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ABSTRACT: We demonstrate nonadiabatic Thouless pumping of
electrons in trans-polyacetylene in the framework of Floquet
engineering using first-principles theory. We identify the regimes in
which the quantized pump is operative with respect to the driving
electric field for a time-dependent Hamiltonian. By employing the
time-dependent maximally localized Wannier functions in real-time
time-dependent density functional theory simulation, we connect
the winding number, a topological invariant, to a molecular-level
understanding of the quantized pumping. While the pumping
dynamics constitutes the opposing movement of the Wannier
functions that represent both double and single bonds, the
resulting current is unidirectional due to the greater number of
double-bond electrons. Using a gauge-invariant formulation called
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dynamical transition orbitals, an alternative viewpoint on the nonequilibrium dynamics is obtained in terms of the particle-hole
excitation. A single time-dependent transition orbital is found to be largely responsible for the observed quantized pumping. In this
representation, the pumping dynamics manifests itself in the dynamics of this single orbital as it undergoes changes from its &

bonding orbital character at equilibrium to acquiring resonance

and antibonding character in the driving cycle. The work

demonstrates the Floquet engineering of the nonadiabatic topological state in an extended molecular system, paving the way for

experimental realization of the new quantum material phase.

he quantized topological pumping phenomenon was first

proposed by Thouless' in 1983 and is now widely
referred to as Thouless pumping. Thouless’s seminal work on
the quantized particle transport in a slow varying potential
showed that the quantization of the number of pumped
particles derives from the topology of the underlying quantum-
mechanical Hamiltonian, given by a Chern number. In recent
years, Thouless pumping has been demonstrated experimen-
tally in various systems™’ including an ultracold Fermi gas* and
ultracold atoms in an optical lattice.” Most theoretical studies
have employed model Hamiltonians®™"" such as the Rice—
Mele model,'” and the description of topological pumping had
assumed a complete adiabaticity of the Hamiltonian evolution.
More recent work has begun to study the nonadiabatic effect in
Thouless pumping.>™"> In addition to studying the non-
adiabatic effect on the otherwise adiabatic Thouless pump,
nonadiabatic variance of Thouless pump has been proposed
through setting up a periodically driven system. The idea of
this so-called topological Floquet engineering is to use a time-
periodic field to induce the topological properties in a driven
system that is otherwise a trivial insulator.'®'” In a Floquet
system, the time-dependent Hamiltonian satisfies H(t + T) =
I:I(t) and the time-independent effective Hamiltonian can be
defined from the evolution operator over one periodic T such
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that I:Ieff(k) =iT"! ln{‘f~ exp[—ifOT dtA(k, t)] } The term

Floquet band engineering is often used to describe a
theoretical approach that changes the topological properties
of a system through the energy spectrum of the effective
Hamiltonian. As discussed in the recent review by Rudner and
Lindner,” for example, the topological Floquet band engineer-
ing aims to induce the nontrivial insulator phase by the use of a
periodic driving field, whereas the system is in the trivial
insulator phase without such a driving field. Nonequilibrium
topological phenomena thus can be induced by applying time-
periodic fields to the Hamiltonian. Nakagawa et al. studied
different types of Floquet topological states for the periodically
driven system in the nonadiabatic regime, and a nonadiabatic
Thouless pump falls under the gapless Floquet topological
state of Class A in one dimension.'® The winding number is
equal to the integrated particle current over the periodic time
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T. The topological invariant is given in terms of the energy
spectrum of the effective Floquet Hamiltonian, ¢; (quasie-
nergy'”), or equivalently in terms of the geometric phase

Occ. Occ.
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where the nonadiabatic Aharonov—Anandan geometric
phase of the Floquet states ®,(kjt) is

O¢, (k)
(1)
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Building on the work by Kitagawa et al,”' Nakagawa et al.
showed that the winding number is also expressed as

