JB Accepted Manuscript Posted Online 11 October 2021 J Bacteriol doi:10.1128/JB.00350-21 Copyright © 2021 American Society for Microbiology. All Rights Reserved.

> J. Bacteriol. 1 2 3 4 Regulatory small RNA, Qrr2, is expressed independently of sigma factor-54 and can function as the sole Qrr sRNA to control quorum sensing in Vibrio parahaemolyticus 5 6 7 Tague, J.G., J. Hong, S.S. Kalburge, and E.F. Boyd* 8 Department of Biological Sciences, University of Delaware, Newark, DE, 19716 9 10 Corresponding author* 11 Dr. E. Fidelma Boyd 12 13 Department of Biological Sciences University of Delaware 14 Newark, DE 19716 15 Phone: (302) 831-1088. Fax: (302) 831-2281 Email: fboyd@udel.edu 16

Downloaded from https://journals.asm.org/journal/jb on 25 October 2021 by 132.174.254.72.

19	Bacterial cells alter gene expression in response to changes in population density in a
20	process called quorum sensing (QS). In Vibrio harveyi, LuxO, a low cell density activator
21	of sigma factor-54 (RpoN), is required for transcription of five non-coding regulatory
22	sRNAs, Qrr1-Qrr5, which each repress translation of the master QS regulator LuxR.
23	Vibrio parahaemolyticus, the leading cause of bacterial seafood-borne gastroenteritis, also
24	contains five Qrr sRNAs that control OpaR (the LuxR homolog), controlling capsule
25	polysaccharide (CPS), motility, and metabolism. We show that in a $\Delta luxO$ deletion
26	mutant, opaR was de-repressed and CPS and biofilm were produced. However, in a
27	$\Delta rpoN$ mutant, <i>opaR</i> was repressed, no CPS was produced, and less biofilm production
28	was observed compared to wild type. To determine why <i>opaR</i> was repressed,
29	expression analysis in $\Delta luxO$ showed all five <i>qrr</i> genes were repressed, while in $\Delta rpoN$
30	the qrr2 gene was significantly de-repressed. Reporter assays and mutant analysis
31	showed Qrr2 sRNA can act alone to control OpaR. Bioinformatics analysis identified a
32	sigma-70 (RpoD) -35 -10 promoter overlapping the canonical sigma-54 (RpoN) -24 -12
33	promoter in the <i>qrr</i> 2 regulatory region. The <i>qrr</i> 2 sigma-70 promoter element was also
34	present in additional Vibrio species indicating it is widespread. Mutagenesis of the
35	sigma-70 -10 promoter site in the $\Delta rpoN$ mutant background, resulted in repression of
36	<i>qrr</i> 2. Analysis of <i>qrr</i> quadruple deletion mutants, in which only a single <i>qrr</i> gene is
37	present, showed that only Qrr2 sRNA can act independently to regulate opaR. Mutant

B

Journal of Bacteriology

9

Journal of Bacteriology

42 Importance

38

39

40

41

The quorum sensing non-coding sRNAs are present in all Vibrio species but vary in 43 44 number and regulatory roles among species. In the Harveyi clade, all species contain 45 five qrr genes, and in V. harveyi these are transcribed by sigma-54 and are additive in function. In the Cholerae clade, four *qrr* genes are present, and in *V. cholerae* the *qrr* 46 genes are redundant in function. In V. parahaemolyticus, qrr2 is controlled by two 47 overlapping promoters. In an *rpoN* mutant, *qrr2* is transcribed from a sigma-70 48 promoter that is present in all V. parahaemolyticus strains and in other species of the 49 50 Harveyi clade suggesting a conserved mechanism of regulation. Qrr2 sRNA can function as the sole Qrr sRNA to control OpaR. 51 52

and expression data also demonstrated that RpoN and the global regulator, Fis, act

and shows that Qrr2 sRNA is sufficient for OpaR regulation.

additively to repress qrr2. Our data has uncovered a new mechanism of qrr expression

54 Introduction

55	Bacteria monitor changes in cell density using a process termed quorum sensing (QS)
56	(1, 2). QS is a regulatory mechanism used to alter global gene expression in response to
57	cell density changes (1-6). In many Gram-negative bacteria, N-acylhomoserine lactone
58	(AHL) is a common QS autoinducer synthesized intracellularly and secreted out of the
59	cell (2, 7). By surveying AHL levels in its environment, a bacterium can regulate gene
60	expression in response to growth phase. Quorum sensing has been characterized in
61	several marine species in the genus Vibrio, including V. anguillarum, V. cholerae, V.
62	harveyi and V. parahaemolyticus, and shown to modulate expression of bioluminescence,
63	capsule formation, biofilm, natural competence, swarming motility, and virulence (5, 7-
64	20). Many of the original QS studies were performed in Vibrio harveyi ATCC BAA-1116
65	aka BB120, however this strain has been reclassified as V. campbellii, but to avoid
66	confusion with published literature we will continue to use the name V. harveyi (21). In
67	V. harveyi and V. anguillarum, it was shown that LuxO, the QS response regulator, is an
68	activator of sigma factor-54, encoded by <i>rpoN</i> that along with RNA polymerase, initiates
69	transcription of the non-coding quorum regulatory small RNAs (Qrr) (8, 22, 23).
70	Non-coding sRNAs are a group of regulators present in prokaryotes that
71	together with the RNA chaperone Hfq control gene expression in a range of phenotypes
72	(24-26). The Qrr sRNAs are classified as <i>trans</i> -acting sRNAs that along with Hfq_{r} target
73	mRNA via base-pairing to the 5' UTR to stabilize or destabilize translation (27-29). In V .

74	harveyi, the nucleoid structuring protein Fis was shown to be a positive regulator of qrr
75	gene expression (30). The Qrr sRNAs are post-transcriptional regulators that, in V .
76	harveyi, enhanced translation of the QS low cell density (LCD) master regulator AphA
77	and inhibited translation of the QS high cell density (HCD) master regulator LuxR (28,
78	31-33). At HCD in V. harveyi, LuxO is not phosphorylated and therefore cannot activate
79	sigma-54 (RpoN), the five Qrr sRNA genes <i>qrr1</i> to <i>qrr5</i> are repressed, and LuxR
80	translation is de-repressed. In addition, AphA and LuxR repress each other
81	transcriptionally, providing a further level of regulation (32, 34-36). Studies have shown
82	that in V. harveyi, Qrr1 has a 9-bp deletion in the 5' region of the sRNA and therefore
83	cannot activate $aphA$ translation but can still repress $luxR$ translation. The deletion in
84	qrr1 is also present in V. cholerae, V. parahaemolyticus and several other Vibrio species (32,
85	37). In V. harveyi, Qrr2, Qrr3, Qrr4, and Qrr5 sRNAs were additive in function and
86	controlled the same target sites (27, 28, 38). However, the <i>qrr</i> genes showed distinct
87	expression patterns and controlled the QS output signal at different levels coordinated
88	with highest to lowest expression: Qrr4 > Qrr2 > Qrr3 > Qrr1 > Qrr5 (28). V. cholerae
89	encodes four Qrr sRNAs, Qrr1 to Qrr4 that were redundant in function with any one of
90	the four Qrr sRNAs sufficient to repress HapR (the LuxR homolog) (27).
91	Vibrio parahaemolyticus (VP) is a halophile, residing in marine environments as a
92	free-living organism or in association with marine flora and fauna (39-41). This species
93	is the leading cause of seafood-borne bacterial gastroenteritis worldwide, causing

94	increasing infections each year, and is also a serious pathogen in the aquaculture
95	industry (42, 43). Vibrio parahaemolyticus has dual flagellar systems, with the lateral
96	flagellum system required for swarming motility, an important multicellular behavior
97	(44). Vibrio parahaemolyticus has the same QS components and pathway as V. harveyi,
98	containing five Qrr sRNAs that are predicted to control $aphA$ and $opaR$ (Fig. 1). In this
99	species, the LuxR homolog is named OpaR (<u>Opa</u> city <u>R</u> egulator), for its role as an
100	activator of capsule polysaccharide (CPS) production that results in an opaque, rugose
101	colony morphology (45). The McCarter group first showed that an <i>opaR</i> deletion mutant
102	in strain BB22OP had a translucent, smooth colony morphology, reduced CPS and
103	biofilm (46). A further study by the same group also showed that $\Delta opaR$ produced less
104	biofilm when grown statically at 30°C for 16h, but showed similar biofilm levels at 24h
105	and more biofilm than wild type after 48h growth (20). In V. parahaemolyticus
106	RIMD2210633, $\Delta opaR$ also showed a defect in CPS and biofilm, but the biofilm defect
107	disappeared after 24h growth (14). A recent study in this same strain proposed that
108	opaR was a negative regulator of biofilm through modulation of c-di-GMP, although the
109	method and time point examined differed with the previous study (47). A third strain,
110	HZ, with a deletion in <i>opaR</i> also showed a defect in biofilm compared to wild type at
111	both 24h and 48h (48). These data indicate that the role of CPS production in biofilm
112	formation is complex as has been shown for other Vibrio species and is influenced by the
113	methods and time points used (49-52). Besides CPS and biofilm formation, OpaR was

115	the osmotic stress response in this species (14, 15, 20, 53-56). A V. parahaemolyticus $\Delta luxO$
116	deletion mutant, in which the <i>qrr</i> sRNAs were not expressed, showed <i>opaR</i> was highly
117	induced and produced both CPS and biofilm, output signals of the QS pathway (14).
118	Interestingly, an earlier study examining an $\Delta rpoN$ deletion mutant in V.
119	parahaemolyticus showed that it did not produce CPS and generated less biofilm
120	compared to wild type (57). This is unexpected because previous studies in V. harveyi
121	suggest that in a $\Delta rpoN$ mutant, the <i>qrr</i> sRNA were repressed and the <i>luxR</i> (<i>opaR</i>
122	homolog) was de-repressed inducing bioluminescence (8). In V. parahaemolyticus, OpaR
123	is a positive regulator of the CPS biosynthesis operon and therefore we expect that in a
124	Δ <i>rpoN</i> mutant CPS should be produced.
125	Here, we examined mutants of the QS pathway in V. parahaemolyticus to
125 126	Here, we examined mutants of the QS pathway in <i>V. parahaemolyticus</i> to determine why the QS pathway output phenotypes differ between the $\Delta luxO$ and $\Delta rpoN$
126	determine why the QS pathway output phenotypes differ between the $\Delta luxO$ and $\Delta rpoN$
126 127	determine why the QS pathway output phenotypes differ between the $\Delta luxO$ and $\Delta rpoN$ mutants. We examined single and double mutants of $\Delta luxO$ and $\Delta rpoN$ for CPS and
126 127 128	determine why the QS pathway output phenotypes differ between the $\Delta luxO$ and $\Delta rpoN$ mutants. We examined single and double mutants of $\Delta luxO$ and $\Delta rpoN$ for CPS and biofilm formation. Then, we determined the expression patterns of <i>opaR</i> , <i>aphA</i> and the
126 127 128 129 130	determine why the QS pathway output phenotypes differ between the $\Delta luxO$ and $\Delta rpoN$ mutants. We examined single and double mutants of $\Delta luxO$ and $\Delta rpoN$ for CPS and biofilm formation. Then, we determined the expression patterns of <i>opaR</i> , <i>aphA</i> and the five <i>qrr</i> genes in these mutants. Data showed that <i>qrr2</i> was de-repressed in the $\Delta rpoN$
126 127 128 129 130	determine why the QS pathway output phenotypes differ between the $\Delta luxO$ and $\Delta rpoN$ mutants. We examined single and double mutants of $\Delta luxO$ and $\Delta rpoN$ for CPS and biofilm formation. Then, we determined the expression patterns of <i>opaR</i> , <i>aphA</i> and the five <i>qrr</i> genes in these mutants. Data showed that <i>qrr2</i> was de-repressed in the $\Delta rpoN$ mutant and <i>opaR</i> was repressed. Bioinformatics analysis of the <i>qrr2</i> regulatory region
126 127 128 129 130 131	determine why the QS pathway output phenotypes differ between the $\Delta luxO$ and $\Delta rpoN$ mutants. We examined single and double mutants of $\Delta luxO$ and $\Delta rpoN$ for CPS and biofilm formation. Then, we determined the expression patterns of <i>opaR</i> , <i>aphA</i> and the five <i>qrr</i> genes in these mutants. Data showed that <i>qrr2</i> was de-repressed in the $\Delta rpoN$ mutant and <i>opaR</i> was repressed. Bioinformatics analysis of the <i>qrr2</i> regulatory region identified a RpoD -35 -10 promoter region that overlapped with the RpoN -24 -12

shown to regulate swimming and swarming motility, surface sensing, metabolism, and

