled "transaction-based" event model space and the
"topic-based" event subscription space.

(4) an experimental usecase evaluation using some sample data and
ontologies from the manufacturing domain. The results demon-
strate the discriminatory power of using our semantics-enabled,
expressive event specification model over existing approaches
that rely on purely syntactic event models.

2 BACKGROUND & RELATED WORK

Blockchains are essentially decentralized databases in which "records”
are organized into a sequence or "chain of blocks" such that there
is a dependency between adjacent blocks in a chain and once
blocks are modified the chain is broken (making it easy to de-
tect changes). While the core functions of blockchains are creating
and transferring assets, some platforms such as Ethereum [10] and
Hyperledger[7] support extensibility features that allow additional
business process behavior whose execution also needs to be pro-
ceeded within the blockchain for reliability. The so-called smart
contracts [14] encode business processes and terms of the agree-
ment between parties as arbitrary program code which self-execute
under the control of the blockchain, once specified conditions have
been met. These blockchains also offer support for events as part
of their smart contract frameworks. Figure 1 shows an example of
Ethereum smart contract implementing a car auction with three
event types (adapted from [16]).

DEBS 21, June 28-July 2, 2021, Virtual Event, Italy

Our introductory discussion highlighted some of the limitations
of existing event models. In the following, we will elaborate on
these limitations by using illustrative examples.

2.1 Motivating Example

Marketplaces for domains like manufacturing are expected to have a
broad range of users ranging from casual users who know about the
product they want to manufacture but do not have deep knowledge
about relevant manufacturing techniques, to more expert users who
have a good idea of their manufacturing needs. Some examples of
possible manufacturing requests follow:
(1) Manufacturing of a hip implant with titanium and a surface
roughness Ra value of 2-5 microns and delivery time of 3 weeks.
(2) Mass manufacturing of a toy (> 100,000 units) along with plastic,
transparent packaging for the toy so that customers can view it
while on store shelves.
(3) Manufacturing of medical device with polycarbonate material
and small quantity (<1000).
(4) Ambulatory bags, Pressure relief valves, Ball joint rod ends, and
sheet metal fabrication (laser or water jet).

The examples show that manufacturing requests can be de-
scribed using different information dimensions e.g. product type
or product components, material type, manufacturing process and
so on depending on how much the user understands their require-
ments. Therefore, in order to allow transactional activity such as
these service requests to form the basis of event messages, event
specifications are going to need to be flexible and expressive. On the
other hand, for event consumers what is critical is to determine
if a request for service falls within their service capabilities. For
example, for request (1.) Abrasive Polishing is a required process
because of the material and low surface roughness requirement;
(2.) CNC Milling and Thermoforming because the arbitrariness of
toy shapes requires a CNC machine to create a ‘mold’, and then
the mold is used to form the plastic with the desired shape us-
ing the thermoforming machine; (3.) 3D-Printing because of the
small quantity. (4.) specifies its request in terms of a combination of
product types (Ambulatory bags, Pressure relief valves, Ball joint
rod ends) and a manufacturing capability (sheet metal fabrication).
These are components for producing a ventilator assembly and the
sheet metal fabrication capability is required to cut the metal needed
for the ventilator cover (this was a real use case in the early phase
of COVID). Careful consideration will reveal that it is impractical to
attempt to match requests with subscriptions expressed in a similar
model i.e. in terms of different dimensions of product type, material
etc. because there will be too many possible alternative descriptions
that could be considered "matches". For example, different kinds of
request descriptions would imply 3D-Printing . In-fact, not only the
degree of detail in description could be different, but also terminolo-
gies could. For instance, 3D-Printing and Additive Manufacturing
are synonymous. Therefore, matching event messages to subscrip-
tions just based on textual representations would fail if, for example,
the event message used one term while the subscription used an-
other.

In summary, what we can observe is that while for event de-
scriptions, we want to allow expressive specifications, for event

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

subscriptions, we need more generalized abstractions of specifica-
tions. Consequently, we need a semantic mediation mechanism to
bridge the heterogeneities in event message and subscription specifi-
cations, as well as, differences in terminology usage.

2.2 Semantics-Enablement with Ontologies

When there is a need to reconcile terminological differences, on-
tological data representations rather than mere textual represen-
tations are the most commonly accepted method. Ontologies are
formal conceptualizations of concepts and relations in an appli-
cation domain (which could be associated with textual labels in a
well-defined way). The W3C has standards for specifying formal
conceptualizations or ontologies in the form of ontology modeling
languages with an accompanying formal syntax and rules for un-
ambiguous interpretations of language constructs. The standards
also introduce ontological primitives that serve as the foundation
for application and domain ontologies. For example, the concept
of a class and a property (a named binary relation) is defined as
primitives. Then, certain specific relationships are also defined as
primitives such as the rdfs : subclassOf property which allows two
classes to be linked by subsumption while the properties/relations
owl : disjointWith and owl : equivalentClass allow one to assert
that two classes are disjoint or that they are equivalent respec-
tively. Such assertions allow reasoners to make inferences about
data characteristics.

The characteristics of a property can be refined further by as-
serting its membership in special classes of properties. For exam-
ple, if in a family ontology the property ancestorOf was intro-
duced, its semantics could be further refined by saying that it is an
owl : transitiveProperty while something like friendOf could be
asserted to owl : symmetricProperty. These primitives in the rdfs
and owl standards have associated logical axioms used for logical
inferencing with those primitives. Ontological reasoners that im-
plement the primitives in the standards can support the automatic
inferencing that is needed when semantic heterogeneities occur
in data models. For example, the synonymous terms 3D-Printing
and Additive Manufacturing can be asserted to be equivalent using
the i.e. 3D-Printing owl : sameAs Additive Manufacturing . Then,
data processing involving ontology reasoners will be able to handle
the terms as equivalent (which would not happen in non-semantic
representations). Using these primitives in the standards as a foun-
dation, domain concepts and relationships can be formalized and
organized into semantic structures. Many ontologies for different
domains have been curated and made publicly available in the
Linked Open Data Cloud. Even in the manufacturing domain, on-
tologies such as [30] [9] and many others have been proposed to
represent different aspects of manufacturing, from product data
models to manufacturing processes, resources, and so on. In-fact,
some of the ontologies have been proposed to enable this idea of a
Manufacturing-As-A-Service model (MaaS) which we are discussing
here where "explicit representation of service requests in global
manufacturing-service networks" can be modeled. Figure 2 shows
some key concepts of a summarized graphical representation of
the Manufacturing Resource Capability Ontology (MaRCO) [27].
MaRCO is an OWL-based information model for representing man-
ufacturing capabilities and their relationships to manufacturing

