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Local Statistics, Semidefinite Programming, and Community Detection®

Jess Banks'

Abstract

We propose a new, efficiently solvable hierarchy of
semidefinite programming relaxations for inference prob-
lems. As test cases, we consider the problem of com-
munity detection in block models. The vertices are
partitioned into k£ communities, and a graph is sampled
conditional on a prescribed number of inter- and intra-
community edges. The problem of detection, where we
are to decide with high probability whether a graph was
drawn from this model or the uniform distribution on reg-
ular graphs, is conjectured to undergo a computational
phase transition at a point called the Kesten-Stigum
(KS) threshold.

In this work, we consider two models of random graphs
namely the well-studied (irregular) Stochastic Block
Model and a distribution over random regular graphs
we’ll call the Degree Regular Block Model. For both
these models, we show that sufficiently high constant
levels of our hierarchy can perform detection arbitrarily
close to the KS threshold and that our algorithm is
robust to up to a linear number of adversarial edge
perturbations. Furthermore, in the case of Degree
Regular Block Model, we show that below the Kesten-
Stigum threshold no constant level can do so.

In the case of the (irregular) Stochastic Block Model,
it is known that efficient algorithms exist all the way
down to this threshold, although none are robust to
adversarial perturbation of a linear number of edges.
More importantly, there is little complexity-theoretic
evidence that detection is hard below the threshold. In
the DRBM with more than two groups, it has not to
our knowledge been proven that any algorithm succeeds
down to the KS threshold, let alone that one can do so
robustly, and there is a similar dearth of evidence for
hardness below this point.

Our SDP hierarchy is highly general and applicable
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to a wide range of hypothesis testing problems.

1 Introduction

Community detection is a canonical example of a high-
dimensional inference problem, one that is a test-bed
to develop algorithmic and lower bound techniques.
Much of the existing literature on community detection
concerns the stochastic block model (SBM). For now let
us discuss the symmetric setting where we first partition
n vertices into k equal-sized groups, and include each
edge independently and with probability pi, or pout
depending on whether or not the labels of its endpoints
coincide. Research in this area spans several decades,
and it will not be fruitful to attempt a thorough review
of the literature here; we refer the reader to [Abbl7]
for a survey. Most salient to us, however, is a rich
theory of computational threshold phenomena which has
emerged out of the past several years of collaboration
between computer scientists, statisticians, and statistical
physicists.

The key computational tasks associated with the
SBM are recovery and detection: we attempt either
to reconstruct the planted communities from the graph,
or to decide whether a graph was drawn from the planted
model or the Erd6s-Rényi model with the same average
degree. A set of fascinating conjectures were posed in
Decelle et al. [DKMZ11b], regarding these tasks in the
case of ‘sparse’ models where piy, pous = O(1/n) and
the average degree is O(1) as the number of vertices
diverges.

It is typical to parametrize the symmetric SBM in
terms of k, the average degree

NPin + (k - 1)npout
k )

d =

and a ‘signal-to-noise ratio’
)2 NPin — NPout
kd ’

In this setup, it is believed that as we hold k and
A constant, then there is an information-theoretic
threshold dir ~ IZ%C, in the sense that when d < d;r
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both detection and recovery are impossible for any
algorithm. Moreover, Decelle et al. conjecture that
efficient algorithms for both tasks exist only when the
degree is larger than a point known as the Kesten-
Stigum threshold dxs = A~2. Much of this picture is
now rigorous [MNS18, Masl4, BLM15, ABH16, AS18].
Still, fundamental questions remain unanswered. What
evidence can we furnish that detection and recovery
are indeed intractible in the so-called ‘hard regime’
dir < d < dixs? How robust are these thresholds to
adversarial noise or small deviations from the model?

Zooming out, this discrepancy between information-
theoretic and computational thresholds is conjectured to
be quite universal among planted problems, where we are
to reconstruct or detect a structured, high-dimensional
signal observed through a noisy channel. The purpose
behind our work is to begin developing a framework
capable of providing evidence for average case compu-
tational intractability in such settings. To illustrate
this broader motivation, consider a different average-
case problem also conjectured to be computationally
intractable: refutation of random 3-SAT. A random in-
stance of 3-SAT with n literals and, say m = 1000n
clauses is unsatisfiable with high probability. However,
it is widely conjectured that the problem of certifying
that a given random 3-SAT instance is unsatisfiable
is computationally intractable (all the way up to n?/?
clauses) [Fei02]. While proving intractability remains
out of reach, the complexity theoretic literature now
contains ample evidence in support of this conjecture.
Most prominently, exponential lower bounds are known
for the problem in restricted computational models such
as linear and semidefinite programs [Gri01] and reso-
lution based proofs [BSWO01]. Within the context of
combinatorial optimization, the Sum-of-Squares (SoS)
SDPs yield a hierarchy of successively more powerful
and complex algorithms which capture and unify many
other known approaches. A lower bound against the
SoS SDP hierarchy such as [Gri01] provides strong ev-
idence that this refutation problem is computationally
intractable. This paper is a step towards developing a
similar framework to reason about the computational
complexity of detection and recovery in stochastic block
models specifically, and planted problems generally.

A second motivation is the issue of robustness of
computational thresholds under adversarial perturba-
tions of the graph. Spectral algorithms based on
non-backtracking walk matrix [BLM15] achieve weak-
detection as soon as d > dgg, but are not robust in
this sense. More recently, elaborate spectral methods
such as those in [ABARS20, SM19, AR20] have been

shown to be robust to adversarial perturbations effect-
ing O(n°) or O(log® n) vertices respectively. Other ro-
bust algorithms for recovery are known, but only when
the edge-densities are significantly higher than Kesten-
Stigum [GV16, MMV16, CSV17, SVC16]. Finally, Mon-
tanari and Sen in [MS15] study an SDP-based algorithm
for testing whether the input graph comes from the
Erdés-Rényi distribution or a Stochastic Block Model
with k£ = 2 communities also works in presence of o(|E|)
adversarial edge perturbations. On the negative side,
Moitra et al. [Moil2] consider the problem of weak re-
covery in a SBM with two communities and py, > pous in
the presence of monotone errors that add edges within
communities and delete edges between them. Their main
result is a statistical lower bound indicating the phase
transition for weak recovery changes in the presence of
monotone errors. This still leaves open the question of
whether there exist algorithms that weakly recover right
at the threshold and are robust to o(|E|) perturbations
in the graph.

2 Main Results

We define a new hierarchy of semidefinite programming
relaxations for inference problems that we refer to as the
Local Statistics hierarchy, denoted LoSt(Dg, D,) and
indexed by parameters Dg, D, € IN. In the setting of
this paper, the LoSt(Dg, D,) SDP has size O(nP+),
with a constant (in n) number of affine constraints
dependent on D,, Dg, and the number of coommunities
k. This family of SDPs is inspired by the technique
of pseudocalibration in proving lower bounds for sum-
of-squares (SoS) relaxations, as well as subsequent
work of Hopkins and Steurer [HS17] extending it to
an SoS SDP based approach to inference problems. The
LoSt hierarchy can be defined for a broad range of
inference problems involving a joint distribution p on an
observation and hidden parameter. Though natural
in hindsight, the definition of Local Statistics SDP
hierarchy is the main conceptual contribution of this

paper.

We will demonstrate the power of the Local Statistics
hierarchy through two test cases, namely community
detection in two families of random graphs with planted
community structure: the sparse Stochastic Block Model
(SBM) discussed above, and a degree-regular analogue
that we term the Degree Regular Block Model (DRBM).
Our results will concern the problem of detection, defined

n particular, there will be one affine constraint for each

partially labelled graph with D¢ edges and D, [k]-labelled vertices
(see Definition 4).
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formally as follows.

DEFINITION 1. (DETECTION AND ROBUSTNESS) Let

Pn and N, denote two sequences of distributions on
graphs. We say that an algorithm A : Graphs — {P,N}
solves the detection problem, or can distinguish P, and

Ny if

Fiz e > 0, and write G ~, G to mean that two graphs
on the same verter set V differ at at most €|V| edges.
If A solves the detection problem, we say that it does so
e-robustly if

PulA(G) = A(G), VG . G] =1—0,(1)
and N, [A(G) = A(G), VG = G] =1 - o,(1).

