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Abstract
Given an orientable ideally triangulated 3-manifold M , we define a system of real valued
equations and inequalities whose solutions can be used to construct projective structures
on M . These equations represent a unifying framework for the classical Thurston gluing
equations in hyperbolic geometry and theirmore recent counterparts inAnti-deSitter andhalf-
pipe geometry. Moreover, these equations can be used to detect properly convex structures
on M . The paper also includes explicit examples where the equations are used to construct
properly convex structures.
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Preface

Real projective geometry is a special instance of a (G, X)-geometry, in the sense ofKlein [21],
whose model space is the real projective space RP

n , acted upon by the group of projective
transformations PGL(n + 1,R). This geometry represents a unifying framework in which
many interesting geometries (Riemannian, Lorentzian, etc.) can be viewed simultaneously.
This perspective often allows one to see seemingly unrelated connections between disparate
types of geometric objects.

The space of equivalence classes of real projective structures on a manifold M is denoted
by RP(M). If M has an ideal triangulation Δ, one can use this decomposition to concretely
construct elements in RP(M). This idea goes back to Thurston [29], in the context of 3-
dimensional hyperbolic structures, and has been developed and generalized by many others
since then (for instance [4,11,14,28] and others). In his notes, Thurston constructs hyperbolic
structures by realizing each tetrahedron of Δ as a hyperbolic ideal tetrahedron, and then
gluing them together with hyperbolic isometries. This construction gives rise to a hyperbolic
structure on the complement of the 1-skeleton in Δ. When the structure extends to the 1-
skeleton so that the angle is an integer multiple of 2π , we say that the structure is branched
with respect to Δ. The space of equivalence classes of hyperbolic structures on M , that
are branched with respect to Δ, is denoted by H(M;Δ). The brilliance in Thurston’s idea
relies on few facts. First, the isometry class of an oriented hyperbolic tetrahedron is uniquely
determined by a single complex number, with positive imaginary part, called the Thurston’s
parameter. Second, two hyperbolic tetrahedra can always be glued together along a face with
a unique orientation reversing hyperbolic isometry. Finally, the branching condition can be
encoded in one complex valued equation per edge, called the Thurston’s gluing equation. The
set of Thurston’s parameters satisfying Thurston’s gluing equations is a semi-algebraic affine
subset ofCk , where k is the number of tetrahedra inΔ.We call itThurston’s deformation space
of M with respect toΔ and denote it byDH(M;Δ). Then Thurston’s construction translates
into a map ExtHΔ : DH(M;Δ) → H(M;Δ), that assigns to a solution the corresponding
class of hyperbolic structures.

In this paper, we generalize Thurston’s technique in a new direction, to the space of equiv-
alence classes of real projective structures on a non-compact orientable 3-manifold M , that
are branched with respect to an ideal triangulation Δ. Such space is denoted by RP(M;Δ).
Although angles are not well defined in RP

3, the notion of branching can be defined by
insisting that the holonomy of a structure around edges of Δ is trivial (cf. Sect. 1.6). The
main idea is to introduce a deformation space of triangulations of flags FL� (cf. Sect. 1.5).
Roughly speaking, a triangulation of flags is a decoration of each ideal vertex in Δ with
an (incomplete) flag of RP

3, namely a point and a plane containing such point, which is
equivariant with respect to some representation π1(M) → PGL(4). We show that every
triangulation of flags can be extended to a branched real projective structure, thus giving rise
to an analogous map ExtΔ : FL� → RP(M;Δ) (cf. Sect. 1.7). One of the main results
of this paper is that FL� admits an explicit parametrization by a semi-algebraic affine set
DΔ = DRP(M;Δ), called the parameter space of a triangulation of flags or just parameter
space for short.

Theorem 1 There is an explicit homeomorphism ΨΔ from FLΔ to DΔ.

The construction ofΨΔ and the proof Theorem1 are in Sect. 4.4 (cf. Theorem10). The def-
inition ofDRP(M;Δ) and its identification withFL� involve innovative ideas developed by
combining the work of Thurston [29], Fock and Goncharov [14], Bergeron–Falbel–Guilloux

123



Geometriae Dedicata (2021) 215:69–131 71

[4], and Garoufalidis–Goerner–Zickert [17]. We postpone describing them until the next sec-
tion and present the main applications here. The identification DRP(M;Δ) ∼= FL� leads to
the following first result.

Theorem 2 Let M be a non-compact orientable 3-manifold equipped with an ideal trian-
gulation Δ. There are embeddings ϕ : DH(M;Δ) ↪→ DRP(M;Δ) and f : H(M;Δ) ↪→
RP(M;Δ) that make the following diagram commute:

DH(M;Δ) H(M;Δ)

DRP(M;Δ) RP(M;Δ)
ϕ

ExtHΔ

f
ExtΔ

Furthermore, the image of ϕ can be explicitly described.

Roughly speaking, Theorem 2 says that DRP(M;Δ) gives rise to (branched) projective
structures on M in a manner that is compatible with the way Thurston’s deformation variety
determines (branched) hyperbolic structures on M . Theorem 2 turns out to be a corollary of
two more general results, Theorem 13 and Theorem 14 (cf. Sect. 5.4). By work of Danciger
[13], there are generalizations of Thurston’s deformation space to both Anti-de Sitter and
half-pipe geometries, and they can each be embedded in DRP(M;Δ). In Sect. 5 we show
that DRP(M;Δ) represents a unifying framework for these three geometries and show that
a version of Theorem 2 is true for each of these geometries.

The existence of the map ExtΔ in Theorem 2 raises many interesting questions. For
instance, Is ExtΔ surjective, finite-to-one, or open? Currently, it seems challenging to address
these questions, since they appear to depend crucially on the triangulationΔ and even in the
classical case, the answers to these questions are unknown even for ExtHΔ.

If a projective (resp. hyperbolic) structure is contained in the image of ExtΔ (resp.
ExtHΔ) then we say that this structure is realized by DRP(M;Δ) (resp. DH(M;Δ)). Aside
from hyperbolic structures, there are other interesting projective structures that the space
DRP(M;Δ) realizes. A properly convex projective structure on M is a projective structure
for which the developing map is a diffeomorphism onto a properly convex set (cf. Sect. 6).
Let CP(M) ⊂ RP(M) be the set of equivalence classes of properly convex projective struc-
tures on M . A generalized cusp is a properly convex manifold that generalizes the notion
of a cusp in a finite volume hyperbolic manifold (cf. Sect. 6.1). These types of cusps were
originally defined by Cooper-Long-Tillmann in [8], and have recently been classified in [1].
Let CPc(M) ⊂ CP(M) be the set of equivalence classes of properly convex structures on M
where each topological end of M has the structure of a generalized cusp. For instance, every
complete finite volume hyperbolic structure is a properly convex projective structure with
generalized cusp ends. Recentwork ofCooper andTillman [9] shows thatCPc(M) = CP(M)

for a large class of manifolds, including hyperbolic manifolds (cf. Theorem 15). We show
that the parameter space DRP(M;Δ) also realizes many projective structures in CP(M).

Theorem 3 Let M be a non-compact orientable 3-manifold that is the interior of a compact
manifold whose boundary is a finite union of disjoint tori and suppose that M is equipped
with an ideal triangulation Δ. If U := Ext−1

Δ (CP(M)) then the restriction

ExtΔ
∣
∣
U : U → CP(M)

is open and finite-to-one. Moreover, a generic point in the image has 12k preimages.
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Theorem 3 should be viewed in the context of results of Fock–Goncharov [15] concerning
character varieties of non-compact surfaces. Specifically, they show that ifΣ is a non-compact
surface of finite type then the space of equivalence classes of “framed” representations is a
branched cover of the standard character variety.

The proof of Theorem 3 is the main result of Sect. 6. It has the following immediate
corollary.

Corollary 1 Let M be a finite volume hyperbolic 3-manifold, and suppose the complete hyper-
bolic structure is realized byDH(M;Δ). Then every properly convex projective structure with
generalized cusp ends that is sufficiently close to the complete hyperbolic structure is realized
by DRP(M;Δ).

We remark that it is still unknown whether there always exists a triangulationΔ such that
the complete hyperbolic structure is realized by DH(M;Δ), but this is true virtually. More
precisely, all hyperbolic manifolds virtually admit infinitely many geometric triangulations
[16,22].

In a complementary direction to Theorem 3, we are also able to show that for a few small
examples it is possible to find explicit families in DRP(M;Δ) that correspond to properly
convexprojective structures on M (cf. Sect. 7). In particular,we construct previously unknown
properly convex deformations of the complete hyperbolic structure for the figure-eight sister
manifold.

Theorem 4 Let M be either the figure-eight knot complement or the figure-eight sister man-
ifold, then there is a 1-parameter family of finite volume (non-hyperbolic) properly convex
projective structures on M corresponding to a curve in DRP(M;Δ).

In the above theorem, the volume is theHausdorff measure coming from theHilbert metric
(see [2] for a description of this measure in the context of properly convex geometry).

We conclude the paper by computing a modified version of our gluing equations of a
certain hyperbolic orbifold O obtained from the Hopf link that has an ideal triangulation
with a single tetrahedron. The case for orbifolds turns out to be more subtle than the case
of manifolds. Specifically, in this context, we are able to show that Theorem 3 does not
generalize in a straightforward way.

Summary of themain technique

The first half of the paper (Sects. 2–4) is devoted to defining the parameter space DΔ =
DRP(M;Δ), and proving that it parametrizes the space of projective classes of triangulations
of flags FL�. The construction is technical, but insightful, and the ideas developed along
the way are of interest on their own. Here we provide the reader with a broad overview in the
hope that it will make the more technical heart of the paper easier to follow.

Our main object of study is a tetrahedron of flags, namely four (incomplete) flags in RP
3

that satisfy certain genericity conditions (cf. Sect. 1.4). One should think of a tetrahedron
of flags as encoding the vertices of a projective tetrahedron in RP

3, together with a plane
through each vertex. Here a (projective) tetrahedron is a region of RP

3 that is projectively
equivalent to the projectivization of the positive orthant in R

4. Although in general there are
several projective tetrahedra that have the same four points as their vertices, a tetrahedron
of flags always singles out a unique projective tetrahedron, namely the one whose interior is
disjoint from the union of the planes coming from the flags.

Projective tetrahedra are all projectively equivalent, by infinitely many projective trans-
formations. On the other hand, one of the advantages of introducing flags is that tetrahedra

123



Geometriae Dedicata (2021) 215:69–131 73

of flags are not projectively equivalent, thus giving rise to a non-trivial moduli space. The
space of projective classes of tetrahedra of flags FLT is determined by twelve edge ratios
and twelve triple ratios (cf. Sect. 2.2), satisfying some internal consistency equations (cf.
Lemma 5). We devote Sect. 2 to show that these ratios cut out a semi-algebraic affine set
D+
T ⊂ R

24 which is homeomorphic to both R
5
>0 and FLT (cf. Theorem 7). Conceptually,

this is a generalization of the fact that the space of orientation preserving isometry classes of
hyperbolic ideal tetrahedra is homeomorphic to the subset of complex numbers with positive
imaginary part.

Next in Sect. 3, we turn our attention to gluing two tetrahedra of flags along a face.
Roughly speaking, this involves applying a projective transformation that maps three flags of
one tetrahedron of flags to three flags of the other one. In general, ordered triples of incom-
plete flags are not projectively equivalent. This phenomenon has no hyperbolic analog, as
any simplicial map between two hyperbolic ideal triangles is always realizable by a unique
hyperbolic isometry. On the other hand, two tetrahedra of flags are glueable if and only if
their parameters satisfy some face pairing equations (cf. Lemma 10). Additionally, when
two tetrahedra of flags can be glued along a face, there is a 1-parameter family of inequiva-
lent ways to glue them. This is analogous to “shearing coordinates” for Teichmüller space,
which parameterize the different ways to glue two hyperbolic ideal triangles along an ideal
edge. For symmetry reasons, it is more convenient to think about this 1-parameter family
as parametrized by six gluing parameters (cf. Sect. 3.2) satisfying some gluing consistency
equations (cf. Lemma 12). In hyperbolic geometry, the requirement that the face pairings are
orientation reversing ensures that the tetrahedra are glued geometrically, namely not “inside
out”. The same effect is achieved with tetrahedra of flags by imposing that all gluing parame-
ters are positive (cf. Sect. 3.3). The rest of Sect. 3 is then devoted to show that the parameter
space of pairs of glued tetrahedra of flags Dσ,τ is homeomorphic to R

10
>0 (cf. Theorem 8).