Akash Pateria and Kemafor Anyanwu

processes, resources or devices, products and so on. Each of the
high level concepts shown is further refined by additional ontolo-
gies such as the Product ontology which introduces concepts like a
product’s material and the process taxonomy which classifies dif-
ferent manufacturing and assembly processes. Detailed discussion
of MaRCO and its extensions can be found in [25], [34], [26].

require S
hasWorkplan| Product hasProcess | Process | Functionality | Process
Product ———

Workplan Step | Taxonomy

providesFunctionalfy

fndlv.‘dusf hasDeviceBlugprint Dewce hasCapability Capability
Device Blueprint

haslIndividualDeviceOr
DeviceCombination

-hasUpdatedCapability-

Device
Combination

[hasmdiwdua/De viceOr

DeviceCombination

hasCalculatedCapabilit)

Figure 2: MaRCO Ontology — Key Concepts and Predicates

Beyond enabling reasoning due to ontology axioms specified in
the rdfs and owl W3C standards, there are inferences that need to
be made based on domain-specific knowledge and there are other
standards that allow for such user-defined domain-specific rules.
For example, in [24], the SPARQL Inferencing Notation (SPIN) is
used to specify rules for inferring manufacturing resources needed
based on product requirements specifications e.g. if a product manu-
facturing process requires a Picking capability, then the requirement
can be fulfilled with a resource/machine that supports Grasping and
Moving capabilities. Whereas for the Placing capability, Releasing
is required along with the Grasping and Moving capabilities.

(Picking)
(Grasping).{Moving)

(Placing)
(Releasing).(Grasping).(Moving) (1)

Such rules can be built on top of ontologies by using ontological
concepts and relationships as terms in the inference rules. In other
words, the terms like Grasping can be a concept in an ontology.

One other emerging technique that has the potential of enriching
traditional blockchain event frameworks based on smart contracts
is the use of richer, declarative specification languages such as
domain-specific languages [33] [23] [15] for encoding smart con-
tracts, which potentially could improve the expressiveness of event
models based on such. However, this is still a very new area of
research with no major project implementations and adoptions.

3 APPROACH

Our approach is based on capturing transactional activity on the
blockchain (e.g. REQUEST_FOR_QUOTE) as the basis for events,
and then matching them to event subscriptions defined as gener-
alizations of the event descriptions. In order to achieve matching
between transactional event descriptions and the generalized event
descriptions, domain knowledge in the form of ontologies and do-
main rules are used to bridge the decoupling of both definition
spaces. In effect, the key components of our approach include: (i.)
an open-source blockchain database (BigChainDB [13]) that has
a declarative and extensible transaction data model used to form

Towards Event-Driven Decentralized Marketplaces on the BlockChain

the basis of expressive event modeling in terms of what we call
event message descriptors; (ii.) a distributed, topic-based, publish-
subscribe messaging platform brokering messages between event
producers and event consumers; (iii.) a semantic engine that hosts
domain ontologies used for semantic extensions to the transaction
model and publish-subscribe topic space and, domain rules and
a rules-based reasoner drawing inferences between transactional
events and event subscriptions.

Figure 3 shows an architecture that comprises three main layers.

: Client Layer]
Application Request Consumer
| uI Publisher I Manager |
t Driver Layer «
@
--]
Event Subsystem Layer g | ‘%
*‘ -1
Semantic Knowledge Event =
Engine Graph DB Sireaming E
"" =
Blockchain Layer ' |
Transaction Co
Validation

Figure 3: System Architecture

3.1 SMARTCHAINDB’s Event Framework

BigChainDB supports key block-chain characteristics such as de-
centralization, immutability, owner-controlled assets while offering
appealing database characteristics such as high transaction rate, low
latency, indexing, and querying of structured data. It is Byzantine
fault-tolerant (BFT), allowing up to a third of the equal-voting-
power validator nodes to fail arbitrarily before the system stops
operating and committing blocks. Although, it does not support
smart contracts in the real sense, it supports simple cases of smart
contracts called cryptoconditions.

BigChainDB’s transaction model supports traditional blockchain
transactions: CREATE and TRANSFER for creating and transfer-
ring assets respectively. The transaction data model is declara-
tive, semi-structured (key-value pairs), allowing for extensibility.
The SMARTCHAINDB platform in our architecture is an extended
BigChainDB which introduces the new transaction types such
as REQUEST_FOR_QUOTE, BID. The fundamental difference be-
tween this approach and existing approaches is that in existing
platforms, these extraneous functionalities are modeled as smart
contract methods which have several limitations, whereas in our
model, they are captured as first-class transactions. Introducing new
transaction classes amounts to introducing appropriate schemas
for the transactions types and corresponding validation algorithms.
The details of these transaction extensions are outside of the scope
of this paper; however, we overview with illustrations.

Figure 4 shows our model’s BID transaction "equivalent” of the
bid function in the smart contract in Figure 1. It illustrates the
modeling of a transaction using a nested key-value pair data model.

DEBS 21, June 28-July 2, 2021, Virtual Event, Italy

. e rolat™
: "Chewvrolet”,

"Rnumber":"V55ZZZcHZZRO004587T",

coeb63dklt24%af004",

pPGSAIPnKjebRlzer3czaDltubdrjOoIlJFTulgs...",

i": "f0T74786b9ffaslZel

rome

GgVlutoPghZDrdakfnYWwIzCC

iption™: M o
_______ " 1

PR n

: "GgVluboPghZDrdakfn¥WwJzCCkCeTwRh. .. ",

TIlzw8UCke2l?fpt=edZ

I
"public_keys": ["GgVlu€cPghZDrdakinYWwJzCCkCeTwRh..."]
i 1 r

Mosraion™s "2 _OM
version": "2.0

Figure 4: BID Transaction

Some of the keys/attributes are generic and common to all trans-
action types. However, three key attributes that are transaction
type-specific are the operation (in our example BID), asset and
metadata attributes. The asset attribute captures fundamental,
immutable attributes of an asset. For example, for the car asset,
its brand, model, vin number, year, etc., are immutable attributes
of a car. One the other hand, the metadata attribute allows for
modeling of mutable attributes e.g. the color of a car which can
change over time. Transaction types are supported by transaction
type schemas that define such attributes and possible values, as
well as appropriate validation algorithms that capture the correct
behavioral semantics. For example, when one places a big in a BID
operation, the asset used in the bid should be "locked" or held in
some form of escrow and returned when higher bid is submitted or
at end of auction.