7

134	determine whether the other Qrr sRNAs can also function independently, we
135	constructed quadruple <i>qrr</i> mutants, in which only one <i>qrr</i> is present, and examined CPS
136	and motility phenotypes. Using a DNA affinity pulldown assay, we identified several
137	potential novel regulators of qrr2. One of these, Fis, was examined further to determine
138	its role in <i>qrr</i> 2 expression. We preformed sequence comparative analysis of the
139	promoter regions of <i>qrr2</i> among several species within the Harveyi clade to determine if
140	presence of an RpoD promoter is prevalent. Overall, our data showed that Qrr2 can
141	function solely to control OpaR and has a novel mechanism of expression in V .
142	parahaemolyticus.
143	Results:
144	Differential expression of <i>opaR</i> and <i>aphA</i> in $\Delta luxO$ versus $\Delta rpoN$ mutants. We used
144 145	Differential expression of <i>opaR</i> and <i>aphA</i> in $\Delta luxO$ versus $\Delta rpoN$ mutants. We used CPS production as a readout of OpaR presence in the <i>V. parahaemolyticus</i> cell. Based on
145	CPS production as a readout of OpaR presence in the <i>V. parahaemolyticus</i> cell. Based on
145 146	CPS production as a readout of OpaR presence in the <i>V. parahaemolyticus</i> cell. Based on the quorum sensing pathway in <i>V. harveyi</i> , we would expect both a $\Delta luxO$ and $\Delta rpoN$
145 146 147	CPS production as a readout of OpaR presence in the <i>V. parahaemolyticus</i> cell. Based on the quorum sensing pathway in <i>V. harveyi</i> , we would expect both a $\Delta luxO$ and $\Delta rpoN$ deletion mutant to produce CPS, as the Qrr sRNAs should be repressed, and therefore
145 146 147 148	CPS production as a readout of OpaR presence in the <i>V. parahaemolyticus</i> cell. Based on the quorum sensing pathway in <i>V. harveyi</i> , we would expect both a $\Delta luxO$ and $\Delta rpoN$ deletion mutant to produce CPS, as the Qrr sRNAs should be repressed, and therefore OpaR should be de-repressed (Fig. 1). In a CPS assay, the $\Delta luxO$ mutant produced CPS
145 146 147 148 149	CPS production as a readout of OpaR presence in the <i>V. parahaemolyticus</i> cell. Based on the quorum sensing pathway in <i>V. harveyi</i> , we would expect both a $\Delta luxO$ and $\Delta rpoN$ deletion mutant to produce CPS, as the Qrr sRNAs should be repressed, and therefore OpaR should be de-repressed (Fig. 1). In a CPS assay, the $\Delta luxO$ mutant produced CPS forming opaque, rugose colonies. However, the $\Delta rpoN$ mutant did not produce CPS,
145 146 147 148 149 150	CPS production as a readout of OpaR presence in the <i>V. parahaemolyticus</i> cell. Based on the quorum sensing pathway in <i>V. harveyi</i> , we would expect both a $\Delta luxO$ and $\Delta rpoN$ deletion mutant to produce CPS, as the Qrr sRNAs should be repressed, and therefore OpaR should be de-repressed (Fig. 1). In a CPS assay, the $\Delta luxO$ mutant produced CPS forming opaque, rugose colonies. However, the $\Delta rpoN$ mutant did not produce CPS, and instead formed a translucent, smooth colony morphology, similar to the $\Delta opaR$

155	smooth colony morphology. Similarly, when we examined biofilm formation, both the
156	$\Delta rpoN$ and $\Delta rpoN/\Delta luxO$ double mutant strains produced less biofilm than the wild type
157	and $\Delta luxO$ strains (Fig. 2B). These data suggest that in the $\Delta rpoN$ mutant, <i>opaR</i> is
158	repressed. To test this, we complemented the $\Delta rpoN$ mutant with the <i>opaR</i> gene
159	(pBADopaR), and in these cells CPS production was restored, indicating that the
160	absence of <i>opaR</i> in the $\Delta rpoN$ mutant led to the CPS defect (Fig. S1C).
161	Next, we investigated the expression profiles of the QS master regulators in the
162	$\Delta luxO$ and $\Delta rpoN$ deletion mutants. RNA isolation and quantitative real-time PCR
163	(qPCR) assays were performed from cells grown in LB 3% NaCl to optical densities
164	(OD) 0.1 and 0.5. At OD 0.1, expression of <i>opaR</i> in $\Delta luxO$ relative to wild type was
165	significantly upregulated, however, <i>opaR</i> expression was unchanged in the $\Delta rpoN$
166	mutant (Fig. 3A). At OD 0.5, expression of <i>opaR</i> in $\Delta luxO$ matched that of wild type,
167	however, in the $\Delta rpoN$ mutant expression of <i>opaR</i> was significantly downregulated
168	relative to wild type (Fig. 3B). Expression of <i>aphA</i> , the low cell density QS master
169	regulator, was repressed in the $\Delta luxO$ mutant compared to wild type and unchanged in
170	the $\Delta rpoN$ mutant at OD 0.1 (Fig. 3C). At OD 0.5, <i>aphA</i> expression was upregulated
171	compared to wild type in $\Delta rpoN$ (Fig. 3D). These data indicate that $opaR$ is repressed
172	and <i>aphA</i> is induced in the $\Delta rpoN$ deletion mutant.

addition, a $\Delta rpoN/\Delta luxO$ double mutant also lacked CPS and produced a translucent,

Downloaded from https://journals.asm.org/journal/jb on 25 October 2021 by 132.174.254.72.

173	Expression analysis of <i>qrr1</i> to <i>qrr5</i> in $\Delta luxO$ and $\Delta rpoN$ mutants. Since <i>opaR</i> showed
174	different levels of expression in the $\Delta luxO$ and $\Delta rpoN$ deletion mutants, we wanted to
175	determine whether this was due to differences in <i>qrr</i> expression levels. We examined
176	expression of all five <i>qrr</i> genes in cells grown to OD 0.1 and OD 0.5 and show that the
177	expression of <i>qrr1</i> , <i>qrr2</i> , <i>qrr3</i> and <i>qrr5</i> was higher at OD 0.1 relative to OD 0.5 (Fig. S2).
178	Expression of <i>qrr4</i> was detected at OD 0.1, but was not detected at OD 0.5 in wild type.
179	In addition, <i>qrr4</i> expression was not detected in either $\Delta luxO$ or $\Delta rpoN$ at OD 0.1 or 0.5
180	indicating that it has a strict requirement for LuxO and RpoN, but expression of <i>qrr4</i> in
181	WT at 0.1 OD matched expression of the other <i>qrr</i> genes. This suggests that the main
182	role of <i>qrr4</i> could be regulation at low cell density. Next, we examined expression of the
183	<i>qrr</i> genes at OD 0.1 in the $\Delta luxO$ mutant relative to wild type and showed <i>qrr1</i>
184	expression was unchanged, but there was significant downregulation of qrr2, qrr3, and
185	<i>qrr5</i> (Fig 4A). Whereas at OD 0.5, their expression matched that of wild type (Fig. 4B).
186	In the $\Delta rpoN$ mutant, expression of <i>qrr1</i> , <i>qrr3</i> , and <i>qrr5</i> matched that of the $\Delta luxO$
187	mutant (Fig. 4C), however, qrr2 was upregulated at both OD 0.1 and OD 0.5 (Fig. 4D).
188	To confirm that <i>qrr</i> 2 was differentially regulated between $\Delta luxO$ and $\Delta rpoN$, the <i>qrr</i> 2
189	regulatory region was cloned into the pRU1064 reporter vector upstream of a promoter-
190	less <i>gfp</i> cassette (<i>Pqrr2-gfp</i>). The specific fluorescence of <i>Pqrr2-gfp</i> was examined in the
191	wild type, $\Delta luxO$, and $\Delta rpoN$ mutants and measured as a cumulative read-out of $qrr2$
192	transcription (Fig. 5A). The level of specific fluorescence of Pqrr2-gfp was reduced in the

193	$\Delta luxO$ mutant relative to wild type, whereas in the $\Delta rpoN$ mutant, fluorescence was
194	significantly increased (Fig. 5A). Next, we examined the <i>opaR</i> regulatory region cloned
195	into pRU1064 reporter vector upstream of a promoter-less gfp cassette (PopaR-gfp) in
196	wild type, a $\Delta qrr2$ single mutant and a $\Delta qrr3, 1, 4, 5$ quadruple mutant with only $qrr2$
197	present (Fig. 5B). In $\Delta qrr2$ compared to wild type, <i>PopaR-gfp</i> showed significantly
198	increased fluorescence, whereas the quadruple <i>qrr</i> deletion mutant, with <i>qrr</i> 2 present,
199	was similar to wild type (Fig. 5B). We predicted that deletion of $qrr2$ in the $\Delta rpoN$
200	mutant background should restore <i>opaR</i> expression and CPS production. We
201	constructed a $\Delta rpoN/\Delta qrr2$ double mutant and examined <i>opaR</i> and <i>aphA</i> expression
202	levels (Fig. S3). Quantitative real time PCR assays showed that <i>opaR</i> was highly
203	expressed in a $\Delta rpoN/\Delta qrr2$ double mutant compared to wild type (Fig. S3).
204	Examination of CPS formation showed that the $\Delta rpoN/\Delta qrr2$ double mutant produced a
205	rough colony morphology (Fig. S4A). Similarly, in biofilm assays, the $\Delta rpoN$ mutant
206	produced a significantly reduced biofilm, whereas the $\Delta rpoN/\Delta qrr2$ double mutant
207	produced a biofilm similar to wild type (Fig. S4B). Overall, these data demonstrate that
208	Qrr2 sRNA is present in the $\Delta rpoN$ deletion mutant and Qrr2 sRNA can function alone
209	to control OpaR and QS phenotypes.
210	Overlapping sigma-70 and sigma-54 promoters. The expression of <i>qrr2</i> in the $\Delta rpoN$
211	mutant background indicates that an additional sigma factor can initiate qrr2
212	transcription. To examine this further, the regulatory regions of $qrr1$ to $qrr5$ in V.

213	parahaemolyticus RIMD2210633 were aligned and surveyed for the presence of
214	additional promoter regions using the Virtual footprint promoter analysis program and
215	manual scanning of sequences. Although the five Qrr sRNAs share homology, their
216	regulatory regions are divergent with the exception of the sigma-54 canonical -24
217	(TTGGCA) and -12 (AATGCA) promoter sites, with nucleotides in bold conserved
218	amongst all five <i>qrr</i> regulatory regions (Fig. S5). In the regulatory region of <i>qrr2</i> ,
219	promoter analysis identified a housekeeping sigma-70 (RpoD) -35 (TTGAAA) and -10
220	(ATAATA) promoter (Fig. 6A). The putative sigma-70 promoter overlapped with the
221	sigma-54 -24 and -12 promoter (Fig. 6A), and was absent from the regulatory regions of
222	qrr1, qrr3, qrr4, and qrr5 (Fig. S5). This suggested that qrr2 can be transcribed by either
223	sigma-54 or sigma-70 and could explain its expression in the absence of <i>rpoN</i> . To
224	examine this further, we mutated three base-pairs of the putative sigma-70 -10
225	ATAATA site to ATACCC in the pRUPqrr2 reporter vector (Fig. 6A). The mutagenized
226	vector, pRUPqrr2-10CCC, was conjugated into wild type and $\Delta rpoN$ and specific
227	fluorescence was determined. The $\Delta rpoN$ pRUP $qrr2$ -10CCC strain showed significantly
228	reduced fluorescence relative to $\Delta rpoN$ pRUPqrr2, indicating that this site is required for
229	<i>qrr</i> ² transcription in the absence of RpoN (Fig. 6B). The data suggests that <i>qrr</i> ² can be
230	transcribed by two sigma factors using dual overlapping promoters, suggesting a
231	unique mode of regulation for Qrr2 sRNA. Comparisons of the qrr2 regulatory region
232	among Harveyi clade species V. alginolyticus, V. campbellii, V. harveyi, and V.