Next, we iterate the above gluing construction and attempt to glue together the cycle of
tetrahedra of flags that abut a common edge, to obtain a triangulation of flags (cf. 1.5). In
hyperbolic geometry, a cycle of hyperbolic ideal tetrahedra closes up around a common edge
to form an angle which is an integer multiple of 2π if and only if the Thurston’s parameters
satisfy a single complex valued equation. Similarly, a cycle of tetrahedra of flags glues around
a common edge so that the underlying projective tetrahedra form a branched structure if and
only if their parameters satisfy certain additional edge gluing equations (cf. Sect. 4.3). These
equations are not as simple to define as Thurston’s gluing equations, and they require the
introduction of a tool we call the monodromy complex (cf. Sect. 4.1).

The monodromy complex CΔ is a 2-dimensional CW–complex embedded in M dual to
Δ, with the same fundamental group as M (cf. Lemma 14). Given a choice of edge ratios,
triple ratios and gluing parameters for each tetrahedron in Δ we can label the edges of CΔ
with elements of PGL(4) to define a PGL(4)-cochain (see Eqs. (4.3)–(4.5)). Each of these
labels has geometric meaning. Roughly speaking, the edge and triple ratios determine the
projective classes of each tetrahedron of flags and the labels on the edges encode how these
tetrahedron of flags are glued together. In general, this construction does not give rise to a
triangulation of flags since as one uses the monodromy complex to assemble the cycle of
tetrahedra of flags around an edge of Δ they do “close up.” In Theorem 9, we show that
these tetrahedra of flags glue to form a triangulation of flags if and only if the corresponding
cochain is a PGL(4)-cocycle, namely the product of all matrices along the boundary of 2-
cells are trivial (cf. Sect. 4.2). The equations that ensure the triviality of this product are the
previously mentioned edge gluing equations.

Our use of cochains and cocycles was inspired by the work of Garoufalidis–Goerner–
Zickert [17], where they use these concepts to study representations of 3-manifold groups
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into PGL(n,C). However, our setting is different as we use incomplete flags where as they
use complete flags. The set of parameters satisfying the edge gluing equations is called the
parameter space of a triangulation of flags,DΔ = DRP(Δ; M), and we ultimately show that
it is homeomorphic to the space of equivalence classes of triangulations of flags FL� (cf.
Theorem 10).

Motivation

At first glance, it may not be clear why if one’s goal is to glue projective tetrahedra together
to construct projective structures they would want to decorate the projective tetrahedra with
planes. There are several reasons why this approach is both reasonable and natural.

First, our original motivation for constructing DRP(Δ; M) was to study properly convex
structures on M , particularly in the case where M is a finite volume hyperbolic 3-manifold.
From this perspective, the use of incomplete flags is quite natural. Assuming all ends of
M are generalized cusps (cf. Sect. 6.1 and Theorem 15), the holonomy of each peripheral
subgroup of π1(M) preserves at least one and at most finitely many incomplete flags in RP

3

(cf. Lemma 27). At the expense of modifying the developing map in a way that does not
change the underlying projective structure, one of these flags can always be chosen to be a
supporting flag for an invariant convex setΩ (i.e. the point of the flag lies in ∂Ω and the plane
is tangent to ∂Ω). Assigning this flag to the vertices of the tetrahedra in Δ̃ that correspond to
that peripheral subgroup is how we determine a point inDRP(Δ; M) in the proof Theorem 3.
So in this setting, a decoration by incomplete flags arises naturally from the geometry of the
structure.

Another concern is that by using decoration a projective structure with extraneous flags
to define a moduli space we are adding spurious additional degrees of freedom. However,
it turns out that this is not a serious concern. For instance, the holonomy of the peripheral
subgroup is generically diagonalizable over the reals and thus can be decorated with flags in
only finitely many ways. This ensures that the ExtΔ-fiber of a generic point in RP(M;Δ) is
finite.Moreover, a consequence of Theorem 3 is that for every point in CP(M), the ExtΔ-fiber
is finite. Morally speaking, these results say that, when one forgets the decoration by flags,
only a finite amount of information is lost. In this way, the situation is similar to that of Fock–
Goncharov coordinates for representations of surfaces [15]. These coordinates parameterize
(conjugacy classes of) decorated representations. There is a natural forgetful map to the
character variety that forgets the decoration, and generically, this map is finite-to-one.

We also take a moment to compare and contrast our results with previous work. We drew
much inspiration from Thurston’s work [29], as well as several other more recent general-
izations, [4,14,17,29] and others. While many of the ideas and techniques in these works
are similar to ours, our work differs in several important ways. One of the main differences
is the strong geometric flavour of our construction. For instance, the generalized gluing
equations defined in [17] are naturally complex valued, and their set of solutions ends up
parametrizing representations from π1(M) into PGL(n,C). In general, these representations
are not the holonomy representations of a geometric structure on M , at least not in an obvi-
ous way. Furthermore, the main tools in these other constructions are complete flags. The
use of complete flags has the computational advantage of simpler looking equations, usually
at the expenses of larger systems of equations. However, from the perspective of properly
convex structures, this approach is less natural. As described above there are natural geo-
metric choices for incomplete flags, there is generally no geometrically meaningful way to
complete these flags with projective lines. Moreover, for certain projective structures (e.g.
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complete hyperbolic structures), there are infinitely many ways to decorate the vertices of
an ideal triangulation with complete flags (see Remark 13). Such behavior is undesirable if
one’s goal is to parametrize projective structures.

The current work also motivates a number of interesting questions, most notably:

Question 1 What is a set of sufficient algebraic conditions on solutions in DRP(Δ; M) that
ensures that the corresponding projective structure is properly convex?

Additionally, there is also the question of calculating the dimension ofDRP(Δ; M), which
in light of Theorem 3 can help to shed light on the dimension of the space of convex projective
structures on M . It turns out that by studying the combinatorics of the triangulation Δ it is
possible to show that there are certain redundancies among the gluing equations (i.e. they fail
to be algebraically independent). Such redundancies for other types of gluing equations have
been studied previously (see [18,24,25]). Using this approach it should be possible to give
non-trivial lower bounds on the dimension of DRP(Δ; M). We plan to pursue these ideas
further in future work [3].

Organization of paper

Section 1 describes necessary background for subsequent results. Sections 2–4 form the
technical heart of the paper. In particular Sect. 2 describes the moduli space of a single
tetrahedron of flags, Sect. 3 describes the moduli space for gluing two tetrahedra of flags, and
Sect. 4 describes the gluing equations for an entire triangulation of flags of a 3-manifolds. The
remaining sections are applications of the aforementioned parametrizations to prove themain
theorems and construct examples. Section 5 analyzes the relationships betweenourmachinery
and the more classical settings of hyperbolic, Anti-de Sitter, and half-pipe structures. It also
contains the proof of Theorem 2. Section 6 describes how convex projective structures can
be framed and contains the proof of Theorem 3. Section 7 contains explicit examples where
the gluing equations are solved and used to produce interesting projective structures. In
particular, Section 7.2 produces a previously unknown family of convex projective structures
on the figure-eight sister manifold (cf. Theorem 4).

1 Background

1.1 Projective space

Let W be a finite dimensional real vector space. There is an equivalence relation on W\{0}
given by v ∼ w if and only if v = λw, for some λ ∈ R

× := R\{0}. The quotient of
W\{0} by this equivalence relation is the projective space of W , which we denote P(W ).
More conceptually, P(W ) is the space of 1-dimensional subspaces of W . A k--dimensional
plane of P(W ) is the projectivization of a (k + 1)-dimensional subspace of W . In particular,
if n = dim(W ), a hyperplane (resp. line) of P(W ) is an (n − 1)-dimensional (resp. 1-
dimensional) plane of P(W ).

There is a natural quotient map W\{0} → P(W ) that maps a vector v ∈ W\{0} to its
equivalence class [v] ∈ P(W ). We will usually drop the brackets for elements of P(W ),
unless we need to distinguish them from their representatives in W\{0}.
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IfW ∗ is the dual vector space toW , thenP(W ∗) is the dual projective space.We can regard
P(W ∗) as the set of hyperplanes of P(W ) by identifying [ f ] ∈ P(W ∗) with the hyperplane
[ker( f )] ⊂ P(W ). Henceforth we will make use of this identification implicitly.

Let {Vi }k
i=1 be a set of points of P(W ), then we denote by V1V2 . . . Vk−1Vk the plane of

P(W ) spanned by this set. Similarly, if {ηi }k
i=1 is a set of planes ofP(W ), then η1η2 . . . ηk−1ηk

is the plane of P(W ) obtained by intersecting them.
Elements of the general linear group GL(W ) take 1-dimensional subspaces to 1-

dimensional subspaces, so the natural (left) action of GL(W ) on W descends to an action on
P(W ). This action is not faithful: the kernel consists of non-zero scalar multiples of the iden-
tity I , and so the projective general linear group PGL(W ) := GL(W )/R× I acts faithfully on
P(W ). The groupPGL(W ) also admits a (left) action onP(W ∗)given by [A]·[ f ] = [ f ◦A−1],
for all [A] ∈ PGL(W ) and [ f ] ∈ P(W ∗).

Let n := dim(W ). Then a collection of distinct points (resp. planes) C in P(W ) is in
general position if no k of them lie in a (k − 2)-dimensional plane (resp. intersects in an
(n − k + 1)-dimensional plane) of P(W ), for all 1 ≤ k ≤ n. Notice that if the collection C
contains at least n+1 points then they are in general position if and only if no n of them lie in a
hyperplane. A collection of exactly n+1 points in general position is called a projective basis
for P(W ). It is an elementary fact about projective geometry that the group PGL(W ) acts
simply transitively on the set of ordered projective bases of P(W ). Consequently, the action
of an element of PGL(W ) on P(W ) is completely determined by its action on a projective
basis.

In this paper we are mainly interested in the case where W = R
n+1, for which we adopt

the notation RP
n := P(Rn+1) and PGL(n) := PGL(Rn+1).

1.2 Cross ratios

We fix an identification RP
1 = R ∪ {∞}. Three distinct points of RP

1 form a projective
basis, hence given an ordered quadruple of four distinct points (x1, x2, x3, x4) of RP

1 there
is a unique projective transformation G ∈ PGL(2) that takes (x1, x2, x3) to (∞, 0, 1). The
cross ratio of (x1, x2, x3, x4) is the quantity [x1, x2, x3, x4] := G(x4) ∈ RP

1. It is easy to
check that in coordinates:

[x1, x2, x3, x4] = (x1 − x3)(x2 − x4)

(x1 − x4)(x2 − x3)
.

By definition, the cross ratio is projectively invariant. Furthermore, it is also invariant under
certain symmetries. Specifically, let Sym(n) be the group of permutations on n symbols,
and consider the subgroup H ≤ Sym(4) of 2-2 cycles. The group Sym(4) acts on ordered
quadruples of points in RP

1 by permuting them and a simple computation shows that H is
the kernel of this action.

This definition extends to ordered quadruples of collinear points (x1, x2, x3, x4) in RP
n .

If � is the line spanned by (x1, x2, x3, x4), then � is projectively equivalent to RP
1, and

one defines the cross ratio [x1, x2, x3, x4] through this equivalence. This definition does not
depend on the chosen identification � = RP

1 as the cross ratio is projectively invariant.
Similarly, one defines the cross ratio of an ordered quadruple of distinct hyperplanes

(η1, η2, η3, η4) of RP
n , intersecting at a common (n −2)-dimensional plane �. The pencil of

hyperplanes through � is the set �∗ of hyperplanes ofRP
n containing �. Then �∗ is projectively

equivalent to RP
1, and one defines the cross ratio [η1, η2, η3, η4] through this equivalence.