To support semantic mediation based on transactional data con-
tent, we "semantify” the transaction schemas so that the attribute-
value space for the transaction-specific attributes are drawn from
an ontology rather than considering them as mere text-based key-
words. Figure 5 shows the "semantified" version of SMARTCHAINDB’s
REQUEST_FOR_QUOTE transaction. This transaction includes a
request to make a couple (3) of products. The details of the request
are specified as part of the asset and metadata attributes descriptions.
The kind and detail given about each product in the request are
different. For one product, it specifies the product type as attribute
mr — pr : Product and some additional product characteristics like
material to be used as mr — cc : MaterialType and other prod-
uct feature characteristics related to shape and so on. For another
product, it does not include a product type but includes a material
type and quantity. Then, for another one, it explicitly gives a set of
capabilities required such as ArcWelding, Screwing, Clipping, and

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

- "agset™: {
"data™: {
"products": [{

ellphoneCovers",

H astic”,
=": "Rounded",

"8

mm" ,

; omsgn,
: "3 cm",
"12 cm",
": "1.25 cm",
Yze": "BoxShape"
1Typa": "PolyCarbonate",

. msggn
-0o",

["2rc Welding”, "Tur
"o

crewing”
Screwing"”,

cBazT4d7fae3a. .. ",

Figure 5: REQUEST Transaction

so on. This example is reminiscent of example (4.) in the motiva-
tion section that had different products in the request, described in
different ways. As can be observed, some of the attributes have pre-
fixes in their names. These prefixes are aliases for an ontology from
which the term is obtained. The manufacturing ontology earlier
described MARCO 2 is used in this example. As a matter of fact, the
MARCO ontology imports several other ontologies that are used to
refine specific dimensions of the MARCO ontology. For example,
there is a Product ontology that defines different product features
and is aliased with the prefix mr — pr :. There is also a common
concepts ontology aliased with the prefix mr — cc :. Another small
local ontology is created to supplement links between the MARCO
ontologies for the purposes of demonstrating some use cases. This
local ontology is aliased by the SMARTCHAINDB namespace scdb :.

3.1.1 SMARTCHAINDB'’s Event Model. Transactions are used as the
basis for event modeling. However, the transaction description
space (attribute-value pairs) is decoupled from the event subscrip-
tion space (topic-based). There might also be a decoupling in concep-
tual space which needs to be reconciled using semantic mediation.
Consequently, transactions need to undergo a transformation in
order to be mapped into the event message topic space. So from
transactions, event message descriptors are generated and then even-
tually mapped to the event space using ontological relationships.
More precisely, let’s assume we have a semantic knowledge base
SKBp = (O = CUPUT,Rp) where C is the set of ontology classes,
P is ontology properties (or binary relation types), T is the set of
terms i.e. instances, and Ry is a rulebase whose terms are from
ontology O.

Akash Pateria and Kemafor Anyanwu

Event message descriptor. Given a SMARTCHAINDB transac-
tion (the nested key-value model earlier described), we define
the following data subtuple as an event message descriptor emp
= (op, A = (ka,va),M = (km,vm),...) where op is a valid trans-
action operator such as RFQ, BID, etc. A and M are the associa-
tive arrays for the transaction’s asset and metadata attributes
respectively. As mentioned before, the keys for the both associative
arrays kg, k;, are drawn from classes and literals in an ontology
O. As an example, for our REQUEST_FOR_QUOTE transaction
example, its associated event message descriptor is the subtuple
emp = (REQUEST_FOR_QUOTE, (mr-pr:Product, "CellphoneCov-
ers"), (mr-cc:MaterialType, "Plastic"), ..., (ProductCount, 3),

Event topic space. An event topic space ETS is some non-redundant
subset of C U T (more accurately the textual labels associated with
the ontological classes and terms). By non-redundant we mean that
no pair of classes within ETS are "semantically equivalent". This
space is expected to capture the allowable subscription possibilities
and is assumed to be selected by an administrator. For example,
for the manufacturing marketplace usecase that we have been
alluding to, while MARCO ontology (including embedded ones)
cover concepts such as manufacturing resources, materials, prod-
uct types, processes, etc., the manufacturing capability concepts e.g.
ArcWelding, Screwing, etc., are the concepts that make more sense
for a subscription. The concept of nonredundant means that such
as selected space should not contain both the concepts 3D-Printing
and Additive Manufacturing because both are equivalent concepts.
Redundant topics in the topic space could create problems of missed
event matches. For example, a subscriber may not receive a message
posted on a synonymous topic to one they are subscribed to, unless
they subscribe to both topics.

Event topic subscription. An event topic subscription es is a
tuple (u,t;) which represents the subscription of user u to topic
t; € ETS. A user can of-course be subscribed to multiple event
topics. We let ETS,, denote the set of all topics subscribed to by u
called u’s topic subscription set.

3.1.2 Event Matching. Event matching involves first mapping event
space descriptors into the event topic space prior to matching events
to subscriptions. The mapping process involves using relationships
in domain ontologies and rules to identify relationships between
the attributes and values in an event descriptor and the event topic
space. For example, if a key is Material and value is Titanium im-
plemented in a rule that captures the paths and relationships in the
ontology as well as other domain knowledge, may link that pair to
the manufacturing capability say Asachining. As another example,
involving multiple attributes assume that we know if the product
material is PolyCarbonate and the production quantity is not large
(<1000), then the manufacturing capability required is 3D-Printing .
We can represent such rules using rule languages like SWRL or
SPIN but we show the example using Stardog’s rule language which
is SWRL-like.

PREFIX cp: <http://resourcedescription.tut.
fi/ontology/capabilityModel#>

PREFIX cc: <http://resourcedescription.tut.
fi/ontology/commonConcepts#>

Towards Event-Driven Decentralized Marketplaces on the BlockChain

RULE :3DPrintingRule

IF {
?x.material a cc:PolyCarbonate
?x.quantity < 1000

3
THEN {

?x.capability a cp:3DPrinting
3

Having the event topic space, rules and semanticized transac-
tion data model linked to ontologies (not necessarily the same but
integrated or linked), we are able to find associations on which
reasoning can be based. A similar idea of using domain rules to
infer manufacturing capabilities based on product specifications
was proposed in [29]. The user-defined rule-based reasoning so
far described is over and beyond the standard ontological reason-
ing using ontological classes, properties and inferencing axioms
in the RDFS and OWL standards. For example, reasoning about
rdfs : subClassOf, owl : equivalentClass, owl : sameAs and so
many others.