The Stochastic Block Model Adapting notation
from [BLM15], we will parameterize the SBM by av-
erage degree d, number of communities k, group size
distribution 7 € R¥, and symmetric, nonnegative edge
probability matrix M € RF¥**. To sample a graph
G = (V(GQ), E(Q)), first choose the label o(u) of each
vertex u € V(G) independently according to w, and
then include each potential edge (u,v) with probability
Mg (u),0() - d/n. We adopt the natural requirement that
the average degree of a vertex conditional on any group
label is d, which is equivalent to the normalization con-
dition M7 = e, where the latter is the all-ones vector in
RE. We will call the model symmetric if for some \,

1+(k—DX i=3j

One can check that this recovers the setup in the previous
section.

The general SBM, like this symmetric subcase, is
conjectured to undergo a series of phase transitions as
(k, M, ) are held fixed and the average degree is varied.
These include an information-theoretic threshold and,
most salient to this paper, a computational ‘Kesten-
Stigum’ transition [DKMZ11a]. To describe the latter,
it is necessary to introduce one further piece of notation,
which will be of repeated use to us in the course of
the paper. Write T2 M Diag m, noting that 7T is the
transition matrix for a reversible Markov chain with
stationary distribution 7. For any vertex in group ¢,
the label of a uniformly random neighbor is roughly
distributed according to the ith row of T, and, more

generally, the vertex labels encountered by a random non-
backtracking random walk are approximately governed
by the Markov process that T' defines. As this process is
reversible, the spectrum of T is real, and we will write its
eigenvalues as 1 = A; = |A\a| = -+ > |Ag]. The second
eigenvalue ); is a generalization of the signal-to-noise
ratio A from equation (2.1); in fact one can verify that
in the symmetric SBM, Ay = --- = A = A. The Kesten-
Stigum threshold is thus defined as dgg = Ay 2. Our
main result is the following.

THEOREM 2.1. Let N,, = G(n,d/n), and P, denote
the n-vertex SBM with parameters (d,k,M,n). For
every € > 0, if d > dks + €, then there exists constant
m € N and p > 0 such that local statistic SDP relaxation
LoSt(2,m) can p-robustly solve the detection problem.

The Degree Regular Block Model We will
parametrize the DRBM identically to the SBM, by a
quadruple (d, k, M, 7); this time we of course require that
d is an integer. To sample a graph G = (V(G), E(G)),
first choose a uniformly random “m-balanced” parti-
tion V(G) = |y Vi(G), by which we mean that
|Vi(G)| = w(i)n for every i. Then, choose a uniformly
random d-regular graph, conditioned on there being ex-
actly w(i)m(§)M (i, ) - dn edges between each pair of
distinct groups i # j, and m(i)2M (i, j) - dn/2 edges in-
ternal to each group ¢. For simplicity, we will assume
that the parameters are such that these group sizes and
edge counts are integers. As with the SBM, we will call
the model symmetric if the entries of M are constant on
the diagonal and off-diagonal respectively. As a warm-
up for the main technical arguments of the paper, we
will study in Section 4 a simplified version of the Local
Statistics SDP that can solve the detection problem on
the symmetric DRBM.

REMARK 1. The DRBM as we have defined it differs
from the Regular Stochastic Block Model of [BDG™ 16],
in which each vertex has a prescribed number of neighbors
in every community. Although superficially similar, the
behavior of this ‘equitable’ model (as it is known in the
physics literature [NM14]) is quite different from ours.
For instance, [BDG" 16] show that whenever detection
1s possible in the two community case, one can exactly
recover the planted labels. This is not true in our case.

It is widely believed that the threshold behavior of
the general DRBM is analogous to that of the SBM,
including an information-theoretic threshold, and Kesten-
Stigum threshold at dixg = Ay 2 4+ 1. However, most
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formal treatment in the literature has been limited
to random d-regular graphs conditional on having a
planted k-coloring, a case not fully captured by our
model. Characterization of the information-theoretic
threshold, even in simple cases, remains largely folklore.

THEOREM 2.2. Let N,, denote the uniform distribution
on d-regular graphs with n-vertices, and P, the DRBM
with parameters (d,k,M,n). For every ¢ > 0, if
d > dgs + €, then there exists a constant m € N
and p > 0 so that LoSt(2,m) can p-robustly solve the
detection problem. Conversely, if d < dgs — €, then for
every m € N, LoSt(2,m) fails to (0-robustly) solve the
detection problem.

Future Work There are two regrettable omissions
from the above results: we lack a complementary lower
bound in the Stochastic Block Model, and we do not
solve the problem of recovery above Kesten-Stigum in
either model.

Related Work. Semidefinite programming ap-
proaches have been most studied in the dense, irreg-
ular case, where exact recovery is possible (for instance
[ABH16, AS15]), and it has been shown that an SDP
relaxation can achieve the information-theoretically opti-
mal threshold [HWX16]. However, in the sparse regime
we consider, the power of SDP relaxations for weak re-
covery remains unclear. Guedon and Vershynin [GV16]
show upper bounds on the estimation error of a stan-
dard SDP relaxation in the sparse, two-community case
of the SBM, but only when the degree is roughly 10*
times the information theoretic threshold. More recently,
in a tour-de-force, Montanari and Sen [MS15] showed
that for two communities, the SDP of Guedon and Ver-
shynin achieves the information theoretically optimal
threshold for large but constant degree, in the sense that
the performance approaches the threshold if we send
the number of vertices, and then the degree, to infinity.
Semi-random graph models have been intensively studied
in [BS95, FK00, FK01, CO04, KV06, CO07, MMV12,
CJSX14, GV16] and we refer the reader to [MMV16]
for a more detailed survey. In the logarithmic-degree
regime, robust algorithms for community detection are
developed in [CLT15, KK10, AS12]. Far less is known
in the case of regular graphs.

3 Technical Overview

Notation. We will use bold face font for random
objects sampled from these distributions. Because we
care only about the case when the number of vertices is

very large, we will use with high probability (w.h.p) to
describe any sequence of events with probability 1—o,,(1)
in NV or P as n — oco. We will write [n] = {1,...,n}, and
in general use the letters u, v, w to refer to elements of
[n] and 4, j for elements of [k]. The identity matrix will
be denoted by 1, and we will write X7 for the transpose
of a matrix X, (X,Y) = tr XTY for the standard matrix
inner product, and || X|| for the associated Frobenius
norm. Positive semidefiniteness will be indicated with
the symbol >. The standard basis vectors will be denoted
e1, €9, ..., the all-ones vector written as e, and the all-
ones matrix as J = ee”. Finally, let diag : R"™*" — R
be the function extracting the diagonal of a matrix, and
Diag : R” — R"™*" be the one which populates the
nonzero elements of a diagonal matrix with the vector it
is given as input.

3.1 Optimization vs. Inference While it was
suspected that a semidefinite programming relaxation
could be used towards community detection in sparse
stochastic block models, many earlier attempts at it
[GV16, MS15] failed to detect communities right up to
the KS threshold at a fixed degree. These works studied
the Goemans-Williamson SDP relaxation for MaxCut
applied to the problem of detecting two communities
(k = 2). The idea being that if we consider a two
community SBM with pout > pin, then the partition
induced by the communities should have an unusually
large number %” . % of crossing edges. Hence an
SDP relaxation of Max(B)ut could be harnessed towards
detecting and possibly recovering the communities.
Indeed, in this special case, the maximum bisection
in the graph is a Maximum Likelihood Estimate (MLE)
for the communities = given the graph G, i.e., z =
argmax,, p(z|G).

This approach of casting inference as optimization has
its limitations. In particular, as one approaches the KS
threshold, the number of crossing edges between the two
communities namely %” . ﬁ is lower than the value
of MaxCut in a random Erdos-Renyi graph! In other
words, if we run an exponential-time algorithm that finds
the maximum cut via a brute-force enumeration, then
it will find a better MaxCut in a random Erdos-Renyi
graph than the true communities in the planted model.
It is therefore unclear whether an SDP relaxation of
MaxCut can solve the problem.

In hindsight, the number of crossing edges is but one
statistic associated with the partition and there is no
canonical reason why optimizing this statistic would be
the optimal way to distinguish the two models. For
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example, in the same setting one could minimize the
number of paths of length two that go between the two
sides of the partition, or maximize the number of paths
of length three that cross the partition and so on. At a
more basic level, if we are interested in estimating the
moments of the distribution z|G, it is not clear that we
should cast this problem as optimization.