Once again, this definition does not depend on the chosen identification �∗ = RP
1.
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The cross ratio has a straightforward positivity property that we record in the following
result.

Lemma 1 Let (x1, x2, x3, x4) (resp. (η1, η2, η3, η4)) be an ordered quadruple of distinct
points on a line � (resp. hyperplanes in a pencil �∗) of RP

n. Then [x1, x2, x3, x4] > 0 (resp.
[η1, η2, η3, η4] > 0) if and only if x3 and x4 (resp. η3 and η4) belong to the same connected
component of �\{x1, x2} (resp. �∗\{η1, η2}).

1.3 Incomplete flags

Let W be a finite dimensional real vector space. An incomplete (projective) flag is a pair
(V , η) ∈ P(W ) × P(W ∗), such that η(V ) = 0 for some (and hence for all) representatives
V ∈ W and η ∈ W ∗ of V and η respectively. Geometrically, an incomplete flag is a point
in P(W ) and a hyperplane in P(W ) containing that point. The space of incomplete flags is
denoted by FL(W ).

We remark that η(V ) = η(G−1GV ) = (G · η)(G · V ), for all G ∈ PGL(W ) and
(V , η) ∈ FL(W ). Thus the natural diagonal action of PGL(W ) on P(W )× P(W ∗) gives an
action of PGL(W ) on FL(W ).

A collection of incomplete flags {(Vi , ηi )}k
i=1 is non-degenerate when

ηi (Vj ) = 0 ⇐⇒ i = j .

We denote by FLk(W ) the collection of non-degenerate ordered k-tuples of flags, for which
we adopt the notation

(Vi , ηi )
k
i=1 := ((V1, η1), (V2, η2), . . . , (Vk, ηk)) .

The set FLk(W ) is PGL(W )-invariant, therefore there is a well defined quotientFLk(W ) :=
FLk(W )/PGL(W ).

Furthermore, we denote by FLk∗(W ) be the collection of non-degenerate cyclically ordered
k-tuples of flags, for which we adopt the notation

((Vi , ηi))
k
i=1:=(((V1, η1), (V2, η2), . . . , (Vk, ηk))) .

Formally, this is the quotient of FLk(W ) by the subgroup of Sym(k) generated by the k-
cycle (12 . . . k). The set FLk∗(W ) is also PGL(W ) invariant, thus we let FLk∗(W ) be the
corresponding quotient.

Since we will only be working with incomplete flags in this paper, we will henceforth
refer to them simply as flags. Moreover, from now on we will focus on the case W = R

4,
for which we adopt the shorter notations:

FLk := FLk(R4), FLk := FLk(R4), FLk∗ := FLk∗(R4), FLk∗ := FLk∗(R4).

1.4 Triangles of flags and tetrahedra of flags

The standard n-dimensional simplex is the set
{

(x1, . . . , xn+1) ∈ R
n+1
≥0 | x1 + · · · + xn+1 = 1

}

.

Its set of vertices {e1, . . . , en+1} is the standard basis of R
n+1. Their natural order

(e1, . . . , en+1) induces an orientation on the standard n-dimensional simplex. We will be
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mostly interested in the standard 3-dimensional simplex, that we call the standard tetrahe-
dron and denote it by T◦. Furthermore, we define a (projective) triangle (resp. a (projective)
tetrahedron) of RP

3 to be a region in RP
3 projectively equivalent to the closure of the

projectivization of the positive orthant in R
3 (resp. R

4).
Let T =((Vi , ηi))

3
i=1∈ FL3∗ be a non-degenerate cyclically ordered triple of flags. We say

that T is a triangle of flags if the following conditions are satisfied:

1. the points Vi are in general position;
2. there is a triangle�T ⊂ V1V2V3 with vertices the three points Vi whose interior is disjoint

from all planes ηi .

Because the points Vi are in general position, they belong to a unique plane V1V2V3 of
RP

3. The lines Vi Vj through pairs of points {Vi , Vj } divide V1V2V3 in four projectively
equivalent projective triangles. By non-degeneracy, each plane ηi intersect V1V2V3 in a line
through Vi , but distinct from Vi Vj and Vi Vk . Thus every plane ηi intersects the interior of
exactly two of the four projective triangles. It is easy to see that if they all miss one of them,
then this triangle is unique.

We denote by FL� ⊂ FL3∗ the subset of triangles of flags. As noted above, every triangle
of flags T ∈ FL� corresponds to a unique triangle �T in RP

3, with a canonical cyclical
ordering of the vertices, but not an ordering. The map T �→ �T is surjective, but not finite-
to-one, as we can always decorate the vertices of a triangle with infinitely many appropriate
planes.

Let FL� ⊂ FL3∗ be the image of FL� under the quotient map π3 : FL3∗ → FL3∗.
The definition of a triangle of flags is invariant under projective transformation, therefore
π−1
3 (FL�) = FL�. Given a triangle of flags T , there is a corresponding triangle of flags

T obtained from T by applying an odd permutation to the flags in T . They share the same
underlying triangle but they have opposite cyclical ordering of the vertices.

Let F = (Vi , ηi )
4
i=1 ∈ FL4 be a non-degenerate ordered quadruple of flags. We say that

F is a tetrahedron of flags if the following conditions are satisfied:

1. the points Vi are in general position;
2. there is a tetrahedron TF ⊂ RP

3 with vertices the four points Vi whose interior is disjoint
from all planes ηi .

Because the points Vi are in general position, the four planes Vi Vj Vk through the triples
of points {Vi , Vj , Vk} divide RP

3 in eight projectively equivalent projective tetrahedra. Once
again, it is a simple exercise to show that if all of the planes ηi miss a tetrahedron, then it is
the only one.

We denote by FLT ⊂ FL4 the subset of tetrahedra of flags. Then by definition, every
tetrahedron of flagsF ∈ FLT corresponds to a unique tetrahedronTF inRP

3,with a canonical
ordering of the vertices induced by the ordering of the flags. In particular it comes with a
simplicial identification to the standard tetrahedron T◦. We say that TF is positively oriented
if this identification to T◦ is orientation preserving. Otherwise it is negatively oriented. We
remark that PGL(4) contains orientation reversing projective transformations, therefore a
tetrahedron may change orientation under projective transformation. Once again, the map
F �→ TF is surjective but not finite-to-one.

Let FLT ⊂ FL4 be the image of FLT under the quotient map π4 : FL4 → FL4. The
definition of a tetrahedron of flags is invariant under projective transformation, therefore
π−1
4 (FLT) = FLT.

Remark 1 The definition of a tetrahedron of flags is not invariant under projective duality, in
the sense that the planes ηi don’t have to be in general position. However, when the planes
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Fig. 1 A tetrahedron of flags in RP
3

are in general position, then they form a unique tetrahedron T∗
F ⊂ RP

3, whose faces are
contained in the four planes ηi , that contains the tetrahedron TF .

The following result shows that the action of PGL(4) on FLT is free.

Lemma 2 The stabilizer of a tetrahedron of flags in PGL(4) is trivial.

Proof We recall that the stabilizer of a projective basis of RP
3 in PGL(4) is trivial. Let

F = (Vi , ηi )
4
i=1 ∈ FLT be a tetrahedron of flags. The statement follows from the fact that at

least one of the following 5-tuples of points is a projective basis:

{V1, V2, V3, V4, η1η2η3}, or {V1, V2, V3, V4, η1η2η4}, or {V1, V2, V3, η1η2η3, η2η3η4}.
��

LetF = (Vm, ηm)
4
m=1 ∈ FLT be anorderedquadruple offlags. For every evenpermutation

(i jkl) of (1234), there is an associated ordered triple of flags

(F)i jk := ((Vi , ηi ), (Vj , η j ), (Vk, ηk)
)

.

We call (F)i jk a marked face of F . The corresponding cyclically ordered triple of flags

((F))i jk :=(((Vi , ηi ), (Vj , η j ), (Vk, ηk)))

is simply a face of F . The terminology is only meaningful when F is a tetrahedron of flags.
Indeed it follows directly from the definitions that faces of tetrahedra of flags are triangles
of flags. We record this fact in the following result for future reference.

Lemma 3 Every face of a tetrahedron of flags is a triangle of flags.

Let F = (Vm, ηm)
4
m=1 and E = (Wm, ζm)

4
m=1 be two tetrahedra of flags and let (i jkl)

and (i ′ j ′k′l ′) be two even permutations of (1234). If

(Vi , ηi ) = (W j ′ , ζ j ′), (Vj , η j ) = (Wi ′ , ζi ′), and (Vk, ηk) = (Wk′ , ζk′),
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then we say that F and E are glued (along the marked faces (F)i jk and (E)i ′ j ′k′ ). We remark
that, in this case, ((F))i jk= ((E))i ′ j ′k′ . Let TF ,TE be the tetrahedra ofRP

3 associated toF and
E . If F and E are glued together, then TF and TE share a face f . In general f ⊂ TE ∩ TF ,
and we say that the pair (F, E) is geometric if f = TE ∩ TF .

We remark that a pair (F, E) is not always geometric, as both tetrahedra TF ,TE might be
“on the same side” of f .

1.5 Triangulations of flags

We begin by defining ideal triangulations, inspired from [6]. Let U = �k
i=1T

i◦ be the disjoint
union of k copies of the standard tetrahedron, and Ψ be a family of orientation-reversing
simplicial isomorphisms pairing the faces of U , such that:

– ϕ ∈ Ψ if and only if ϕ−1 ∈ Ψ ;
– every face is the domain of a unique element of Ψ .

The elements of Ψ are called face pairings. The quotient space

Ṁ = U/Ψ

is a closed, orientable 3-dimensional CW-complex, and the quotient map is denoted p : U →
Ṁ . The triple Δ = (U, Ψ , p) is a (singular) triangulation of Ṁ . The adjective singular is
usually omitted, and we will not need to distinguish between the cases of a simplicial or a
singular triangulation. We will always assume that Ṁ is connected. In the case where Ṁ is
not connected, the results of this paper apply to its connected components.

The set of non-manifold points of Ṁ is contained in the 0-skeleton Ṁ (0), thus M :=
Ṁ\Ṁ (0) is a non-compact orientable 3-manifold. We say that Δ is an ideal triangulation of
M and Ṁ is its end-compactification.

We adopt the following notation: Ver(Δ), Ed(Δ), Fa(Δ), Tet(Δ) will denote the sets of
0-cells, 1-cells, 2-cells and 3-cells of Ṁ , respectively. These sets are called the sets of (ideal)
vertices, edges, faces and tetrahedra of Δ, respectively.

Let Δ̃ be the ideal triangulation of the universal cover M̃ obtained by liftingΔ. The space
of (ideal) triangulations of flags FLΔ (of M with respect to Δ) is the set of pairs (Φ, ρ)
where

Φ : Ver(Δ̃) → FL, and ρ : π1(M) → PGL(4),

satisfy the following conditions.

1. For all T ∈ Tet(Δ̃), the image of the vertices of T forms a tetrahedron of flags. Namely

Φ(T) := (Φ(v1),Φ(v2),Φ(v3),Φ(v4)) ∈ FLT,

for {v1, v2, v3, v4} = Ver(T).
2. If T,T′ ∈ Tet(Δ̃) are glued along a face f , then the corresponding tetrahedra of flags

Φ(T),Φ(T′) are glued geometrically along the their faces that correspond to f .
3. The map Φ is ρ-equivariant. Namely if v ∈ Ver(Δ̃) and γ ∈ π1(M) then

Φ(γ · v) = ρ(γ ) ·Φ(v).
The map Φ is called a flag decoration of ρ. There is an action of PGL(4) on FLΔ given by
postcomposition in the first factor and conjugation in the second factor, and we let FLΔ be
the corresponding quotient space. When its clear from the context, we will sometimes refer
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to a class of triangulation of flags simply as a triangulation of flags. We will see in Sect. 1.7
that classes of triangulations of flags are closely related to branched projective structures on
M . One of the main goals of the first half of this paper is to parametrize the space FLΔ (cf.
Theorem 10).