Event message descriptor mapping. Given the above seman-
tic framework, an event message descriptor is mapped to a subset
of topics in the topic space via semantic reasoning that exploits
relationships between the terms in the event message descriptor and
the topic space defined in ontologies and ontology rule-bases. More
precisely, an event message descriptor emp = (op, A = (kq,vq), M =
(km>vm), ...), an event is defined as ev = (e,v € 2ETS, A, M) such
that:

(1) ecw

(2) You; € v, there exists some kg or ky,; such that there is a
semantic derivation to v;

(3) A, M constitute the original message contents

where semantic derivation means either derivation by axiomatic
ontological reasoning or by rule-based reasoning.

In other words, an event is essentially as set of topics in the topic
space derived ultimately from the transaction payload, via the event
descriptor generation mechanism. For example, it is possible for
our event descriptor example to be mapped to the set of topics {
CNC Milling, Thermo forming }.

Event matching. Given a user u’s set of subscribed topics ETS,,
it is straightforward to define a match for an event ev = (e,v €
2ETS, A, M) if v C ETS,,. In other words, a match happens if a sub-
scriber has subscribed to all topics in the event message (including
both the topic designated as event identifier and the remaining
topics). It is important to note that even though messages that were
originally mapped to multiple topics via semantic derivation, are
published on the message bus labeled with one out of the mapped
topics, the entire set of mapped topics are included in the event
payload and event subscribers evaluating matching conditions on
the entire set not just based on e.

3.2 SMARTCHAINDB’s Implementation
Architecture Overview

In this section, we review the key components of the SMARTCHAINDB
architecture and elaborate on their functionality.

DEBS 21, June 28-July 2, 2021, Virtual Event, Italy

Sequence Flow: Actors take part in a marketplace workflow
wherein Requesters request for particular resources while Suppliers
serve these requests with their owned assets. Step sequences are
shown in Figure 3:

(1) Requester prepares a REQUEST_FOR_QUOTE transactions and
sends it to the blockchain through SMARTCHAINDB driver for its
commit.

(2) On receipt of the commit confirmation, the SMARTCHAINDB driver
communicates with the semantic engine to infer features to
publish the request onto Kafka.

(3) SMARTCHAINDB driver then produces the request on one of the
feature topics(inferred in step 2).

(4) Supplier receives the request, if it offers the given feature, and
determines whether it can fulfill it through the consumer man-
ager.

(5) If the match is found, Supplier may decide on triggering a BID
transaction and send it to the blockchain to show its interest to
the requester.

Admin Interface: The Admin interface provides utilities for
configuring and managing a SMARTCHAINDB deployment including
tasks like account creation and management, knowledge model
configuration by importing ontologies and rule bases and, config-
uring the event topic space as well as system-level configurations
e.g. cluster configuration for the blockchain nodes, event streaming
service, and semantic engine, etc.

Blockchain Layer: is responsible for validating and commit-
ting transactions. It is built upon the BigChainDB|[2] platform to
provide blockchain and database characteristics. Each validator
node runs a MongoDB database — for storing the blockchain state,
and Tendermint — for blockchain consensus, as its core components.
The SMARTCHAINDB server extends the storage model to incorpo-
rate the schema for the newly introduced transaction types. It also
extends the execution layer with the validation logic for each new
or updated transaction type.

Driver Layer: provides an interface for submitting transactions
to the blockchain server. It coordinates the interaction between the
blockchain, the semantic engine, and the event streaming platform.
As a transaction is committed into the blockchain, on receipt of a
transaction (request), the Driver performs the semantic mediation
to infer the features and sends the transaction to the blockchain
layer for the commit. It, then, posts the committed transaction
(request) to the messaging platform to encourage bids from the
potential suppliers.

Semantic Engine: contains the ontology and rule-based rea-
soners and interacts with the knowledge graph database to perform
the semantic mediation. Semantic mediation maps the provided
requested features to the configured Kafka topic features and, if
needed, infers the requested features from the raw item specifica-
tions. It uses Stardog [11], a knowledge-graph platform, application-
specific to store and query domain-specific ontologies and user-
defined rules. As depicted in Figure 6, requested features (Arc Weld-
ing and Screwing) are mapped to their ontologically-related imme-
diate parent feature topics, i.e. Welding and Fastening respectively,
after reasoning the request payload. Whereas, features such as
Clipping and Riveting are mapped to Deforming Fixating as these
features are subclasses of Elastic Deforming Fixating, which is a
type of Deforming Fixating. Semantic mediation is also required

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

when the supplier registers the owned resources while not explic-
itly specifying their associated features. Wherein, the consumer
manager communicates with the semantic engine to infer the un-
derlying features through reasoning over the product specification
information. When a new request req arrives on the SMARTCHAINDB
Driver:
(1) Extract ReqMeta: a list of key-value pair objects that define a
particular item within the request
(2) Maintain FeaturelList: a collection of unique characteristics that
the given request possesses.

Algorithm 1: Event Production with Request Semantic
Mediation

1 ReqMeta = extractMetadata(formData);

2 Rules = fetchRulesFromStardog();

3 FeatureList = mediate(ReqMeta, Rules);

4 Function mediate(ReqMeta: Map, Rules: List) : List is

5 for every item in ReqMeta do

6 for every rule in Rules do

7 matchFound = item.apply(rule);

8 if matchFound is true then

9 features = item.extractFeatures(rule);
10 add features in FeatureList;

11 continue with the next item;

12 else

13 L continue with the next rule.;
14 if no rule matched for the current item then
15 add Miscellaneous in FeatureList;

16 continue with the next item;
17 | return FeaturelList;

18 preparedTx = req.append(FeaturelList);
19 sendTransactionToServer(preparedTx, callback);
20 callback.postedSuccessfully() {

21 randomTopic = Random.rand(FeatureList);

22 eventMessage = prepareEventMessage(preparedTx);
23 kafkaProducerDriver.produce(randomTopic);

21 }

(3) Fetch Rules, a list of ontological and user-defined rules, from the
knowledge graph database (e.g. Stardog) to infer the embedded
features of the given item.