The local statistics SDP hierarchy that we propose is
a "feasibility SDP” that looks for candidate low-degree
moments for the distribution z|G. The constraints of
the SDP ensure that the value of local statistics such
as number of crossing edges is roughly the same as we
would expect in a graph drawn from the communities.

3.2 Detection, Refutation, and Sum-of-Squares
We will begin the discussion of the Local Statistics al-
gorithm by briefly recalling Sum-of-Squares program-
ming. Say we have a constraint satisfaction problem
presented as a system of polynomial equations in vari-
ables x = (z1,...,2,) that we are to simultaneously
satisfy. In other words, we are given a set

S={zxeR": fi(z),..., fm(z) =0}

and we need to decide if it is non-empty. Whenever
the problem is satisfiable, any probability distribution
supported on S gives rise to an operator E : Rz] — R
mapping a polynomial x to its expectation. Trivially, E
has the properties:

(3.2)

Normalized

(3.3)
Satisfies S E fi(z) -p(x) =0 Vi€ [m],Vp € R[z]

(3.4) Positive Ep(z)? >0 Vpe R[]

El=1

We will extend these definitions to any operator mapping
some subset of R[z] — R.

Refuting the constraint satisfaction problem, e.g.
proving that S = (), is equivalent to showing that no
operator obeying (3.2)-(3.4) can exist. The key insight
of SoS is that often one can do this by focusing only on
polynomials of some bounded degree. Writing R[z]<p
for the polynomials of degree at most D, we call an
operator E : R[z]<p — R a degree-D pseudoezpectation
if it is normalized, positive, and satisfies S for every
polynomial in its domain. It is well-known that one
can search for a degree D pseudoexpectation with a
semidefinite program of size O(n?), and if this smaller,
relaxed problem is infeasible, we’ve shown that S is
empty. This is the degree-D Sum-of-Squares relaxation
of our CSP.

3.3 The Local Statistics Hierarchy Let P,, denote
a sequence of distributions on graphs with a planted
community structure, and A, a corresponding ‘null’
distribution with no such prescribed structure. For us,
P, will always denote the DRBM or SBM, and N, the
Erdés-Rényi model with average degree d, or the uniform
distribution on d-regular graphs. Our goal is to devise
an algorithm that can discern, with high probability,
which of these two distributions a graph was drawn
from. In this setup, the details of the null and prior
distribution are known to us; the main idea of this work
is that it is only natural to grant an SDP hypothesis
testing algorithm access to this information as well. Our
strategy will be do devise an SDP that is satisfiable with
high probability when a graph is drawn from P,, and
unsatisfiable with high probability when it is drawn from

N

The Local Statistics SDP will be assembled from
components of the Sum-of-Squares algorithm, and as
such we will need to carefully articulate the null and
planted distribution, and their statistical properties, in
the language of polynomials. Let us write z = {x,;}
for a collection of variables indexed by vertices u € [n]
and group labels ¢ € [k], and G = {G,, } for a collection
indexed by two-element subsets {u,v} C [n]. We
will regard a random graph from the null model as a
collection of random variables G = {G,, .} indexed in
the same way, where G, is the Boolean indicator for
the edge (u,v). Similarly, the planted model is a joint
distribution over pairs (¢, G), where G is a graph, and
x; . is the indicator that vertex u has label ¢. Thus
for each polynomial p € R[G, z], we can compute the
statistic Ep(G, x). We will see below that one can easily
construct such a polynomial that counts, for instance,
the number of triangles in a graph, or the number of
edges between vertices in the same group.

The random variables G' and x take values in the zero
locus of the following set of polynomials in R[G, x]:

Gi,v =Gy Yu,v € [n]
T = T Yu € [n], i € [k]
3.7 wuai+tTur=1 Yu € [n].

For brevity, we will throughout the paper denote by
B the set of polynomials constraints in the x variables
appearing in (3.6) and (3.7). Moreover, in our case both
the null and planted models have a natural symmetry:
they are invariant under permutations of the vertices.
To a first approximation, the (D¢, D,) level of the Local

Statistics SDP, on input Gy € {0, 1}(3), will endeavor to
find a degree-D, pseudoexpectation E : R[z]<p, — R
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that (i) satisfies By, and (ii) obeys moment constraints
of the form

Ep(Go,z)~ E

G,
(G2)~ P P(G. =)

for symmetric polynomials p € R[G,z] with degree
D¢ in the G variables. We ask that these moment
constraints are only approximately satisfied to ensure
that, when (G,x) is drawn from the planted model,
the pseudoexpectation lEp(G, r) 2 p(G, ) is with high
probability a feasible solution. This formulation is
inspired by the technique of pseudocalibration from the

SOS lower bounds literature [BHK ™19, HS17, HKP*17].

Each polynomial p(G, z), when evaluated at a point
in the zero locus described above, counts occurrences of
a certain combinatorial structure in GG, in which some of
the vertices are restricted to have particular labels. For

instance,
Z H (1 — Gu,v) and Z Gu,vmu,ixv,j
U uFv uFv

count the number of isolated vertices, and the number

of edges between vertices in groups ¢ and j, respectively.

Note that since E is required to satisfy the Boolean
constraints on the G variables and the B, constraints on
the x variables, we are free to consider only polynomials
that have been reduced modulo these constraints: for
simplicity we will assume that they are multilinear in G
and z, and furthermore that monomial containts x,, ;2 ;

for ¢ # j.

REMARK 2. Although we have stated it in the specific
context of the DRBM, the local statistics framework
extends readily to any planted problem involving a joint
distribution p on pairs (G,x) of a hidden structure
and observed signal, if we take appropriate account of
the natural symmetries in p. For a broad range of
such problems, including spiked random matriz models
[AKJ18, PWBM16], compressed sensing [ZK16, Ranl1,
KGR11] and generalized linear models [BKM" 19] (to
name only a few) there are conjectured computational
thresholds where the underlying problem goes from being
efficiently solvable to computationally intractable, and
the algorithms which are proven or conjectured attain this
threshold are often not robust. We hope that the local
statistics hierarchy can be harnessed to design robust
algorithms up to these computational thresholds, as well
as to provide evidence for computational intractibility
in the conjectured hard regime. The relation (if any)
between the local statistics SDP hierarchy and iterative
methods such as belief propagation or AMP is also worth
muvestigating.

3.4 Analyzing the Local Statistics SDP By de-
sign, the Local Statistics SDP is always feasible when
given as input a graph drawn from the planted model.
To show that LoSt(2,m) can distinguish between the
null and planted models, then, it suffices to show that it
is with high probability infeasible when passed a graph
from the null model.

For a matrix C' € R"*", let C®) denote the t** “non-
backtracking power” of the matrix:

VDY II Cuw

n.b. paths p:i—j (u,v)€p

where the sum is over non-backtracking paths of length
t from i to j. The local statistic that serves as a dual
certificate to show infeasibility of LoSt(2,m) in the null
model is given by,

PG x) = ($(x), (A — (d/n)T) "™ ()

for an appropriately chosen ¢ : [k] — R. In particular,
we will see in the sections below that, if LoSt(2,m) SDP
is feasible on input G, there is some matrix X > 0 with
unit trace and bounded entries on its diagonal for which

(X, (A = (@/m)D)™)] = w(d™?)n.

The use of this centered non-backtracking walk matrix
Z(CT) = (A — (d/n)])"™ was inspired by the work
of Fan and Montanari [FM17], who use the centered
non-backtracking matrix for m = 2. Thus, to show
infeasibility it would be sufficient to bound the spectral
norm of the matrix Z(én) = (A—(d/n)])™ by d™/? for
sufficiently large constant m.

In the d-regular case, the non-backtracking powers of
the adjacency matrix A can be expressed as univariate
polynomials in the matrix A. Thus spectral norm bounds
on the adjacency matrix of a random d-regular graph
[Fri03] can be translated into spectral norm bounds that
we require. This is roughly the approach taken in the
d-regular case.