233	parahaemolyticus showed that the sigma-70 promoter -10 region was highly conserved
234	among these species (Fig. S6). Each of the five Qrr sRNAs also shared homology among
235	these species (Fig. 7). The <i>qrr1</i> gene among all four species showed high homology
236	clustering closely together on the phylogenetic tree but were distantly related to the
237	other four <i>qrr</i> genes. The <i>qrr3</i> and <i>qrr4</i> genes each clustered tightly together on the tree
238	whereas $qrr2$ and $qrr5$ each showed divergence among the species (Fig. 7). Overall
239	divergence in regulatory regions and gene sequence amongst the <i>qrr</i> genes likely
240	suggests differences in how each qrr gene is regulated and differences in the target
241	genes of each Qrr sRNA.
242	Qrr2 sRNA can function independent of the other Qrr sRNAs. Next, we determined
243	whether Qrr2 sRNA has a distinct role in this species and whether any of the four other
244	<i>qrr</i> genes can act alone. Using a <i>qrr1</i> to <i>qrr5</i> quintuple deletion mutant (Δqrr -null) and
245	five quadruple <i>qrr</i> deletion mutants, each containing a single <i>qrr</i> , we examined several
246	QS phenotypes (Fig. 8). In swarming motility assays, the Δqrr -null strain was swarming
247	deficient, as swarming is negatively regulated by OpaR (Fig. 8A). In addition, four
248	quadruple mutants, $\Delta qrr3/\Delta qrr2/\Delta qrr4/\Delta qrr5$; $\Delta qrr2/qrr1/\Delta qrr4/\Delta qrr5$;
249	$\Delta qrr3/\Delta qrr2/\Delta qrr1/\Delta qrr5;$ and $\Delta qrr3/\Delta qrr2/\Delta qrr1/\Delta qrr4$ were all swarming deficient
250	indicating that Qrr1, Qrr3, Qrr4 and Qrr5 sRNAs cannot function independently to
251	control OpaR (Fig. 8A). In swarming motility assays, the $\Delta qrr3/\Delta qrr1/\Delta qrr4/\Delta qrr5$ mutant
252	that contained only <i>qrr2</i> , behaved similar to wild type and was swarming proficient

253	indicating repression of <i>opaR</i> (Fig. 8A). In swimming assays, the quadruple mutants
254	that lacked <i>qrr</i> 2 produced similar results to the null mutant with defects in swimming
255	(Fig. 8B). Whereas only the mutant that contained only <i>qrr2</i> showed swimming motility
256	similar to wild type (Fig. 8B). Additionally, in CPS assays, the qrr2 positive strain also
257	showed a colony morphology similar to wild type (Fig. 8C). Analysis of a single <i>qrr</i> 2
258	deletion mutant indicates that it is not essential for CPS production or swarming and
259	that the other <i>qrr</i> genes can function to control <i>opaR</i> in the absence of <i>qrr2</i> (Fig. S7). In
260	summary, these data demonstrate that only Qrr2 sRNA can function independently in
261	V. parahaemolyticus.

262	RpoN and Fis are not required for qrr2 expression. In order to identify additional
263	regulators of <i>qrr</i> 2 transcription, a DNA-affinity pull-down was performed. We used
264	$\Delta rpoN$ cell lysate grown to OD 0.5 and Pqrr2 bait DNA. We identified a number of
265	candidate regulators previously shown to bind to the qrr sRNA regulatory regions in V .
266	harveyi (30, 36, 58) (Fig. S8 and S9). We decided to examine the nucleoid associated
267	protein Fis further since it is known to be a positive regulator of <i>qrr</i> sRNA expression
268	and binds to the qrr sRNA regulatory regions in both V. harveyi and V. parahaemolyticus
269	(30, 59). The <i>qrr</i> 2 regulatory region shows at least three Fis binding sites containing the
270	conserved Fis binding motif previously described in V. parahaemolyticus (59). A Fis
271	binding site was located adjacent to the -35 promoter site, as well as two additional Fis
272	binding sites, at 193-bp and 229-bp upstream of the <i>qrr2</i> transcriptional start site (Fig.

273	9A). To confirm these Fis binding sites, we constructed three DNA probes of the <i>qrr</i> 2
274	regulatory region to use in electrophoretic shift mobility assays (EMSAs) with purified
275	Fis protein. DNA probe 1A encompassing a single binding site showed binding and
276	similarly Fis bound to probe 1C which contained two Fis binding sites, both probes
277	bound in a concentration dependent manner (Fig. 9B). Probe 1B, which did not have a
278	putative Fis binding site, showed weak likely non-specific binding. Next, we examined
279	expression of the Pqrr2-gfp reporter in wild type, $\Delta rpoN$ and a $\Delta rpoN/\Delta fis$ double mutant
280	and confirmed that expression of $Pqrr2$ -gfp was upregulated in the $\Delta rpoN$ mutant but
281	was even more highly upregulated in the $\Delta rpoN/\Delta fis$ double mutant (Fig. 9C). These
282	data indicate that both Fis and RpoN can act as repressors of <i>qrr2</i> in <i>V. parahaemolyticus</i> ,
283	and Fis likely plays a role in enhancing sigma-54 binding.
284	Discussion
285	In this study, we investigated the role of sigma-54, LuxO, and the five Qrr sRNAs in the
286	V. parahaemolyticus QS pathway and showed that the QS pathway can function in the
287	absence of sigma-54, qrr1, qrr3, qrr4, or qrr5. This observation reflects the idea that
288	strains and species have different expression patterns of the <i>qrr</i> sRNAs under different

- growth conditions and each *qrr* gene is likely controlled by different factors. Our data
- 290 demonstrated that in a $\Delta rpoN$ mutant, cells had a defect in CPS and biofilm formation,
- 291 QS phenotypes that differed from the $\Delta luxO$ mutant. The data showed that Qrr2 is
- highly expressed in a $\Delta rpoN$ mutant and that Qrr2 can act independent of the other Qrr

293	sRNAs to repress OpaR and QS phenotypes. In a $\Delta rpoN/\Delta qrr2$ double mutant, <i>opaR</i> was
294	de-repressed and CPS and biofilm formation were restored. Bioinformatics analysis
295	identified a putative -35 -10 promoter region within the <i>qrr</i> 2 regulatory region and
296	mutagenesis of the -10 promoter sites resulted in repression of qrr2. Overall, the data
297	indicate that <i>qrr2</i> can be expressed from two promoters and this ability is likely present
298	in other related species. There have been other accounts of sigma-54-dependent genes
299	showing increased transcription in the absence of $rpoN$ (60, 61). In these cases, a
300	putative sigma-70 promoter was present, suggesting a potential competition for
301	promoter sites (60, 61). For example, in <i>E. coli</i> , <i>glmY</i> a coding sRNA contained
302	overlapping sigma-54 and sigma-70 promoters, which were shown to allow for precise
303	control of $glmY$ expression within the cell (62). In our study, we identified a sigma-70
304	promoter that overlaps with the sigma-54 consensus promoter sequence of qrr2,
305	suggesting that RpoN under differ growth conditions may block RpoD access. We
306	propose that in the wild type background, qrr2 is transcribed via LuxO activated RpoN,
307	and in the $\Delta luxO$ mutant, <i>qrr</i> 2 is not transcribed because sigma-54 is in an inactive state
308	bound to the qrr2 promoter. RpoN physically blocking additional sigma factors from
309	binding was previously proposed from studies in other bacteria (63, 64). However, in
310	the absence of sigma-54, sigma-70 is able to bind to the $qrr2$ regulatory region at a
311	conserved -35 and -10 region to initiate transcription (Fig. 10). Fis is a global regulator
312	that is known to enhance and inhibit transcription from promoter regions in many

313	bacterial species (65-68). In V. parahaemolyticus, Fis was shown to positively regulate qrr
314	sRNAs expression. The <i>fis</i> gene was shown to be highly expressed in exponential
315	growth only and Fis bound to the regulatory region of all five <i>qrr</i> sRNA genes (59).
316	Here, we show in DNA protein binding assays in <i>V. parahaemolyticus</i> that Fis binds
317	adjacent to the -35 promoter site. We speculate that Fis functions to enhance RpoN
318	promoter binding to maximize <i>qrr</i> expression. The data showed that in the absence of
319	both RpoN and Fis, however, qrr2 expression is significantly increased compared to the
320	$\Delta rpoN$ mutant alone. Under these conditions additional binding sites within the <i>qrr</i> 2
321	regulatory region may be fully exposed, allowing sigma-70 full access for increased qrr2
322	expression (Fig. 10). Our previous study has shown that in a Δfis deletion mutant <i>qrr</i> 2
323	expression is repressed suggesting that Fis may also block sigma-70 binding in
324	exponential phase cells (59). A study in V. alginolyticus MVP01, a species closely related
325	to <i>V. parahaemolyticus</i> , also showed differences between the $\Delta luxO$ and $\Delta rpoN$ mutant
326	strains in their control of cell density dependent siderophore production. The $\Delta luxO$
327	mutant showed reduced siderophore production, which is negatively regulated by
328	LuxR, and the $\Delta rpoN$ mutant showed increased production (69). Their data showed
329	RpoN dependent and independent siderophore production. We speculate that this
330	could be the result of expression by RpoD since V. alginolyticus has an RpoD -35 -10
331	promoter in the Qrr2 regulatory region (Fig. S6).