(4) Iterate over the ReqMeta list and match the requested attributes

with the available rules for populating the FeatureList (line 3-

17 in Algorithm SMARTCHAINDB’s Implementation Architecture

Overview).

Once all the items are processed and their respective features

detected, attach the FeatureList to the final request and send

it over to the SMARTCHAINDB Server as a domain-specific
transaction. Upon the transaction commit, the request will be
posted on only one of the Kafka topics from FeatureList to re-
duce the number of messages in the messaging subsystem (line

21-23 in Algorithm SMARTCHAINDB’s Implementation Architec-

ture Overview). Posting the event messages onto a single topic,

—
&)
=

Akash Pateria and Kemafor Anyanwu

instead of all FeatureList topics, will never lead to supplier miss-

ing the potential requests case since the supplier needs to fulfill

all the requested features (FeatureList) to serve the given request.

On receipt of the request, the supplier extracts and checks all

the FeatureList features before making the subsequent decisions

such as bid etc.

Semantic Mediation also takes advantage of a locally maintained

cache to lower the end-to-end latency. The cache stores requested

features to inferred features mappings and assists in circumvent-
ing the mediation overheads for future look-ups.

Client Layer: This layer comprises the graphical user interface
for interacting with the system. It enables the user to formulate
transactions using ontology-driven menu forms, to add or to drop
topic subscriptions and to intuitively interact with the subscribed
notifications. In addition, it also contains Request Publisher, a sim-
ple Kafka producer to publish event messages onto Kafka topics,
and Consumer Manager(discussed in detail later). This layer pri-
marily communicates with the driver layer for interacting with
other layers.

Consumer Manager: Every user in a supplier role with the
registered resources runs a Consumer Manager to listen to their
respective offering topics’ messages. Consumer manager polls mul-
tiple subscribed topics to identify the potential request out of the in-
coming message stream. It extracts the received request details and
tries to find the match between the requested features and the sup-
plier’s offerings. The matched potential requests are communicated
to the client UI to enable the subsequent actions in the workflow
(such as BID). The consumer manager, as a wrapper, extends the
classical Kafka consumer to allow users to update the subscription
space and to impose additional filters on the incoming requests.
Such filters enable suppliers to only consider a small set of requests
matching the given conditions. For instance, a manufacturer who
subscribes to the "Drilling" offering topic can impose additional
filters to only receive requests that require diamond drilling, i.e. a
specific type of drilling. The instantiation of a supplier’s consumer
manager includes:

(1) Extract the required fields from the supplier’s signing form, form:

e Unique username or Id.

o List of owned/offering resources and their respective parame-

G

=~

ters

e List of conditions <attribute name, attribute value> for every

offering topic, TopicConditionMap.

Construct OfferingList and TopicConditionMap:

o OfferingList: a list of features that the bidder’s resources own.

e TopicConditionMap: a map that will hold all the conditions

associated with all the offering topics.

(3) Instantiate a Kafka Consumer, Consumer, that subscribes to
OfferinglList topics.

(4) Maintain MatchedRequests for the entire consumer lifetime.
MatchedRequests is a list of transactions that the supplier can
fulfill and can likely be the candidate for the bid.

(5) Consumer Manager supports on-the-fly changes to the sub-
scribed Kafka topics space and TopicConditionMap.

The pseudocode for this process is shown in Algorithm 2’s func-
tion subscribeOfferingTopics.

(2

~

Towards Event-Driven Decentralized Marketplaces on the BlockChain

Algorithm 2: Consumer Manager: Supplier Registration/-
Subscription and Event Matching

1 Class ConsumerManager:
2 TopicConditionMap : Map;

3 OfferingList : List;

4 Consumer : KafkaConsumer;
5 Function subscribeOfferingTopics(form : Map)is
6 for every resource in form do
7 if offerings specified in resource catalog then
8 add offerings into OfferingList;
9 continue with the next resource;
10 else
1 infer offerings over resource parameters
using the semantic rule engine(as achieved
in Algorithm 1) and populate OfferingList.;

12 for True do

13 L Consumer.subscribe(OfferingList);

14 Function eventMatch(req : Map)is

15 FeatureList = retreiveRequestedFeatures(req)
for every condition in TopicConditionMap do

16 if ReqMeta satisfies condition then

17 ‘ continue with the next condition;

18 else

19 skip the further processing;

20 L continue with the next request;

21 if req satisfies all the required conditions and
FeatureList subset of OfferingList then

22 MatchedRequests.append(req);

23 showMatchedRequestsUpdatesToUI();

24 else

25 skip the further processing;

26 continue with the next request;

Figure 6 gives a schematic of the process. Two suppliers Supplier1
and Supplier2 and the subscriptions to event or offering topics for
each are shown as Welding, Deforming Fixating and Fastening for
Supplier1 while Supplier2 is subscribed to offering topics Deform-
ing Fixating and Welding. The figure also shows an event topic de-
scriptor (bottom left) with keys Capability, Product —spec and some
corresponding values. The event topic descriptor is transformed into
an event in the subscription space using ow! : subClassOf relation-
ships (bottom). This allows a mapping from Screwing to its nearest
concept Fastening. The generated event derived from the event
topic descriptor comprises of three capability topics : Welding,
Deforming Fixating and Fastening. The event is published on the
message bus with one of the topics (in this case Fastening) but it
contains the entire subscription topic list within its payload. The
message is received by all subscribers of the Fastening topic.

On receipt of an event message, a subscriber’s consumer manager
uses the entire payload to consider if they are subscribed to all topics
in the offerings subscription list. Only if this is true, it is considered

DEBS 21, June 28-July 2, 2021, Virtual Event, Italy

to be a match. In our example, Supplierl would be considered a
match.
Event matching procedure
(1) Extract the required FeatureList, Transactionld, and request meta-
data ReqMeta from the req.
(2) Process request req:

(a) Check if ReqMeta satisfy all the conditions:

(b) Check whether all the requested features, FeatureList, can be
fulfilled. In other words, check if FeatureList is a subset of
OfferinglList.

(3) Add req to the MatchedRequests if MatchFound is true and is
communicated to the application UL

The Event Subsystem layer consists of multiple semantic engine
instances with the knowledge stores and Kafka clusters. These in-
stances receive uniformly distributed requests through an upstream
load balancer. The ecosystem has two primary actors — Normal
user and Admin, wherein a normal user can act as Requester when
they seek the required resources as well as Supplier when they
offer their registered resources. Terms such as "Resources” and
"Features/Offerings" are referred throughout the paper for sup-
plier’s physical assets and their general features respectively, eg.
3D-Printer[Resource] has 3D-Printing feature. Features are used
when in reference to the Requester’s requested features while
offerings for the supplier’s offered resource features.