Unfortunately, things are not so simple in the irregular
case: the analogous bound fails for constant m due
to the presence of high-degree vertices in G. The

main challenge in studying Z(Gm ), when G is a sparse
Erdés-Rényirandom graph, is the presence of of certain
localized combinatorial structures which inflate the
number of non-backtracking walks: high-degree vertices
and small subgraphs with many cycles. Instead, we show
the spectral norm bound after deleting these structures
from the random graph G and that the deletion does
not affect the global statistic significantly.
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Let us make this precise. In any graph G, write
Bi(v, G) for the set of vertices with distance at most ¢
from v; call v (t,€)-heavy if |By(v, G)| = (1 + €)tdt. We
will call a vertex v (t,r, €)-vexing if either it participates
in a cycle of length less than r or it is (¢, ¢)-heavy.

Fix r = @((10;?#11)2). Let G be an Erdés-Renyi
G(n,d/n) graph, let S be the set of (¢, r, e)-vexing
vertices, and let G4, - be the (¢, 7, €)-truncation obtained
by deleting all the vertices in S from G. Let A be the
adjacency matrix of Gy . Define

p NG
<A — nl[n]\sl[n}\s> [U,’U] =

W length-¢ nonbacktracking walk
from u to v in complete graph K,)\s

ij];[W (A - ZnT) [i, /]

We prove the following spectral norm bound via the
trace method:

THEOREM 3.1. With n~100,

probability 1

FRENC e

3.5 Proving the spectral norm bound The proof
of the above spectral norm bound is the most technical
argument of the paper. As expected, the proof of the
spectral norm bound via trace method reduces to the
problem of computing the expected number of copies
of combinatorial structures that we call linkages in the
underlying graph G .

DEFINITION 2. (LINKAGES) A closed walk W of length
kL is a (k x £)-linkage if it can be split into k segments
each of length-€ such that the walk W is nonbacktracking
on each segment. Each £-step non-backtracking segment
is a “link”.

We will bound the number of (k x ¢)-linkages using an
encoding argument.

It is instructive to consider the encoding argument
in the case when the graph G is a d + 1-regular tree
and the walk W starts at the root. Let us encode a

(k x £)-linkage starting at the root, one link at a time.

Each link which is a f-step n.b.walk in a tree consists of
t-steps towards the root followed by ¢ —t steps away from

the root for some t € {0,...,r}. We refer to the steps
towards the root as "up-steps” and steps away from the
root as "down-steps”. Encode each link by specifying:

e The number of up-steps ¢ using log ¢ bits.

e For each down-step, the index of the child as an
integer from {1,...,d}.

Since the walk begins and ends at the root, the number of
up-steps is equal to the number of down-steps. Therefore
the number of down-steps is precisely k¢/2. Hence the
above encoding uses precisely k¢/2 - (log d) + klog ¢ bits.
As ¢ — o0, this is approximately %logd bits on average
per step. Therefore the number of k x ¢-linkages starting
at the root in a d-regular tree is at most ((1 + €)v/d)**
for sufficiently large constant /.

In an Erdos-Renyi random graph G, there will be
cycles of length < k¢ thus breaking the above encoding
argument. In other words, if we consider the graph G(W)
formed by the edges in the (k x £)-linkage W, then G(W)
can include cycles once we set k = Q(logn). However,
since we deleted all (¢, r, €)-vexing vertices G(W) has no
cycles of length < @((IOS%H)Q.

The starting point of our encoding argument is a
decomposition of G(W) into a spanning forest F' and a
few additional edges E(W) \ F, such that the non-forest
edges E(W)\ F are in total traversed o(k¢) times during
the walk. We prove the existence of such a decomposition
using a linear programming based argument.

Roughly speaking, this decomposition lets us encode
the walk W by breaking it up into closed walks in trees,
with the decomposition only introducing a negligible
overhead in the encoding. Therefore, one recovers a
bound analogous to the bound in a d-regular tree, which
is approximately %logd bits per step in the walk.

The remainder of the paper will be laid out as follows.
Before embarking on our investigation of the Local
Statistics SDP in the DRBM and SBM in full generality,
we will in Section 4 study a simplified SDP that can
robustly solve the detection problem for the symmetric
Degree Regular Block Model. Having done so, we will
move on in Section 5 to the case of the general DRBM,
proving Theorem 2.2 by way of a reduction to some key
results from this simpler, symmetric case. Finally, in the
full version of this paper we prove Theorem 2.1 regarding
the SBM.
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4 A Simplified SDP for the Symmetric DRBM

A few key ideas from the remainder of the paper are
captured by the symmetric case of the Degree Regular
Block Model, in which each group has size exactly n/k,
and the edge probability matrix is

M = kAL + (1= \)J.

Since the communities have equal sizes, we have T =
k~1M, and the Kesten-Stigum threshold is dxs £ A2 +
1. Throughout this section, let P denote this symmetric
case of the DRBM, and N the uniform distribution on
d-regular graphs. The purpose of this section is to show,
in this symmetric case, that a simplified version of the
Local Statistics SDP can robustly solve the detection
problem.

To introduce this simpler SDP, let G = (V, E) be any

graph on n vertices, and write A(Cf) for the n X n matrix
that counts non-backtracking random walks of length
s; we will develop some further theory regarding these
matrices in Section 4.1 below. Now, let (G,y) ~ P be
drawn from the symmetric DRBM, and—thinking of y
as an n X k matrix—write

s _k «_ 1
(4.8) Y = - (yy k.]]) = 0.

This a rank-(k — 1) positive semidefinite matrix that is
n/k times the projector onto the subspace spanned by
the indicator vectors for the & groups and orthogonal to
the all-ones vector. The inner product (Y, AS)) counts
non-backtracking walks weighted according to the labels
of their initial and terminal vertices.

LEMMA 4.1. Let (G,Y) ~ P. Then for every s > 1,
E(Y,AS)) = Xsd(d —1)*"'n,

and with high probability these quantities enjoy concen-
tration of o(n).

DEFINITION 3. Fiz a small number § > 0 and write
a ~ b to mean that |a — b| < dn (one should treat 6 as
a small number which we will set at the end). For each
m > 1, the level m symmetric path statistics SDP with
error tolerance § > 0 is the feasibility problem

FindY = 0 s.t. Yyu=1 Yu € [n]
(Y,J)=0
(4.9) vV, A9 ~ B(Y, ALY Vs € [m).

We will refer to this as the SPS(m,\) SDP. To handle
adversarial edge corruption, it is necessary to include
the following contingency if G is not d-reqular: before
running the above SDP, delete all edges incident to
vertices with degree greater than d, and then greedily
add edges between wvertices with degree less than d to
obtain a d-regular graph.

THEOREM 4.1. If (d — 1)A\> > ¢, then there exists
constant m € N and p > 0 so that SPS(m,\) solves
the detection problem p-robustly. Conversely if (d — 1)\
then every constant level fails to do so.

REMARK 3. Throughout the proofs of Theorem 4.1 and
our other main theorems, the reader should imagine that
0 is allowed to change line-by-line; all expressions in
the paper are bounded by some large constant, so & will
never become too small.

4.1 Non-backtracking Walks and Orthogonal
Polynomials The central tool in our proofs will be non-
backtracking walks—these are walks which on every step
are forbidden from visiting the vertex they were at two
steps previously. We will collect here some known results
on these walks specific to the case of d-regular graphs.
Write A(Cf) for the n x n matrix whose (v, w) entry counts
the number of length-s non-backtracking walks between
verties v and w in a graph G. It is standard that the

A(Cf) satisfy a two-term linear recurrence,

AD =1
AY = Ag

AP = A2 — a1

A = A48 —(@-1aAsP s>

since to enumerate non-backtracking walks of length s,
we can first extend each such walk of length s — 1 in
every possible way, and then remove those extensions
that backtrack.

On d-regular graphs, the above recurrence immediately
shows that Ag) = ¢s(Ag) for a family of monic, scalar
non-backtracking polynomials {qs}s>0, where deggqs = s.
To avoid a collision of symbols, we will use z as the
variable in all univariate polynomials appearing in the
paper. It is well known that these polynomials are
an orthogonal polynomial sequence with respect to the
Kesten-McKay measure

1 d

A(d—1) — 22
d KM = 5
pion(2) = o —m—

d2 — 22
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1 [\z| < Qde] ,

with its associated inner product

(.9 KMf/f

on the vector space of square integrable functions on

(—2v/d —1,2v/d — 1). One quickly verifies that
HqSHKM £ /QS(Z)Z dpen = qS(d)

1 s=0
S ld(d—-1)51 s>1

1
= — (# length-s n.b. walks on G)
n

dﬂKM( )

in the normalization we have chosen [ABLS07]. Thus
any function f in this vector space can be expanded as

f= Z qu KM

2 g, !