333redundantly to control bioluminescence, that is, any one of the Qrr sRNAs is sufficient334to control HapR (LuxR homolog) (28). In their study, Lenz and colleagues showed that335it was not until all four Qrrs were deleted in V. cholerae, that there is a difference in336density-dependent bioluminescence (28). In V. harveyi, the five Qrrs were shown to act337additively to control LuxR expression. Using bioluminescence assays and quadruple qrr338mutants, it was determined that each Qrr has a different level of strength in repressing339luxR translation (28). In V. parahaemolyticus, it appears that expression of qrr4 is340restricted to low cell density cells, since we only observed expression at OD 0.1 and has341an absolute requirement for LuxO and RpoN since we did not observed expression in342either mutant. It is of interest to note that qrr1 expression was unchanged in both the343luxO and rpoN mutants at both ODs compared to wild type, which means this qrr uses344an alternative sigma factor for transcription. We demonstrated that Qrr2 sRNA is the345only Qrr that can act alone to control QS gene expression, but is not essential under the346qrr2 can be transcribed independent of RpoN, this suggests that Qrr2 may have unique347functions and/or targets in this species. We propose that V. parahaemolyticus can activate348the transcription of qrr2 via RpoN or RpoD to timely alter gene expression likely under349different growth conditions. Overall our data suggest that the expression of each qrr340gene is controlled differently, and likely by	332	In V. cholerae, four Qrr sRNAs (Qrr1-Qrr4) are present that were shown to act
it was not until all four Qrrs were deleted in <i>V. cholerae</i> , that there is a difference in density-dependent bioluminescence (28). In <i>V. harveyi</i> , the five Qrrs were shown to act additively to control LuxR expression. Using bioluminescence assays and quadruple <i>qrr</i> mutants, it was determined that each Qrr has a different level of strength in repressing <i>luxR</i> translation (28). In <i>V. parahaemolyticus</i> , it appears that expression of <i>qrr4</i> is restricted to low cell density cells, since we only observed expression at OD 0.1 and has an absolute requirement for LuxO and RpoN since we did not observed expression in either mutant. It is of interest to note that <i>qrr1</i> expression was unchanged in both the <i>luxO</i> and <i>rpoN</i> mutants at both ODs compared to wild type, which means this <i>qrr</i> uses an alternative sigma factor for transcription. We demonstrated that Qrr2 sRNA is the only Qrr that can act alone to control QS gene expression, but is not essential under the conditions examined, since a $\Delta qrr2$ mutant behaves like wild type (Fig. S7). Given that <i>qrr2</i> can be transcribed independent of RpoN, this suggests that Qrr2 may have unique functions and/or targets in this species. We propose that <i>V. parahaemolyticus</i> can activate the transcription of <i>qrr2</i> via RpoN or RpoD to timely alter gene expression likely under different growth conditions. Overall our data suggest that the expression of each <i>qrr</i>	333	redundantly to control bioluminescence, that is, any one of the Qrr sRNAs is sufficient
336density-dependent bioluminescence (28). In <i>V. harveyi</i> , the five Qrrs were shown to act337additively to control LuxR expression. Using bioluminescence assays and quadruple <i>qrr</i> 338mutants, it was determined that each Qrr has a different level of strength in repressing339 <i>luxR</i> translation (28). In <i>V. parahaemolyticus</i> , it appears that expression of <i>qrr4</i> is340restricted to low cell density cells, since we only observed expression at OD 0.1 and has341an absolute requirement for LuxO and RpoN since we did not observed expression in342either mutant. It is of interest to note that <i>qrr1</i> expression was unchanged in both the343 <i>luxO</i> and <i>rpoN</i> mutants at both ODs compared to wild type, which means this <i>qrr</i> uses344an alternative sigma factor for transcription. We demonstrated that Qrr2 sRNA is the345only Qrr that can act alone to control QS gene expression, but is not essential under the346conditions examined, since a $\Delta qrr2$ mutant behaves like wild type (Fig. S7). Given that347 <i>qrr2</i> can be transcribed independent of RpoN, this suggests that Qrr2 may have unique348functions and/or targets in this species. We propose that <i>V. parahaemolyticus</i> can activate349the transcription of <i>qrr2</i> via RpoN or RpoD to timely alter gene expression likely under349different growth conditions. Overall our data suggest that the expression of each <i>qrr</i>	334	to control HapR (LuxR homolog) (28). In their study, Lenz and colleagues showed that
additively to control LuxR expression. Using bioluminescence assays and quadruple <i>qrr</i> mutants, it was determined that each Qrr has a different level of strength in repressing <i>luxR</i> translation (28). In <i>V. parahaemolyticus</i> , it appears that expression of <i>qrr4</i> is restricted to low cell density cells, since we only observed expression at OD 0.1 and has an absolute requirement for LuxO and RpoN since we did not observed expression in either mutant. It is of interest to note that <i>qrr1</i> expression was unchanged in both the <i>luxO</i> and <i>rpoN</i> mutants at both ODs compared to wild type, which means this <i>qrr</i> uses an alternative sigma factor for transcription. We demonstrated that Qrr2 sRNA is the only Qrr that can act alone to control QS gene expression, but is not essential under the conditions examined, since a $\Delta qrr2$ mutant behaves like wild type (Fig. S7). Given that <i>qrr2</i> can be transcribed independent of RpoN, this suggests that Qrr2 may have unique functions and/or targets in this species. We propose that <i>V. parahaemolyticus</i> can activate the transcription of <i>qrr2</i> via RpoN or RpoD to timely alter gene expression likely under different growth conditions. Overall our data suggest that the expression of each <i>qrr</i>	335	it was not until all four Qrrs were deleted in V. cholerae, that there is a difference in
mutants, it was determined that each Qrr has a different level of strength in repressing <i>luxR</i> translation (28). In <i>V. parahaemolyticus</i> , it appears that expression of <i>qrr4</i> is restricted to low cell density cells, since we only observed expression at OD 0.1 and has an absolute requirement for LuxO and RpoN since we did not observed expression in either mutant. It is of interest to note that <i>qrr1</i> expression was unchanged in both the <i>luxO</i> and <i>rpoN</i> mutants at both ODs compared to wild type, which means this <i>qrr</i> uses an alternative sigma factor for transcription. We demonstrated that Qrr2 sRNA is the only Qrr that can act alone to control QS gene expression, but is not essential under the conditions examined, since a $\Delta qrr2$ mutant behaves like wild type (Fig. S7). Given that <i>qrr2</i> can be transcribed independent of RpoN, this suggests that Qrr2 may have unique functions and/or targets in this species. We propose that <i>V. parahaemolyticus</i> can activate the transcription of <i>qrr2</i> via RpoN or RpoD to timely alter gene expression likely under different growth conditions. Overall our data suggest that the expression of each <i>qrr</i>	336	density-dependent bioluminescence (28). In V. harveyi, the five Qrrs were shown to act
<i>luxR</i> translation (28). In <i>V. parahaemolyticus,</i> it appears that expression of <i>qrr4</i> is restricted to low cell density cells, since we only observed expression at OD 0.1 and has an absolute requirement for LuxO and RpoN since we did not observed expression in either mutant. It is of interest to note that <i>qrr1</i> expression was unchanged in both the <i>luxO</i> and <i>rpoN</i> mutants at both ODs compared to wild type, which means this <i>qrr</i> uses an alternative sigma factor for transcription. We demonstrated that Qrr2 sRNA is the only Qrr that can act alone to control QS gene expression, but is not essential under the conditions examined, since a $\Delta qrr2$ mutant behaves like wild type (Fig. S7). Given that <i>qrr2</i> can be transcribed independent of RpoN, this suggests that Qrr2 may have unique functions and/or targets in this species. We propose that <i>V. parahaemolyticus</i> can activate the transcription of <i>qrr2</i> via RpoN or RpoD to timely alter gene expression likely under different growth conditions. Overall our data suggest that the expression of each <i>qrr</i>	337	additively to control LuxR expression. Using bioluminescence assays and quadruple qrr
restricted to low cell density cells, since we only observed expression at OD 0.1 and has an absolute requirement for LuxO and RpoN since we did not observed expression in either mutant. It is of interest to note that <i>qrr1</i> expression was unchanged in both the <i>luxO</i> and <i>rpoN</i> mutants at both ODs compared to wild type, which means this <i>qrr</i> uses an alternative sigma factor for transcription. We demonstrated that Qrr2 sRNA is the only Qrr that can act alone to control QS gene expression, but is not essential under the conditions examined, since a $\Delta qrr2$ mutant behaves like wild type (Fig. S7). Given that <i>qrr2</i> can be transcribed independent of RpoN, this suggests that Qrr2 may have unique functions and/or targets in this species. We propose that <i>V. parahaemolyticus</i> can activate the transcription of <i>qrr2</i> via RpoN or RpoD to timely alter gene expression likely under different growth conditions. Overall our data suggest that the expression of each <i>qrr</i>	338	mutants, it was determined that each Qrr has a different level of strength in repressing
an absolute requirement for LuxO and RpoN since we did not observed expression in either mutant. It is of interest to note that <i>qrr1</i> expression was unchanged in both the <i>luxO</i> and <i>rpoN</i> mutants at both ODs compared to wild type, which means this <i>qrr</i> uses an alternative sigma factor for transcription. We demonstrated that Qrr2 sRNA is the only Qrr that can act alone to control QS gene expression, but is not essential under the conditions examined, since a $\Delta qrr2$ mutant behaves like wild type (Fig. S7). Given that <i>qrr2</i> can be transcribed independent of RpoN, this suggests that Qrr2 may have unique functions and/or targets in this species. We propose that <i>V. parahaemolyticus</i> can activate the transcription of <i>qrr2</i> via RpoN or RpoD to timely alter gene expression likely under different growth conditions. Overall our data suggest that the expression of each <i>qrr</i>	339	luxR translation (28). In <i>V. parahaemolyticus</i> , it appears that expression of $qrr4$ is
either mutant. It is of interest to note that <i>qrr1</i> expression was unchanged in both the <i>luxO</i> and <i>rpoN</i> mutants at both ODs compared to wild type, which means this <i>qrr</i> uses an alternative sigma factor for transcription. We demonstrated that Qrr2 sRNA is the only Qrr that can act alone to control QS gene expression, but is not essential under the conditions examined, since a $\Delta qrr2$ mutant behaves like wild type (Fig. S7). Given that <i>qrr2</i> can be transcribed independent of RpoN, this suggests that Qrr2 may have unique functions and/or targets in this species. We propose that <i>V. parahaemolyticus</i> can activate the transcription of <i>qrr2</i> via RpoN or RpoD to timely alter gene expression likely under different growth conditions. Overall our data suggest that the expression of each <i>qrr</i>	340	restricted to low cell density cells, since we only observed expression at OD 0.1 and has
343 <i>luxO</i> and <i>rpoN</i> mutants at both ODs compared to wild type, which means this <i>qrr</i> uses344an alternative sigma factor for transcription. We demonstrated that Qrr2 sRNA is the345only Qrr that can act alone to control QS gene expression, but is not essential under the346conditions examined, since a $\Delta qrr2$ mutant behaves like wild type (Fig. S7). Given that347 <i>qrr2</i> can be transcribed independent of RpoN, this suggests that Qrr2 may have unique348functions and/or targets in this species. We propose that <i>V. parahaemolyticus</i> can activate349the transcription of <i>qrr2</i> via RpoN or RpoD to timely alter gene expression likely under350different growth conditions. Overall our data suggest that the expression of each <i>qrr</i>	341	an absolute requirement for LuxO and RpoN since we did not observed expression in
an alternative sigma factor for transcription. We demonstrated that Qrr2 sRNA is the only Qrr that can act alone to control QS gene expression, but is not essential under the conditions examined, since a $\Delta qrr2$ mutant behaves like wild type (Fig. S7). Given that <i>qrr2</i> can be transcribed independent of RpoN, this suggests that Qrr2 may have unique functions and/or targets in this species. We propose that <i>V. parahaemolyticus</i> can activate the transcription of <i>qrr2</i> via RpoN or RpoD to timely alter gene expression likely under different growth conditions. Overall our data suggest that the expression of each <i>qrr</i>	342	either mutant. It is of interest to note that <i>qrr1</i> expression was unchanged in both the
only Qrr that can act alone to control QS gene expression, but is not essential under the conditions examined, since a $\Delta qrr2$ mutant behaves like wild type (Fig. S7). Given that <i>qrr2</i> can be transcribed independent of RpoN, this suggests that Qrr2 may have unique functions and/or targets in this species. We propose that <i>V. parahaemolyticus</i> can activate the transcription of <i>qrr2</i> via RpoN or RpoD to timely alter gene expression likely under different growth conditions. Overall our data suggest that the expression of each <i>qrr</i>	343	<i>luxO</i> and <i>rpoN</i> mutants at both ODs compared to wild type, which means this <i>qrr</i> uses
conditions examined, since a $\Delta qrr2$ mutant behaves like wild type (Fig. S7). Given that qrr2 can be transcribed independent of RpoN, this suggests that Qrr2 may have unique functions and/or targets in this species. We propose that <i>V. parahaemolyticus</i> can activate the transcription of qrr2 via RpoN or RpoD to timely alter gene expression likely under different growth conditions. Overall our data suggest that the expression of each qrr	344	an alternative sigma factor for transcription. We demonstrated that Qrr2 sRNA is the
 <i>qrr2</i> can be transcribed independent of RpoN, this suggests that Qrr2 may have unique functions and/or targets in this species. We propose that <i>V. parahaemolyticus</i> can activate the transcription of <i>qrr2</i> via RpoN or RpoD to timely alter gene expression likely under different growth conditions. Overall our data suggest that the expression of each <i>qrr</i> 	345	only Qrr that can act alone to control QS gene expression, but is not essential under the
functions and/or targets in this species. We propose that <i>V. parahaemolyticus</i> can activate the transcription of <i>qrr2</i> via RpoN or RpoD to timely alter gene expression likely under different growth conditions. Overall our data suggest that the expression of each <i>qrr</i>	346	conditions examined, since a $\Delta qrr2$ mutant behaves like wild type (Fig. S7). Given that
 the transcription of <i>qrr2</i> via RpoN or RpoD to timely alter gene expression likely under different growth conditions. Overall our data suggest that the expression of each <i>qrr</i> 	347	qrr2 can be transcribed independent of RpoN, this suggests that Qrr2 may have unique
different growth conditions. Overall our data suggest that the expression of each <i>qrr</i>	348	functions and/or targets in this species. We propose that <i>V. parahaemolyticus</i> can activate
	349	the transcription of <i>qrr</i> 2 via RpoN or RpoD to timely alter gene expression likely under
351 gene is controlled differently, and likely by a different set of regulators.	350	different growth conditions. Overall our data suggest that the expression of each qrr
	351	gene is controlled differently, and likely by a different set of regulators.