Supplier 1
Consumer Manager

Semantic Kafka
Mediation

Welding

Subseribed Topics
- Deforming Fix...
_ Welding
- Fastening

Deforming Fixating

reg -> Fastening Fastening Supplier 2

|v| Consumer Manager

Subscribed Topics
- Deforming Fix..
- Welding

<l N\
Capability: [
_"\K Welding |v| . re'q\ , Inferred Capabilities: ['Welding",

"Deforming Fixating”, "Fastening"]

Product-spec: {
Material: "Copper".
Quantity: 100,

Note:

1. Arc Welding owi:subclassOf Welding

2. Turning|Clipping owl:subclassOf* Deforming Fixating
} 3. Screwing owl:subclassOf* Fastening

._..}

Figure 6: Topic subscription through Supplier’s Consumer
Manager

Event Streaming Service: comprises multiple Kafka Broker
and Zookeeper instances for hosting the Kafka cluster. The source
code for the project can be found in two repositories:
https://github.com/Akash-Pateria/Driver-DE and
https://github.com/bigchaindb/bigchaindb (blockchain server).

For the blockchain server, we have provided the link to the vanilla
BigChainDB. The other repository has extensions and introduction
made on the client and event subsystems.

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

4 EVALUATION

In this section, we present our experiment evaluations on the
Semantic-enabled Event Detection service. We first describe our
evaluation methodology and then discuss our results in details.

4.1 Evaluation Methodology

Simulation Dataset: Our experiment generates workload, in the
form of REQUEST_FOR_QUOTE transactions, to evaluate and com-
pare the proposed system with different approaches. We use MaRCO
[27] to populate product specification information (required in
transaction’s asset attribute) with the ontological concepts to sim-
ulate real-world manufacturing-related requests. MaRCO, an OWL-
based manufacturing resource capability ontology, describes the
capabilities of manufacturing resources using a structural model
shown in Figure 2. MaRCO is composed of different ontologies such
as Product — models the product assembly, Capability — specifies the
capability hierarchy and its associated parameters, Process Taxon-
omy — contains all the manufacturing processes with their relations,
Resource - includes individual device and device combinations used
to manufacture or to assemble a product, etc.

For building product specifications, we generate product key-
value pairs using the concepts from Marco’s Product ontology.
We extract the manufacturing processes and capabilities, that are
required for assigning a list of capabilities for every generated
product, from Marco’s Process Taxonomy and Capability ontologies.
These capabilities are further used to identify whether a supplier
can fulfill the given request. Kafka topics are also based on a set
of capabilities, chosen in such a way that they cover the complete
requested capability space and do not contain any equivalent or
synonyms duplicates. We will reference this capability set as topic
capabilities in this section.

We leverage the rdfs : subclassOf relationships from rdfs, to
create the ontological rules and map the previously generated re-
quested capabilities to the topic capabilities. For instance, a request
with a capability Milling lands up on Machining topic (since Milling
is ontological child of Machining) when Milling topic does not ex-
ist. Similarly, with the same relationship, the same request may
get published on Material Removing topic if the Machining topic
is not present. Ontological rules can also be used to reason capa-
bilities out of the raw product information. In addition to these
ontological rules, the proposed system is designed to make use of
the domain-specific rules to infer capabilities from more complex
product specifications. However, our experiments do not include
such rules due to the lack of publicly available data rulebases (be-
yond some small test data). Here are a few basic domain-specific
rules to determine capabilities given the material type and quantity:

Kafka topic (Capability) = (scdb : 3D_Printing”)
(mr — cc : MaterialType) = (scdb : PolyCarbonate), (scdb : quantity) < 1000 (2)

Kafka topic (Capability) = (mr — pt : Plastics_Manufacturing)

(mr — cc : MaterialType) = (scdb : PolyCarbonate), (scdb : quantity) >= 1000 (3)

Here, mr — cc (MaRCO Common Concepts), mr — pt (MaRCO
Process Taxonomy), scdb (SMARTCHAINDB’s native ontology) are
name-space prefixes for different ontologies. scdb tries to com-
bine various supplementary application-specific ontologies (such

Akash Pateria and Kemafor Anyanwu

as ManuService for manufacturing use-case) to extend the knowl-
edge base. In the example rules, the reasoner makes use of domain
knowledge to determine the feature nuances from the raw request.
It deduces that when mass production is required and the product
material type is PolyCarbonate, the required product/service pos-
sesses Plastic Manufacturing feature. While it infers 3D-Printing in
the case when small-scale manufacturing is desired with the same
material type.

Experiment Setup: For the purpose of measuring the system
performance and effectiveness, we set up a private network of 16
machines with an Intel Westmere E56 Quad-core 3.46 GHz CPU, 8
GB memory, running 64-bit Ubuntu with kernel v4.15.0. We con-
figure a Kafka cluster with 4 Kafka broker instances running on
4 different nodes for supporting the event streaming service. We
install the Driver service on 12 nodes (also called client nodes),
each impersonating a pseudo requester and supplier for simulat-
ing the marketplace-specific workload. Also, we set up a Stardog
[11] server on every client node for serving the local ontological
reasoning requests.

Each driver, as a requester, triggers 10,000 RFQ transactions in
total throughout the experiment run with the maximum possible
message rate. It prepares an event message with product specifi-
cations, as outlined in Simulation Dataset subsection, for every
request. Besides creating request messages, the driver node also
polls the subscribed topics for potential requests to mimic the sup-
plier behavior. Each pseudo-supplier is assigned a random list of
capabilities, as OfferedCapabilities, from the possible topic capabil-
ity set.

In this experiment, we focused on two variants of our approach.
This is because the few existing blockchain event frameworks are
all rooted in the smart contract model. Due to the limitations of
expressiveness and inflexibility, modeling the examples in our cases
would not be possible in those approaches. We attempt to simulate
one aspect of existing approaches which is the limited discrimi-
natory ability of subscription spaces derived from such models.
For instance, in Eventeum, all smart contract events go to one
topic. So, for the example in Figure 1, the three types of events
would be posted on the same topic. Therefore, we design our ex-
periments to two fundamentally-different messaging paradigms
— Shared Message Queue and Event Streaming System, under the
discussed workload. We compare the supplier’s (consumer) efforts
in terms of usability and efficiency in both approaches. We set up
Kafka with a single topic to imitate the shared message queue func-
tionality and Kafka with multiple domain-specific topics for our
event-detection system.