We will also need the following lemma of Alon et
al. [ABLS07, Lemma 2.3] bounding the size of the
polynomials gs:

LEMMA 4.2. For any € > 0, there exists an n > 0 such

that for z € [-2/d —1—n,2+/d — 1+ 1],

‘QS(Z)l < 2(3 + 1)HqSHKM +e.

The behavior of the non-backtracking polynomials
with respect to the inner product (-, -)xy idealizes that
of the A(Gf) = ¢s(Ag) under the trace inner product. In
particular, if s + ¢ < girth(G)

<A(C§)>A(C§)> = n<QS7 qt>KM
) n(# length-s n.b. walks on G) s=t1
|0 s#L

This is because the diagonal entries of A(Cf)Ag) count
pairs of non-backtracking walks with length s and ¢
respectively: if s £ ¢t any such pair induces a cycle of
length at most s + ¢, leaving only the degenerate case
when s =t and the two walks are identical. Above the
girth, if we can control the number of cycles, we can
quantify how far the A(Cf) are from orthogonal in the
trace inner product.

Luckily for us, sparse random graphs have very few
cycles. To make this precise, call a vertex bad if it is at

most L steps from a cycle of length at most C. These
are exactly the vertices for which the diagonal entries of
Ag)Ag) are nonzero, when s +t < C' + L.

LEMMA 4.3. For any constant C and L, with high
probability any graph G ~ P has at most O(logn) bad
vertices.

We will defer the proof of this lemma to the full version,
but one can immediately observe the consequence that,
with high probability,

(AY), ALY = O(logn)

for any s,t = O(1).

4.2 Distinguishing Let us now prove the first asser-
tion in Theorem 4.1, namely that if (d — 1)A\? > 1, then
the SPS(m, A) SDP, for sufficiently large m, can distin-
guish the null and planted models. From Lemma 4.1, if
(G,Y) ~ P, then the matrix Y from equation (4.8) is
with high probability a feasible solution to SDP (4.9).
Thus, it remains only to show that with high probabil-
ity over G ~ N, some round of the SPS(m,\) SDP
is infeasible. Our strategy will be to first reduce this
infeasibility to a univariate polynomial design problem,
and then solve this with the machinery developed in the
prior subsection.

PROPOSITION 4.1. If there exists a degree-m polynomial
| € R[z] which is (i) strictly nonnegative on the interval

[—2vd —1,2v/d — 1] and (i) satisfies
<fa Z Asqs>KM <0,
s=0

then with high probability the SPS(m,\) SDP is infeasi-
ble for G ~ N

Proof. First note that, for any such polynomial f, our
discussion in the previous section implies

o (f
(4.10) f:Z 7QS KM .
= llasliZu
Moreover, since f is strictly positive on

[-2v/d—1,2v/d—1], it is nonnegative on some
fattening [—2v/d — 1 — ¢,2v/d — 1 + ¢] of this interval.

Now, let G be a uniformly random d-regular graph.
By Friedman’s Theorem [Fri08], the spectrum of Ag
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consists of a ‘trivial’ eigenvalue at d, plus n — 1
eigenvalues whose magnitudes—with high probability—
are at most 2¢/d+1 + 0,(1). In particular, these
remaining eigenvalues with high probability lie inside
the fattening of [-2v/d —1,2v/d — 1] on which f is
nonnegative. We can project away this trivial eigenvalue
by passing to the centered adacency matrix Ag =
(1-J/n)Ag(1l —J/n) = Ag — dJ/n, and observe that
0= f(Ag).

Assume, seeking contradiction, that Y is a feasible
solution to the SPS(m) SDP. We can compute that

0 < (Y, f(Ag))
Y Z faqs KM ZG»
lasl2,
Y’Z (f3qs)xu dm(AG) — s(d)T /1))

— | SHKM

< faqs KMy
=(Y,

2 T, e
Z ‘7 E Ja A% lgs [lenm
=0 Idsllikm
(£, Xq

s=0

The following proposition implies a proof of the first
part of Theorem 4.1.

PROPOSITION 4.2. If A\2(d — 1) > 1, there exists a
polynomial satisfying the hypotheses of Proposition 4.1.

Proof. Call m’ the largest even number less than or
equal to m, let € > 0 be a very small number, and take

f(Z) = _QTH’(Z) —+ 2m/||Qm’||KM + e,

which by Lemma 4.2 has the desired positivity property.
This choice of f satisfies

m
£ AG5) = e 2l A™ 200 g s + €,

which is negative when

2

2m/’ € m’
A2 > < + 5 >
HQm’ HKM HQm’ ||KM

2

B 2m’ n € " )
d(d — 1)77’7/71 d(d _ 1)m—1 9

this tends to =5 as m — oo. O

4.3 Lower Bound We now turn to the complemen-
tary bound: when (d —1)A? < 1, no constant level of the
symmetric path statistics SDP can distinguish the null
and planted distributions. It suffices to show that, for d
in this regime, SPS(m, ) is feasible for every constant
m. Once again, we will reduce to and solve a univariate
polynomial design problem.

PROPOSITION 4.3. If there exists a polynomial g € R][z]
that is (i) strictly positive on (—2v/d — 1,2v/d — 1), and
(ii) satisfies

(g,qs)xm = A° ||qs||KM Foralls=0,...,m

then the SPS(m, \) SDP is with high probability feasible
for a uniformly random d-regular graph.

Proof. Letting G be the random regular graph in
question, we need to produce Y > 0 with ones on the
diagonal, zero inner product with the matrix J, and
satisfying

(V. AG)) = Nllasfyns

as above ~ denotes equality up to £dén for our small,
fixed error tolerance § > 0. Our strategy will be to
modify the matrix g(Ag) = 9(Ac) — g(d)J/n.

First, note that by expanding g in the non-
backtracking basis and invoking Lemma 4.3, for any
0 < s < m we have

(9(Ag), ALY = (g(Ac), AD) + g(d) s
= A*[lga |12, - n + Oflogn) ~ A%[|ga]12 -

Moreover, as is  strictly = positive  on
[-2vd—1,2+/d ] it is by continuity nonnega-
tive on any constant size fattening of this interval, and
by Friedman’s theorem the spectrum of Ag other than
the eigenvalue at d is contained w.h.p. in such a set.
Thus g(Ag) is positive semidefinite, and as a polynomial
in the centered adjacency matrix, is orthogonal to the
all-ones matrix.

However, the diagonal of g(Ag) may not be equal to
one, for two different reasons. The diagonal entries of
9(Ag) = g(Ag) + g(d)J/n different from one are exactly
those corresponding to vertices within deg g steps of a
constant length cycle; from Lemma 4.3 we know that
there are at most O(logn) of these bad vertices (keeping
the terminology from the aforementioned Lemma).
However, when we subtract g(d)J/n, even the Q(n —
log n) diagonal entries equal to one—those corresponding
to good vertices—are shifted. Let us therefore define

_ 1 _

Y = WQ(AG),
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which restores the diagonal entries of the good vertices.

Now, Y is PSD, and is accordingly the Gram matrix
of some vectors aq,...,a, € R™. The scale factor we
have applied ensures that for every good vertex wu,
||| = 1, and orthogonality to the all-ones matrix—
which is preserved by this constant scaling—is equivalent

to >, @y =0.

The remaining diagonal elements are at worst some
constant C dependent on d and ¢, since the diagonal

entries of each A(é) are all O(1). Thus, writing I" for the
set of good vertices, we know

S o] = [ o

uwerl ugl

< Clogn

It is clear that by removing at most C'logn vertices from
I to create a new set TV we can choose a collection of
unit vectors 8, for each u € U’ so that

D Bu=) o

ugI” u€el’

Our final matrix Y will be the Gram matrix of these new
8 and remaining « vectors. We must finally check that
the affine constraints against the A(C;) matrices are still
approximately satisfied. However, even starting from
a bad vertex, there are at most a constant number of
vertices within s steps of it, and at most a constant
number of non-backtracking walks to any such vertex.
Thus

(v, 48) - (7, 48)| =

2 Z (Ag))u,vaz(av - ﬁv)

gl vel”

£ Y (AD) (o] [18a]) \

w0l

= O(logn)

where we have used that max, ||| = O(1) and broken
up both summations by first enumerating the O(logn)
vertices in U’ and then the at most O(1) vertices in its
depth s neighborhood. 0

The second part of Theorem 4.1 ensues from the following
proposition.

