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ABSTRACT
We give a perspective on simulating electronic excitation and dynamics using the real-time propagation approach to time-dependent
density functional theory (RT-TDDFT) in the plane-wave pseudopotential formulation. RT-TDDFT is implemented in various numeri-
cal formalisms in recent years, and its practical application often dictates the most appropriate implementation of the theory. We discuss
recent developments and challenges, emphasizing numerical aspects of studying real systems. Several applications of RT-TDDFT simu-
lation are discussed to highlight how the approach is used to study interesting electronic excitation and dynamics phenomena in recent
years.
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I. INTRODUCTION

A majority of the electronic structure theory problems in quan-
tum chemistry and condensed matter physics entail solving the time-
independent Schrödinger equation approximately for fermionic sys-
tems. At the same time, various properties of matter derive from
the non-equilibrium condition on the Hamiltonian, and the time-
evolution of the quantum state needs to be obtained by solving
the time-dependent Schrödinger equation. External stimuli, such
as an electromagnetic field, enter through time-dependent elec-
tronic Hamiltonian, and dynamical responses to the perturbation
are encoded in the time-evolution of the quantum state (i.e., wave-
function, electron density, and density matrix). Starting with the
time-dependent Hartree–Fock method in the late 1970s and the
early 1980s,1 various theoretical methodologies, including corre-
lated wavefunction methods,2 have been developed for studying
non-equilibrium response properties with the real-time propaga-
tion approach. Readers are referred to the comprehensive review by

Li et al. on the real-time propagation approach to time-dependent
electronic structure theories in general.3 In the last decade, the
real-time propagation approach to time-dependent density func-
tional theory (TDDFT)4 has gained great popularity as a particularly
practical methodology for studying the non-equilibrium response
of real matters. The appealing balance between the accuracy and
efficiency, together with its rigorous formal foundation based on
the Hohenberg–Kohn theorem, has made density functional the-
ory (DFT) calculation the most widely used computational approach
for calculating various properties of matter from first principles. At
the same time, its application is formally limited to ground-state
properties, and many physical, chemical, and biological processes
of interest in modern science and technology are concerned with
dynamical behavior of electrons. Electron dynamics are at the heart
of various non-equilibrium processes, including photo-excitation,
hot carrier relaxation, charge recombination, and electronic stop-
ping. Time-dependent density functional theory (TDDFT) based on
the Runge–Gross theorem5 offers a powerful extension to the theory
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for studying these dynamical phenomena.6–10 Through its formu-
lation for the linear response regime in the frequency domain,11–13

the TDDFT approach has become extremely popular for studying
optical excitation of molecules and materials.14 In this Perspective,
we instead focus on the real-time propagation approach to
TDDFT (RT-TDDFT),4 discussing recent development and chal-
lenges within the plane-wave pseudopotential (PW-PP) formula-
tion in particular.15,16 Since some of the first uses of the real-time
propagation approach in the 1990s by Yabana and Bertsch,4,17 RT-
TDDFT has gained great popularity in various areas of chemistry
and condensed matter physics.18–24 RT-TDDFT can be used to
model both linear and nonlinear responses to perturbations of var-
ious kinds and strengths. For large systems and certain regime of
electronic excitation, RT-TDDFT can be computationally more effi-
cient than the commonly used linear response TDDFT method even
for calculating optical absorption spectra.25 In recent years, there
has been a surge in applications of RT-TDDFT to a wide range
of excited state phenomena, such as interfacial charge transfer,26,27

electronic stopping,28–38 optical absorption,17,18,39–41 core electron
excitations,34,42–45 electronic circular dichroism spectra,46 exciton
dynamics in nanostructures,47,48 atom-cluster collisions,49,50 high
harmonic generation,51,52 laser-induced water splitting,53 and topo-
logical quantum matter.54–57 The promulgation of RT-TDDFT as
a means for simulating dynamic phenomena has led to its imple-
mentation in a variety of electronic structure codes, including
NWChem,18,58 SIESTA,59,60 CP2K,61,62 SALMON,63 Octopus,64,65

Q-Chem,66–68 GAUSSIAN,22,69 MOLGW,70,71 and Qbox/Qb@ll.72,16

Numerical details of the implementation vary widely among these
codes, especially in the underlying basis sets used. While they all fall
under the umbrella of RT-TDDFT, the numerical implementation is
fundamental not only for the code developers but also for those who
wish to apply the RT-TDDFT methodology to study various dynam-
ical phenomena. The type of the phenomena under investigation
can often dictate the most appropriate implementation of the theory
in practice. In this perspective, we focus on the plane-wave pseu-
dopotential (PW-PP) formulation of RT-TDDFT, discussing some
recent advances and challenges in simulating electronic excitation
and dynamics.

II. REAL-TIME PROPAGATION APPROACH
TO TIME-DEPENDENT DENSITY
FUNCTIONAL THEORY

TDDFT is based on the one-to-one correspondence between
the time-dependent one-particle density and the time-dependent
external potential. This correspondence is formally established by
the Runge–Gross theorem,5 which extends the Hohenberg–Kohn
theorem to the time-dependent case. There are several notable
assumptions in the proof, such as the Taylor-expandable potential,
and the validity of these assumptions is often not tested in practical
applications of the theory. We refer to the textbook by Ullrich for
excellent discussion of these aspects of TDDFT as a formal theory.7
We here focus on the practical side of numerical implementation
and application as a theoretical method for investigating physical
properties. While many time-independent problems in electronic
structure theory can be cast as some form of an eigenvalue problem,
RT-TDDFT entails to solving a set of coupled non-linear partial dif-
ferential equations. At the heart of RT-TDDFT, the time-dependent

Kohn–Sham (TD-KS) equation reads

i�h d
dt
�ϕi(t)� = �− �h2

2me
∇2

r + v̂ext(r, t) + � dr′ ρ(r′, t)�r − r′�
+ v̂XC(r, t) �h2

2me
��ϕi(t)�, (1)

where ϕi (r, t) is the time-dependent single-particle Kohn–Sham
wavefunction and ρ is the electron density. The v̂ext(t) term
accounts for all external potentials acting on electrons, such as
those due to atom nuclei and applied external field, and v̂XC is the
exchange–correlation (XC) potential. For simplicity, we assume that
there is no XC vector potential in the Hamiltonian as one would
have in time-dependent current-DFT.7 This differential equation
looks as if it is a time-dependent Schrödinger equation. However,
additional numerical complexity arises because the electron den-
sity (and often also the approximated XC potential) depends on the
time-dependent KS wavefunctions themselves as

ρ(r, t) = �Occ⋅
i �ϕi(r, t)�2. (2)

The dependence of the Hartree (electrostatic) and XC potential
terms on the electron density (thus on the TD-KS wavefunc-
tions) makes these coupled differential equations non-linear. Sim-
ply put, RT-TDDFT simulation amounts to, for a given initial state{ϕi(r, t = 0)}i=1,...,Nelec.

, numerically integrating the TD-KS wave-
functions in time according to the TD-KS equation [Eq. (1)].
Although it is mathematically a well-defined problem, accurate
numerical integration of coupled non-linear differential equations
is not a trivial task in general, as discussed in Sec. IV.