Occ.
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where U(k) is the Floquet operator (i.e., Uk) =T exp[— /Tdt
H(k,t)])."® This can be equivalently expressed in terms of the
more familiar time-dependent Berry phase,
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where u,(k,t) is the periodic part of the single-particle Bloch
wave functions for an extended periodic system. Note that the
Flo?uet state @,(kt) and ukt) are related by lu(kt)) =
~e,(k,t)). For Floquet topological states of a periodically
driven system, the winding number is a nonzero integer, and
the winding number can also be expressed, analogously to the
static Chern insulator, as

Occ.

dt/ deF(k £)

where C is the first Chern number of the Floquet states and the
generalized Berry curvature is given by F,(kt)
i[O (k)0 (kt)) — (Ou(k,t)1du;(k,t) >]-22 The Berry
phase formulation is directly connected to the time-dependent
Wannier functions, and the winding number can be interpreted
as the number of the geometric centers of the Wannier
functions (i.e., Wannier centers) pumped over one driving
cycle in the Thouless pumping.'®*® Note that the Wannier
functions can be defined equivalently in terms of either u,(k,t)
or Floquet states @,(kt) because they are related by a phase
factor. Wannier centers have already been used in the literature
for characterizing topological insulators in the adiabatic
description.””® In the recent work by Yost et al,** we
introduced the nonadiabatic dynamics of maximally localized
Wannier functions”® in real-time time-dependent density
functional theory (RT-TDDFT), and its application to
studying Thouless topological charge pumping was briefly
discussed. The winding number can be conveniently expressed
in terms of the time-dependent maximally localized Wannier
functions (MLWFs), w,(r,t), as

W=

(s)
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due to the Blount identity (w(t)Flw(t))

ifBde(ui(k, t)lidlu,(k, t)), the position operator here is

defined according to the formula given by Resta for the
extended periodic systems.”” In this work, we study whether
nonadiabatic Thouless pumping, a Floquet topological state,
can be observed for electrons in a real molecular system. We
demonstrate the nonadiabatic Thouless pumping of electrons
in a trans-polyacetylene polymer, using time-dependent first-
principles electronic structure theory. Trans-polyacetylene
represents a chemical exemplification of the classic Su-
Schrieffer-Heeger (SSH) model which is widely used to
study the transition between topological insulator and normal/
trivial insulator phases by artificially changing the empirical
hopping parameters between the single and double C—C
bonds in this Peierls distorted system.”® The two distinct
carbon atom sites from the Peierls instability give rise to the
chiral (i.e., sublattice) symmetry in the Hamiltonian.

We apply a time-dependent electric field as the driving field
with a specific period (i.e., frequency) along the polymer
direction. The electron current is directly obtained from the
flux of the geometric centers of the time-dependent MLWFs.
Computational details are given in the Computational
Methods section. In the context of Floquet theory, the initial
state must return to the same Hilbert subspace of the Floquet
operator after a driving period. This is not the adiabatic
evolution condition, and particle-hole excitations are still
allowed in this formulation as discussed by Nakagawa et al."®
This aspect is also relevant for discussing the applicability of
the Floquet theory to time-dependent density functional
theory (TDDFT).””~** The Kohn—Sham Hamiltonian
depends on the time-dependent electron density even when
the adiabatic approximation is adapted for the exchange-
correlation potential and the dependence on the initial state is
consequently neglected.””** Therefore, the Hamiltonian is
time-periodic (i.e., Floquet theory is applicable) only if the
original electron density is recovered after each driving cycle is
completed. We can quantify the extent to which the Floquet
theorem is satisfied by calculating the determinant of the
overlap matrix, S, between the initial time-dependent Kohn—
Sham (TD-KS) orbitals and those after one driving cycle has
passed as shown in Figure 1. Dark shaded areas with values
close to one satisfy this condition and the Floquet theory is
applicable, and the integrated current over one driving cycle is
equal to the winding number.