PROPOSITION 4.4. Whenever \2(d—1) < 1, there exists
a polynomial satisfying the conditions of Proposition 4.3.

Proof. Such a polynomial y is exactly of the form

m
g= Z Aqs + terms with larger ¢ ’s.
s=0

We will use the extremely simple construction of letting
the coefficients on the terms ¢mi1,@ma1, -+ also be
powers of X\. The idea here is that, whenever A\?(d —1) <
1, the series 2520 A%qs converges to a positive function

on (—2vd—1,2v/d —1), so by taking a long enough

initial segment, we can get a positive approximant.

In particular, let p > m be even, and set

P
g = Z )‘qu'
s=0
It is a standard calculation, employing the recurrence

relation on the polynomials g, that

9(z) = 1= A2+ W2 (d = 1)gp(2) = W gpia(2)
-1 -zt 1 :

One an quickly verify that

1— A2 N
(d—DA2— Az +1

0 for all |z] < 2vd —1,

so we only need to check that A\?(d — 1) < 1 ensures
ANPT2(d—1)g,—APT1q, 1 —, 0. This follows immediately

from Lemma 4.2, as |g,| < 2py/d(d — 1)P. 0

4.4 Robustness We have shown already that if (d —
1)A?, then the level m symmetric path statistics can
solve the detection problem—for some constant m. In
this section we show that it can do so robustly. In other
words, we need to show that (i) with high probability
in P, if SPS(m,\) is feasible, then it will remain
feasible after p,,n edge corruptions, and (ii) with high
probability in NV, if SPS(m, \) is infeasible, then altering
pm edges cannot fix it. Let us maintain the notation
from Definition 1, that G ~, H means that these two
differ on at most pn edges.

Assume that G was drawn from either the planted or
null distribution, and that H ~, G. When we defined
the SPS(m,A) SDP, we stipulated that in the event of
an irregular input, we greedily remove edges until the
maximum degree is d, and then greedily add edges among
degree-deficient vertices until the minimum degree is d
as well. Thus the actual input to the SDP is a graph
H, which one can verify satisfies H ~,¢; G for some
absolute constant .
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Call a vertex v € [n] corrupted if its (m + 1)-
neighborhood in H differs from its (m+1)-neighborhood

in G. We begin by analyzing the difference A(GS,) — AE{;)
for s € [m]. Supposing v is not a corrupted vertex, then
Ag) and Ag) agree on the vth row and column, which
means (A(é) - AgfI))v); = 0. On the other hand, if v is a
corrupted vertex,

(054

<[4 + 4]
1 Sl s 1

v,—

< 2d(d—1)571

In particular, this means the entrywise 1-norm of
A(é) — Ag), is bounded by 2&pn -2d(d —1)~! since there
are at most 2£pn corrupted vertices (i.e. if all corrupted
edges had disjoint endpoints).

By making § sufficiently small, if G is drawn from
the planted distribution, the feasible solution Y that we
constructed is PSD and satisfies the affine constraints
regarding inner products with the AS) matrices with
slack Q(n). Every diagonal entry of Y is one, so by PSD-
ness their off-diagonal entries have modulus at most one.
Thus

(v, 48) — (v, AD)| = (v, A2 - 4R

< 2¢pd(d — 1)1

Because of the Q(n) slack, the Y we constructed from
G will still satisfy the affine constraints to the SDP on
input H, for small enough p.

On the other hand, when G is drawn from the null
model, again by making § sufficiently small any putative
solution Y with ones on the diagonal and zero inner
product with J violates some linear combination of the
above affine constraints by a margin of Q(n). Thus, if we
try these consraints with H instead of G, this constraint
will still be violated for p sufficiently small.

REMARK 4. The parameter p controlling the number
of adversarial edge insertions and deletions made to
random input G that the level-m LocalStatistic SDP
can tolerate can be seen to decrease with m, which is
indicative of a tradeoff between how close to the threshold
an algorithm in this hierarchy works and how robust it
1s to perturbations.

5 The Degree Regular Block Model

In this section we generalize the results from the previous
section in two ways simultaneously: we study the fully
general Degree Regular Block Model, and the full Local
Statistics SDP. Both add some technical hurdles, but
we will find that once these have been dealt with, the
core arguments reduce to the symmetric results from
Section 4. Throughout, assume that A is the uniform
distribution on d-regular graphs, and P is the DRBM
with fixed parameters (d,k, M,n). In this section we
prove Theorem 2.2.

5.1 Local Statistics and Partially Labelled Sub-
graphs As in the introduction let z = {z,;} and G =
{Guv} be sets of variables indexed by u € [n] and i € [k].
Our random graphs G and community labels x take val-
ues in the subset of {0, 1}(2) x {0,1}*k ¢ R() x Roxk
defined by the polynomial equations

G2, =Gy

u,v

2 j— .
Toyi = Tu,j

(5.11) qu =1

as in the introduction, we will write the set of equations
in the last two lines as By. It will at times be useful
to write oy : [n] — [k] for the labelling described by x
in the zero locus of By. Write S[G, 2] C R[G, z] for the
vector subspace of multilinear polynomials, fixed under
the action of the symmetric group &,, on the index
set [n], and for which no monomial contains x, ;x.,;
for i # j. This contains some polynomials that vanish
modulo the equations above, but is convenient to work
with.

The local statistics SDP, given as input a graph

Gy € {0, 1}(2), attempts to find a pseudoexpectation E :
R[z] — R that (i) satisfies the polynomial equations By,
and (ii) assigns certain prescribed values to polynomials
p(Go, ) obtained by evaluating a low-degree-polynomial
p € S[G, z] at the input graph. To state it fully, we will
first construct a combinatorially meaningful vector space

basis for S[G, z].

DEFINITION 4. (PARTIALLY LABELLED SUBGRAPH)

A partially labelled graph (H,S,T) consists of a graph
H, distinguished subset of vertices S C V(H), and a
labelling T : S — [k]. An occurrence of (H,S,T) in a
fully labelled graph (G, o) is an injective homomorphism
@ : H — G which respects the labelling. In other words,
it is an injective map ¢ : V(H) — V(G) satisfying (i)
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(p(u), p(v)) € E(G) for every edge (u,v) € E, and (ii)
o(p()) =71(v) for everyv € S.

LEMMA 5.1. Let (H,S,7) be a partially labelled sub-
graph. Then there is a symmetric polynomial py s+ €
R[G, z] with degree |S| in x and |E(H)| in G that, for any
(G, x) satisfying equations (5.11), counts occurrences of

H in (G,04). Furthermore, these polynomials form a
basis for S[G, z].

Proof. These polynomials are exactly the monomial basis
obtained by considering the &,, orbit of each multilinear
monomial in G and = which does not conatin x, ;z,.;
for 4, j € [k]. Each such monomial is of the form

H Guvau‘r(u

(u,v)EE uesS

where E C ([g]), S C[n], and 7 : S — [k]. Letting H
be the graph whose vertices are those present either in
S or in one of the pairs in E, when this monomial is
evaluated at (Gg, xo) satisfying the above equations, it is
simply the indicator for one occurrence of (H, S, 7). By
symmetrizing with respect to &,,, one obtains indicators
for all possible such occurrences. 0

The Local Statistics L(2,m), on input Gy, contains
constraints of the form

IEPH,S,T(GOax): E  pus. (G, x).

(G,z)~P
where |S| < 2 and |E(H)| < m. The following theorem
computes the right hand side of the above equation in
any planted model, for this class of partially labelled
subgraphs. We will discuss it briefly below and remit
the proof to the full version.

DEFINITION 5. Let (H,S) be a connected graph on O(1)
edges, with distinguished vertices S. Define C'y s.q to be
the number of occurrences of (H,S) in an rooted, infinite
d-regular tree in which some vertex in S is mapped to
the root. If S = (0, choose some distinguished vertex
arbitrarily—the count will be the same no matter which
one is chosen; we will at times use Cg 4 as shorthand
in this case. Finally, if (H,S) = (Hy,S1)U---U
(Hy, Sp) has € connected components, take Cp sq =
Cu,.5, - CH,s,. We note for later use that if H
contains a cycle, Cy,s = 0, and if it is a path of length
s with endpoints distinguished, Cp s = 2||qs||gy, the
number of vertices at depth s in the tree. This factor of
two arises because we have defined occurrences in terms
of injective homomorphisms, so we are accumulate a
factor accounting for the symmetries in the subgraph.