III. PLANE-WAVE PSEUDOPOTENTIAL FORMULATION
RT-TDDFT can be implemented in various different ways,

most notably for expanding the TD-KS wavefunctions in various
types of mathematical functions. In quantum chemistry, Gaussian-
type orbital (GTO) functions have been widely used as the basis set
functions, and Li et al. formulated the RT-TDDFT using GTOs.69,74

At the same time, other numerical representations of the TD-KS
wavefunctions are certainly possible and even more convenient in
some situations. Historically, the implementation based on real-
space grids has become popular for RT-TDDFT due to the original
work by Yabana and Bertsch in 1996,4,17 and the widely popular
implementation in the Octopus code64,65 is based on the real-
space grids. Our own RT-TDDFT method development in the
Qbox/Qb@ll code,72,16 on the other hand, is based on represent-
ing TD-KS wavefunctions using a set of plane-waves as the basis
set, together with pseudopotentials that are designed to reproduce
effects of core electrons around nuclei.16,15 This so-called plane-wave
pseudopotential (PW-PP) formulation75,76 is particularly convenient
for studying extended systems, such as semiconductor solids and liq-
uids,77 and it has been traditionally more popular in condensed mat-
ter physics than in quantum chemistry. In addition to the fact that
the plane-wave (PW) basis set is inherently compatible with the peri-
odic boundary conditions (PBC) needed for studying extended sys-
tems, the PW-PP formulation is also convenient for performing the
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Ehrenfest dynamics based on the atomic forces from RT-TDDFT.
Because PWs are independent of the atom positions, the approach
does not require additional effort to deal with the Pulay force as
required when basis set functions depend on atomic positions. It is
also free of the so-called egg-box effect, which refers to the break-
down of translational invariance when using the real-space grids.78

At the same time, the PW-PP formulation generally requires a much
larger number of basis set functions than what is typically required
when using GTOs, and it is not uncommon for a PW-PP calcula-
tion to include millions of plane-wave coefficients. Having such a
large Hilbert space requires a careful consideration when designing
a parallelization scheme (e.g., MPI/openMP) and adapting certain
numerical algorithms for operations such as matrix diagonalization
and time integration.75

Here, we briefly summarize the PW-PP formulation for a con-
cise discussion of the rest of this Perspective. The Brillouin zone
(BZ) integration is often important in modeling extended systems,
and thus, the index i in Eq. (1) becomes a composite index that
consists of both the momentum vector in the first BZ and the state
index. According to the Bloch theorem, one can write the TD-KS
wavefunctions in the form of Bloch states,

ϕi(r, t) = ϕn,k(r, t) = 1√
�

eik⋅run,k(r, t), (3)

where � is the volume of the simulation cell and un,k is the periodic
part of the Bloch state. In terms of plane-waves, one writes

ϕn,k(r, t) = 1√
�
�
G

Cn,k,G(t)ei(k+G)⋅r, (4)

where the number of plane-waves in the simulation (super-) cell
is determined by the kinetic energy cutoff such that h2�G�2�(2me)< Ecut. The plane-waves do not depend explicitly on the positions
of atomic nuclei, and they are present in the vacuum region outside
of the immediate vicinity of molecules and material surfaces. This
feature is particularly convenient for simulating high-energy elec-
tronic excitations and electronic stopping excitations as discussed
later. Unfortunately, the number of plane-waves required for accu-
rately representing spatially localized electrons, such as core elec-
trons, is too large for many practical calculations, and the PW basis
set is usually used with non-local pseudopotentials that are designed
to replicate the interaction with missing core electrons near the
atomic nuclei.76,79–81 The pseudopotentials are obtained by invert-
ing the atomic Kohn–Sham equation for a specific XC approxima-
tion, and the procedure is not unique and there exist several dif-
ferent schemes in the literature.82 Alternatively, planewave-based
RT-TDDFT can also be implemented in the related framework of
the projector augmented wave (PAW) method83 instead of using the
conventional pseudopotentials. The PAW method generally allows
calculations to be converged with a smaller number of plane-waves.
While the core electrons are frozen with respect to the environment,
this approach enables reconstruction of all-electron wavefunctions
through the PAW transformation operator. In the context of RT-
TDDFT, it is worthwhile to note that the PAW transformation oper-
ator introduces the atomic position dependence, and the computa-
tion of energy-conserving force can be more involved for accurately
performing Ehrenfest dynamics, as discussed by Ojanperä et al.84

The plane-wave formulations employ the Fast Fourier Transform
(FFT) extensively as many key terms, such as the kinetic energy,
are most conveniently evaluated in the reciprocal space. The com-
putational cost of the FFT scales as O(NnNpw log Npw), where Nn is
the number of Kohn–Sham states and Npw is the number of plane-
waves in the basis set. The FFT and the orbital orthogonalization,
which scales as O(Nn

2Npw), are generally the two most computa-
tionally expensive parts of calculations. While the orthogonalization
procedure is necessary in solving for Kohn–Sham eigenstates, RT-
TDDFT simulation does not require an explicit orthogonalization
among the TD-KS wavefunctions at each time integration step as
discussed below. Given the depth and the long history of the topic,
readers are referred to Refs. 75 and 77 for detailed discussion. The
PW-PP formulation was first adapted for RT-TDDFT by Sugino and
Miyamoto,85 and it is particularly appealing for studying extended
systems such as crystalline GaAs as done in their early work.86

IV. NUMERICAL INTEGRATION OF TD-KS EQUATIONS
Given the TD-KS equation [Eq. (1)], the time-evolution of the

TD-KS wavefunctions can be written in the integral form as

��ϕi(t)� = Û(t, t0)�ϕi(t0)��i=1,...,Nel⋅ , (5)

where the propagation operator is

Û(t, t0) = 1̂ +�n=0
1
n!
�− i�h�

n� t

t0

dt1� t

t0

dt2 . . .

� t

t0

dtnT �ĤKS(t1)ĤKS(t2) . . . ĤKS(tn)�,
(6)