352 Materials and Methods:

353	Bacterial strains and media. In this study, the wild type (WT) strain is a streptomycin-
354	resistant clinical isolate of Vibrio parahaemolyticus RIMD2210633 and all strains used are
355	described in Table S1 (70, 71). All V. parahaemolyticus strains were grown in lysogeny
356	broth (LB; Fisher Scientific, Fair Lawn, NJ) supplemented with 3% NaCl (LBS)
357	(weight/volume). E. coli strains were grown in LB 1% NaCl. A diaminopimelic acid
358	(DAP) auxotroph of <i>E. coli</i> β 2155 λ <i>pir</i> was grown with 0.3 mM DAP in LB 1% NaCl. All
359	strains were grown aerobically at 37°C. Antibiotics were used in the following
360	concentrations: chloramphenicol (Cm), 12.5 μ g/mL, streptomycin (Str), 200 μ g/mL; and
361	tetracycline (Tet), 1 μg/mL.
362	Construction of V. parahaemolyticus mutants. We created the double deletion mutants
363	$\Delta rpoN/\Delta luxO$ and $\Delta rpoN/\Delta fis$ using mutant vectors pDS $\Delta luxO$ and pDS Δfis , conjugated
364	into the <i>V. parahaemolyticus</i> $\Delta rpoN$ mutant background. The Δqrr -null mutant was
365	constructed by creating truncated, non-functional copies of each qrr using splicing by
366	overlap extension (SOE) primer design, with primers listed in Table S2. All truncated
367	<i>qrr</i> products were cloned into pDS132 suicide vector, transformed into the <i>E. coli</i> β 2155
368	λpir , followed by conjugation and homologous recombination into the V.
369	parahaemolyticus genome. Positive single-cross over colonies were selected using Cm. To
370	induce a double crossover event, a positive single-cross strain was grown overnight in
371	the absence of Cm, leaving behind either the truncated <i>qrr</i> allele or the wild-type allele

19

372	in the genome. The overnight culture was plated on sucrose plates for selection of
373	normal versus soupy colony morphology, as the colonies still harboring the pDS132 Δqrr
374	vector appear irregular due to the <i>sacB</i> gene. Colonies were screened via PCR for the
375	truncated allele and sequenced to confirm deletion. The qrr null mutant was constructed
376	by deleting qrr genes in the following order: qrr3, qrr2, qrr1, qrr4, qrr5. The quadruple
377	$\Delta qrr3/\Delta qrr2/\Delta qrr4/\Delta qrr5$ mutant was constructed by re-introducing <i>qrr1</i> into the Δqrr -
378	null mutant, and similarly $qrr2$ and $qrr3$ were each separately cloned into the Δqrr -null
379	mutant to create their corresponding quad mutants. The $\Delta qrr3/\Delta qrr2/\Delta qrr1/\Delta qrr5$ mutant
380	was constructed by deleting <i>qrr5</i> in the $\Delta qrr3/\Delta qrr2/\Delta qrr1$ mutant background and
381	$\Delta qrr3/\Delta qrr2/\Delta qrr1/\Delta qrr4$ was constructed by knocking out <i>qrr4</i> in the $\Delta qrr3/\Delta qrr2/\Delta qrr1$
382	background. The $\Delta qrr2$ single mutant was constructed using the pDS $\Delta qrr2$ construct
383	conjugated into the wild type background. The $\Delta rpoN/\Delta qrr2$ mutant was constructed by
384	conjugating the pDS $\Delta qrr2$ vector into the $\Delta rpoN$ background. All mutants were
385	sequenced to confirm deletions or insertions, ensuring in-frame mutant strains.
386	Complementation analysis of QS mutants. To confirm that the phenotypes observed in
387	the QS mutants were not due to secondary mutations within the genome, the $\Delta rpoN$
388	and $\Delta opaR$ strains were complemented with functional copies of the gene. The $opaR$
389	coding region, plus 33-bp upstream to include the ribosomal binding site, were
390	amplified from V. parahaemolyticus RIMD2210633 genome via the Phusion High-Fidelity
391	(HF) polymerase PCR (New England Biolabs). The amplified 670-bp <i>opaR</i> coding region

392	and pBAD33 empty vector (pBADEV) were digested with XbaI and HindIII restriction
393	enzymes prior to ligation and transformation into <i>E. coli</i> β 2155. pBAD <i>opaR</i> was
394	conjugated into $\Delta opaR$ and $\Delta rpoN$ strain. For complementation of the $\Delta rpoN$ strain with
395	a functional copy of <i>rpoN</i> , a similar procedure was followed, however using Gibson
396	assembly. Briefly, a full-length copy of the <i>rpoN</i> gene was PCR amplified and cloned
397	into the expression vector pBAD using Gibson assembly primers, transformed into E.
398	<i>coli</i> , and conjugated into the Δ <i>rpoN</i> strain, designated Δ <i>rpoN</i> p <i>rpoN</i> . Complementation
399	primers can be found in Table S2 .
400	RNA isolation and real-time PCR. Vibrio parahaemolyticus wild type and mutants were
401	grown overnight in LBS. Cells were washed twice with 1x phosphate-buffered saline
402	(PBS) and diluted 1:50 into a fresh 5 mL culture of LBS. Cells were harvested at 0.1 OD
403	and 0.5 OD and pelleted at 4°C. RNA was isolated from 4 mL of culture using the
404	miRNAeasy Mini Kit (Qiagen, Hilden, Germany) and Qiazol lysis reagent. The
405	concentration and purity of RNA was determined using a NanoDrop
406	spectrophotometer (Thermo Scientific, Waltham, MA). RNA was treated with Turbo
407	DNase (Invitrogen) and cDNA was synthesized using Superscript IV reverse
408	transcriptase (Invitrogen) from 500 ng of RNA by priming with random hexamers.
409	cDNA was diluted 1:10 for quantitative real-time PCR (qPCR) run on an Applied
410	Biosystems QuantStudio™ 6 fast real-time PCR system (Applied Biosystems, Foster
411	City, CA) using PowerUp SYBR green master mix (Life Technologies). qPCR primers
	21

g

412	used to amplify <i>opaR</i> , <i>aphA</i> , <i>qrr1</i> , <i>qrr2</i> , <i>qrr3</i> , <i>qrr4</i> , <i>qrr5</i> , and 16S rRNA are listed in Table
413	S2 for reference. Cycle thresholds (C $_T$) values were used to determine expression levels
414	normalized to 16S rRNA levels. Expression was calculated relative to wild-type 16S
415	rRNA using the $\Delta\Delta C_T$ method (72). Efficiency of the qPCR primers used in this study
416	were determined using a standard curve and calculated to be between 90-110% with
417	melting temps between 55-60°C. In WT and at both 0.1 and 0.5 OD, all five <i>qrrs</i> came off
418	between four C _T values of one another. Expression of $qrr4$ was undetermined at 0.5 OD
419	in WT and at 0.1 OD and 0.5 OD in $\Delta luxO$ and $\Delta rproN$ mutants.
420	Transcriptional GFP-reporter assay. The Pqrr2 reporter construct was created using the
421	pRU1064 vector, which contains a promoter-less <i>gfp</i> cassette, as well as Tet and Amp
422	resistance genes (73). Primers, listed in Table S2, were designed using NEBuilder online
423	software to amplify the 337-bp regulatory region of <i>qrr2</i> from <i>V. parahaemolyticus</i>
424	RIMD2210633 genomic DNA. The pRU1064 vector was purified, digested with Spe1,
425	and ligated with the Pqrr2 fragment via Gibson assembly protocol (74). The plasmid
426	was then transformed into β 2155 λ <i>pir</i> and subsequently conjugated into wild-type and
427	$\Delta luxO$, $\Delta rpoN$, and $\Delta rpoN/\Delta fis$ mutants. Cultures were grown overnight in LBS with
428	1µg/mL Tet, washed twice with 1xPBS and then diluted 1:1000 into fresh LBS + Tet and
429	grown for 20 hours at 37°C. Cultures were washed twice with 1xPBS and loaded into a
430	black, clear-bottom 96-well plate. Final OD and GFP relative fluoresces were
431	determined using a Tecan Spark microplate reader with Magellan software with

432	excitation at 385 nm and emission at 509 nm (Tecan Systems, Inc., San Jose, CA). Specific
433	fluorescence was calculated by dividing the relative fluorescence by the final OD. This
434	experiment was performed for three biological replicates.
435	Splicing by overlap extension (SOE) primer design was used to construct a
436	mutated (ATA-10CCC) RpoD promoter. We used the same SOEqrr2A and SOEqrr2D
437	primers used to construct the $\Delta qrr2$ mutant in order to create a mutated $qrr2$ regulatory
438	region. In addition, SOE primers Pqrr2SDMB and Pqrr2SDMC (Table S2) have
439	complementary overlapping sequences that amplify a mutated promoter, indicated in
440	bold. Fragments AB and CD were then used as a template to amplify the AD fragment,
441	containing a mutated RpoD -10 promoter. The AD fragment was then used as the
442	template to create a fragment containing only the <i>qrr</i> 2 regulatory region (337-bp) using
443	Gibson assembly primers Pqrr2SDM_GAfwd and Pqrr2SDM_GArev. This mutated
444	regulatory region was then ligated with SpeI digested pRU1064 using Gibson assembly
445	and confirmed via sequencing.
446	Capsule polysaccharide (CPS) formation assay. Capsule polysaccharide (CPS)
447	formation assays were conducted as previously described (14, 46). In brief, single
448	colonies of wild type and QS mutants were grown on heart infusion (HI) (Remel,
449	Lenexa, KS) plates containing 1.5% agar, 2.5 mM CaCl ₂ , and 0.25% Congo red dye for 48
450	h at 30°C. Each image is an example from three biological replicates. The pBAD33
451	expression vector was used to overexpress <i>opaR</i> in wild type and $\Delta rpoN$ backgrounds as

452	described in the complementation analysis section. pBADopaR and pBADEV were
453	conjugated into $\Delta rpoN$ and $\Delta opaR$ and plated on Congo red plates to observe CPS
454	formation. For strains containing pBAD, 0.1% (wt/vol) L-arabinose and 5 $\mu g/mL$ of Cm
455	were added to the media after autoclaving, to induce and maintain the plasmid,
456	respectively.

Biofilm assay. *Vibrio parahaemolyticus* cultures were grown overnight in LBS at 37°C

with shaking. The overnight cultures were then used to inoculate a 96-well microtiter
plate in a 1:50 dilution with LBS. After static incubation at 37°C for 24 h, the culture
liquid was removed, and the wells were washed with 1xPBS. Crystal violet (Electron
Microscopy Sciences), at 0.1% w/v, was added to the wells and incubated for 30 min at
room temperature. The crystal violet was removed, and wells were washed twice with
1xPBS. The adhered crystal violet was solubilized in DMSO for an optical density
reading at 595nm (OD₅₉₅).