Remark 2 Let γ ∈ π1(M) and let T ∈ Tet(Δ̃). If Φ(T) and Φ(γ · T) are projectively
equivalent then there is a unique projective transformation mapping one to the other (cf.
Lemma 2). It follows that the holonomy of a triangulation of flags can be recovered from the
flag decoration.

1.6 Projective structures

Let M be a manifold of dimension n. In this section we describe projective structures on M .
A projective structure is a special instance of a (G, X)-structure; a detailed account of such
structures can be found in [27] or [29]. A projective structure on M consists of a (maximal)
atlas of charts (Uα, φα)α∈A, where the Uα cover M , φα : Uα → RP

n is a diffeomorphism
onto its image, and ifUα∩Uβ �= ∅ thenφα◦φ−1

β restricts to an element of PGL(n+1) on each
connected component ofUα∩Uβ . There is amore global description of such a structure given
by a pair (dev, hol), where dev : M̃ → RP

n is a local diffeomorphism called a developing
map, hol : π1(M) → PGL(n + 1) is a representation called a holonomy representation, and
dev is hol-equivariant in the sense that

dev(γ · x) = hol(γ ) dev(x), for every x ∈ M̃, γ ∈ π1(M).

Given a structure, a developing map can be constructed via analytic continuation.
There is a natural equivalence relation that can be put on the set of projective structures on

M . We begin by describing the simpler case where M is compact. In this context, we say that
two structures (dev, hol) and (dev′, hol′) are equivalent if there is an elementG ∈ PGL(n+1)
so that, up to precomposing dev and dev′ with equivariant isotopies,

dev′ = G ◦ dev, and hol′ = G · hol,
where the action of G on hol is by conjugation. Our primary case of interest is when M is
non-compact, but is the interior of a compact manifold M̂ . In this setting we call a com-
pact submanifold N ⊂ M a compact core if N is the complement in M̂ of an open collar
neighborhood of the boundary of M̂ . Two projective structures (dev, hol) and (dev′, hol′)
on M are equivalent if for some choice of compact core, N , they are equivalent (using the
previous definition) when restricted to N . Let RP(M) be the space of equivalence classes of
projective structures on M and letX(M) := Hom(π1(M),PGL(n + 1))/PGL(n + 1) be the
PGL(n + 1)-character variety of π1(M), then there is a map

Hol : RP(M) → X(M),

that takes a class of structures to the conjugacy class of its holonomy representations.
Both RP(M) and X(M) are natural topological spaces. The space of developing maps of

projective structures on M is a subspace of the set C∞(M̃,RP
n) of smooth maps from M̃

to RP
n . The space C∞(M̃,RP

n) can be equipped with the weak topology (see [19, pp. 35]
for definition), the space of developing maps can then be equipped with the corresponding
subspace topology, and RP(M) can be equipped with the corresponding quotient topology.
The space Hom(π1(M),PGL(n + 1)) can be equipped with the compact-open topology
and X(M) can be equipped with the corresponding quotient topology. With respect to these
topologies, we have the following well known result (see [5] for a nice exposition).
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Theorem 5 (The Ehresmann–Thurston principle, [29]) The map Hol : RP(M) → X(M) is
a local homeomorphism.

A (G, X)-geometry such that X ⊂ RP
n and G ⊂ PGL(n + 1) is called a subgeometry of

projective geometry. Using the previous construction, we can build the space X(M) of equiv-
alence classes of (G, X)-structures on M . If (G, X) is a subgeometry of projective geometry,
there is a map X(M) → RP(M) that associates an equivalence class of (G, X)-structures to
the underlying class of projective structures. For certain subgeometries this map can fail to
be injective. Two examples that will be relevant for our purposes are hyperbolic geometry,
modeled on (PSO(3, 1),H3), and Anti-de Sitter geometry, modeled on (PSO(2, 2),AdS

3)

(cf. Sect. 5).
There is another type of structures thatwill comeout throughout thiswork, called branched

structures. Roughly speaking, they are generalizations of geometric structures where instead
of insisting that the charts are local diffeomorphisms, we only require that they are branched
coveringmaps. This construction is quite general, but wewill only have occasion to use a very
specific instance, which we now describe. LetΔ be an ideal triangulation of a 3-manifold M .
A branched projective structure on M with respect to Δ is a (maximal) collection of charts
(Uα, φα)α∈A so that

– if Uα is disjoint from Ed(Δ), then φα : Uα → RP
3 is a local diffeomorphism;

– if Uα ∩ Ed(Δ) �= ∅ then φα maps the components of Uα ∩ Ed(Δ) diffeomorphically to
disjoint projective line segment, and each p ∈ Uα ∩ Ed(Δ) has a neighborhood Np on
which the restriction of φα is a branched cyclic covering of finite order with branch locus
Np ∩ Ed(Δ).

As before, we also insist that if the domains of two charts intersect then the transition map
restricts to an element of PGL(4), in each component of intersection. The branch locus Σ
of a branched structure is the subset of Ed(Δ) where the charts are non-trivially branching.
If Σ = ∅, then the structure is a genuine projective structure.

As with projective structures, branched projective structures can be described globally as
a pair (dev, hol), where hol : π1(M) → PGL(4) is a representation, and dev : M̃ → RP

3

is a hol-equivariant local diffeomorphism away from Ed(Δ̃), and locally a cyclic branched
cover of finite order at Ed(Δ̃).

Finally, the same equivalence relation we adopted for projective structures can be applied
verbatim to branched projective structures.We denote byRP(M,Δ) the space of equivalence
classes of branched projective structures on M with respect toΔ. If (G, X) is a subgeometry
of projective geometry, we denote by X(M;Δ) ⊂ RP(M;Δ) the space of equivalence
classes of branched (G, X)-structures.

1.7 Developing triangulations of flags

Let Δ be an ideal triangulation of a 3-manifold M . We conclude this section by describ-
ing the relationship between triangulation of flags FLΔ and branched projective structures
RP(M,Δ). Let [Φ, ρ] ∈ FLΔ be a triangulation of flags and let (Φ, ρ) be a representative
pair. For each tetrahedron T̃ ∈ Tet(Δ̃), the image of the vertices of T̃ under Φ is a tetra-
hedron of flags FT̃. Then by definition, there is a unique tetrahedron T̃F in RP

3 associated
to FT̃, and using barycentric coordinates on each tetrahedron we can simplicially extend Φ
to an isomorphism T̃ → T̃F . Repeating this construction for each tetrahedron in Tet(Δ̃)
gives a map Δ̃ → RP

3, hence in particular a map Φ̂ : M̃ → RP
3. By construction, Φ̂ is
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ρ-equivariant and unique up to isotopy. We say that Φ̂ is the simplicial developing extension
of (Φ, ρ).

Theorem 6 Let [Φ, ρ] ∈ FLΔ, and let Φ̂ be the simplicial developing extension of a rep-
resentative pair (Φ, ρ). Then [Φ̂, ρ] ∈ RP(M,Δ). In particular, there is a well defined
continuous map

ExtΔ : FLΔ → RP(M,Δ), where [Φ, ρ] �→ [Φ̂, ρ].
The map ExtΔ is called the extension map of FLΔ.

Proof First we are going to show that [Φ̂, ρ] ∈ RP(M,Δ). Since Φ̂ : M̃ → RP
3 and Φ̂ is

ρ-equivariant, we only need to show that Φ̂ is a local homeomorphism away from the edges
of Δ̃, and locally a cyclic branched cover of finite order otherwise.

We recall that Φ̂ is a homeomorphism when restricted to each individual tetrahedron T̃
of Δ̃, therefore a local homeomorphism in the interior of T̃. Item (2) in the definition of an
ideal triangulation of flags implies that Φ̂ is a local homeomorphism in the interior of each
face too. Furthermore, each edge in Ed(Δ̃) is mapped to a segment of a projective line. To
conclude that Φ̂ is a cyclic branched cover of finite order in a neighbourhood of each edge of
Δ̃, it is enough to notice that Φ̂ is ρ-equivariant and ρ is a representation of π1(M). Since a
loop encircling the edge is homotopically trivial, ρ-equivariance ensures that it develops to a
closed curve encircling the image of that edge, and hence any closed simple loop around an
edge s ∈ Ed(Δ̃), and contained in a small enough neighbourhood of s, is mapped to a closed
loop in RP

3 going around Φ̂(s) finitely many times. It follows that [Φ̂, ρ] ∈ RP(M,Δ).
Finally, suppose (Φ1, ρ1) is another representative pair for [Φ, ρ]. Then (Φ1, ρ1) is equiv-

alent to (Φ, ρ), and it is easy to see that so are (Φ̂1, ρ1) and (Φ̂, ρ). Hence [Φ̂1, ρ1] = [Φ̂, ρ]
and ExtΔ is well defined. The restriction of Φ̂ to each tetrahedron T̃ ∈ Tet(Δ̃) depends
continuously on the vertices of the tetrahedron of flags Φ(̃T). Since there are only finitely
many tetrahedra in Δ and Φ̂ is equivariant, continuity of ExtΔ follows. ��

2 Coordinates on a tetrahedron of flags

In this section we describe a convenient set of coordinates on the space FLT of PGL(4)-
classes of tetrahedra of flags. This is the first step towards a parametrization of FL�. The
neatest way to do so is to introduce the concept of an edge-face of a tetrahedron (cf. Sect. 2.1),
and to associate to each of them a meaningful positive real number. The coordinates we use
are triple ratios and edge ratios (cf. Sect. 2.2), partially inspired by [4,14]. These projective
coordinates are defined for quadruple of flags, but are positive if and only if the flags form
a tetrahedron of flags (cf. Lemma 8). We show that they satisfy some internal consistency
equations (cf. Lemma 5), defining a parameter space D+

T , homeomorphic to R
5
>0. Using

edge-face standard position (cf. Sect. 2.3), we will show that FLT is homeomorphic to D+
T

in Theorem 7. We conclude with a remark that projective tetrahedra coming from tetrahedra
of flags in edge-face standard position are always positively oriented (cf. Sect. 2.5).

2.1 Edge-faces

Recall that T◦ is the standard 3-dimensional simplex (cf. Sect. 1.4). An edge-face of T◦ is
an ordered pair σ = (e, f ) consisting of an (oriented) face f of T◦ and an (oriented) edge e
of f , so that the orientation of f is the one induced from T◦, and the orientation of e is the
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one induced from f . The components of an edge-face σ are called the edge and face of σ ,
respectively. We denote by (E)F the set of all edge-faces of T◦.

There is a natural identification between (E)F and the alternating group on four symbols
Alt(4) ≤ Sym(4), namely the subgroup of even permutations. This can be best described
using the non-standard notationwhere [i jkl] ∈ Alt(4) is the permutationmapping (1, 2, 3, 4)
to (i, j, k, l). Since every vertex of T◦ is numbered, every edge-face σ = (e, f ) can be
encoded as (i j)k, where (i j) is the oriented edge e and ((i jk)) is the oriented face f . Then
we have a bijection

Alt(4) → (E)F, where [i jkl] �→ (i j)k.

Henceforth we will implicitly make use of this identification, and abuse the notation by
indicating with σ both the edge-face and the corresponding even permutation.

The group Alt(4) acts simply transitively on itself on the right by multiplication, thus
giving a simply transitive right action of Alt(4) on (E)F. As a consequence, one can visualize
the set (E)F as the set of vertices of the Cayley graph Cay(4) of Alt(4).

We introduce the following notation (cf. Fig. 2). Let α = [3124] and β = [2143] be a
generating set of Alt(4) (these are (132) and (12)(34) in the standard notation). If σ = (i j)k,
then we define

σ+ := σ · α = (ki) j, and σ− := σ · α−1 = ( jk)i .

These are the three edge-faces that share the face ((i jk)). Furthermore, let

σ := σ · β = ( j i)l, σop := σ · α−1βα = (lk) j, and σop := σ · αβα−1 = (kl)i,

be the conjugate, positive opposite and negative opposite edge-faces of σ , respectively.
We remark that conjugate edge-faces share the same unoriented edge, but with opposite
orientations. On the other hand, the edges of opposite edge-faces are opposite in T◦, namely
they do not share a vertex.