where T is the time-ordering operator and ĤKS is the Kohn–Sham
(KS) Hamiltonian, which constitutes the curly brackets in the right-
hand side of Eq. (1). Note that the Hamiltonians at different times
do not commute in general. A stationary solution can be obtained
in certain situations such as for a periodically driven Hamiltonian
(i.e., a Floquet system) via construction of an effective Hamiltonian.
However, the Hamiltonian’s dependence on the electron density
and the initial state complicates applying well-established analyt-
ical formalisms. Maitra and Burke discussed subtle impediments,
for example, in extending the Floquet theory to TDDFT in Ref. 87.
For general cases, the propagation operator [Eq. (6)] needs to be
approximated with a sequence of many propagation steps with
a much smaller dt, making numerical implementation/simulation
essential for the real-time propagation approach in TDDFT. The
integration time step dt depends on a number of factors, includ-
ing the numerical integrator itself, basis set type, and the sys-
tem/phenomena under investigation. A step size on the order of
one atto-second is typically needed for a numerically stable and
accurate integration of the TD-KS equations. As for any applica-
tion of non-linear differential equations, numerical integration of
the TD-KS equations also requires close attention to their stiffness.
The stability of the numerical integrators becomes a major issue in
practice because of the non-linearity in the KS Hamiltonian unlike
for a time-dependent Schrödinger equation.88–91 Both explicit meth-
ods, such as the fourth order Runge–Kutta,15 and implicit methods,
such as Crank–Nicolson92 and Enforced Time-Reversal Symmetry
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(ETRS),88,93 have been successfully employed in the PW-PP formu-
lation. Using an explicit integrator, the TD-KS wavefunctions at the
next time step are obtained as an explicit function of those at the
current and previous time steps. For implicit integrators, the TD-KS
wavefunctions at the next time step need to be obtained as solutions
to a system of non-linear equations that are expressed in terms of the
TD-KS wavefunctions at the current and the next time steps. This
requires employing an iterative solution procedure or introducing
controllable approximations so that a linear system is solved instead.
Implicit methods usually involve more mathematical operations, but
they are numerically more stable for solving stiff differential equa-
tions, allowing for a larger time step. The symplectic property of
some implicit integrators is also discussed as being central to the
simulation stability at long times.89 In the PW-PP formulation, hav-
ing the non-local pseudopotential term makes the evaluation of the
exponential of the KS Hamiltonian more complicated if required as
in some integration methods.85 In general, many appear to concur
that no single integrator is perfect for simulating all phenomena and
systems. The most suitable integrator depends not only on the type
of problems to study but also on the basis set type (e.g., plane-waves
vs Gaussians) used to represent the TD-KS wavefunctions as well
as other computational considerations. Having a larger time step
does not necessarily mean that an implicit integrator is always a
better choice in practice because the computation time to perform
each integration step might be significantly more, and actual imple-
mentations of implicit integrators are also often dependent on the
performance of the linear solver. The scaling of integration meth-
ods with respect to the number of processors in massively parallel
high-performance computers (HPC) is another practical considera-
tion for large-scale RT-TDDFT applications. Numerical methods for
solving non-linear differential equations continue to remain a very
active area of research with great impacts on various fields, including
RT-TDDFT simulation.

V. EXCHANGE–CORRELATION APPROXIMATION
As the electron dynamics simulated are dependent on the

exchange–correlation (XC) potential, the importance of XC approx-
imation cannot be overstated.94 In TDDFT, approximations to the
XC potential arise through two different aspects: The first is on the
usual spatial dependence on the electron density, as in the case of
the ground-state DFT. The second is the history dependence, or the
memory, of the XC effect on the electron density from earlier times.
Here, we do not consider time-dependent current-density functional
theory (TDCDFT), which formally extends the theory to the one-
to-one mapping between the vector potential and the current den-
sity, giving rise to the exchange–correlation vector potential.95–99

The Runge–Gross5 and van Leeuwen theorems5,100 prove the unique
existence of the time-dependent XC potential, vXC[ρ, Ψ(t0)](r, t). In
principle, the exact XC potential at time t is functionally dependent
on the density ρ(r, t′ < t) as well as on the initial many-body state at
t = 0, Ψ(t0). As can be imagined, its exact form is extremely com-
plicated. To make the theory practical for studying real systems, one
often employs the adiabatic approximation, which entails neglecting
the electron density history and the dependence of the initial many-
body state.101 Therefore, often in practice, the XC potential depends
only on the instantaneous electron density (or TD-KS wavefunc-
tions) at the time t. Adapting the adiabatic approximation is

convenient for practical RT-TDDFT simulation also because the
total electronic energy then becomes a constant of motion.15 By
expressing the energy functional as

E[ρ(r; t)] = �i�ϕi(t)� − �h2

2me
∇2

r �ϕi(t)� + � ρ(r, t)V̂ext(r, t)dr

+ EH[ρ(r; t)] + EXC(t), (7)

the time-dependence of the electronic energy is

d
dt

E = �i��ϕi(t)�ĤKS[ρ(t)]� ddt
ϕi(t)� + c.c.�

+ � ρ(r, t) @
@t

v̂ext(r, t)dr. (8)

When the external potential does not change in time (i.e., no atomic
movements or time-dependent perturbating field), the right-hand
side of Eq. (8) vanishes as long as the adiabatic approximation is
adapted for the XC potential.15 Having such physical quantities,
such as the energy as a constant of motion, is convenient for assess-
ing the quality of numerical integration, and it is also essential in
some applications, such as studying electronic stopping as discussed
in Sec. VI C. Although essentially all practical RT-TDDFT simula-
tions of real systems adapt this adiabatic approximation today, it is
known to fail in some exactly solvable models.102–104 The TDCDFT
approach with the XC vector potential is likely to have a better
chance of capturing XC effects beyond the adiabatic approxima-
tion.94 At the same time, some recent works report notable suc-
cesses with incorporating memory effects in the XC potential for
model systems by employing machine-learning techniques such as
the artificial neural network.105 The development of better approx-
imations to the XC potential via machine-learning techniques is
an area of exciting future growth in general (see, for example,
Ref. 106).

Many outstanding challenges remain for the XC functional
development, especially for the PW-PP formulation, even when
the adiabatic approximation is satisfactory. Compared to the
DFT/TDDFT implementation based on localized basis set functions
such as GTOs, the itinerant character of the plane-wave basis set
has made the PW-PP formulation lag behind in adapting more
sophisticated XC approximations beyond the generalized gradient
approximation (GGA). Only in the last decade, meta-GGA and
hybrid XC functionals have become more widely adapted in the
context of ground-state DFT and also in first-principles molecular
dynamics (FPMD) simulations.107–112 Specifically, for hybrid XC
approximations with the exact Fock exchange, novel algorithmic
innovations made it possible to calculate the exchange integral effi-
ciently using the plane-waves as the basis set functions.109,113–116

Although the PW-PP formulation still mostly employs the LDA
and GGA XC approximations, efficient implementations of meta-
GGA and hybrid XC approximations have become available also in
the context of RT-TDDFT in the last few years,34,117 thanks to new
algorithmic developments.54,114,118 This is a particularly welcome
development since simulations involving long-range charge transfer
are likely to benefit from hybrid and some meta-GGA XC approx-
imations119 that better remedy the self-interaction/delocalization
error.120
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VI. RECENT DEVELOPMENT AND PERSPECTIVE
A. Gauge invariance