THEOREM 5.1. (LocAaL StaTisTics) If (H,S,T) is a
partially labelled graph with O(1) edges, then in any
planted model Pg k. 0w,

1. If H is wunlabelled, i.e. S = 0, then
n“Epus. (G x) = Cusa

2. If H is labelled, with S = {«, B}, 7(a) = i, and
7(B) = 4, then

EEpHST(G SL') —)7’1’( )leSt(aﬁ C H,S,d>

and pu.s.-(G,x) enjoys concentration up to an additive
+o(n?). We say that dist(a,) = oo if these two
vertices lie in disjoint components of H, and we interpret
T3 = ().

Let’s take a moment and get a feel for Theorem 5.1.
As a warm-up, consider the case when (H, S, 7) is a path
of length s < m with the endpoints labelled as i, € [k],
and we simply need to count the number of pairs of
vertices in G with labels ¢ and j respectively that are
connected by a path of length s. As d-regular random
graphs from models like P have very few short cycles,
assume for simplicity that the girth is in fact much
larger than m, so that the depth-s neighborhood about
every vertex is a tree. If we start from a vertex ¢ and
follow a uniformly random edge, the transition matrix
T from our model says that, on average at least, the
probability of arriving at a vertex in group j is roughly
T; ;, and similarly if we take s (non-backtracking) steps,
this probability is roughly 7};. There are 7(i)n starting
vertices in group 4, and d(d — 1)*~! vertices at distance
s from any such vertex.

If (H,S,7) is a tree in which the two distinguished
vertices are at distance s, then we can enumerate
occurrences of (H, S, 7) in G by first choosing the image
of the path connecting these two, and then counting the
ways to place the remaining vertices. If we again assume
that the girth is sufficiently large, it isn’t too hard to
see that the number of ways to do this second step is a
constant independent of the number of ways to place the
path, so we’'ve reduced to the case above. The idea for
the cases |S| = 0,1 is similar. We’ll prove Theorem 5.1
in the full version.

With this result in hand, we are now ready to state

the full local statistics SDP.

DEFINITION 6. Fiz a small error tolerance § > 0, and

write “~;” to mean “equal up to £6n’.” The level
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(2,m) local statistics SDP, on input Gy, is the feasibility
problem of finding a pseudoexpectation E : R[z]<o — R
such that

1. E satisfies By

2. INEpH757T(G0,m) ~ Eppu s-(G,x) for all (H,S,T)
with |S| < 2, |[E(H)] < m, and £ connected
components.

There are two exceptions because of the rigidity of
our model. When (H,S,T) consists of a single vertex
with label i € [k], we require pg s .(Go,z) = m(i)n.
Similarly, when (H,S,T) consists of two distinguished
vertices labelled i,j € [k], we require py s-(Go,z) =
m(i)m(j)n® — w(i)nd; ;. As in the symmetric case, we
include as a contingency that, if Go is not d-regular, we
greedily delete and add edges to make it so.

Note that, importantly, when (G,z) ~ P, the
LoSt(2,m) SDP is feasible for every constant m: we
simply define

EpH,S,T(Ga I) £ pH,S,T(Ga 13)
Because of the concentration guarantees in Theorem 5.1,

no matter our error tolerance 9, this will satisfy the
constraints when n is sufficiently large.

5.2 Distinguishing Let us prove the first part of
Theorem 2.2: when (d—1)A\3 > 1, there exists a constant
m for which the LoSt(2,m) SDP solves the detection
problem. Since the SDP is with high probability feasible
for G ~ P, it remains only to show infeasibility when

G~N.

Let G ~ P, and assume we have a viable pseudoex-
pectation E for the LoSt(2, m) SDP. Write X > 0 for
the nk x nk matrix whose (u, ), (v, j) entry is Exu’ixv’j;
it is routine that positivity of E implies positive semidef-
initeness of X. It will at times be useful to think of X
as a k x k matrix of n x n blocks X ;, and at others as
an n X n matrix of k x k blocks X, .. Let us also define
matrices Ag> that count self-avoiding walks of length s,
as opposed to the non-backtracking walks counted by the
matrices Ag) whose notation they echo. Our strategy
will be to first write the moment matching constraints
on E as affine constraints of the form (X;;,Y)=0C,and
then combine these to contradict feasibility of X.

LEMMA 5.2. Foranyi,j, and any s =0, ...,
that A(Gf) is the matriz counting non-backtracking walks
of length s, and J is the all-ones matrix,

m, recalling

(Xi5, AS)) ~ 7 ()T,

zs,jHQSHIQ(Mn
(Xi g, d) = w(i)m(G)n”.

Proof. For the first assertion, let (H,S,7) be the path
of length s whose endpoints are labelled i, j € [k]. Each
self-avoiding walk of length s in G is an occurrence of
H, so from Theorem 5.1
(X, J?A > =Epns.(z,G) ~ W(i)Tzs:j||(J8||im-

It is an easy consequence of Lemma 4.3 that for every
constant s, Ag) and A<C§> differ only on O(logn) rows,
and since each row has constant Ly norm,

) ]
HAG - Ag F:O(logn).

The matrix X has diagonal elements X, ), ()
Eﬂc L= Exz « by the Boolean constraint, and E (Tu1 +

+ Tyk) =1 by the Slngle Color constraint. By PSD-
ness of X, every E:E = E:Eu i 1s nonnegative, so each is
between zero and one. It is a standard fact that the off-
diagonal entries of such a PSD matrix have magnitude
at most one, so from Lemma 4.2

(X, AS)Y = (X, AS)) +

1,59 1,59

= (X3, AG)) + O(logn) = (i) T3 llas |

(X AL — AZ)

for s = 0,...,m. For the second assertion, when i # j
take (H, S, 7) to be the partially labelled graph on two
disconnected vertices, with labels ¢ and j respectively.
From Lemma 5.1 we have

(Xij, ) = ]EpH,S,T(x7 G) = w(i)m(j)n’.
When ¢ = j, take (H, S,7) as above and (H',S’,7') to
be a single vertex labelled 1. a

We will now apply a fortuitous change of basis
furnished to us by the transition matrix 7. Let us write
F for the matrix of right eigenvectors of T', normalized
so that every column has unit norm, and sorted so that
the first column is a multiple of the all-ones vector. Thus
TF = FA, where A is a diagonal matrix containing the
eigenvalues, sorted in decreasing order of magnitude. It
is a standard fact from the theory of reversible Markov
chains that F~! Diag(m)F = 1.
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Now, define a matrix X £ (F7 @ 1)X(F ® 1), by
which we mean that

Fl,l]l Fl,k:]l
X=1| + -~
Fk’l]l Fk’k]l
Xia - Xug
X1 o Xpg
Fi.1 - Figl
Fk’l]l Fk’k]l

We will think of X, analogous to X, as a k x k matrix
of n x n blocks )v(w-. Note that we can also think
of this as as a change of basis z — FTx directly on
the variables appearing in polynomials accepted by our
pseudoexpectation.

LEMMA 5.3. Foranys=0,...m, if 1 # j <Xi,jA(c§)> ~
0, and
(Xii AG) = X llas 2.

Furthermore,

Proof. Our block-wise change of basis commutes with
taking inner products between the blocks X; ; and the
non-backtracking walk matrices. In other words,

<X171,A((§)> <X1,kvA((;)>

(X AS)
<X1,k7A(C§)>

(X1, AS)>
(X141, A(c;)>
T : : F
(X, AD) o (X AG)

~ FT Diag(m)T*F - ||gs||5\n
= FT Diag(m)FA® - ||gs |5

=A"- HqSHIS(Mn

A parallel calculation gives us

(X1, d)

)

(X11,T)

s

<Xk.k7q]]>

)

(X1,1,d) (X1,k,J)

=FT : : F
(Xk,1,d) (Xbi, J)

= FlrnlF.n?