Remark 3 It should be noted that some symbols commute while some do not. For example
σop = σ op , but σ− �= σ− = (σ−)op .

In light of the above notation, one can meaningfully embed Cay(4) inside T◦ so that each
edge-face (e, f ) lies inside f and next to e (cf. Fig. 2). We remark that the set of faces of T◦
has a natural identification with (left) cosets of 〈α〉 in Alt(4), while the set of edges can be
identified with (left) cosets of 〈β〉 in Alt(4).

2.2 Triple ratios and edge ratios

Each flag in RP
3 has 5 degrees of freedom, and hence FL3∗ is a 15-dimensional space. Since

PGL(4) is also a 15-dimensional space, one might naively expect that all cyclically ordered
triples of flags are in the same PGL(4)-orbit, however, this turns out not to be the case.

Recall that R
× := R\{0}. We define the continuous map

�3◦ : FL3∗ → R
×, where T =((Vm, ηm))

3
m=1 �→

η1(V2)η2(V3)η3(V1)

η1(V3)η2(V1)η3(V2)
∈ R

×,

where Vm ∈ R
4 and ηm ∈ (R4)∗ are representatives of Vm and ηm , respectively. It is easy to

check that this quantity is well defined: it is independent of the choice of representatives Vm
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Fig. 2 An embedding of the Cayley graph Cay(4) of Alt(4) into T◦ where each edge-face σ = (i j)k lies
inside the face ((i jk)) and next to the edge (i j)

and ηm , numerator and denominator are non-zero by non-degeneracy of the flags, and it is
invariant under cyclic permutations of the three flags. The triple ratio of T is the number

tT := �3◦(T ).

We remark that the triple ratio is invariant under projective transformations, namely

�3◦(G · T ) = �3◦(T ), ∀G ∈ PGL(4).

Therefore �3◦ descends to a function

�3◦ : FL3∗ → R
×.

It turns out that one can characterize the subspace of triangle of flags FL� ⊂ FL3∗ via �3◦.
The following result is a straightforward consequence of Theorem [14, Theorem 2.2]. See
also [7] for a proof of continuity and more details.

Lemma 4 Both the map �3◦ : FL3∗ → R
× and the restriction map �3◦

∣
∣
FL� : FL� → R>0

are homeomorphisms.

Proof If T =((Vm, ηm ))
3
m=1∈ FL3∗, then the intersections of the plane V1V2V3 with η1, η2,

and η3 give three lines �1, �2, and �3 in V1V2V3. By identifying V1V2V3 with RP
2, we see

that T ′ :=((Vm, [�m]))3m=1 is a cyclically ordered triple of complete flags in RP
2. Then the

triple ratio �3◦(T ) is equal to the Fock–Goncharov triple ratio of T ′ and the result follows
from [14, Theorem 2.2]. ��

For each edge-face σ ∈ (E)F and each ordered quadruple of flagsF ∈ FL4, we recall that
((F))σ is a cyclically ordered triple of flags. Thus we have a well defined continuous map

�3 : FL4 × (E)F → R
×, where (F, σ ) �→ �3◦ (((F))σ ) .

The triple ratio of F with respect to σ is

tFσ := �3◦ (((F))σ ) = �3(F, σ ). (2.1)

The fact that the triple ratio is invariant under projective transformations implies that the map

�3 descends to a continuous map

�3 : FL4 × (E)F → R
×,
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which by abuse of notation we have also denote by �3. This is our first type of coordinate on
FL4 × (E)F.

Now we are going to define a second function on the space FL4 × (E)F. Recall that
the edge-face σ = (i j)k corresponds to the permutation [i jkl] ∈ Alt(4). We define the
continuous map

ξ : FL4 × (E)F → R
×, where (F, σ ) =

(

(Vm , ηm)
4
m=1, (i j)k

)

�→ ηi (Vk)η j (Vl )

ηi (Vl)η j (Vk)
∈ R

×.

for representatives V m ∈ R
4 and ηm ∈ (R4)∗ of Vm and ηm , respectively. Once again, the

quantity ξ(F, σ ) is well defined as the numerator and denominator are non-zero by non-
degeneracy of the flags, and it is independent of the choice of representative of Vi and ηi .
The edge ratio of F with respect to σ is then

eFσ := ξ(F, σ ). (2.2)

As with the triple ratio, the edge ratio is invariant under projective transformations. Therefore
ξ descends to a continuous map

ξ : FL4 × (E)F → R
×.

The edge ratio is inspired from a coordinate defined in [4], and we will see shortly that it
admits a geometric description coming from its interpretation as a cross ratio (cf. Lemma 7).

For both triple ratios and edge ratios, it is often convenient to have a notation that makes
the edge-face σ more explicit. If σ = (i j)k then we sometimes use the notations

tFi jk = tFσ = t [F]
σ , and eFi j = eFσ = e[F]

σ .

This convention for the edge ratio should not create confusion: given distinct i, j ∈ {1, 2, 3, 4}
there is a unique choice of k ∈ {1, 2, 3, 4}\{i, j} so that (i j)k ∈ (E)F. Furthermore, we will
occasionally omit superscripts when F is clear from context (see Lemma 5 for example).

It follows directly from the definitions of the triple ratio (2.1) and the edge ratio (2.2) that
these two ratios satisfy several relations. They are called the internal consistency equations,
and are summarized in the following result.

Lemma 5 Let F ∈ FL4 and let σ = (i j)k ∈ (E)F, then

tFσ = tFσ+ = tFσ− , or ti jk = tki j = t jki , (2.3)

eFσ = eFσ , or ei j = e ji , (2.4)

tFσ (e
F
σ eFσ+eFσ−) = 1, or ti jk(ei j eki e jk) = 1, (2.5)

tFσ = eFσop
eF(σ+)op

eF(σ−)op
, or ti jk = ekle jl eil . (2.6)

In particular

eFσ eFσ+eFσ−eFσop
eF(σ+)op

eF(σ−)op
= 1, or ei j eki e jkekle jl eil = 1. (2.7)

There is a simple way to associate triple ratios and edge ratios to the edges and faces of the
standard simplex T◦ that makes the internal consistency equations easier to remember. For
every edge-face σ = (i j)k, we label the (unoriented) edge of T◦ with vertices {i, j} with the
edge ratio eσ , and we label the (unoriented) face of T◦ with vertices {i, j, k} with the triple
ratio tσ . The relations (2.3) and (2.4) show that this labeling is well defined. Equation (2.5)
says that the product of the three edge ratios on the edges of a face in T◦ is the inverse of the
triple ratio of that face. Similarly, equation (2.6) says that the product of the edge ratios on
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the three edges emanating from a vertex is equal to the triple ratio of the face that is opposite
to that vertex.

2.3 Edge-face standard position

Here we develop one of the main tools for constructing the parametrization of FLT in
Sect. 2.4. In fewwords, for every edge-face σ ∈ (E)F, we are going to construct a continuous
sectionFLT → FLT that allows us to single out a preferred tetrahedron of flags in its PGL(4)-
class.

To state the next result, we use the following notation. For 1 ≤ i ≤ 4,we denote by ei (resp.
e∗
i ) the i-th standard basis vector inR

4 (resp. (R4)∗), and by [ei] (resp. [e∗
i ]) the corresponding

point in RP
3 (resp. (RP

3)∗). Furthermore, for all [F] ∈ FLT and all σ = (i j)k ∈ (E)F, we
define

μF
σ := eFσ−eFσ+ − eFσ− + 1, or μF

i j := eFjkeFki − eFjk + 1.

Lemma 6 For each edge-face σ = (i j)k and for each class [F] ∈ FLT of tetrahedra of flags
there is a unique representative F = (Vm, ηm)

4
m=1 ∈ FLT such that

(Vi , ηi ) = ([e1], [e∗
2]), (Vj , η j ) = ([e2], [e∗

1]), (2.8)

(Vk, ηk) = ([e1 + e2 + e3], [tσ · e∗
1 + e∗

2 − (tσ + 1) · e∗
3], (2.9)

Vl = [eσ · e1 + e2 + Xσ · e3 − e4], (2.10)

ηl = [eσ−eσ+ · e∗
1 + e∗

2 − μσ · e∗
3 + μσ (Yσ − Xσ ) · e4∗], (2.11)

where

Xσ := μσ tσ eσ
tσ + 1

, and Yσ := tσ + 1

tσμσ
.

The representative F from Lemma 6 is the σ -standard representative of [F]. We will
also say that a tetrahedron of flags F is in σ -standard position if it is equal to the σ -standard
representative of its PGL(4)-class.

Proof Let F = (Vm, ηm)
4
m=1 be a class representative for [F] ∈ FLT. We recall that the

face ((F ))σ is a triangle of flags (cf. Lemma 3). We claim that the quadruple of points
{Vi , Vj , Vk, ηiη jηk} is in general position. Otherwise ηiη jηk would belong to the plane
Vi Vj Vk and there would not be a triangular region in Vi Vj Vk disjoint from all planes ηi ,
contradicting the fact that ((F))σ is a triangle of flags.

Since {[e1], [e2], [e1 + e2 + e3], [e4]} is also in general position, and PGL(4) acts transi-
tively on quadruples of points in general position, we can change F in its class so that:

Vi = [e1], Vj = [e2], Vk = [e1 + e2 + e3], ηiη jηk = [e4].
Bynon-degeneracy, the lineηiη j intersects the planeVi Vj Vk in a single point P that is disjoint
from the line Vi Vj . It follows that {Vi , Vj , Vk, P} is a projective basis for the projective plane
Vi Vj Vk , and hence there is an element of PGL(4) that fixes pointwise {Vi , Vj , Vk, ηiη jηk}
andmaps P to [e3]. Any such element maps ηiη j to the line [e3][e4]. In this setting, ηi = [e∗

2]
and η j = [e∗

1] are forced, which proves (2.8).
Since ηk is a plane through Vk = [e1 + e2 + e3] and ηiη jηk = [e4], it is of the form

ηk = [t · e∗
1 + e∗

2 − (t + 1) · e∗
3]. A simple computation shows that

tσ = 1 · 1 · t

1 · 1 · 1 = t,
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which proves (2.9). Next we notice that, by non-degeneracy, ηi (Vl) �= 0 and ηl(Vj ) �= 0,
thus we may normalize so that

Vl = [A · e1 + e2 + C · e3 + D · e4], and ηl = [a · e∗
1 + e∗

2 + c · e∗
3 + d · e4∗].

It follows from the definition of these edge ratios and the internal consistency equations (2.5)
and (2.6) that

eσ = A, eσ+ = 1

tσ A + 1 − (tσ + 1)C
, �⇒ C = μσ

eσ−eσ+(tσ + 1)
= Xσ ,

and

eσ− = a + 1 + c, eσop = tσ
a
, �⇒ a = eσ−eσ+ , c = −μσ .

Imposing that ηl(Vl) = 0, gives the additional equation

d · D = −a · A − 1 − c · C = − 1

tσ
− 1 − μσ Xσ = −μσ (Yσ − Xσ ).

But D �= 0 because the points {Vm}4m=1 are in general position, thus we can rewrite

d = −μσ
D

(Yσ − Xσ ).

To conclude, we claim that we can change F in its PGL(4)-class so that D = −1, while
everything else stays fixed. This can be done by applying the projective transformation

G =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 − 1

D

⎤

⎥
⎥
⎦
.

We remark that uniqueness follows from the fact that the stabilizer of a tetrahedron of flags
is trivial (cf. Lemma 2). ��

2.4 The parametrization ofFLT

Let R
(E)F
× be the set of functions from (E)F to R

×. By combining the maps �3 and ξ from
Sect. 2.2, we have a well defined continuous map

Ψ : FLT → R
(E)F
× × R

(E)F
× , where [F] �→ (

�3([F], ∗), ξ([F], ∗)) = (tF∗ , eF∗
)

.