Gauge invariance is often exploited in two different manners
for RT-TDDFT. First, the gauge freedom exists for transforming
the time-dependent KS wavefunctions as their unitary transforma-
tion preserves the time-dependent electron density. Secondarily, the
gauge invariance in classical electrodynamics is widely exploited in
modeling of extended systems; the gauge freedom between the scalar
potential and vector potential is used for incorporating the elec-
tromagnetic field in the Hamiltonian. The gauge invariance of the
TD-KS wavefunctions can be exploited in RT-TDDFT, as physical
properties depend on the electron density but not on the individ-
ual TD-KS wavefunctions. Under arbitrary unitary transformations,
the physical properties that derive from the electron dynamics are
unchanged, but certain gauge transformations can be advantageous
in some situations. Recently, several RT-TDDFT implementations
have exploited this gauge freedom inherent in the TD-KS equa-
tions. For example, in a recent work by Lin and co-workers, the
so-called parallel transport gauge was used to achieve a numeri-
cally efficient propagation for electron dynamics.118 In the parallel
transport gauge, the unitary transformation is performed such that
oscillations of the TD-KS wavefunctions are minimized. This allows
for significantly larger integration time steps to be used with implicit
time integration schemes, such as the Crank–Nicolson method. This
provides a great computational advantage in practical RT-TDDFT
simulations, especially when hybrid XC functionals are used.114,117

In another work, Yost et al. employed the maximally localized Wan-
nier function (MLWF)121 gauge for RT-TDDFT, as this gauge offers
several advantages.54 Due to the nearsightedness principle of elec-
trons,122,123 the MLWF orbitals can be made to highly localize in
space for insulating systems with an energy gap (see Fig. 1, for
instance),121 and this spatial localization can be exploited in various
ways.124

For example, this spatial localization can be exploited for effi-
cient implementation of hybrid XC functionals by reducing the
computational cost associated with the Fock exchange integrals, as
done for FPMD125 based on the MLWF orbitals.126,127 The idea
can be extended to RT-TDDFT using the time-dependent MLWFs
(TD-MLWFs).54 One can reduce the number of the exchange inte-
grals that need to be evaluated due to the spatially localized nature
of the TD-MLWFs, whereas TD-KS wavefunctions are generally
itinerant in extended systems. Because a minimal spatial overlap
is expected for those TD-MLWFs that are distant, one can pos-
sibly neglect some of the exchange integrals based on their geo-
metric centers and spreads of the TD-MLWFs. Using a represen-
tative system of crystalline silicon (a 256-atom simulation cell) as an
example, Fig. 2 shows how the computational cost and the numer-
ical accuracy are affected by reducing the number of the exchange
integrals as a function of the cutoff distance between a pair of
TD-MLWFs, for the PBE0 hybrid XC128,129 approximation. The elec-
tronic energy is the key constant-of-motion for RT-TDDFT simula-
tions as discussed above. Figure 2 shows that the computational cost
can be reduced dramatically without sacrificing the simulation accu-
racy. The approach becomes even more appealing for simulation of
increasingly larger systems. Even when a larger silicon simulation
cell with 512 atoms is used, the Wannier functions can be local-
ized to the same extent due to the nearsightedness principle.122,123

FIG. 1. Examples of the gauge transformation from the Bloch states to maximally
localized Wannier functions (MLWFs) in crystalline silicon and polyacetylene. For
silicon, isosurfaces of one representative Bloch state is shown, together with iso-
surfaces of one MLWF localized on a Si–Si bond. For polyacetylene, three Bloch
states are shown, together with three MLWFs that are localized on CH (green), CC
single (orange), and CC double (blue) bonds.

FIG. 2. Numerical accuracy and efficiency of employing a distance cutoff using
TD-MLWFs for evaluation of Fock exchange integrals in the PBE0 hybrid XC
approximation. Crystalline silicon is simulated using a 256-atom simulation cell
with PBC. The percentage in the parentheses is for the number of the exchange
integrals evaluated for the given cutoff distance. The PW cutoff energy of 25
Ry was used with PBE pseudopotentials of Hamann–Schlüter–Chiang–Vanderbilt
(HSCV) type.80,130 An ETRS integrator was used with the integration time step of
0.05 a.u. The calculations were performed on 352 processors on eight Broadwell
nodes (Intel Xeon E5-2699A v4 −2.4 GHz) of Dogwood cluster at the Univer-
sity of North Carolina at Chapel Hill. Only MPI (no open-MP/SIMD) was used for
the test.
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TABLE I. The wall-clock time per iteration for simulating crystalline silicon using a larger 512-atom with PBC. The PBE-GGA
values are included for comparison. The calculations were performed on 704 processors on 16 nodes using the same settings
as in Fig. 2.

Cutoff distance
(bohr)

Ex integrals
evaluated (%)

Energy drift per
iteration (a.u.)

Time per
iteration (s)

Relative iteration
time

PBE N/A N/A <1.0 × 10−10 19.9 0.009
PBE0 N/A 100 <1.0 × 10−10 2227.8 1
PBE0 25 7.4 4.1 × 10−7 271.3 0.12
PBE0 30 9.0 3.6 × 10−7 278.4 0.13

Thus, the same cutoff distance can be used and even larger frac-
tions of the exchange integrals can be removed without degrading
the accuracy, as shown in Table I. The computational cost of the
PBE0 hybrid XC functional is typically about two orders of magni-
tude higher than that of the Perdew–Burke–Ernzerhof (PBE) GGA
XC functional, but this TD-MLWF approach reduces the increased
cost to be only one order of magnitude. A well-known limitation
of semi-local XC functionals is its inability to describe long-range
charge transfer accurately. Using the TD-MLWF gauge, the ability to
employ range-separated hybrid XC approximations in RT-TDDFT
is expected to greatly facilitate studies of charge transfer dynamics at
heterogeneous systems, such as molecule–semiconductor interfaces.

The gauge invariance of the TD-KS wavefunctions has been
used also to formulate the so-called dynamical transition orbitals
(DTO) in order to obtain a particle–hole description within RT-
TDDFT dynamics in a recent work by Zhou and Kanai.131 Moti-
vated by the natural transition orbitals,132 which are widely used
in linear response TDDFT, the singular value decomposition of

time-dependent orbital transition matrices can be performed to
obtain time-dependent particle/hole orbitals. Then, a new set of
the gauge-invariant orbitals, dynamical transition orbitals (DTO),
can be formulated as a linear combination of the hole and particle
orbitals as

�ψDTO
i (t)� = ai(t)�ψh

i (t)� + bi(t)�ψp
i (t)�, (9)

where �ψh
i (t)� and �ψp

i (t)� are the hole and particle orbitals, respec-
tively. The expansion coefficients satisfy

ai(t) ≥ 0, bi(t) ≥ 0, ai(t)2 + bi(t)2 = 1. (10)

This gauge-invariant formulation is particularly appealing for devel-
oping a conceptual understanding of RT-TDDFT dynamics through
the particle–hole transition description.