Motility assays. Swimming and swarming assays were performed as previously
described (14, 57). To assess swimming, a pipette tip was used to pick a single colony
and stab into the center of an LB plate containing 2% NaCl and 0.3% agar. Plates were
incubated for 24 h at 37°C. Three biological replicates were performed, and the diameter
of growth was measured for quantification. Swarming assays were conducted on HI
plates containing 2% NaCl and 1.5% agar and incubated at 30°C for 48 h before
imaging.

472	Phylogenetic analysis. The five qrr genes from four species were downloaded from
473	Genbank and aligned using CLUSTALW (75). An evolutionary history was inferred by
474	using the Maximum Likelihood method and Jukes-Cantor model in MEGA X (76, 77). The tree
475	with the highest log likelihood (-467.92) was used. The percentage of trees in which the
476	associated taxa clustered together is shown next to the branches (78). Initial tree(s) for the
477	heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms
478	to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL)
479	approach, and then selecting the topology with superior log likelihood value. A discrete
480	Gamma distribution was used to model evolutionary rate differences among sites (3 categories
481	(+ G , parameter = 0.2492)). The tree is drawn to scale, with branch lengths measured in the
482	number of substitutions per site. This analysis involved 20 nucleotide sequences.
483	DNA-affinity pull-down. A DNA-affinity pull-down was performed using previously
484	described methods, with modifications as needed (79-81). Bait DNA primers were
485	designed to amplify the regulatory region of qrr2 (346-bp) with a biotin moiety added to
486	the 5' end. In addition, a negative control bait DNA (VPA1624 coding region, 342-bp)
487	was amplified. Both bait DNA probes were amplified using Phusion HF polymerase
488	(New England Biolabs) PCR and purified using ethanol extraction techniques (82). A 5
489	mL overnight culture of $\Delta rpoN$ grown in LB 3% NaCl was used to inoculate a fresh 100
490	mL culture of LB 3% NaCl grown at 37°C with aeration. The culture was pelleted at 0.5
491	OD at 4° C for 30 min and stored overnight at 80°C. The cell pellet was suspended in 1.5
492	mL of Fastbreak lysis buffer (Promega, Madison, WI) and sonicated to shear genomic

493	DNA. The $\Delta rpoN$ lysate was pre-cleared with streptavidin DynaBeads (Thermo				
494	Scientific, Waltham, MA) to remove non-specific protein-bead interactions. Beads were				
495	incubated with 200 μL of probe DNA for 20 min, twice. The $\Delta \textit{rpoN}$ lysate and sheared				
496	salmon sperm DNA (10 μ g/mL), as competitive DNA, were incubated with the beads				
497	twice, and washed. Protein candidates were eluted from the bait DNA-bead complex				
498	using elution buffers containing increasing concentrations of NaCl (100mM, 200mM,				
499	300mM, 500mM, 750mM and 1M). 6X SDS was added to samples along with 1mM β -				
500	mercaptoethanol (BME) and then boiled at 95 $^\circ\text{C}$ for 5 min. A total of 25 μL of each				
501	elution was run on 2 stain-free, 12% gels and visualized using the Pierce™ Silver Stain				
502	for Mass Spectrometry kit (Thermo Scientific, Waltham, MA). Pqrr2 bait and negative				
503	control bait were loaded next to each other in order of increasing NaCl concentrations.				
504	Bands present in the Pqrr2 bait lanes, but not in the negative control lanes were selected				
505	and cut from the gel. Each fragment was digested separately with trypsin using				
506	standard procedures and prepared for Mass Spectrophotometry 18C ZipTips (Fisher				
507	Scientific, Fair Lawn, NJ). Candidates were eluted in 10 μ L twice, pooled, and dried				
508	again using SpeedVac. Dried samples were analyzed using the Thermo Q-Exactive				
509	Orbitrap and analyzed using Proteome Discoverer 1.4.				
510	Fis protein purification. Fis was purified using the method previously described (59).				
511	Briefly, primer pair FisFWDpMAL and FisREVpMAL was used to amplify <i>fis</i> (VP2885)				
512	from V. parahaemolyticus RIMD2210633. The fis gene was cloned into the pMAL-c5x				

514	tobacco etch virus (TEV) protease cleavage site. Expression of pMALfis in E. coli BL21
515	(DE3) was induced with 0.5 mM IPTG once the culture reached 0.4 OD_{595} and grown
516	overnight at room temperature. Cells were harvested, suspended in lysis buffer (50 mM
517	NaPO4, 200 mM NaCl, and 20 mM imidazole buffer [pH 7.4]), and lysed using a
518	microfluidizer. The lysed culture was subject to Immobilized Metal Affinity
519	Chromatography (IMAC) using HisPur Ni-NTA resin, followed by additional washing
520	steps. After purification, the MBP tag was cleaved overnight at 4° C with a
521	hexahistidine-tagged Tobacco Etch Virus (TEV) protease in a 1:10 molar ratio. Mass
522	spectrometry was performed to confirm Fis protein molecular weight and SDS-PAGE
523	was conducted to determine its purity along with A260/280 ratio analysis using a
524	NanoDrop.
525	Electrophoretic mobility shift assay for Fis. Purified Fis was used to conduct EMSAs
526	using conditions previously described (55, 59). Briefly, 30 ng of DNA probe was
527	incubated with various concentrations of Fis (0 to 1.94 μM) in binding buffer (10 mM
528	Tris, 150 mM KCL, 0.1 mM dithiothreitol, 0.1 mM EDTA, 5% PEG, pH7.4) for 20 min.
528 529	Tris, 150 mM KCL, 0.1 mM dithiothreitol, 0.1 mM EDTA, 5% PEG, pH7.4) for 20 min. The concentration of Fis was determined using Bradford reagent. A 6% native
529	The concentration of Fis was determined using Bradford reagent. A 6% native
529 530	The concentration of Fis was determined using Bradford reagent. A 6% native polyacrylamide gel was pre-run for 2 h at 4°C (200V) with 1x Tris-acetate-EDTA (TAE)

expression vector fused to a 6X His tag maltose binding protein (MBP) separated by a

9

Acknowledgments
We thank the three anonymous reviewers for their constructive suggestions and
comments. This research was supported by a National Science Foundation grant (award
IOS-1656688) to E.F.B. J.G.T was funded by University of Delaware graduate fellowship
award.

(0.5µg/mL) for 15 min before imaging. Pqrr2 was further divided into a smaller probe to

determine specificity of Fis binding to Pqrr2.

559	1.	Fuqua WC, Winans SC, Greenberg EP. 1994. Quorum sensing in bacteria: the
560		LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol
561		176:269-75.
562	2.	Swift S, Downie J, Whitehead N, Barnard A, Salmond G, P W. 2001. Quorum
563		sensing as a population-density-dependent determinant of bacterial physiology.
564		Adv Microb Physiol 45:199-270.
565	3.	Gray KM, Passador L, Iglewski BH, Greenberg EP. 1994. Interchangeability and
566		specificity of components from the quorum-sensing regulatory systems of Vibrio
567		fischeri and Pseudomonas aeruginosa. J Bacteriol 176:3076-80.
568	4.	Nealson KH, Platt T, Hastings JW. 1970. Cellular control of the synthesis and
569		activity of the bacterial luminescent system1. J Bacteriol 104:313-22.
570	5.	Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL. 2002. Parallel quorum
571		sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110:303-14.
572	6.	Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu Rev Microbiol
573		55:165-99.
574	7.	Bassler BL, Greenberg EP, Stevens AM. 1997. Cross-species induction of
575		luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol
576		179:4043-5.
577	8.	Lilley BN, Bassler BL. 2000. Regulation of quorum sensing in Vibrio harveyi by
578		LuxO and sigma-54. Mol Microbiol 36:940-54.
579	9.	Egland KA, Greenberg EP. 1999. Quorum sensing in Vibrio fischeri: elements of
580		the luxl promoter. Mol Microbiol 31:1197-204.
581	10.	Dunlap PV. 1999. Quorum regulation of luminescence in Vibrio fischeri. J Mol
582		Microbiol Biotechnol 1:5-12.
583	11.	Camara M, Hardman A, Williams P, Milton D. 2002. Quorum sensing in Vibrio
584		cholerae. Nat Genet 32:217-8.
585	12.	Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ. 2002.
586		Quorum-sensing regulators control virulence gene expression in Vibrio cholerae.
587		Proc Natl Acad Sci U S A 99:3129-34.
588	13.	Bassler BL, Wright M, Showalter RE, Silverman MR. 1993. Intercellular signaling
589		in Vibrio harveyi: sequence and function of genes regulating expression of
590		luminescence. Mol Microbiol 4:773-86.
591	14.	Kalburge SS, Carpenter MR, Rozovsky S, Boyd EF. 2017. Quorum sensing
592		regulators are required for metabolic fitness in Vibrio parahaemolyticus. Infect
593		Immun 85:930-16.
594	15.	Kernell Burke A, Guthrie LTC, Modise T, Cormier G, Jensen RV, McCarter LL,
595		Stevens AM. 2015. OpaR controls a network of downstream transcription factors
500		in Ithnia and a constantion PROOD DI aC On a 10

in *Vibrio parahaemolyticus* BB22OP. PLoS One 10.

29

507	16	Zhang V. Oiy, V. Tan V. Cuo, Z. Vang P. Zhay, D. 2012. Transprintional regulation		
597	16.	Zhang Y, Qiu Y, Tan Y, Guo Z, Yang R, Zhou D. 2012. Transcriptional regulation		
598		of opaR, qrr2-4 and aphA by the master quorum-sensing regulator OpaR in		
599	17	<i>Vibrio parahaemolyticus.</i> PLoS One 7:e34622. Trimble ML McCarter LL 2011 Bis (3' 5') cyclic dimeric CMP linked guorum		
600	17.	Trimble MJ, McCarter LL. 2011. Bis-(3'-5')-cyclic dimeric GMP-linked quorum		
601		sensing controls swarming in <i>Vibrio parahaemolyticus</i> . Proc Natl Acad Sci U S A		
602	10	108:18079-84.		
603	18.	Sun F, Zhang Y, Wang L, Yan X, Tan Y, Guo Z, Qiu J, Yang R, Xia P, Zhou D.		
604		2012. molecular characterization of direct target genes and cis-acting consensus		
605		recognized by quorum-sensing regulator AphA in <i>Vibrio parahaemolyticus</i> . PLoS		
606	10	One 7:e44210.		
607	19.	Zhang Y, Zhang L, Hou S, Huang X, Sun F, Gao H. 2016. The master quorum-		
608		sensing regulator OpaR is activated indirectly by H-NS in <i>Vibrio parahaemolyticus</i> .		
609	•	Curr Microbiol 73:71-6.		
610	20.	Enos-Berlage JL, Guvener ZT, Keenan CE, McCarter LL. 2005. Genetic		
611		determinants of biofilm development of opaque and translucent <i>Vibrio</i>		
612		<i>parahaemolyticus</i> . Mol Microbiol 55:1160-82.		
613	21.	Lin B, Wang Z, Malanoski AP, O'Grady EA, Wimpee CF, Vuddhakul V, Alves N,		
614		Jr., Thompson FL, Gomez-Gil B, Vora GJ. 2010. Comparative genomic analyses		
615		identify the Vibrio harveyi genome sequenced strains BAA-1116 and HY01 as		
616		Vibrio campbellii. Environ Microbiol Rep 2:81-89.		
617	22.	Weber B, Lindell K, El Qaidi S, Hjerde E, Willassen N, Milton D. 2011. The		
618		phosphotransferase VanU represses expression of four <i>qrr</i> genes antagonizing		
619		VanO-mediated quorum-sensing regulation in Vibrio anguillarum. Microbiology		
620		157:3324-3339.		
621	23.	Weber B, Croxatto A, Chen C, Milton D. 2008. RpoS induces expression of the		
622		Vibrio anguillarum quorum-sensing regulator VanT. Microbiology 154:767-780.		
623	24.	Waters LS, Storz G. 2009. Regulatory RNAs in Bacteria. Cell 136:615-28.		
624	25.	Storz G, Vogel J, Wassarman KM. 2011. Regulation by small RNAs in bacteria:		
625		expanding frontiers. Mol Cell 43:880-91.		
626	26.	Updegrove T, Zhang A, Storz G. 2016. Hfq: the flexible RNA matchmaker. Curr		
627		Opin Microbiol 30:133-138.		
628	27.	Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL. 2004. The		
629		small RNA chaperone Hfq and multiple small RNAs control quorum sensing in		
630		Vibrio harveyi and Vibrio cholerae. Cell 118:69-82.		
631	28.	Tu KC, Bassler BL. 2007. Multiple small RNAs act additively to integrate sensory		
632		information and control quorum sensing in Vibrio harveyi. Genes Dev 21:221-33.		
633	29.	Tu KC, Long T, Svenningsen SL, Wingreen NS, Bassler BL. 2010. Negative		
634		feedback loops involving small regulatory RNAs precisely control the Vibrio		
635		harveyi quorum-sensing response. Mol Cell 37:567-79.		