It follows from Lemma 5 that the image of Ψ is contained in the algebraic variety defined by
the internal consistency equations. The goal of this section is to determine the image of Ψ ,
and show that it is a homeomorphism onto its image. The first step is to understand the edge
ratios in geometric terms, through cross ratios.

Lemma 7 Let F = (Vm, ηm)
4
m=1 ∈ FL4. For every σ = (i j)k ∈ (E)F, let �i j be the line

Vi Vj , and let �∗i j be the pencil of planes containing ηi ∩η j . Let Pk = �i j ∩ηk and Pl = �i j ∩ηl .
Let p∗

k be the plane in �∗i j that contains Vk and let p∗
l the plane in �∗i j that contains Vl . Then

eFi j = eFσ = [ηi , η j , p∗
k , p∗

l

]

, and eFkl = eFσop
= [Vi , Vj , Pk, Pl

]

.
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Proof To simplify the notationwe are going to drop the superscripts.We consider the function

�∗i j → RP
1, that maps η �→ η(Vk)η j (Vl)

η(Vl)η j (Vk)
,

for representatives η, η j , Vl , Vk of η, η j , Vl , Vk , respectively. As in the definition of the edge
ratios, this function is well defined by non-degeneracy of the flags and it does not depend on
the choice of representatives.

It is easy to check that this is the unique projective map that takes (p∗
l , p∗

k , η j , ηi ) to
(∞, 0, 1, ei j ). But since �∗i j

∼= RP
1, by definition of cross ratio,

ei j = [p∗
l , p∗

k , η j , ηi ] = [ηi , η j , p∗
k , p∗

l ].
A dual (but analogous) argument applies to the function

�i j → RP
1, that maps V �→ ηk(Vi )ηl(V )

ηk(V )ηl(Vi )
,

to show that ekl = [Pk, Pl , Vi , Vj
] = [Vi , Vj , Pk, Pl

]

. ��
Combining Lemma 7 with Lemma 1, we can show that the edge ratios of a tetrahedron of

flags are always positive. Recall that this was already proven for the triple ratios in Lemma 4.
For convenience, we combine them both in the following result.

Lemma 8 For every F ∈ FLT and every σ ∈ (E)F,

tFσ > 0, and eFσ > 0.

Proof Let σ ∈ (E)F and F ∈ FLT. Since edge ratios and triple ratios are invariant under
projective transformations, we can change F to be in σ -standard position (cf. Lemma 6).

By Lemma 3, the face ((F))σ is a triangle of flags hence tFσ > 0 (cf. Lemma 4).
Now we consider the affine patch A := RP

3\[e∗
1 + e∗

2 − e∗
3]. The three planes ηi , η j , ηk

have a unique common intersection ηiη jηk = [e4] ∈ [e∗
1 + e∗

2 − e∗
3], therefore they form

an infinite triangular prism P in A. The prism P contains the triangle associated to the face
((F))σ , thus it must contain the entire tetrahedron associated to the tetrahedron of flags F .

Let p∗
k and p∗

l be the planes in the pencil �∗i j through the line ηiη j , containing the points
Vk and Vl , respectively. The prism P is contained in one of the four connected components
of A\{ηi , η j }. The points Vk and Vl are contained in P and so the planes p∗

k , p∗
l intersect

P. It follows that p∗
k and p∗

l are contained in the same region, namely they are in the same
connected component of �∗i j\{ηi , η j }. Combining Lemma 7 and Lemma 1, we conclude that

eFσ = [ηi , η j , p∗
k , p∗

l

]

> 0.

��
Let DT be the algebraic variety of R

(E)F
× × R

(E)F
× defined by the internal consistency

equations (2.3)–(2.6). The parameter space of a tetrahedron of flags is the semi-algebraic
set

D+
T := DT ∩

(

R
(E)F
>0 × R

(E)F
>0

)

.

An immediate corollary of Lemma 8 is that Ψ has image in D+
T . Furthermore, it is easy to

check that D+
T is homeomorphic to R

5
>0. Indeed one can use equations (2.5)–(2.6) to write
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all triple ratios as edge ratios, reducing the number of variables from 24 to 12. Equation (2.4)
implies that half of the edge ratios are redundant, and by (2.7) only 5 are necessary. Hence
there is a homeomorphism D+

T → R
5
>0 that maps

(

tF� , eF�
) �→ (

eF12, eF13, eF23, eF14, eF24
)

.

Theorem 7 The map Ψ : FLT → D+
T

∼= R
5
>0 is a homeomorphism.

Proof The mapΨ is continuous by continuity of �3 and ξ , hence it will be enough to construct
a continuous inverse.

We define amapΦ : D+
T → FLT as follows. For each (τ�, ε�) ∈ D+

T ⊂ R
(E)F
>0 ×R

(E)F
>0 , let

[F] := Φ(τ�, ε�) be the PGL(4)-class of the tetrahedron of flags F = (Vm, ηm)
4
m=1 defined

by

(V1, η1) = ([e1], [e∗
2]), (V2, η2) = ([e2], [e∗

1]),
(V3, η3) = ([e1 + e2 + e3], [τ(12)3 · e∗

1 + e∗
2 − (τ(12)3 + 1) · e∗

3],
V4 = [ε(12)3 · e1 + e2 + X · e3 − e4],
η4 = [ε(14)2ε(42)1 · e∗

1 + e∗
2 − ν · e∗

3 + ν (Y − X ) · e4∗],
where

X = ντ(12)3ε(12)3

τ(12)3 + 1
, Y = τ(21)4 + 1

τ(21)4ν
, ν = ε(23)1ε(31)2 − ε(23)1 + 1,

and ν = ε(14)2ε(42)1 − ε(14)2 + 1.

Since τ(12)3 > 0, the cyclically ordered triple of flags ((F))(12)3=((Vm, ηm))
3
m=1 is a triangle

of flags (cf. Lemma 4). Let� ⊂ RP
3 be the unique triangle associated to the triangle of flags

((F))(12)3.
As in the proof of Lemma 8, we consider the affine patch A := RP

3\[e∗
1 + e∗

2 − e∗
3]. The

three planes η1, η2, η3 have a unique common intersection η1η2η3 = [e4] ∈ [e∗
1 + e∗

2 − e∗
3],

therefore they form an infinite triangular prism P in A. In particular, the prism P contains
the triangle �. We want to show that V4 lies inside P, and that η4 does not intersect the
tetrahedron T spanned by {V1, V2, V3, V4} in P.

First we observe that, by positivity of (τ�, ε�), the quadruple of flagsF is non-degenerate:

η1(V4) = 1, η2(V4) = ε(12)3,

η3(V4) = τ(12)3ε(12)3 + 1 + ντ(12)3ε(12)3 = τ(12)3ε(12)3ε(23)1,

η4(V1) = 1, η4(V2) = ε(14)2ε(42)1, η4(V3) = ε(14)2ε(42)1 + 1 − ν = ε(14)2.

In the third equation we used that (τ�, ε�) ∈ D+
T and therefore τ(12)3ε(12)3ε(23)1ε(31)2 = 1.

For every ordered triple (i, j, k) ∈((1, 2, 3)), let �∗i j be the pencil of planes containing ηi

and η j . Let p∗
k,i j be the plane in �

∗
i j that contains Vk and let p∗

l,i j the plane in �
∗
i j that contains

Vl . Then we can apply Lemma 7 to find that
[

ηi , η j , p∗
k,i j , p∗

l,i j

]

= ξ(F, (i j)k) = ε(i j)k .

Once again, given that ε(i j)k > 0, it follows that p∗
k,i j and p∗

l,i j are contained in the same
connected component of �∗i j\{ηi , η j } (cf. Lemma 1). In particular, this implies that the inter-
section V4 = p∗

4,12 ∩ p∗
4,23 ∩ p∗

4,31 is in P.
It is only left to show that η4 does not intersect the tetrahedron T spanned by

{V1, V2, V3, V4} in P. The argument is analogous, but dual, to the previous one.
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For every ordered triple (i, j, k) ∈((1, 2, 3)), let �i j be the line Vi Vj . Let Pk,i j = �i j ∩ ηk

and Pl,i j = �i j ∩ ηl . Then we can apply Lemma 7 to find that
[

Vi , Vj , Pk,i j , Pl,i j
] = ξ(F, (kl)i) = ε(kl)i .

Once again, given that ε(kl)i > 0, it follows that Pk,i j and Pl,i j are contained in the same
connected component of �i j\{ηi , η j } (cf. Lemma 1). We remark that Pk,i j /∈ �, therefore
Pl,i j /∈ �. In particular, this implies that the spanned plane η4 = P4,12P4,23P4,31 misses �.
But � is a face of T, and V4 ∈ η4, therefore η4 misses the entire tetrahedron T.

In conclusion, F ∈ FLT is a tetrahedron of flags and Φ : D+
T → FLT is well defined.

The above argument also shows that Φ is continuous. Since F is in (12)3-standard position,
it follows from Lemma 6 that Φ = Ψ−1. ��

2.5 Orientation

We recall that every tetrahedron of flags F ∈ FLT corresponds to a unique tetrahedron TF
in RP

3, with a canonical ordering of the vertices, namely an identification with the standard
tetrahedron T◦. Then TF is positively oriented if the identification to the standard tetrahedron
is orientation preserving. Otherwise it is negatively oriented.

We remark that projective transformations are not always orientation preserving, thus a
tetrahedronmay change orientation under projective transformation. However, when we glue
tetrahedra of flags together (cf. Sect. 3), it will be convenient to have some control over their
orientations to make sure that they are geometrically glued, namely the underlying projective
tetrahedra only intersect along the common face.

An immediate consequence of Lemma 6 and Lemma 8 is that the tetrahedron associated
to a σ -standard representative is always positively oriented.

Lemma 9 For each edge-face σ = (i j)k and for each class [F] ∈ FLT of tetrahedra of flags,
let F be the σ -standard representative of [F]. Then the tetrahedron TF ⊂ RP

3 associated
to F is positively oriented.

Proof We recall that TF comes with an identification to the standard tetrahedron T◦, that
determines its orientation.

Let σ = (i j)k be an edge-face. Consider the affine patch A := RP
3\[e∗

1 + e∗
2 − e∗

3]. As
F is in σ -standard position, the three planes ηi , η j , ηk have a unique common intersection
ηiη jηk = [e4] ∈ [e∗

1 + e∗
2 − e∗

3], therefore they form an infinite triangular prism P in A. The
prism P contains the entire tetrahedron TF . The intersection �′ := P ∩ Vi Vj Vk is a triangle
in the plane Vi Vj Vk , containing the triangle � := TF ∩ Vi Vj Vk associated to the face ((F))σ .
We consider the following identification:

A → R
3,

[x : y : z : w]T �→
(

x

x + y − z
,

y

x + y − z
,

w

x + y − z

)T

.

In this coordinate system

�′ ⊂ {(a, b, c) ∈ A | c = 0},
P = {(a, b, c) ∈ A | (a, b, 0) ∈ �′},

Vl =
(

eσ
eσ + 1 − Xσ

,
1

eσ + 1 − Xσ

,
−1

eσ + 1 − Xσ

)T

,
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where

Xσ := μσ tσ eσ
tσ + 1

, and eσ + 1 − Xσ = eσ + tσ + tσ eσ eσ−
tσ + 1

> 0.

The triangle �′ divides the interior of the prism P into two connected components, and Vl

always belongs to the one with negative third coordinate:

P− := {(a, b, c) ∈ P | c < 0}.
It follows that TF is positively oriented. ��

3 Coordinates on a pair of glued tetrahedra of flags

We recall that two tetrahedra of flags are glued together when two of their marked faces are
matched (cf. Sect. 1.4). When they are glued geometrically, the corresponding tetrahedra in
RP

3 share a common face, and locally only intersect at that face. In other words, gluing
tetrahedra of flags corresponds to gluing the underlying tetrahedra.