Figure 3 shows an example of crystalline silicon optically
excited at 2.5 eV. Projecting onto the KS eigenstates (of the equi-

FIG. 3. (a) Changes in the projection matrix of TD-MLWFs onto KS eigenstates at t = 400 a.u. (b) Time-evolution of the particle coefficient, bi(t)2, for the dynamical transition
orbitals with the five most dominant changes. To model the crystalline silicon optically excited at 2.5 eV, a 32-atom simulation cell elongated in the direction of optical pulse
(41.1 × 10.3 × 10.3 bohrs) was used. The LDA XC approximation was employed with the PW cutoff energy of 40 Ry and with HSCV pseudopotentials. A fourth-order
Runge–Kutta integrator was used with an integration step size of 0.05 a.u.
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librium system) reveals that all TD-MLWFs respond similarly to the
optical excitation pulse as perhaps expected, and the electronic exci-
tation is embodied in many single-particle transitions among the KS
eigenstates [see Fig. 3(a)]. At the same time, the same electronic exci-
tation can be described by changes in a much smaller number of the
dynamical transition orbitals via the DTO unitary transformation
[see Fig. 3(b)]. Here, single-particle transitions from the hole orbital
to the particle orbital in few individual DTOs are able to describe the
same electron dynamics responsible for the excitation. Such a com-
pact particle–hole description of electronic excitation phenomena is
likely to be of great value as RT-TDDFT simulations are applied to
increasingly complex systems. The DTO approach has been already
used to examine exotic electron transport such as those observed in
topological quantum matter.57

The gauge invariance of the electromagnetic field is a central
concept in classical electrodynamics, and it is widely exploited in
modeling of extended systems. Studies of the dynamical response
of electrons to light is a very active research topic for RT-TDDFT
simulations, and the external perturbation is usually modeled via
a time-dependent electromagnetic field that is spatially homoge-
neous on the stimulated length scale. Formally, application of the
Runge–Gross theorem cannot be rigorously justified when a homo-
geneous field acts on a periodic system due to a non-vanishing
surface integral, instead requiring the TDCDFT formulation with
an explicit dependence on the current density.133 For isolated sys-
tems such as molecules, it is often convenient to model effects of
the electromagnetic field on electrons through an additional scalar
potential term in the KS Hamiltonian [i.e., v(t) = eE(t) ⋅ r̂] via the
electric dipole approximation. While the PW-PP formulation is nat-
urally suitable for modeling extended systems using the periodic
boundary conditions (PBCs), the TD-KS wavefunctions are gener-
ally highly itinerant in the simulation cell, making the direct applica-
tion of this so-called length-gauge approach incompatible. However,
by transforming to the above-discussed spatially localized Wan-
nier gauge, the operation of this scalar potential134,135 on individual
TD-MLWFs becomes well defined, making it possible to employ
the length-gauge formulation as discussed in Ref. 54. Alternatively,
the gauge freedom in classical electrodynamics allows us to describe
the same field using a time-dependent vector potential term [i.e.,
A(t) = −c∫ tE(t′)dt′] in the Hamiltonian. This formulation is usu-
ally referred to as the velocity-gauge approach, and it is widely used
for studying extended systems with PBC. We note, however, that
having non-local pseudopotentials in the KS Hamiltonian as we do
in the PW-PP formulation rather complicates the gauge-invariance
principle of electrodynamics,136 as discussed by Ismail-Beigi et al.,137

and an approximated form is usually used in practice. Despite some
formal and practical limitations, recent studies have shown that
many response properties can be acquired reliably. For instance,
Pemmaraju et al.43 and Noda et al.63 implemented the velocity-gauge
formulation in RT-TDDFT, and various optical response properties
of crystalline silicon have been successfully calculated.

B. Massively parallel computation
RT-TDDFT simulation relies not only on methodological

advancement for the implementation of the theory but also on
software engineering. In particular, taking advantage of modern
high-performance computers (HPCs) has become essential for

electronic structure calculations of complex systems in the last few
decades. Tremendous computing resources have become available
in the form of massively parallel computers with millions of com-
puting cores working simultaneously in parallel. Massively parallel
computation is an important aspect of modern software engineering
for many electronic structure codes. Dynamical simulations, such as
FPMD and RT-TDDFT, tend to be particularly demanding compu-
tationally, and massively parallel computation on modern HPCs is
essential for studying large extended systems. Our own RT-TDDFT
development has indeed focused on performing complex simula-
tions by exploiting massively parallel HPCs.16,93 The use of plane-
waves as the basis set functions naturally caters to the massively
parallel implementation because the large number of the plane-
wave coefficients can be distributed effectively across compute nodes
and also due to the availability of efficient MPI-enabled FFT sub-
routines. Our RT-TDDFT development in the Qb@ll73 branch of
the Qbox code72,138 takes advantage of several parallelization strate-
gies (i.e., MPI/Open-MP/SIMD), as discussed in Refs. 16 and 93.
The RT-TDDFT simulation can be made to scale efficiently on a
very large number of processors on different HPC hardware archi-
tectures, as shown in Fig. 4 (a strong scaling test for crystalline
gold with 27 200 electrons); the code, for instance, is able to effi-
ciently utilize over one million processor cores in an IBM Blue
Gene/Q machine, Sequoia at Lawrence Livermore National Labo-
ratory. Unlike for the ground-state FPMD methods, RT-TDDFT
simulation does not require a separate wavefunction orthogonal-
ization procedure at each time step, and this property makes RT-
TDDFT naturally amenable to a greater scaling. Andrade et al.
indeed have exploited this feature for performing efficient FPMD
simulation within the Ehrenfest dynamics formalism.139 Never-
theless, achieving great performance on massively parallel HPCs
requires significant optimization efforts on communication and
kernels for the specific hardware architecture as demonstrated for
the IBM Blue Gene/Q machine.93 In coming decades, the use of
Graphics Processing Unit (GPU) coprocessors along with central

FIG. 4. Strong scaling test of RT-TDDFT implementation in the Qbox/Qb@ll code
using the ETRS integrator with LDA XC approximation over a large number of
processor cores. The simulation cell for this crystalline gold contains 1600 atoms
(27 200 electrons). The scaling tests were performed on the IBM Blue Gene/Q
Sequoia (green) and Mira (blue), Cray XE6 Blue Waters (red), and Cray XC40-Intel
KNL Theta (black).
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processing unit (CPU) processor cores is likely to become impor-
tant in HPCs. Several operations, such as FFT, can take advantage
of efficient GPU computation. Despite significant hardware-related
challenges, an effort for achieving great efficiency in utilizing GPU
coprocessors is already under way.140

C. Applications
We discuss here several applications of the RT-TDDFT simu-

lation, focusing on those that highlight particular strengths of the
plane-wave pseudopotential (PW-PP) formulation.

1. Optical excitation in dense manifold
TDDFT is widely employed within the linear response theory

framework12 for computing optical absorption spectrum, often via
Casida’s equation.11 The RT-TDDFT method is equally applicable,
and it has been employed successfully in various studies of opti-
cal excitation.3 The PW-PP formulation is particularly suitable for
optical absorption spectrum calculation of condensed matter sys-
tems and of high-energy excitation. For the absorption spectrum
calculation, one must choose an appropriate “excitation” proce-
dure that simultaneously excites the system in a superposition of
its eigenstates. Any perturbation that is suddenly “switched on/off”
at the next time step has the effect of inducing electronic oscilla-
tions that includes all frequency components and thus results in
a broadband excitation of the system (i.e., δ -kick). The conven-
tional linear response TDDFT approach becomes computationally
very expensive when a dense manifold of many excited states is
responsible for the absorption spectrum such as those of condensed
matter systems and of higher-energy excitation. The computational
cost of RT-TDDFT, on the other hand, does not increase with the
number of excited states involved. Only the occupied TD-KS wave-
functions need to be propagated in time explicitly in response to the
perturbating field.