636	30.	Lenz DH, Bassler BL. 2007. The small nucleoid protein Fis is involved in <i>Vibrio</i>		
637	01	<i>cholerae</i> quorum sensing. Mol Microbiol 63:859-71.		
638	31.	Papenfort K, Bassler BL. 2016. Quorum sensing signal-response systems in		
639	22	Gram-negative bacteria. Nat Rev Microbiol 14:576-88.		
640	32.	Shao Y, Bassler BL. 2012. Quorum-sensing non-coding small RNAs use unique		
641	22	pairing regions to differentially control mRNA targets. Mol Microbiol 83:599-611.		
642	33.	Svenningsen S. 2018. Small RNA-based regulation of bacterial quorum sensing		
643	24	and biofilm formation. Microbiol Spectr 6.		
644	34.	Lin W, Kovacikova G, Skorupski K. 2007. The quorum sensing regulator HapR		
645		downregulates the expression of the virulence gene transcription factor AphA in		
646		<i>Vibrio cholera</i> e by antagonizing Lrp- and VpsR-mediated activation. Mol		
647	25	Microbiol 64:953-67.		
648	35.	Pompeani AJ, Irgon JJ, Berger MF, Bulyk ML, Wingreen NS, Bassler BL. 2008.		
649		The <i>Vibrio harveyi</i> master quorum-sensing regulator, LuxR, a TetR-type protein is		
650		both an activator and a repressor: DNA recognition and binding specificity at		
651	36.	target promoters. Mol Microbiol 70:76-88.		
652	30.	Rutherford ST, van Kessel JC, Shao Y, Bassler BL. 2011. AphA and LuxR/HapR		
653	27	reciprocally control quorum sensing in Vibrios. Genes Dev 25:397-408. Shao Y, Feng L, Rutherford S, Papenfort K, Bassler B. 2013. Functional		
654	37.	determinants of the quorum-sensing non-coding RNAs and their roles in target		
655 656				
656	20	regulation. EMBO J 32:2158-71. Hunter GA, Keener JP. 2014. Mechanisms underlying the additive and		
657 658	38.	redundant Qrr phenotypes in <i>Vibrio harvey</i> i and <i>Vibrio cholerae</i> . J Theor Biol		
		340:38-49.		
659 660	39.	Joseph S, Colwell R, Kaper J. 1982. <i>Vibrio parahaemolyticus</i> and related halophilic		
660	39.	Vibrios. Crit Rev Microbiol 10:77-124.		
661 662	40.	Colwell R, Kaper J, Joseph S. 1977. Vibrio cholerae, Vibrio parahaemolyticus, and		
	40.	other Vibrios: occurrence and distribution in Chesapeake Bay. Science 198:394-6.		
663 664	41.	Thompson F, Iida T, Swings J. 2004. Biodiversity of Vibrios. Microbiol Mol Biol		
665	41.	Rev 68:403-31.		
666	42.	Nair GB, Ramamurthy T, Bhattacharya SK, Dutta B, Takeda Y, Sack DA. 2007.		
667	72.	Global dissemination of <i>Vibrio parahaemolyticus</i> serotype O3:K6 and its		
668		serovariants. Clin Microbiol Rev 20:39-48.		
669	43.	O'Boyle N, Boyd A. 2014. Manipulation of intestinal epithelial cell function by		
670	10.	the cell contact-dependent type III secretion systems of <i>Vibrio parahaemolyticus</i> .		
671		Front Cell Infect Microbiol 3.		
672	44.	Allison C, Hughes C. 1991. Bacterial swarming: an example of prokaryotic		
673	чΤ.	differentiation and multicellular behaviour. Sci Prog 75:403-22.		
674	45.	McCarter LL. 1998. OpaR, a homolog of <i>Vibrio harveyi</i> LuxR, controls opacity of		
675	10.	Vibrio parahaemolyticus, p 3166-73, J Bacteriol, vol 180.		
575		$(i) = p_{i}(i) + p_{$		

676	46.	Güvener Z, McCarter L. 2003. Multiple regulators control capsular			
677		polysaccharide production in <i>Vibrio parahaemolyticus</i> . J Bacteriol 185:5431-41.			
678	47.	Zhang Y, Qiu Y, Gao H, Sun J, Li X, Zhang M, Xue X, Yang W, Ni B, Hu L, Yin Z			
679		Lu R, Zhou D. 2021. OpaR controls the metabolism of c-di-GMP in Vibrio			
680		parahaemolyticus. Front Microbiol 12:676436.			
681	48.	Zhong X, Lu R, Liu F, Ye J, Zhao J, Wang F, Yang M. 2021. Identification of LuxR			
682		family regulators that integrate into quorum sensing circuit in Vibrio			
683		parahaemolyticus. Front Microbiol 12:691842.			
684	49.	Yildiz FH, Visick KL. 2009. Vibrio biofilms: so much the same yet so different.			
685		Trends Microbiol 17:109-18.			
686	50.	Lee KJ, Kim JA, Hwang W, Park SJ, Lee KH. 2013. Role of capsular			
687		polysaccharide (CPS) in biofilm formation and regulation of CPS production by			
688		quorum-sensing in Vibrio vulnificus. Mol Microbiol 90:841-57.			
689	51.	Lee KJ, Jung YC, Park SJ, Lee KH. 2018. Role of heat shock proteases in quorum-			
690		sensing-mediated regulation of biofilm formation by Vibrio species. mBio 9.			
691	52.	Joseph LA, Wright AC. 2004. Expression of Vibrio vulnificus capsular			
692		polysaccharide inhibits biofilm formation. J Bacteriol 186:889-93.			
693	53.	Gode-Potratz CJ, McCarter LL. 2011. Quorum sensing and silencing in <i>Vibrio</i>			
694		parahaemolyticus. J Bacteriol 193:4224-37.			
695	54.	Jaques S, McCarter L. 2006. Three new regulators of swarming in <i>Vibrio</i>			
696		parahaemolyticus. J Bacteriol 188:2625-35.			
697	55.	Gregory GJ, Morreale DP, Carpenter MR, Kalburge SS, Boyd EF. 2019. Quorum			
698		sensing regulators AphA and OpaR control expression of the operon responsible			
699		for biosynthesis of the compatible solute ectoine. Appl Environ Microbiol			
700		85:1543-19.			
701	56.	Gregory GJ, Morreale DP, Boyd EF. 2020. CosR is a global regulator of the			
702		osmotic stress response with widespread distribution among bacteria. Appl			
703		Environ Microbiol 86:120-20.			
704	57.	Whitaker WB, Richards GP, Boyd EF. 2014. Loss of sigma factor RpoN increases			
705		intestinal colonization of Vibrio parahaemolyticus in an adult mouse model. Infect			
706		Immun 82:544-56.			
707	58.	Eickhoff M, Fei C, Huang X, Bassler B. 2021. LuxT controls specific quorum-			
708		sensing-regulated behaviors in Vibrionaceae spp. via repression of <i>qrr1</i> , encoding			
709		a small regulatory RNA. PLoS Genet 17:e1009336.			
710	59.	Tague JG, Regmi A, Gregory GJ, Boyd EF 2021. Fis connects two sensory			
711		pathways, quorum sensing and surface sensing, to control motility in Vibrio			
712		parahaemolyticus. Front Microbiol.			
713	60.	Schaefer J, Engl C, Zhang N, Lawton E, Buck M. 2015. Genome wide interactions			
714		of wild-type and activator bypass forms of σ 54. Nucleic Acids Res 43:7280-91.			

715	61.	Zafar MA, Carabetta VJ, Mandel MJ, Silhavy TJ. 2014. Transcriptional occlusion	
716		caused by overlapping promoters. Proc Natl Acad Sci U S A 111:1557-61.	
717	62.	Reichenbach B, Göpel Y, Görke B. 2009. Dual control by perfectly overlapping	
718		sigma 54- and sigma 70- promoters adjusts small RNA GlmY expression to	
719		different environmental signals. Mol Microbiol 74:1054-70.	
720	63.	Campbell EA, Kamath S, Rajashankar KR, Wu M, Darst SA. 2017. Crystal	
721		structure of Aquifex aeolicus $\sigma(N)$ bound to promoter DNA and the structure of	
722		σ (N)-holoenzyme. Proc Natl Acad Sci U S A 114:E1805-e1814.	
723	64.	Buck M, Cannon W. 1992. Specific binding of the transcription factor sigma-54 to	
724		promoter DNA. Nature 358:422-4.	
725	65.	Keane OM, Dorman CJ. 2003. The gyr genes of Salmonella enterica serovar	
726		Typhimurium are repressed by the factor for inversion stimulation, Fis. Mol	
727		Genet Genomics 270:56-65.	
728	66.	Browning DF, Grainger DC, Beatty CM, Wolfe AJ, Cole JA, Busby SJ. 2005.	
729		Integration of three signals at the <i>Escherichia coli nrf</i> promoter: a role for Fis	
730		protein in catabolite repression. Mol Microbiol 57:496-510.	
731	67.	Kelly A, Goldberg MD, Carroll RK, Danino V, Hinton JCD, Dorman CJ. 2004. A	
732	07.	global role for Fis in the transcriptional control of metabolism and type III	
		secretion in <i>Salmonella enterica</i> serovar Typhimurium. Microbiol 150:2037-2053.	
733	(0		
734	68.	Grainger DC, Hurd D, Goldberg MD, Busby SJ. 2006. Association of nucleoid	
735		proteins with coding and non-coding segments of the <i>Escherichia coli</i> genome.	
736	(0)	Nucleic Acids Res 34:4642-52.	
737	69.	Wang Q, Liu Q, Ma Y, Rui H, Zhang Y. 2007. LuxO controls extracellular	
738		protease, haemolytic activities and siderophore production in fish pathogen	
739		Vibrio alginolyticus. J Appl Microbiol 103:1525-34.	
740	70.	Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y,	
741		Najima M, Nakano M, Yamashita A, Kubota Y, Kimura S, Yasunaga T, Honda T,	
742		Shinagawa H, Hattori M, Iida T. 2003. Genome sequence of Vibrio	
743		parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet	
744		361:743-9.	
745	71.	Whitaker WB, Parent MA, Naughton LM, Richards GP, Blumerman SL, Boyd EF.	
746		2010. Modulation of responses of Vibrio parahaemolyticus O3:K6 to pH and	
747		temperature stresses by growth at different salt concentrations. Appl Environ	
748		Microbiol 76:4720-9.	
749	72.	Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using	
750		real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-	
751		8.	
752	73.	Karunakaran R, Mauchline TH, Hosie AH, Poole PS. 2005. A family of promoter	
753		probe vectors incorporating autofluorescent and chromogenic reporter proteins	
754		for studying gene expression in Gram-negative bacteria. Microbiol 151:3249-56.	
, , , ,		101 Studying gene expression in Grain negative bacteria, microbiol 101.0247-00.	