In this section we show that two tetrahedra of flags can be glued together if and only if
they satisfy a simple face pairing equation (cf. Lemma 10). This will be done in the language
of edge-faces (cf. Sect. 2.1). Next, we show that two glueable tetrahedra of flags can be
glued in a 1-real parameter family of ways, which is encoded by the gluing parameters (cf.
Sect. 3.2). These parameters are positive if and only if the gluing is geometric (cf. Lemma 13).
We conclude by putting edge parameters and gluing parameters together to parametrize the
parameter space of pairs of glued tetrahedra of flags (cf. Sect. 3.4).

3.1 Edge-face glued position

We begin by recalling the notion of glued tetrahedra of flags, and set the notation in the
language of edge-faces.

LetF = (Vm, ηm)
4
m=1 and E = (Wm, ζm)

4
m=1 be two tetrahedra of flags, and let σ = (i j)k

and τ = (i ′ j ′)k′ be a pair of edge-faces. We say that F and E are glued along (σ, τ ), or in
(σ, τ )-glued position, if

(Vi , ηi ) = (W j ′ , ζ j ′), (Vj , η j ) = (Wi ′ , ζi ′), and (Vk, ηk) = (Wk′ , ζk′).

If, in addition, F is the σ -standard representative of its PGL(4)-class [F], then we say that
F and E are in (σ, τ )--standard glued position. Note that if F and E are glued along (σ, τ ),
then they are also glued along (σ+, τ−) and glued along (σ−, τ+). In addition, E and F are
glued along (τ, σ ).

Given a pair of edge-faces (σ, τ ) ∈ (E)F × (E)F, we denote by FLσ,τ the set of pairs
(F, E) of tetrahedra of flags that are glued along (σ, τ ), and by FLσ,τ the quotient of FLσ,τ
by the diagonal action of PGL(4). We remark that FLσ,τ is naturally homeomorphic to the
space of pairs of tetrahedra of flags in (σ, τ )-standard glued position.

We say that a pair [F], [E] ∈ FLT of PGL(4)-classes of tetrahedra of flags is (σ, τ )--
glueable, if there are representativesF ∈ [F] and E ∈ [E] that are glued along (σ, τ ), namely
such that (F, E) ∈ FLσ,τ . The next result shows that determining (σ, τ )-glueable pairs is
simple.
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Lemma 10 A pair [F], [E] ∈ FLT is (σ, τ )-glueable if and only if

tFσ tEτ = 1. (3.1)

Moreover, if the pair [F], [E] is (σ, τ )-glueable, then it is (σ ′, τ ′)-glueable for all σ ′ ∈
{σ, σ−, σ+} and all τ ′ ∈ {τ, τ−, τ+}.
Equation (3.1) is called the face pairing equation of [F] and [E]with respect to the edge-face
pair (σ, τ ).

Proof Let T ∈ FL3∗ be a cyclically ordered triple of flags, and let T ∈ FL3∗ be obtained by
applying an odd permutation to the flags in T . Then, from the definition of triple ratio, we
have that

�3(T )�3(T ) = 1.

The first statement then follows from the fact that projective classes of cyclically ordered
triples of flags are uniquely determined by the triple ratio (cf. Lemma 4). The latter instead
is a consequence of the cyclic invariance of the triple ratio. ��

3.2 Gluing parameters

In Lemma 10 we underlined that two projective classes of tetrahedra of flags satisfying the
face pairing equation (3.1) can be glued along a face in different combinatorial ways. In this
section we show that, even for fixed combinatorics, there are different representatives of the
same pair that are glueable. They can be parametrized by the following gluing parameter
(cf. Lemma 11). For all edge-faces σ = (i j)k and τ = (i ′ j ′)k′, we define the continuous
function gτσ : FLσ,τ → R

× via:

(F, E) = ((Vm, ηm)
4
m=1, (Wm, ζm)

4
m=1

) �→ −ηi (Vl)η j (Vk)ηi jk(Wl ′)

ηi (Vk)η j (Wl ′)ηi jk(Vl)
∈ R

×, (3.2)

where ηi jk = Vi Vj Vk is the plane spanned by {Vi , Vj , Vk}, and V m ∈ R
4 and ηm ∈ (R4)∗

are representatives of Vm and ηm , respectively. Similarly to triple ratios and edge ratios, we
remark that gτσ is well defined. It is easy to check that it is independent of the choice of
representatives. Furthermore, since F and E are glued along (σ, τ ), then ηi jk = Vi Vj Vk =
Wi ′ W j ′ Wk′ =: ζi ′ j ′k′ . Therefore numerator and denominator in gτσ are non-zero by non-
degeneracy of the flags.

The gluing parameter of (F, E) with respect to (σ, τ ) is

gE,τ
F,σ := gτσ (F, E) . (3.3)

Finally, we underline that the gluing parameter is invariant under the diagonal action of
PGL(4), namely

gτσ (F, E) = gτσ (G · F,G · E) , ∀G ∈ PGL(4).

Therefore gτσ descends to a function

gτσ : FLσ,τ → R
×.

Remark 4 We now give a geometric description of the gluing parameter. Suppose that σ =
(i j)k and τ = (i ′ j ′)k′ are edge-faces corresponding to the permutations [i jkl] and [i ′ j ′k′l ′],
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respectively. Next, suppose that F = (Vm, ηm)
4
m=1 and E = (Wm, ζm)

4
m=1 are in (σ, τ )-

standard glued position. If we normalize Wl ′ so that it is of the form [e1+b ·e2+c ·e3+d ·e4],
then it is easy to check using the definition that gτσ ([F, E]) = d . In other words, if we think
of the inhomogeneous [e4] coordinate as a “height parameter” then the gluing parameter
measures the relative differences of these height parameters of Vl and Wl ′ .

The next lemma shows that, given two projective classes of tetrahedra of flags [F] and
[E], the gluing parameter parametrizes the set of classes of (σ, τ )-glued tetrahedra of flags
[F, E].
Lemma 11 Let [F], [E] ∈ FLT be two PGL(4)-classes of tetrahedra of flags that are (σ, τ )-
glueable. Let G = G([F], [E]) ⊂ FLσ,τ be the subset

G := {[F, E] ∈ FLσ,τ | F ∈ [F] and E ∈ [E]}.
Then the restriction map gτσ

∣
∣
G : G → R

× is a homeomorphism.

Proof We recall that FLσ,τ is naturally homeomorphic to the space of pairs of tetrahedra
of flags in (σ, τ )-standard glued position. If F0 is the σ -standard representative of [F], then
under this identification we have

G ∼= {(F0, E) ∈ FLσ,τ | E ∈ [E]}.
Let E0 be the τ -standard representative of [E]. Every (F0, E) ∈ G is of the form (F0,G · E0)
for some unique G ∈ PGL(4). Since (F0, E) is in (σ, τ )-standard glued position and E0 is in
τ -standard position, then G is a projective transformation such that

[e1] �→ [e2], [e2] �→ [e1], [e1 + e2 + e3] �→ [e1 + e2 + e3],
[e∗

1] �→ [e∗
2], [e∗

2] �→ [e∗
1], [e4] �→ [e4].

It follows that G is of the form

G :=

⎡

⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −g

⎤

⎥
⎥
⎦
, for g ∈ R

×.

Using the geometric description in Remark 4, we see that g = gτσ (F, E) = gτσ ([F, E]),
concluding the proof. ��

Werecall that, ifF andE are glued along (σ, τ ), then they are also glued along (σ+, τ−) and
along (σ−, τ+). Similarly, E andF are glued along (τ, σ ). Hence for all pairs [F, E] ∈ FLσ,τ ,
there are six gluing parameters that one can associate to them.They are the ones corresponding
to the six pairs of edge-faces:

(σ, τ ), (σ+, τ−), (σ−, τ+), (τ, σ ), (τ−, σ+), (τ+, σ−).

It follows directly from the definition of the gluing parameter (3.2) that these six parameters
are related. Their relations are called the gluing consistency equations, and are summarized
in the following result.

Lemma 12 Let (σ, τ ) ∈ (E)F × (E)F and let [F, E] ∈ FLσ,τ . Then

gE,τ
F,σ gF,σ

E,τ = 1, (3.4)

gE,τ−
F,σ+ = gE,τ

F,σ
eFσ+eEτ

, and gE,τ+
F,σ− = gE,τ

F,σ eFσ eEτ+ . (3.5)
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Proof These identities can be easily verified using the definition (3.2) of the gluing parameter
once the pair [F, E] has been put into (σ, τ )-standard glued position. ��

3.3 Geometric gluing

Let (F, E) ∈ FLσ,τ be a pair of tetrahedra of flags glued along (σ, τ ). Let TF ,TE ⊂ RP
3

be the tetrahedra in RP
3 corresponding to F and E , respectively. Since the pair (F, E) is in

(σ, τ )-glued position, the tetrahedra TE ,TF share a face, say f . In general f ⊂ TE ∩ TF
and we recall that the pair (F, E) is geometric if f = TE ∩ TF .

The pair (F, E) is not always geometric, as both tetrahedra TF ,TE might be “on the
same side” of f . On the other hand, the geometricity condition is invariant under projective
transformations, thus a class of pairs [F, E] ∈ FLσ,τ is geometric if one representative
pair (F, E) (and hence all) is geometric. The next result shows that the sign of the gluing
parameter determines if a glued pair is geometric (cf. Sect. 3.2).

Lemma 13 A class of glued pairs [F, E] ∈ FLσ,τ is geometric if and only if

gE,τ
F,σ > 0. (3.6)

Proof Let (F0, E) ∈ [F, E] be the unique representative pair in (σ, τ )-standard glued posi-
tion, and let E0 be the τ -standard representative of [E]. From the proof of Lemma 11,
(F0, E) = (F0,G · E0) for

G :=

⎡

⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −gE,τ

F,σ

⎤

⎥
⎥
⎦
.

Let TF0 ,TE0 ⊂ RP
3 be the projective tetrahedra associated to F0 and E0, respectively. Then

both TF0 and TE0 are positively oriented by Lemma 9. Hence (F0, E) is geometric if and
only if G is orientation preserving, that is if and only if gE,τ

F,σ > 0. ��

We denote by FL+
σ,τ ⊂ FLσ,τ the subset of geometric pairs glued along (σ, τ ), and by

FL+
σ,τ ⊂ FLσ,τ the corresponding quotient by the diagonal action of PGL(4). The following

result is an immediate consequence of Lemmas 11 and 13.

Corollary 2 Let [F], [E] ∈ FLT be two PGL(4)-classes of tetrahedra of flags that are (σ, τ )-
glueable. Let G+ = G+([F], [E]) ⊂ FL+

σ,τ be the subset

G+ := {[F, E] ∈ FL+
σ,τ | F ∈ [F] and E ∈ [E]}.

Then the restriction map gτσ
∣
∣
G+ : G+ → R>0 is a homeomorphism.

3.4 The parametrizations ofFL�,� andFL+
�,�

In this section we combine the homeomorphism Ψ : FLT → D+
T (cf. Sect. 2.4) and the map

gτσ : FLσ,τ → R
× (cf. Sect. 3.2) to parametrize FLσ,τ and FL+

σ,τ .
Let (σ, τ ) ∈ (E)F × (E)F be a fixed pair of edge-faces, and let

S := {(σ, τ ), (σ+, τ−), (σ−, τ+), (τ, σ ), (τ−, σ+), (τ+, σ−)}.

123



96 Geometriae Dedicata (2021) 215:69–131

Recall that R
S× is the set of functions from S to R

×. Then we define the map

Ψσ,τ : FLσ,τ → D+
T × D+

T × R
S×, such that [(F, E)] �→

(

Ψ (F), Ψ (E), gE,∗
F,∗
)

,

where gE,∗
F,∗ ∈ R

S× is the function

gE,∗
F,∗(x, y) = gE,y

F,x , for all (x, y) ∈ S.

The parameter space of pairs of (σ, τ )-glued tetrahedra of flags Dσ,τ is the semi-algebraic
subset of D+

T × D+
T × R

S× such that:

1. the first two coordinates satisfy the face pairing equation (3.1) from Lemma 10;
2. all coordinates satisfy the gluing consistency equations (3.4) and (3.5) from Lemma 12.