For condensed matter systems, the imaginary part of the dielec-
tric function is directly related to the optical absorption, whereas
the real part is related to dispersion. The dielectric function can
be obtained from computing an isotropic average of the frequency-
dependent conductivity as

ε(ω) = 1 + 4πi
3ω

Tr[σ�ν(ω)], (11)

where σ�ν(ω) is the complex conductivity tensor. The conductiv-
ity tensor can be obtained straightforwardly by Fourier transform-
ing the time-dependent current. As an example, Fig. 5 shows the
optical absorption spectrum of liquid water. In order to take into
account dynamical effects of nuclei at room temperature, four snap-
shots are taken from the FPMD simulation. In the MLWF gauge, the
TD-MLWFs are spatially localized as lone-pair electrons and OH
bonding electrons on individual water molecules, and molecular-
level insights can be obtained by analyzing the absorption spectrum
in terms of their contributions. As can be seen in Fig. 5, the lone-
pair electrons are primarily responsible for the prominent excitation
peak below 20 eV. Such spatial decomposition enables RT-TDDFT
simulation to be used not only for prediction but also for gaining
a molecular-level understanding of the experimental spectrum of
complex heterogeneous systems.

FIG. 5. Imaginary part of the dielectric function for liquid water at room tem-
perature. The error bar indicates the statistical uncertainty from averaging the
spectra over four snapshots of FPMD simulation. The simulation cell contains 162
molecules with PBC. Geometric centers of TD-MLWFs are shown in the inset,
and they can be identified as the lone-pair electrons and OH bonds on individual
molecules. Their contributions to the spectrum are also shown. The simulation
was performed with the ETRS integrator with the step size of 0.05 a.u., with
the PBE128 GGA XC approximation with HSCV pseudopotentials. The PW cutoff
energy of 50 Ry was used. δ-kick electric field perturbation was used to excite the
system at t = 0.

In addition to simulating extended systems with the peri-
odic boundary conditions (PBCs), calculation of high-energy optical
excitation is also particularly suitable for the PW-PP formulation.
For high-energy excitation, the excited electron density tends to
extend into the vacuum region, requiring basis set functions away
from atomic nuclei, and thus the use of plane-waves as the basis
set functions is particularly convenient. At the same time, the PBC
are automatically imposed, and the convergence of the simulation
cell size needs to be checked so that artificial interactions among
the periodic images do not affect computed properties. For isolated
molecules, the optical absorption spectrum is usually given in terms
of the dipole strength function,

S(ω) = 4πω
3c

Tr[Imσ�ν(ω)], (12)

where σ�ν(ω) is the polarizability tensor. Figure 6 shows the case
of a single water molecule as an example and how the size of the
cubic simulation cell (L3) affects the calculated optical absorption
spectrum. As can be seen, the oscillations in the absorption spec-
trum using the small simulation cell (L = 15 bohrs) are an artifact,
and they disappear when the simulation cell is made large enough
(L = 100 bohrs). Although most ground-state properties would have
converged even with the small simulation cell, some excited-state
properties require more stringent convergence criteria. Figure 6
shows that RT-TDDFT simulation is able to model experimental
features of the absorption spectrum over a wide range of the exci-
tation energy over 100 eV, including the energy regime for which
the ionization dominates the transition.
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FIG. 6. Optical absorption spectrum of a single water molecule. The LDA XC
approximation was used with the PW cutoff energy of 40 Ry and with HSCV pseu-
dopotentials. δ-kick electric field perturbation was used to excite the system. The
ETRS integrator was used with the time step size of 0.05 a.u. Experimental values
are taken from Ref. 141.

2. Large-scale simulation of solvated DNA under
proton irradiation

RT-TDDFT simulation is particularly amenable to massively
parallel implementation as discussed earlier, and it enables us
to investigate structurally complex systems using modern high-
performance computers. Investigating how high-velocity protons
induce electronic excitation in DNA solvated in water represents
such a massively parallel simulation, as shown in Fig. 7. Developing a
molecular-level understanding of this dynamical processes is impor-
tant for ion beam cancer therapies, and the large-scale computation

FIG. 7. Effects of water solvation on DNA electronic stopping power for the projec-
tile/irradiating proton for a particular projectile proton path through the center of the
DNA. The simulation was performed with the ETRS integrator with the step size of
0.0827 a.u., with the PBE GGA128 XC approximation and with HSCV pseudopo-
tentials. The PW cutoff energy of 50 Ry was used. The simulation cell contains∼13 000 explicit electrons (10 DNA base pairs along the Z direction with more
than 1000 water molecules) with PBC, and it is shown in the inset.

allows us to employ first-principles electronic structure theory for
helping solve important societal problems.

The simulated system contains ∼13 000 electrons, and a total
of up to 262 144 processor cores are used simultaneously on the
Theta machine at the Argonne National Laboratory. In these simu-
lations, the projectile proton (i.e., irradiating proton) initially moves
through the water region and then through the DNA, inducing elec-
tronic excitation via energy transfer along the way. While such a
large-scale RT-TDDFT simulation cannot be performed routinely
today, the explicit quantum-mechanical treatment of solvent water
molecules is needed here because some electrons are excited away
from the DNA into the water region at some projectile proton veloc-
ities. In this so-called electronic stopping process, a particularly
important quantity is the energy transfer rate from the projectile
proton to electrons. This energy transfer rate is typically referred
to as electronic stopping power, and it is given as in terms of the
amount of the energy transferred per unit distance of the charged
particle movement (i.e., projectile/irradiating proton here), and it is
given as a function of the constant particle velocity. As discussed
extensively in our work,29,32,33 the electronic stopping power can be
obtained by performing non-equilibrium RT-TDDFT simulations
in which the irradiating projectile ion (e.g., proton) is moved at a
constant velocity. In such non-equilibrium dynamics, the relevant
constant of motion consists of the total electronic energy, E, and the
work done by the projectile/irradiating ion, W ion,15 such that

d
dt

E(t) + d
dt

Wion(t) = d
dt

E(t) + d
dt � Fion[ρ(t)] ⋅ dRion

= 0, (13)

where E is the quantum-mechanical electronic energy of the system
[Eq. (8)] and Fion is the non-adiabatic force on the projectile ion.
Given this energy conservation, the electronic stopping power can
be obtained from the non-adiabatic force (sometimes called retard-
ing force) on the projectile ion142 or equivalently from the electronic
energy increase in the non-equilibrium simulation. The geometri-
cally averaged stopping power at a particular velocity, v, can be
expressed as