755	74.	Gibson DG. 2011. Enzymatic assembly of overlapping DNA fragments. Methods
756		Enzymol 498:349-61.
757	75.	Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson
758		JD. 2003. Multiple sequence alignment with the Clustal series of programs.
759		Nucleic Acids Res 31:3497-500.
760	76.	Jukes TH, Cantor CR. 1969. Evolution of Protein Molecules, p 21-132,
761		Mammalian Protein Metabolism.
762	77.	Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular
763		evolutionary genetics analysis across computing platforms. Molecular biology
764		and evolution 35:1547-1549.
765	78.	Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the
766		bootstrap. Evolution; international journal of organic evolution 39:1558-5646.
767	79.	Chaparian RR, Tran MLN, Conrad LCM, Rusch DB, Kessel JCv. 2019. Global H-
768		NS counter-silencing by LuxR activates quorum sensing gene expression.
769		Nucleic Acids Res 48:171-83.
770	80.	Chaparian RR, Olney SG, Hustmyer CM, Rowe-Magnus DA, van Kessel JC. 2016.
771		Integration host factor and LuxR synergistically bind DNA to coactivate quorum-
772		sensing genes in Vibrio harveyi. Mol Microbiol 101:823-40.
773	81.	Jutras BL, Verma A, Stevenson B. 2012. Identification of novel DNA-binding
774		proteins using DNA-affinity chromatography/pull down. Curr Protoc Microbiol
775		Chapter 1:Unit1F.1.
776	82.	Chaparian RR, van Kessel JC. 2021. Promoter Pull-Down Assay: A Biochemical
777		Screen for DNA-Binding Proteins. Methods Mol Biol 2346:165-172.

779

780

9

781 Figure legends

782

783 Figure 1. Vibrio parahaemolyticus quorum sensing pathway. Autoinducers (AIs) are 784 synthesizes internally by three synthases and then excreted outside the cell. At low cell 785 density, three histidine-kinase receptors are free of AIs, therefore act as kinases, phosphorylating LuxU and ultimately LuxO. LuxO-P activates RpoN and, along with 786 787 Fis positively regulates transcription of five small quorum regulatory RNAs (Qrr 788 sRNAs). The Qrr sRNAs, along with Hfq, stabilize *aphA* transcripts and destabilize *opaR* 789 transcripts. In addition, AphA is a negative regulator of *opaR* expression. At high cell 790 density, LuxO is unphosphorylated and inactivate, no *qrrs* are transcribed, *opaR* is 791 expressed and *aphA* is repressed. OpaR positively regulates capsule polysaccharide 792 production (CPS), biofilm formation, type 6 secretion system-1, and the type IV pilin 793 MSHA, among other genes. OpaR negatively regulates swarming motility, surface 794 sensing and two contact dependent secretion systems T3SS-1 and T6SS-1. 795 Figure 2. Quorum sensing phenotypes. A. Wild type (WT) and QS mutant strains 796 production of capsule polysaccharide (CPS) and colony morphology on Congo red 797 plates. B. Biofilm assay from cultures grown for 24 h, stagnant and stained with crystal 798 violet. Images are representatives from three bio-reps. Biofilm quantification of three 799 bio-reps in duplicate. Statistics calculated using a Student's t-test. ***, P-value <0.001 800 Figure 3. Quantitative real time PCR expression analysis of cells grown to 0.1 (A, C) or 801 0.5 OD (**B**, **D**) in LB media supplemented with 3% NaCl. Bars represent the expression 802 of *opaR* and *aphA* in $\Delta luxO$ and $\Delta rpoN$ mutants normalized to the expression of 16S 803 rRNA housekeeping gene, relative to expression in wild type. Means and standard 804 error of at least two biological replicates shown. Statistics calculated using a Student's t-805 test. *, P-value < 0.05; **, P-value < 0.01. 806 Figure 4. Quantitative real time PCR (qPCR) analysis of cells grown to OD 0.1 (A, C) or OD 0.5 (**B**, **D**) in LB media supplemented with 3% NaCl. Expression of *qrr1* to *qrr5* in 807 808 the $\Delta luxO$ and $\Delta rpoN$ mutants, relative to wild type RIMD2210633 and normalized to 809 16S rRNA housekeeping gene, relative to wild type expression of each gene. Expression 810 of qrr4 not detected in mutant strains. Means and standard error of at least two biological replicates shown. Statistics calculated using a Student's t-test. *, P-value <0.05; 811

812 **, P-value <0.01; ***, P-value <0.001.

Figure 5. Expression analysis of *qrr2*. **A.** P*qrr2*-gfp reporter assay of *qrr2* in $\Delta luxO$ and

- 814 $\Delta rpoN$ mutants. **B**. PopaR-gfp reporter assays in a single qrr2 deletion mutant and a
- quadruple mutant with only *qrr2* present. Cultures grown for 20 h in LB 3% NaCl.
- 816 Means and standard error of at least three biological replicates shown. Statistics
- 817 calculated using a one-way ANOVA and Tukey-Kramer *post-hoc* test. **, P-value < 0.01

ല്

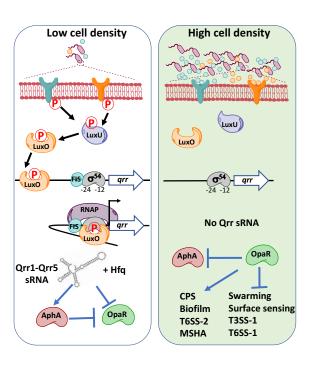
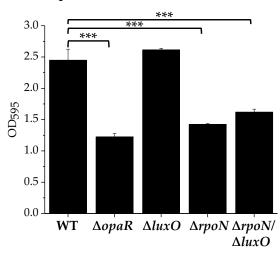
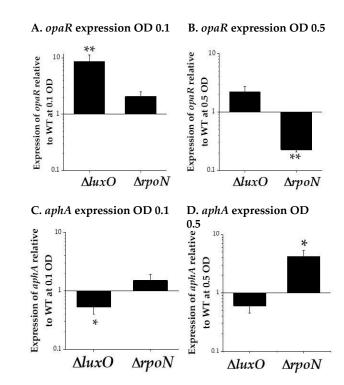

Figure 6. grr2 promoter analysis. A. Analysis of grr2 regulatory region indicates 818 819 overlapping sigma-54 and sigma-70 promoters. **B.** Pqrr2 GFP reporter assay of qrr2 in ΔrpoN relative to wild type and mutated putative -10 RpoD binding site are indicated 820 by asterisks. Means and standard error of three biological replicates shown. Statistics 821 822 calculated using a one-way ANOVA and Tukey-Kramer post-hoc test. ***, P-value <0.001 823 Figure 7. Phylogenetic tree of the qrr genes from V. harveyi ATCC 33843, V. campbellii 824 ATCC BAA-1116 (formerly V. harveyi), V. parahaemolyticus RIMD2210633 and V. *alginolyticus* FDAARGOS_114. The numbers along the branches indicate bootstrap 825 826 values. The tree is drawn to scale, with branch lengths measured in the number of 827 substitutions per site. This analysis involved 20 nucleotide sequences. 828 **Figure 8.** Phenotypes of *qrr* deletion mutants. **A.** Swarming assay conducted on heart-829 infusion media incubated at 30°C for 48 hrs. B. Swimming motility assay conduced on semi-solid agar plates grown at 37°C for 24 hrs. Swimming plate quantification of three 830 831 biological replicates. Statistics calculated using Student's t-test relative to Wild-type. ***, 832 P-value <0.001. C. CPS assays conducted of strains of interest. Colonies grown on Congo red plates for 48 hrs at 30°C prior to imaging. 833 834 835

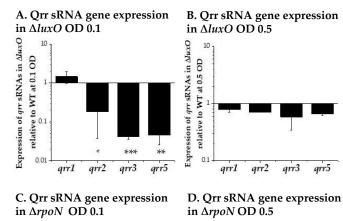
Figure 9. Fis binding in the qrr2 regulatory region. A. Regulatory region of qrr2 depicted. Lines represent EMSA probes and blue triangles represent putative Fis binding sites using Virtual Footprint prediction software. Numbers indicate Fis binding 836 837 site distance from qrr2 transcriptional start site. **B.** Electrophoretic mobility shift assays 838 of Pqrr2 with purified Fis protein using three qrr2 regulatory region DNA probes C. 839 pRUPqrr2 reporter assays in $\Delta rpoN$ and $\Delta rpoN/\Delta fis$ deletion mutants relative to WT. 840 Cultures grown for 20 h in LB 3% NaCl. Means and standard error of at least three 841 biological replicates shown. Statistics calculated using a one-way ANOVA and Tukey-Kramer post-hoc test. ***, P-value <0.001. 842 843 **Figure 10.** Model for *qrr2* transcription in the $\Delta luxO$ and $\Delta rpoN$ mutants. In the $\Delta luxO$ 844 mutant, under certain conditions RpoN will be bound to the *qrr2* RpoN -24 -12 845 promoter region. RpoN bound at the promoter will be aided by Fis. This will prevent 846 sigma-70 from binding. In the absence of RpoN (sigma-54), RpoD (sigma-70) can bind to 847 the -35 -10 promoter region to initiate transcription. In the absence of Fis in the $\Delta rpoN$ 848 mutant transcription by RpoD is increased further as in the $\Delta rpoN/\Delta fis$ mutant, which 849 suggests Fis may block RpoD binding in exponential phase cells. 850 851

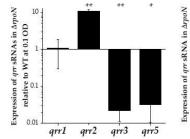
36

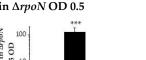
ഫ

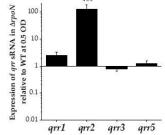

Journal of Bacteriology

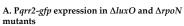


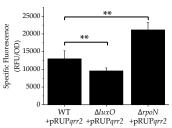



A. CPS production and colony morphology in QS mutants


B. Biofilm quantification of QS mutants

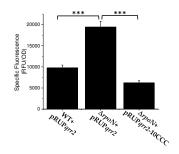


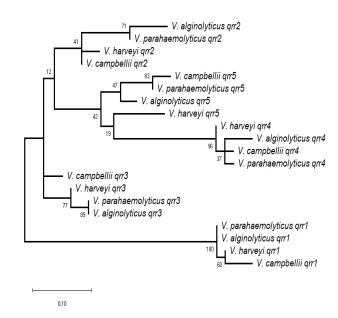


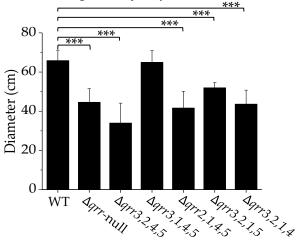


grr3

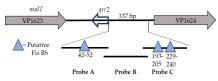
qrr5

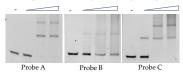

B. PopaR-gfp expression in $\Delta qrr2$ mutant and quadruple $\Delta qrr1,3,4,5$ mutant



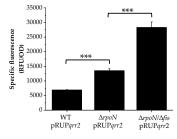


A. Swarming motility in *qrr* deletion mutants


B. Swimming motility in *qrr* deletion mutants


C. Capsule polysaccharide production among *qrr* deletion mutants

wild-type	ΔopaR	Δqrr-null	Δqrr3,1,4,5
Δqrr3,2,4,5	∆qrr2,1,4,5	Δqrr3,2,1,5	<i>qrr</i> 2 only Δ qrr3,2,1,4
<i>qrr1</i> only	qrr3 only	qrr4 only	<i>qrr5</i> only


A. Fis binding sites present in qrr2 regulatory region

B. Electrophoretic mobility shift assays of Pqrr2

C. RpoN and Fis repress qrr2 transcription

Wild-type Qrr2 sRNA RNAP LuxO ∟ FIS activation ∆lux0 σ70 σ54 qrr2 Qrr2 sRNA ∆*rpoN* RNAP σ70 qrr2 Qrr2 sRNA ∆rpoN/∆fis RNAP **T**

Journal of Bacteriology