In the low frequency regime (e.g., T = 1000 au) toward the
adiabatic evolution limit (Figure 2), particle-hole excitations
are not possible, given the much larger energy gap of 2.02 eV,
which corresponds to the electric field with T = 84.6 au. Below
a certain electric field amplitude (~4 X 107 au), the overlap
matrix determinant is essentially one, indicating the original
electron density is recovered after one driving cycle as seen in
Figure 2. However, this is solely because the electron current is
absent. At the same time, when the field amplitude exceeds the
threshold, Zener tunneling is possible in the extended systems;
it causes the electrical breakdown, resulting in a very large
current (Figure 2). The electron density, however, does not
return to its initial state after one driving cycle, and the overlap
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Figure 1. Determinant of the overlap matrix, S, between the initial
and final TD-KS states in a single driving cycle as a function of the
driving field period and amplitude, sampled at uniform intervals of 25
au and 0.5 X 107 au, respectively.
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Figure 2. Determinant of the overlap matrix between the initial and
final TD-KS states after a single driving cycle (left) and the integrated
current per one C—C monomer unit (right) for the driving field
period of T = 1000 au as a function of the driving field amplitude.

matrix determinant is therefore not close to one (see Figure 1).
The Zener tunneling is observed above the threshold field
amplitude but not the topological pump.

For various combinations of the period (50—400 au) and
amplitude (2—7 X 107 au) of the driving field, Figure 3 (left)
shows the integrated electron current per C—C monomer unit
over one driving cycle. In order for the integrated current over
one driving cycle to be identified as the winding number, the
Floquet condition must be satisfied such that the overlap
matrix determinant is unity. Figures 1 and 3 show that the
Floquet topological state is obtained for some combinations of
the driving field period and amplitude. First, the overlap matrix
determinant must be one so that the time-dependent electron
density returns to its original state after one driving period.
This is a necessary condition for the winding number
formulation as the Floquet theorem is applied to TDDFT
because the Hamiltonian depends on the electron density. At
the same time, the winding number itself must be a nonzero
value for the Floquet topological state. As indicated by the
enclosed squares in Figure 3 (right), certain combinations of
the period and amplitude yield the required features of the
Floquet topological state. Since the overlap matrix determinant
is never exactly one in numerical simulations, we indicate the
areas that show the overlap matrix determinant value of >0.96
with a non-negligible electron current. For the Floquet
topological state indicated by these enclosed squares, the
integrated current per driving cycle is given by the winding
number and an integer value is expected. While the numerical
simulation does not give exactly an integer number here, the
computed values show a discrete quantization expected for the
integrated current, effectively yielding the winding number of
one, two, or three in the areas where the Floquet condition is
satisfied.

Having a Floquet topological state identified for this real
molecular system with certain driving periods and amplitudes,
we now study the nature of the electron current in the Floquet
topological state. While the winding number is the physical
observable here, orbital analysis of the simulation enables us to
gain chemical insi§hts into the dynamics of the nonadiabatic
topological pump.” As discussed by Nakagawa et al,'® the
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Figure 3. (Left) Integrated current over one driving cycle per C—C monomer unit, as a function of the driving field period and amplitude, sampled
at uniform intervals of 25 au and 0.5 X 107 au, respectively. (Right) The integrated current values are shown, and the areas with the overlap matrix
determinant close to one are indicated by three colored squared boxes: Det(S) > 0.99 (red), >0.98 (orange), and >0.96 (yellow). See also Figure
1. We also provide the figure in the units of femtosecond (period) and of V/m (amplitude) in the Supporting Information.
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Figure 4. Wannier dynamics observed for the winding number of one (W = 1) with the driving field period of 150 au and the field amplitude of 4 X
1073 au. (a) Snapshots of the geometric centers of the MLWFs (Wannier centers) at different instances of time in a single driving cycle. (b)
Electron density isosurface of the MLWFs that correspond to the double and single C—C bonds as well as for the C—H bonds. (c) The movement

of the Wannier centers are shown as points.
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Figure 5. Wannier dynamics observed for the winding numbers two (W = 2) and three (W = 3) with the driving field period of 250 au and the field
amplitudes of 3.5 X 1072 au for W = 2 (left) and 4 X 107> au for W = 3 (right). (a) Movement of the Wannier centers shown as points for the
double (shown in red) and single (shown in green) C—C bonds. (b) Time derivative of the Wannier center displacements for W = 1, 2, and 3.