4.2 Experimental Results

Figure 7 shows the latency metrics of the single-topic queue and
the proposed event-detection system. Here, the latency times mea-
sure the average time difference between the request creation and
the time when the consumer has finished the processing of the
same request. In the case of single-topic, every created request is
produced on a common topic imposing the processing overhead
on the consumer’s side to determine the match between the sup-
plier’s offered capabilities and the requested ones. The consumers
perform the ontological reasoning, using the Semantic Engine, to

Towards Event-Driven Decentralized Marketplaces on the BlockChain

850
800
750
J00
650
&00
550
500
450
400 = Single-Topic Approach

350
300 = Proposed Approach

250
200
150
100

S g—S—a—g—0—0—p—0-g P90 090909

1 23 456 7 8 91011121314 151617 18 19 20
Number of Requested Capabilities

Latency(ms)

Figure 7: The performance comparison of proposed event
detection system with the traditional single message queue
on different number of requested capabilities.

Total message on a topicl, topic2, ..., topicN | Total Count
3669, 16662, 11162 31493
11162, 9114, 14341, 18314, 3669 56600
9114, 3669, 18314 31097
9006, 3652 12658
11162, 18314, 16662 46138
11162, 14341, 17484, 3669 46629
16662 16662
11162, 18314, 14341, 9006 52823
17484, 18314 35798
3669, 9006 12675
11162, 3669, 16586 31417
16586 16586

Table 1: Total messages processed by the Proposed Approach

map the requested capabilities onto the offered capabilities before
taking any subsequent action (such as bids). On the contrary, the
proposed system conducts this reasoning at the requester’s end and
only posts the request message onto the select topic capabilities
that the interested suppliers are listening to. This design results
in publishing the request message on the appropriate topics and
significantly reducing consumer efforts.

The evaluation results show that the single-topic approach takes
10-12 times longer than the proposed one for any number of re-
quested capabilities. The number of unrelated messages that the
supplier needs to process is the major reason for high latency in
the single-topic approach, i.e. all the request messages in the work-
load(12 drivers * 10,000 messages/driver). Conversely, table 1 shows
the total number of messages processed by the consumer/supplier
in the proposed approach. There are in total 12 consumers and for

DEBS 21, June 28-July 2, 2021, Virtual Event, Italy

each consumer, we consider the total number of messages received
on each of the subscribed topics. The maximum number of messages
that a consumer process is 56600 that is less than half of the total
number of messages (i.e. 120000) in the workload. In the production
system with the single-topic approach, the supplier will have to
manually consider all the triggered requests and take appropriate
action (like Bid against the request or ignore it altogether), which
is notably cumbersome from the usability standpoint.

5 CONCLUSION AND FUTURE WORK

The paper presents an approach for enabling event detection over
complex data models stored on a blockchain and argues the value
of such functionality for emerging applications in the blockchain
domain. It demonstrates an implementation strategy that builds
on an existing blockchain platform and presents through the re-
sults of an empirical evaluation, the advantage of the proposed
approach when compared with what might be possible with to-
day’s blockchain event models. Some future directions to consider
include handling more complex event descriptions beyond that
which can be modeled using a conjunction of key-value pairs e.g.
including disjunctive predicates.

6 ACKNOWLEDGEMENTS
The work was partially funded by NSF grant CNS-1764025.

REFERENCES

[1] [n.d.]. America Makes. https://www.americamakes.us/statement-on-covid-19/.

[2] [n.d.]. BigchainDB. https://www.bigchaindb.com/.

[3] [n.d.]. Ethereum Event APIL https://bitquery.io/blog/ethereum-events-api.

[4] [n.d.]. Ethereum Event Explorer for Smart-Contracts. https://www.sw-
engineering-candies.com/blog- 1/Ethereum- Event-Explorer-for-Smart-
Contracts.

[5] [n.d.]. Eventeum. https://github.com/ConsenSys/eventeum.

[6] [n.d.]. Ikea. https://www.ikea.com/us/en/.

[7] [nd.]. An Introduction to Hyperledger. Technical Report. The Linux
Foundation. https://www.hyperledger.org/wp-content/uploads/2018/07/HL_
Whitepaper_IntroductiontoHyperledger.pdf

[8] [n.d.]. Macrofab: Digital Manufacturing.
manufacturing/.

[9] [n.d.]. ManuService Ontology. http://manunetwork.com/Static/index-en.html.

[10] [n.d.]. A Next-Generation Smart Contract and Decentralized Application
Platform. Technical Report. Ethereum. https://github.com/ethereum/wiki/wiki/
White-Paper#ethereum

[11] [n.d.]. Stardog. https://www.stardog.com/.

[n.d.]. Xometry. https://www.xometry.com/.

[13] 2018. BigchainDB 2.0 The Blockchain Database. (May 2018). https://www.
bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf

[14] Maher Alharby and Aad van Moorsel. 2017. Blockchain-based Smart Contracts:
A Systematic Mapping Study. CoRR abs/1710.06372 (2017). arXiv:1710.06372
http://arxiv.org/abs/1710.06372

[15] Tara Astigarraga, Xiaoyan Chen, Yaoliang Chen, Jingxiao Gu, Richard Hull, Limei

Jiao, Yuliang Li, and Petr Novotny. 2018. Empowering Business-Level Blockchain

Users with a Rules Framework for Smart Contracts.

Bellaj Badr, Richard Horrocks, and Xun Brian Wu. 2018. Blockchain By

Example: A developer’s guide to creating decentralized applications using

Bitcoin, Ethereum, and Hyperledger. Packt Publishing Ltd.

[17] S.Bajoudah, C. Dong, and P. Missier. 2019. Toward a Decentralized, Trust-Less
Marketplace for Brokered IoT Data Trading Using Blockchain. In 2019 IEEE
International Conference on Blockchain (Blockchain). 339-346.