Se(v) = −�Fion[ρ(t)] ⋅ Ṙion�v
= �dE[ρ(r; t)]

d�R�ion
�

v
= �dE[ρ(r; t)]

dt
�

v
v−1, (14)

where the bracket indicates the geometrical ensemble average of the
projectile ion trajectories.16,32 In most instances, it is computation-
ally more convenient to calculate the stopping power from the elec-
tronic energy increase because it typically converges faster than the
force with respect to the basis set size. In Fig. 7, the stopping power
is obtained as a function of the projectile proton velocity for one spe-
cific path that goes through the center of the DNA. Water solvation
is found to decrease the stopping power of DNA under proton irra-
diation, particularly near the stopping power maximum, while the
suppression of the energy transfer by the solvation is not observed
for the higher proton velocities. The massively parallel implementa-
tion of RT-TDDFT enables us to take advantage of modern HPCs for
studying the water solvation effect on DNA quantum-mechanically,
allowing us to better model physiological conditions.
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3. Exchange–correlation dependence of electronic
stopping in the electron gas

Significant dependence of excitation energy on the XC approx-
imation is widely appreciated already, and we illustrate its impact
on the electronic stopping power. As a pedagogical example, we
consider here the electronic stopping of protons in the uniform
electron gas (i.e., jellium) in the Fermi fluid and Wigner crystal
phases. The uniform electron gas is often employed to study differ-
ent quantum phases of electrons because the balance between the
electron–electron interaction and the kinetic energy can be modu-
lated by changing the density. For the Fermi fluid phase of delocal-
ized electrons (the high density regime), we use the Wigner–Seitz
radius of rs = 2 bohrs. Using approximate XC functionals in DFT, the
Wigner crystal phase is obtained at rs = 70 bohrs, which is lower than
the best estimate from the diffusion quantum Monte Carlo calcula-
tion for the three-dimensional case (rs∼106 bohrs).143 While there
are differing philosophies on how the XC approximations should be
developed, Perdew introduced the Jacob’s ladder analogy of DFT,144

advocating for developing more accurate approximations by satis-
fying more physical constraints through increasingly more complex
dependence on the electron density and beyond.145 In addition to the
LDA, we employ here the PBE GGA approximation128 and SCAN
meta-GGA approximation.146 They belong to the non-empirical for-
mulation on the first three rungs of the DFT Jacob’s ladder. Figure 8
shows that, for the Fermi fluid, all three XC approximations yield the
same stopping power curve as a function of the proton velocity. Even
with the increasingly complex dependency on the density gradient
and the kinetic energy density (KED), both PBE GGA and SCAN
meta-GGA functionals yield the same electronic stopping power for
the Fermi fluid state as the LDA, as perhaps anticipated by their
design. For comparison, Fig. 8 also shows the linear response the-
ory result using the Lindhard dielectric function (for rs = 2), which
is perhaps the most widely used analytical model,32 together with the

widely used empirical SRIM model147 based on experimental data on
crystalline aluminum (which roughly corresponds to uniform elec-
tron gas with rs = 2). The Wigner crystal phase represents, on the
other hand, an opposing extreme in which the Coulomb repulsion
among electrons dominates over the kinetic energy at low densi-
ties, and electrons become spatially localized. For the Wigner crystal,
SCAN meta-GGA yields a stopping power curve that is noticeably
different from those obtained using the LDA and PBE GGA func-
tionals, providing an improved description for the electrons in this
opposite limit. In the meta-GGA description, the kinetic energy den-
sity (KED) is used to distinguish between the single-orbital limit (i.e.,
von Weizacker KED) and the uniform gas limit (i.e., Thomas-Fermi
KED), and it is likely responsible for the observed difference. The
development of more accurate XC approximations will advance not
only the excited state calculation but also the calculation of dynami-
cal properties such as electronic stopping power in non-equilibrium
RT-TDDFT simulation.

4. Non-adiabatic charge pumping in polymer
RT-TDDFT simulation has been used also to study novel non-

adiabatic dynamics of electrons in topological systems.54–57 Due
to their unique connection to the Berry phase, Wannier functions
are increasingly used in the investigation of topological materi-
als.148 As posited by Resta and Vanderbilt,149 studying the behav-
ior of Wannier centers can lead to developing molecular-level
insights, especially valuable for real materials. The phenomenon
of quantized topological pumps was first discussed by Thouless in
1983.150 In recent years, different types of Thouless pumps have been
demonstrated experimentally,151,152 and Wannier functions can pro-
vide a physically intuitive description to understand the mecha-
nisms of such a dynamic topological phenomenon. Most theoreti-
cal studies and descriptions of topological pumps assume complete

FIG. 8. Electronic stopping power of protons in the Fermi fluid and the Wigner crystal phases of the uniform electron gas. For the Fermi fluid, the simulation contains 466
electrons in the cubic cell with L = 25 bohrs with the PW cutoff energy of 30 Ry. The Wigner crystal simulation employs one electron in the cubic cell with L = 100 bohrs
with the PW cutoff energy of 0.2 Ry. The ETRS integrator was used with 0.1 a.u. for the time step. For the Fermi fluid phase, the Lindhard model32 (with rs = 2) and SRIM
model147 for bulk aluminum are shown for comparison.
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adiabaticity of the Hamiltonian evolution while more recent work
has begun to study non-adiabatic extension with a model system,
such as the Rice–Mele Hamiltonian.153 In our recent work,54,57 we
demonstrated using the time-dependent maximally localized Wan-
nier function (TD-MLWF) gauge for studying the quantized trans-
port beyond the adiabatic limit, in particular, to describe non-
adiabatic Thouless pumping of electrons in trans-polyacetylene. The
use of TD-MLWFs and also the DTO methodology enabled us to
gain molecular-level insights into dynamic properties of the material
characterized by topological invariants of the underlying electronic
structure.57

Building on the quantized charge transport behavior, one
can envision a setup for an optically switchable transistor with
the quantized current, as schematically shown in Fig. 9. In trans-
polyacetylene, the Peierls instability causes the carbon bonds to form
alternating single/double carbon bonds, yielding the chiral (i.e., sub-
lattice) symmetry in the Hamiltonian. Application of the static elec-
tric field along the polymer causes “tilting” of the periodic potential
well, breaking the translation symmetry in the potential. The mag-
nitude of this applied electric field is set small enough such that
it polarizes the electronic system but no current flows (i.e., below
dielectric breakdown threshold). The calculated optical absorption
spectrum of this polymer shows a sharp peak at 2.8 eV,54 which cor-
responds to a resonant frequency of the double bonds (Fig. 9). A
quasi-monochromatic optical pulse of the corresponding frequency
can be then applied to drive a unidirectional quantized charge trans-
port. Both the static and time-dependent external perturbing fields
can be applied using the length gauge in the TD-MLWF gauge
formulation, as discussed in Sec. VI A. Figure 10 shows the time-
evolution of the geometric centers of double-bond TD-MLWFs

(which are simply referred to as the Wannier centers here) under
several conditions, with the optical pulse ceasing at t∼475 a.u. With
the 2.8 eV optical pulse, the unidirectional current is induced but
only when the static electric field is applied at the same time [see
Figs. 10(a) and 10(b)]. Figure 10(b) shows that the Wannier center
movement is not monotonically continuous but interestingly sharp
transitions across the carbon atoms are observed. Without the static
electric field, there is no current flow and the Wannier centers simply
oscillate, even when the system is resonantly excited by the opti-
cal pulse at 2.8 eV. We find that no current is induced even with
the static electric field unless the optical pulse is tuned to the spe-
cific resonance frequency. For instance, Figs. 10(c) and 10(d) show
that the optical pulses at 1.4 and 5.6 eV do not result in electron
transport. To summarize, the specific excitation frequency is neces-
sary for the photoconductivity, and thus, the system can operate as
an optically switchable transistor. The RT-TDDFT provides a pow-
erful computational method to study various types of topological
quantum materials beyond the usual adiabatic evolution limit as a
first-principles approach and also in various environments, opening
up exciting frontiers of research on topological systems.