winding number can be interpreted as the number of the
Wannier centers pumped over one driving cycle in the
Thouless pumping. As can be seen in Figure 4, individual
monomer units show two and one MLWF for the double and
single C—C bonds, respectively. Each MLWF represents two
electrons of the opposite spins. In the equilibrium ground
state, the Wannier function spreads for the double and single
C—C bonds are 2.32 and 1.78 au? respectively. The time-
dependent MLWFs remain highly localized; the mean double-
bond Wannier spreads are 2.3—3.4 au?, and the single-bond
Wannier spreads are 1.7—1.9 au’, depending on the field
amplitude and period (see the Supporting Information). Let us
now discuss the pumping behavior for the winding number of
one, W = 1. As a representative case, we analyze the particular
condition with the field period = 150 au and amplitude = 4 X
107 au, which gives the integrated current of 0.97e
numerically (per driving cycle per C—C monomer unit). The
time-dependent MWLFs remain highly localized during the

4499

nonequilibrium dynamics; the average spread values of the
double- and single-bond MLWFs do not increase above 3.0
and 1.9 au’, respectively. Figure 4 shows time-dependent
changes of the Wannier centers over one period. The MLWFs
that correspond to C—H bonds remain essentially unchanged.
All the Wannier centers remain oscillating back and forth when
the electron current is absent (see the Supporting Informa-
tion). While both of the two double-bond Wannier centers
move in one direction, the single-bond Wannier centers move
in the opposite direction, resulting in the overall directional
transport with the winding number of one. At the same time,
the MLWEF dynamics do not yield a conceptually simple
description of C—C bond electrons being pumped in one
direction as in the SSH model. There are instances at which all
MLWEFEs localize in the vicinity of a carbon atom as seen at t =
3/8T in Figure 4a.

The driving field period = 250 au with the amplitude = 3.5 X
107 au yields the winding number of two (W = 2, 1.99

https://doi.org/10.1021/acs.jpclett.1c01037
J. Phys. Chem. Lett. 2021, 12, 4496—4503
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Figure 6. Time-dependent particle population, b,(t)? in eqs 7 and 8, in the natural transition orbitals with the three most significant contributions
for W =1 (period = 150 au, amplitude = 4 X 107> au), W = 2 (period = 250 au, amplitude = 3.5 X 107 au), and W = 3 (period = 250 au,
amplitude = 4 X 107> au) cases.
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Figure 7. Isosurface of the time-dependent natural transition orbital with the most significant change (see Figure 6) for the W =1 (period = 150 au,
amplitude = 4 X 107> au), W = 2 (period = 250 au, amplitude = 3.5 X 107> au), and W = 3 (period = 250 au, amplitude = 4 X 10~* au) cases. The
videos of this dynamical change are provided in the Supporting Information for convenience.

numerically), and the winding number of three (W = 3, 2.98 numbers larger than one, W > 1, do not imply a simple
numerically) is obtained with the driving field period = 250 au repetition of the W = 1 pumping over the C—C monomer
and amplitude = 4 X 107> au. The corresponding Wannier units by an integer number of times, given by the winding
center movement shows that they are pumped over a multiple number (e.g, two and three here). This point is further
number of C—C monomer units, given by the winding number evidenced in the following by studying the pumping dynamics
(see Figure Sa). The MLWF dynamics still uphold the in terms of the particle-hole excitation.

molecular description such that only single and double bonds While the winding number formulation through the
are formed alternatively on the C—C units while the winding Wannier function is intuitive due to having the localized
number itself does not mathematically impose such a physical description of electrons, an alternative viewpoint of this
condition (see the Supporting Information). As can be seen in nonadiabatic Thouless pump can be developed by studying the
Figure Sa, the Wannier center movement shows a behavior nonequilibrium dynamics in terms of the particle-hole

excitation dynamics. In the recently introduced dynamical
transition orbital (DTO) approach, the RT-TDDFT simu-
lation is framed 1n a new set of the gauge-invariant time-
dependent orbitals.*® Within this DTO gauge, the particle-hole
excitation dynamics is obtained by formulating the individual
orbitals as a linear combination of the hole and particle

that is much more complex than the case for W = 1 (Figure 4).
The movement of the Wannier centers increases rapidly in the
middle of the driving cycle. Particularly for the W = 3 case, the
Wannier centers exhibit a small but abrupt jump around the
middle of the driving cycle as evidenced in the time derivative
of the Wannier center positions (see Figure Sb). At the same

time, the spreads of the MLWFs remain rather well localized orbitals,
i i imi i DTO h