[18] Prabal Banerjee and Sushmita Ruj. 2018. Blockchain Enabled Data Marketplace -
Design and Challenges. arXiv:1811.11462 [cs.CR]

[19] LLC Bitquery. 2021. Bitquery Explorer. https://bitquery.io/

[20] Blockchain. 2021. Bitcoin Explorer. https://www.blockchain.com/explorer

[21] Chiara Braghin, Stelvio Cimato, Ernesto Damiani, and Michael Baronchelli. 2020.
Designing Smart-Contract Based Auctions. 54-64. https://doi.org/10.1007/978-
3-030-16946-6_5

[22] Etherscan. 2021. The Ethereum Blockchain Explorer. https://etherscan.io/

https://macrofab.com/digital-

[16

https://www.americamakes.us/statement-on-covid-19/
https://www.bigchaindb.com/
https://bitquery.io/blog/ethereum-events-api
https://www.sw-engineering-candies.com/blog-1/Ethereum-Event-Explorer-for-Smart-Contracts
https://www.sw-engineering-candies.com/blog-1/Ethereum-Event-Explorer-for-Smart-Contracts
https://www.sw-engineering-candies.com/blog-1/Ethereum-Event-Explorer-for-Smart-Contracts
https://github.com/ConsenSys/eventeum
https://www.ikea.com/us/en/
https://www.hyperledger.org/wp-content/uploads/2018/07/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://www.hyperledger.org/wp-content/uploads/2018/07/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://macrofab.com/digital-manufacturing/
https://macrofab.com/digital-manufacturing/
http://manunetwork.com/Static/index-en.html
https://github.com/ethereum/wiki/wiki/White-Paper#ethereum
https://github.com/ethereum/wiki/wiki/White-Paper#ethereum
https://www.stardog.com/
https://www.xometry.com/
https://www.bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf
https://www.bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf
https://arxiv.org/abs/1710.06372
http://arxiv.org/abs/1710.06372
https://arxiv.org/abs/1811.11462
https://bitquery.io/
https://www.blockchain.com/explorer
https://doi.org/10.1007/978-3-030-16946-6_5
https://doi.org/10.1007/978-3-030-16946-6_5
https://etherscan.io/

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Guido Governatori, Florian Idelberger, Zoran Milosevic, Régis Riveret, Giovanni
Sartor, and Xiwei Xu. 2018. On legal contracts, imperative and declarative smart
contracts, and blockchain systems. Artificial Intelligence and Law 26 (2018),
377-409.

Eeva Jarvenpad, Otto Hylli, Niko Siltala, and Minna Lanz. 2018. Utilizing SPIN
rules to infer the parameters for combined capabilities of aggregated manufac-
turing resources. IFAC-PapersOnLine 51, 11 (2018), 84-89.

Eeva Jirvenpis, Minna Lanz, and Niko Siltala. 2018. Formal resource and
capability models supporting re-use of manufacturing resources. Procedia
Manufacturing 19 (2018), 87-94.

Eeva Jarvenpad, Niko Siltala, Otto Hylli, and Minna Lanz. 2017. Capability
matchmaking procedure to support rapid configuration and re-configuration of
production systems. Procedia Manufacturing 11 (2017), 1053-1060.

Eeva Jarvenpad, Niko Siltala, Otto Hylli, and Minna Lanz. 2018. The development
of an ontology for describing the capabilities of manufacturing resources. Journal
of Intelligent Manufacturing (06 2018). https://doi.org/10.1007/s10845-018-1427-
6

Eeva Jarvenpaa, Niko Siltala, Otto Hylli, and Minna Lanz. 2021. Capability
matchmaking software for rapid production system design and reconfiguration
planning. Procedia CIRP 97 (2021), 435-440. https://doi.org/10.1016/j.procir.
2020.05.264 8th CIRP Conference of Assembly Technology and Systems.

Eeva Jarvenpéia, Niko Siltala, Otto Hylli, and Minna Lanz. 2019. Implementation
of capability matchmaking software facilitating faster production system design

[30

[31

[32

[34

[35

]

Akash Pateria and Kemafor Anyanwu

and reconfiguration planning. Journal of Manufacturing Systems 53 (2019), 261—
270. https://doi.org/10.1016/j.jmsy.2019.10.003

Giuseppe Landolfi, Andrea francesco Barni, Gabriele Izzo, Elias Montini, Andrea
Bettoni, Marko Vujasinovic, Alessio Gugliotta, Antonio Soares, and Henrique
Silva. 2018. An Ontology Based Semantic Data Model Supporting A Maas Digital
Platform. 896-904. https://doi.org/10.1109/1S.2018.8710519

D. Miehle, M. M. Meyer, A. Luckow, B. Bruegge, and M. Essig. 2019. To-
ward a Decentralized Marketplace for Self-Maintaining Machines. In 2019 IEEE
International Conference on Blockchain (Blockchain). 431-438.

Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System.
Cryptography Mailing list at https://metzdowd.com (03 2009).

Dan Robinson. 2017. Ivy: A Declarative Predicate Language for Smart Contracts.
Technical Report. Chain, Inc. https://cyber.stanford.edu/sites/g/files/sbiybj9936/
f/danrobinson.pdf

Stanistaw Strzelczak. 2015. Towards ontology-aided manufacturing and sup-
ply chain management-a literature review. In IFIP International Conference on
Advances in Production Management Systems. Springer, 467-475.

Tobias Sund, Claes Loof, Simin Nadjm-Tehrani, and Mikael Asplund. 2020.
Blockchain-based event processing in supply chains—A case study at IKEA.
Robotics and Computer-Integrated Manufacturing 65 (2020), 101971. https:
//doi.org/10.1016/j.rcim.2020.101971

https://doi.org/10.1007/s10845-018-1427-6
https://doi.org/10.1007/s10845-018-1427-6
https://doi.org/10.1016/j.procir.2020.05.264
https://doi.org/10.1016/j.procir.2020.05.264
https://doi.org/10.1016/j.jmsy.2019.10.003
https://doi.org/10.1109/IS.2018.8710519
https://cyber.stanford.edu/sites/g/files/sbiybj9936/f/danrobinson.pdf
https://cyber.stanford.edu/sites/g/files/sbiybj9936/f/danrobinson.pdf
https://doi.org/10.1016/j.rcim.2020.101971
https://doi.org/10.1016/j.rcim.2020.101971

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Motivating Example
	2.2 Semantics-Enablement with Ontologies

	3 Approach
	3.1 SMARTCHAINDB 's Event Framework
	3.2 SMARTCHAINDB 's Implementation Architecture Overview

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 Experimental Results

	5 Conclusion and Future Work
	6 Acknowledgements
	References