D. Future outlook
In the last few decades, the real-time propagation approach

to TDDFT, RT-TDDFT, has become a powerful computational
approach for studying various optical excitation phenomena and
non-equilibrium electron dynamics due to the appealing balance
between the accuracy and computational efficiency of the DFT for-
malism. Studies of non-linear dynamics/effects in complex systems
have significantly benefitted from the methodological development

FIG. 9. Schematic of optically switchable transistor conceptual setup using a trans-polyacetylene between two electrodes. The simulation cell contains a 28-atom trans-
polyacetylene chain with PBC (34.28 × 20.00 × 20.00 bohrs). The LDA XC approximation was employed, with the PW cutoff energy of 20 Ry, using HSCV pseudopotentials.
The ETRS integrator was used with the time step of 0.1 a.u. The optical absorption spectrum of this 28-atom trans-polyacetylene shows a sharp excitation peak at
hv = 2.8 eV. Geometric centers of MLWFs are shown for the equilibrium state, with red and blue spheres corresponding to double and single carbon–carbon bonds.
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FIG. 10. (a) The movement of the geometric centers of the TD-MLWFs in response to the applied fields. The static electric field (E-field) is applied along the polymer chain
with the field strength of 2.5 × 10−3 a.u. (b)–(d). Quasi-monochromatic optical pulse, enveloped in a Gaussian function with a full-width at half-maximum of 1.0 eV, was
applied with the field strength of 1.0 × 10−3 a.u., with the optical frequencies of hv = 2.8, 1.4, and 5.6 eV.

with accompanied advancement of high-performance computing
(HPC) technologies. Together with continued efforts on extend-
ing the exchange–correlation approximation for more sophisti-
cated treatment of the many-body interaction, algorithmic innova-
tions are also needed for efficient simulation of novel phenomena
in increasingly complex systems. The plane-wave pseudopotential
(PW-PP) formulation has benefited from many algorithmic inno-
vations for incorporating increasingly sophisticated XC approxima-
tions in recent years, and RT-TDDFT simulation is poised to take
advantage of such recent advances. Additionally, the importance of
the numerical integrator cannot be overlooked in practical simula-
tions. Stable and accurate numerical integration is at the heart of
modeling dynamical phenomena, and our ability to access a longer
timescale in RT-TDDFT simulation is fundamental for undertak-
ing many applications. There are several important challenges that
are specific to the PW-PP formulation of RT-TDDFT. While the
PW-PP formulation is particularly convenient for studying extended
systems and some phenomena, such as high-energy excitation, core
electrons are replaced by non-local pseudopotentials, and dynamics

of core electrons are inherently neglected. Some recent advance-
ment in the pseudopotential theory allows us to include core elec-
trons as we have shown in Ref. 34. However, the computational cost
increases dramatically if core electrons are to be modeled accurately.
RT-TDDFT has been extended to include relativistic effects via
four/two-component Dirac methods in recent years,154,155 and the
treatment of core electron dynamics is likely a significant method-
ological challenge for the PP-PW formulation. The use of non-
local pseudopotentials is another aspect that has not been fully
explored in RT-TDDFT, especially in terms of coupling to exter-
nal electromagnetic fields. The gauge invariance of electrodynamics
is no longer exactly satisfied when the pseudopotentials introduce
non-local potential in Hamiltonian,136 and how using approximated
expressions137 impacts the dynamics has not been studied in the
context of RT-TDDFT despite its important for studying extended
systems.

In addition to recent developments within the RT-TDDFT,
coupling electron dynamics to other degrees of freedom is likely
to become an important area of future research. Yabana et al.
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developed a multi-scale Maxwell-TDDFT approach such that the
propagation of electromagnetic field is taken into account through
a feedback loop between RT-TDDFT and the Maxwell equations.156

Thus, the electromagnetic field dynamics is explicitly modeled by
solving the Maxwell equations with the charge and current den-
sities from RT-TDDFT, and the modified electromagnetic field
influences the electron dynamics in turn. Such a description is
expected to be important for studying solid-state systems under
intense laser fields.157,158 With the increasingly availability of intense
ultrashort laser pulses in experiments, such coupled dynamics
has proved highly useful for understanding laser–matter interac-
tions in solids. Other recent developments also extend the descrip-
tion of light–matter interaction by incorporating the quantum-
electrodynamics description of light within RT-TDDFT, opening
up exciting opportunities into quantum optics and beyond for
first-principles theory.159,160

Together with classical dynamics for the atomic nuclei move-
ment, RT-TDDFT can be readily employed for performing Ehren-
fest dynamics as an efficient mixed quantum–classical molecular
dynamics approach.74 However, such an approach cannot faith-
fully describe all intricacies of dynamic energy transfer between
the electrons and nuclei, and a number of phenomena such as the
Joule heating cannot be modeled.161 Modeling the coupled dynamics
of electronic and nuclear motions requires significant future devel-
opment. Loss of coherence (i.e., decoherence) among the electronic
states, due to the nuclei dynamics, is an important aspect, espe-
cially for modeling longer-time transition phenomena. The stochas-
tic Schrodinger equation approach162 could be integrated within
the RT-TDDFT conveniently without invoking the density matrix
formalism, which is a more natural framework for accounting
for the decoherence. Although the computational cost is much
higher, the nuclear–electronic orbital formalism has been recently
extended to RT-TDDFT such that the nuclei are treated quantum-
mechanically.131,163 Gross and co-workers also put forward an exact
factorization approach to the electron-nuclear wavefunction.164 The
approach has been formally formulated in the context of DFT for
electrons and nuclei,165 and the idea was also used in a recent work to
formulate a multi-component RT-TDDFT approach.166 These excit-
ing developments are expected to open up great opportunities in
chemical dynamics such as photochemical reactions in the future.

Despite many outstanding challenges ahead, RT-TDDFT sim-
ulations have become a powerful and importantly a practical com-
putational approach over the last few decades. The plane-wave pseu-
dopotential formulation of RT-TDDFT has seen many algorithmic
innovations in recent years, enabling us to take advantage of mod-
ern HPCs for studying various dynamic phenomena with increasing
accuracy in increasingly complex systems. In parallel, new ideas such
as spatial decompositions167 are also pursued for studying electron
dynamics in complex environments. As RT-TDDFT methodologies
are developed and used by increasing number of researchers in the
quantum chemistry and condensed matter physics communities,
many more exciting development and applications are expected in
the coming decade.
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