.(see the Su.pportmgzz{n.forma.tlon). A 51m11.ar behavior was seen b "TO(6)) = a () (1)) + b(OyP())e, N )

in our earlier work™ in which a discontinuous movement of

the Wannier centers was also observed but in a different where Iy/(t)) and y#(t)) are the hole and particle orbitals,

context (i.e., optically gated transistor setup with time- respectively. The real-valued expansion coefficients satisfy

independent homogeneous electric field and optical-excitation 5 5

field). To summarize our observation here, the winding a(t) 20, b(t) 20, a(t)” +b(t) =1 (8)
4500 https://doi.org/10.1021/acs jpclett.1c01037
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The particle and hole orbitals are essentially time-invariant
here (up to the phase) while the hole and particle coefficients
vary in time. Figure 6 shows the particle population, b;(t)? in
eqs 7 and 8 for three DTOs with the most dominant changes.
Interestingly, a single DTO is predominantly responsible for
the nonequilibrium dynamics for all the cases. By projecting
this particular DTO onto reference Kohn—Sham eigenstates,
one finds that the constituting hole and particle orbitals largely
derive from degenerate HOMOs and degenerate LUMOs,
respectively. Therefore, these particular orbital dynamics, into
which the pumping dynamics manifests itself, represents 7
bonds at equilibrium initially at £ = 0. In contrast to the
dynamics of MLWFs, a conceptually simple understanding of
the Thouless pump can be obtained by studying solely the
dynamical change of this particular transition orbital. For the
W =1 case as a representative example, Figure 7 shows that
this orbital evolves from being localized on the typical C—C
double bonds as the 7 bonding state into a resonance state
before localizing again but on the other alternating set of C—C
bonds at t = 0.5T, exhibiting a significant 7 antibonding
character. Then, it continues to evolve into another resonance
state before it returns again as the 7 -bonding orbital on the
C—C double bonds. Pendas et al. have previously discussed
how topological invariant properties can be rationalized in
terms of such a chemically intuitive description,”” and a simple
schematics can depict the W = 1 dynamics as shown in Figure
7. Similar DTO dynamics can be observed for the W =2 and 3
cases but with more rapid changes in the midst of the driving
cycle. This is in accordance with the Wannier dynamics that
show more rapid changes in the middle of the driving cycle
(Figure S). As seen in the Wannier center dynamics (Figure $),
the W = 2 and 3 cases do not represent a simple repetition of
the W = 1 transition orbital changes. Indeed, all three cases
show varying dynamics for the transition orbital in terms of the
particle occupation change in a single driving cycle (Figure 6).
For W = 2, similarly to the W = 1 case, the transition orbital
gains resonance character before ¢ 0.3T, antibonding
character at t = 0.3T, and then another resonance character
at t = 0.4T (Figure 7). The transition orbital then repeats the
visually similar changes in the second half of the driving cycle.
The W = 3 case is qualitatively dissimilar to the W =1 or W=
2 cases. The transition orbital gains the resonance character at ¢
= 0.2T and antibonding character at t = 0.3T. However, change
to another resonance state character is not observed until
much later, t = 0.7T. The transition orbital undergoes visibly
small changes for t = 0.3—0.7T in the driving cycle, and the fact
that the winding number is three is not obvious or intuitive
from the dynamical changes of this transition orbital. Although
the winding number can be interpreted as the number of the
Wannier centers pumped over one driving cycle,' the changes
in the dynamical transition orbital cannot be interpreted
straightforwardly in relation to the winding number. At the
same time, in this dynamical transition orbital gauge, a single
orbital effectively captures the pump dynamics, and its changes
are more intuitive from the viewpoint of understanding the
dynamics in terms of an electron transition among the familiar
chemical bonding orbitals.