=erel -n?

where e; is the first standard basis vector. The final line
comes since 7, being the left eigenvector associated to
A1 = 1, is (up to scaling) the first row of F'~1. O

With Lemma 5.3 in hand, the remainder of the proof
follows from Proposition 4.1 and Proposition 4.2 in
the previous section. In particular, each block )v(,-,i
for i = 2,...k is a feasible solution to the Symmetric
Path Statistics SDP, and we showed already that when
A?(d — 1) > 1, this SDP is infeasible when G ~ N for
m sufficiently large.

5.3 Spectral Distinguishing Our argument in the
previous section can be recast to prove Corollary 77,
namely that above the Kesten-Stigum threshold the
spectrum of the adjacency matrix can also be used to
distinguish the null and planted distributions.

Let (G, ) ~ Pgk.m.x, and write X 2 T, and
X=F'eo)X(Fol)=(FTz)(Flz)" £ zz”.

Think of X as a block matrix (Xi5)ijeln), as we did X
in the previous section, and & as a block vector (&;);e[x)-
Applying Theorem 5.1 and repeating the calculations in
Lemma 5.2 and Lemma 5.3 mutatis mutandis with X
instead of X, we can show that w.h.p.

(X5, AS) =~ Nillas|2un if i =

and zero otherwise, for every s = O(1) and

(X11,]) = {

0 else

Because A(GS) =1, we know

when i # j. In other words, the k vectors &1, ..., &) are
orthogonal.

We can show that Ag has an eigenvalue with a
separation 1 > 0 from the bulk spectrum by proving

#] f(Ag)Z: = (Xi4, f(Ag)) <0
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for some polynomial f(z) positive on of (—2v/d —1 —
n,2v/d —1+1n). As long as (d — 1)A\? > 1, the same
polynomial from Proposition 4.2 works here. As the &;
are orthogonal, we get one distinct eigenvalue outside

the bulk for each eigenvalue of T satisfying this property.

REMARK 5. To distinguish the null model from the
planted one using the spectrum of Ag, simply return
PLANTED if Ag has a single eigenvalue other than
d whose magnitude is bigger than 2v/d—1 + § for
any error tolerance § you choose, and NULL otherwise.
Unfortunately, this distinguishing algorithm is not robust
to adversarial edge insertions and deletions. For instance,
given a graph G ~ N, the adversary can create a disjoint
copy of Kg41, the complete graph on d+1 vertices, whose
etgenvalues are all +d. The spectrum of the perturbed
graph is the disjoint union of +d and the eigenvalues of
the other component(s), so the algorithm will be fooled.
We will show in Section 5.5 that the Local Statistics SDP
s robust to this kind of perturbation.

5.4 Lower Bounds In this section, we prove the
second half of Theorem 2.2, which gives a complementary
lower bound: if every one of As, ..., \x has modulus at
most 1/+/d — 1 there exists some feasible solution to the
Local Path Statistics SDP for every m > 1. We can
specify a pseudoexpectation completely by way of an
(nk + 1) x (nk + 1) positive semidefinite matrix

Ez EzTz) \I X/’

After first writing down the general properties required
of any quadratic pseudoexpectation satisfying By, we’ll
show that in order for E to match every moment asked
of it by the LoSt(2,m) SDP, it suffices for it to satisfy

Epu.s+(z,G) ~Epp.s.(G,x)

when (H,S, ) is a path of length 0, ..., m with labelled
endpoints. Finally, we’ll construct a pseudoexpectation
matching these path moments out of feasible solutions
to the symmetric path statistics SDP from the previous
section.

LEMMA 5.4. The set of By -satisfying pseudoexpectations
is parameterized by pairs (X,1) € REX7k xR for which

(5.12) (} l;) -0

(5.13) diag(X) =1

(5.14) tr Xy, =ell=1 Vu € [n]
(5.15) Xuve =1, Yu,v € [n]

Proof. Recall that the set By, is defined by the polyno-
mial equations

Boolean 22, =w,; Yu€[n]andic K]

u,t

Single Color Z Tyi=1

%

Yu € [n]

That a degree-two pseudoexpectation satisfies these
constraints means

Ep(m)miﬂ- = Ep(m)mw Vps.t. degp =0

IEp(a:) Z Ty = IEp(ac)

Vps.t. degp < 1.

Writing X = E27z and | = Ez as above, the first
constraint is equivalent to [ = diag(X), since the
degree-zero polynomials are just constants, and we can
guarantee that the second holds for every polynomial of
degree at most one by requiring it on p =1 and p =, z, ;
for all v and j. The Lemma is simply a concise packaging
of these facts, using the block notation X = (X )u,ven]
and [ = (lu)ue[n] 0

PROPOSITION 5.1. It suffices to check
Epu.s.-(z,G) ~Eppy.s-(G,x)

in the cases (i) (H,S,T) is a path of length s =0, ...,m
with labelled endpoints, and (ii) when (H,S,T) is a graph
with no edges on one or two labelled vertices.

We will defer the proof of Proposition 5.1 to the
full version. Its conclusion in hand, we can now set

about constructing a pseudoexpectation. We’ll construct
[ € R™ and X € R" " 50 that (i) the By constraints

in Lemma 5.4 hold, and (ii)
(e, 1) = n(i)n
(Xij, AS)) = m(i)T;
(Xij,J) = m(@)m(j)n.

It will simplify things immensely to use the same change
of basis as we did in Section Section 5.2. Namely, letting
F' be the matrix of right eigenvectors, we will produce a
pair [ € R™ and X € R"*"F g0 that | = (F~T®1)l and
X = (FTe1)X(F~'®1) satisfy the above conditions.
Recycling the relevant calculations from Section 5.2, the
above moment conditions translate to

. n 1=1
ali =
(e, ) {O else

(X AG) = Nllas Imli = j]
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0 else

. n? i=j=1
<Xm,J]>:{ /

As in the proof of distinguishing, we have already
executed the two key steps of the proof in our lower
bound argument for the Symmetric Path Statistics SDP.
From Proposition 4.3 and Proposition 4.4, we know that
if (d —1)A\? < 1, there exists a PSD matrix Y ()\) such
that

Y(Nyu=1 Yu € [n]
(Y(A), AZ)) ~ X*lgs)12n Vs € [m]
(Y(N),) =0.

Since (d — 1)A3 < 1, we can define X to be the k x k
block diagonal matrix

J

Y (Ax),

ie. )v(i,j = 0 when i # j, and the diagonal blocks are
as above, and similarly let [ = (e,0,...,0)T. This way,
certainly

(5.16) G §> =0

(by taking a Schur complement), and the three inner
product conditions above are satisfied on every block.
We now need to check carefully that

(52 (o) ()0 )

is a pseudoexpectation satisfying By. The above con-
struction guarantees PSD-ness, since we have multiplied
a matrix and its transpose on the right and left respec-
tively of a PSD matrix. Since 7 is the first row of F~1,
we know [; = w(i)e. On the other hand, X is obtained
by changing basis block-wise, the diagonal of X depends
only on the diagonals of J and the Y();), all of which
are all ones, so

diag X = diag ((F~" ® 1) Diag diag X (F ' ® 1))
= diag (F" @ 1)(F'@1))
=diag (F-"F ' ®1)
= diag (Diagm ® 1)

as desired. Similarly, because X is diagonal, X%u =1,
and

tr Xy = tr F_T)v(%uF_1 —tr FTp-1 —¢r Diagm = 1.
Finally, the top row of each Xu’v is the vector el so

Xyve = FﬁTXW,Ffle = FfTXu,Uel =F Tey=7=1,.
This completes the construction of our pseudoexpecta-

tion.

5.5 Robustness The proof of robustness follows al-
most immediately from the discussion in Section 4.4. In
particular, if G is drawn from the planted distribution,
by making § sufficiently small, the matrices Y'();) are
PSD and satisfy the affine constraints regarding inner
products with the A(C;) matrices with slack Q(n). Ev-
ery diagonal entry of Y'();) is one, so by PSDness their
off-diagonal entries have modulus at most one. Thus

(ALY (\)) — (AFD)| = (AL — A0
<[ a,
< 2pd(d —1)°71,

Because of the Q(n) slack, if we construct Y ();) from
H instead of G, the constraints will still be satisfied for
small enough p. We can then use these Y'(\;) to build
the full feasible solution as before.

On the other hand, when G is drawn from the
null model, again by making ¢ sufficiently small, any
pseudoexpectation satisfying the Boolean and Single
Color constraints violates some linear combination of
the above affine constraints by a margin of Q(n), and this
constraint will still be violated for e sufficiently small.
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