Using first-principles, time-dependent, electronic structure
theory, we demonstrated nonadiabatic Thouless pumping of
electrons in trans-polyacetylene in the framework of Floquet
engineering. Using an external electric field as the driving field
for the time-dependent Hamiltonian, we identified the regimes
in which the quantized pump is operative as a function of the
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driving field period (frequency) and amplitude. By employing
the time-dependent maximally localized Wannier functions in
real-time time-dependent density functional theory simula-
tions, we connect the winding number formulation by
Nakagawa et al.'® to a molecular-level understanding of this
Thouless pump. These pumping dynamics are described by the
movement of the Wannier functions that represent both C—C
double bonds and single bonds but not C—H bonds. While the
Wannier centers move in opposite directions, having more
electrons in the double bonds than in the single bonds results
in a net unidirectional current overall. The direction of the
current is governed by the initial polarization direction of the
applied time-dependent electric field. Although the topological
invariant, the winding number, specifies the number of C—C
monomer units the electrons are pumped over in a single
driving cycle, the Wannier dynamics shows that the rate at
which the electrons are pumped is not uniform during the
driving cycle for the cases with larger winding numbers of two
and three. Using a gauge-invariant formulation of the occupied
time-dependent Kohn—Sham orbitals called dynamical tran-
sition orbitals,*® a single time-dependent orbital is found to be
responsible for the observed Thouless pumping. The pumping
dynamics manifest in the dynamic changes of this single
transition orbital that characterizes the 7z bonding at
equilibrium, and it undergoes changes to acquire resonance
and antibonding character in the driving cycle. Having the
dynamics formulated in terms of the particle-hole transition, it
was further shown that the larger winding numbers of two and
three do not indicate a simple repetition of the W = 1 pumping
over C—C monomer units by two and three times as the
electrons are pumped over two and three C—C monomer
units, respectively. Topological insulators are generally studied
in terms of electronic structure in a static field of the fixed-
position nuclei; how lattice dynamics of nuclei influence the
exotic transport behavior at room temperature is of great
importance for experimental realization and for practical
application of quantum materials. This aspect is particularly
relevant for the present case because the topological properties
are not guaranteed to be robust in the nonadiabatic regime,
including Floquet topological states.'” Investigation into the
lattice dynamics and thermal effects will be pursued in a future
work.

B COMPUTATIONAL METHODS

Real-time time-dependent functional theory (RT-
TDDFT)*”*® has become an increasingly popular method
for studying out-of-equilibrium electronic structures in the past
few decades,”*’ including those of topological materi-
als.”**""* RT-TDDFT simulation was performed using the
Qb@Il branch® of Qbox code* within a plane-wave
pseudopotentials (PW—PP) formalism.”> We employed a 55-
atom supercell (11 C—C monomer unit cells aligned along the
x axis) with the periodic boundary condition (51.32 Bohr
%15.0 Bohr X15.0 Bohr) and the I'-point approximation in the
Brillouin zone integration. The molecular geometry (bond
lengths, bond angles, and the lattice constant) of the trans-
polyacetylene was taken from that of experiments*® and is
included in the Supporting Information. All atoms were
represented by Hamann—Scthter—Chian§—Vanderbilt
(HSCV) norm-conserving pseudopotentials,””** and the
PBE" generalized gradient approximation exchange-correla-
tion functional was employed with the plane-wave cutoff
energy of 40 Ry for the Kohn—Sham orbitals. For the time-
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dependent Kohn—Sham equation, the maximum localized
Wannier functions (TD-MLWF) gauge was used and a time-
dependent electric field was applied using the length gauge as
discussed in ref 24. The enforced time-reversal symmetry
(ETRS) integrator50 was used with the integration step size of
0.1 au. The simulations were performed with the applied
electric as the driving field with a field period range of 50—400
au and amplitude range of 2—7 X 107° au at uniform intervals
of 25 au and 0.5 X 107 au, respectively.
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