The parameter space of geometric pairs of (σ, τ )-glued tetrahedra of flags D+
σ,τ is the semi-

algebraic set

D+
σ,τ := {(p1, p2, p3) ∈ Dσ,τ | p3(s) > 0, ∀s ∈ S}.

It is a consequence of Lemmas 10 and 12 that Ψσ,τ has image in Dσ,τ . Similarly, it follows
from Corollary 2 that the restriction map Ψ+

σ,τ := Ψσ,τ
∣
∣
FL+

σ,τ
has image in D+

σ,τ , namely

Ψ+
σ,τ := Ψσ,τ

∣
∣
FL+

σ,τ
: FL+

σ,τ → D+
σ,τ .

Furthermore, it is easy to check thatDσ,τ (resp.D+
σ,τ ) is homeomorphic toR

9
>0×R

× (resp.
R
10
>0). Indeed D+

T × D+
T

∼= R
10
>0, and the face pairing equation (3.1) eliminates 1 degree of

freedom. On the other hand, one can use equations (3.4)–(3.5) to write all gluing parameters
in terms of a single one. Hence there is a homeomorphism

R
S× → R

×, given by gE,�
F,� �→ gE,τ

F,σ ,

which induces identifications Dσ,τ
∼= R

9
>0 × R

× and D+
σ,τ

∼= R
10
>0.

Theorem 8 The maps

Ψσ,τ : FLσ,τ → Dσ,τ and Ψ+
σ,τ : FL+

σ,τ → D+
σ,τ

are homeomorphisms.

Proof The proof is a straightforward application of Theorem 7, Lemma 11 and Corollary 2.
Here is a sketch. The maps Ψσ,τ and Ψ+

σ,τ are continuous by the continuity of Ψ and gτσ .
Hence it will be enough to find continuous inverses. For every point p = (p1, p2, p3) ∈ Dσ,τ ,
let [F] = Ψ−1(p1) and [E] = Ψ−1(p2). The σ -standard representative F0 ∈ [F] and the
τ -standard representative E0 ∈ [E] are (σ, τ )-glueable because p1 and p2 satisfy the face
pairing equation (3.1) (cf. Lemma 10). Hence by Lemma 11 there is a unique representative
E ′ ∈ [E] such that

gτσ
([F0, E ′]) = p3(σ, τ ).

Thuswe have defined amapDσ,τ → FLσ,τ via p �→ [F0, E ′]. Thismap is clearly continuous
and inverse of Ψσ,τ . The same map can be modified to be the inverse of Ψ+

σ,τ via Corollary 2.
��
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4 Coordinates on a triangulation of flags

Let Δ be a triangulation of a 3-manifold M , and let Δ̃ be a lift of Δ to the universal cover
M̃ . We recall that a triangulations of flags of M (with respect to Δ) is a pair (Φ, ρ) where

Φ : Ver(Δ̃) → FL, and ρ : π1(M) → PGL(4),

satisfying some compatibility conditions (cf. (1),(2) and (3) in Sect. 1.5). In what follows,
we will abuse notation by letting Φ(T̃) denote the tetrahedron of flags determined by the
Φ-images of the vertices of T̃. We showed in Theorem 6 that every triangulation of flags can
be extended to a (possibly branched) real projective structure on M , thus we are interested
in parametrizing the space of PGL(4)-classes of triangulation of flags FL�. We begin by
defining the parametrization.

Let (D+
T × R

(E)F
>0 )Tet(Δ̃) be the set of functions from Tet(Δ̃) to D+

T × R
(E)F
>0 , and consider

the map ΨΔ : FLΔ → (D+
T × R

(E)F
>0 )Tet(Δ̃) defined as follows. For all p = [Φ, ρ] ∈ FLΔ

and T̃ ∈ Tet(Δ̃), we let

ΨΔ(p)(̃T) :=
(

Ψ ([Φ(̃T)]), v p
T̃

)

, (4.1)

whereΨ is the parametrization from Theorem 7 and v p
T̃

: (E)F → R>0 is defined as follows.

For each σ ∈ (E)F, let T̃′ and τ ∈ (E)F be the unique tetrahedron and the unique edge-face
such that Φ(̃T) is glued to Φ(̃T′) along the edge-face pair (σ, τ ). Then we define

v
p
T̃
(σ ) := gΦ(̃T),σ

Φ(̃T′),τ . (4.2)

It is easy to check that Ψ ([Φ(̃T)]) does not depend on the choice of representativeΦ, thus it
is well defined by property (1) of a triangulation of flags (cf. Sect. 1.5), and belongs toD+

T by
Theorem 7. Similarly, the function v p

T̃
does not depend on a representative pair of p, hence it

is well defined by property (2) of a triangulation of flags. It follows that ΨΔ is well defined.
Roughly speaking, the two factors of ΨΔ(p)(̃T) encode the edge parameters and the gluing
parameters of the tetrahedron of flags Φ(̃T) corresponding to T̃.

Finally, we recall thatΦ is ρ-equivariant (property (3) of a triangulation of flags) and all of
the parameters are invariant under projective transformations. Then ΨΔ(p)(T) = ΨΔ(p)(γ ·
T) for all γ ∈ π1(M), and ΨΔ descends to a well defined function

ΨΔ : FLΔ → (D+
T × R

(E)F
>0 )Tet(Δ).

To avoid introducing new notation, wemake the abuse of using the symbolΨΔ for both maps.
The goal of this section is to determine the image of ΨΔ, and to show that ΨΔ is a

homeomorphism onto its image. It is a consequence of Theorem 8 that we can make the
following immediate restriction on the image of ΨΔ. Suppose T and T′ are two tetrahedra of
Δ glued along some face f , and let T̃ and T̃′ be two lifts to Δ̃ glued along the corresponding
lift of f . Then there are edge-faces σ and τ such that Φ(̃T) is geometrically glued to Φ(̃T′)
along the edge-face pair (σ, τ ). In other words, [Φ(̃T),Φ(̃T′)] ∈ FL+

σ,τ . Then by Theorem 8,
the point
(

Ψ ([Φ(T)]), Ψ ([Φ(T′)]), (v p
T (σ ), v

p
T (σ+), v p

T (σ−), v p
T′(τ ), v

p
T′(τ+), v p

T′(τ−)
)) ∈ D+

σ,τ .

More precisely:

1. the pair Ψ ([Φ(T)]), Ψ ([Φ(T′)]) satisfies the face pairing equation (3.1) from Lemma 10;
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2. each pair
(

v
p
T̃
(σ ), v

p
T̃′(τ )

)

,
(

v
p
T̃
(σ−), v p

T̃′(τ+)
)

,
(

v
p
T̃
(σ+), v p

T̃′(τ−)
)

satisfies the gluing

consistency equations (3.4) from Lemma 12;
3. all coordinates together satisfy the gluing consistency equations (3.5) from Lemma 12.

We denote byD′
Δ be the subset of (D+

T ×R
(E)F
>0 )Tet(Δ) satisfying the above conditions (1),(2)

and (3), for every pair of glued tetrahedra. The above discussion shows that we have a well
defined restriction

ΨΔ : FLΔ → D′
Δ.

We recall that D+
σ,τ

∼= R
10
>0 (cf. Sect. 3.4), hence D′

Δ
∼= R

5|Tet(Δ)|
>0 . Roughly speaking, every

time we glue two tetrahedra of flags we gain one gluing parameter, but also lose one edge
parameter due to the face pairing equation.
Next, we are going to define the parameter space of a triangulation of flags DΔ =
DRP(M;Δ). We will soon see that DΔ is a semi-algebraic subset of D′

Δ. To determine
the additional equations that cut out DΔ, we will introduce the monodromy complex CΔ
associated to Δ (cf. Sect. 4.1) and define cochains and cocycles on CΔ (cf. Sect. 4.2). We
then show that a point x ∈ D′

Δ determines a cocycle if and only if x satisfies the edge gluing
equations (cf. Theorem 9), and define DΔ as the subset of D′

Δ where those equations are
satisfied. Finally, in Sect. 4.4, we will prove that ΨΔ is a homeomorphism betweenFLΔ and
DΔ (cf. Theorem 10).

4.1 Themonodromy complex

LetΔ be an ideal triangulation of a 3-manifold M . The monodromy graph associated toΔ is
the graphGΔ defined as follows. The vertices ofGΔ are all pairs (T, σ )where T ∈ Tet(Δ) is
a tetrahedron and σ ∈ (E)F is an edge-face, for a total of 12 · |Tet(Δ)| vertices. Two vertices
(T, σ ) and (T′, σ ′) of GΔ are connected by an edge if and only if one of the following
(mutually exclusive) conditions is satisfied.

(1) (Red edge) if T = T′ and σ ′ = σ+ or σ ′ = σ−.
(2) (Blue edge) if T = T′ and σ ′ = σ .

(3) (Green edge) if T and T′ are glued along (σ, σ ′).

It is easy to check that every pair of vertices is connected by at most one edge, and there are
no loops. Moreover, for every tetrahedron T ∈ Tet(Δ), the subgraphGT

Δ ofGΔ with vertices
labeled with T is combinatorially isomorphic to Cay(4), the Cayley graph of the alternating
groupAlt(4)with the standard 3-cycle and 2-2-cycle generating set. In Sect. 2.1, we described
a meaningful way to embed Cay(4) inside a standard tetrahedron. This subgraph is the 1-
skeleton of a truncated tetrahedron dual to T. More precisely, if one takes the tetrahedron
dual to T and truncates the vertices by planes parallel to the faces of T then GT

Δ is the 1-
skeleton of the resulting truncated tetrahedron. This construction can be extended to embed
GΔ inside Δ.

The monodromy complex is the CW-complex CΔ obtained from attaching four different
types of 2-cells to loops in the monodromy graphGΔ. The loops on the boundary of the first
three types of 2-cells are easy to describe. We denote a loop in GΔ by a cyclically ordered
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Fig. 3 A gluing of two truncated tetrahedra in the monodromy graph

sequence of its vertices.

(1)(Triangle) (((T, σ ), (T, σ+), (T, σ−))), ∀ (T, σ ) ∈ Tet(Δ)× (E)F

(2)(Quadrilateral) (((T, σ ), (T′, τ ), (T′, τ−), (T′, σ+))), ∀T,
T′ ∈ Tet(Δ) glued along (σ, τ ).

(3)(Hexagon) (((T, σ ), (T, σ−), (T, σ−), (T, (σ−)−), (T, σ+), (T, σ ))),
∀ (T, σ ) ∈ Tet(Δ)× (E)F.

Triangular and hexagonal faces can be seen in Fig. 2 and quadrilateral faces can been seen
in Fig. 3. To described the fourth type of cell we need the following notation. For every edge
s ∈ Ed(Δ), fix once and for all an orientation on s, and let ((Ts

1, . . . ,T
s
ks
)) be the cyclically

ordered ks-tuple of tetrahedra that abut s, cyclically ordered to follow the “right hand rule”
by placing the thumb in the direction of s. The number ks is called the valence of s. For
each 1 ≤ i ≤ ks , the tetrahedra Ts

i and Ts
i+1 are glued along a pair (σ s

i , τ
s
i+1) of edge-faces

(here all indices are taken mod ks). The edge-face τ s
i (resp. σ s

i ) is called the incoming (resp.
outgoing) edge-face of Ts

i around s. We remark that the two faces of Ts
i glued to Ts

i−1 and

Ts
i+1 share the edge s, thus σ s

i = τ s
i .

The last type of 2-cell in CΔ is the 2ks-gon attached to the following loop around s, which
alternates between green and blue edges (cf. Fig. 4).

(4)(2ks–gon) (((Ts
1, σ

s
1 ), (T

s
2, τ

s
2 ), (T

s
2, σ

s
2 ), . . . , (T

s
ks
, σ s

ks
), (Ts

1, τ
s
1 ))) for all s ∈ Ed(Δ).

The embedding ofGΔ intoΔ naturally extends to an embedding ofCΔ intoΔ, thus we can
regard the monodromy complex as a subset of M (via its ideal triangulation). Furthermore, if
Δ̃ is the ideal triangulation of the universal cover of M obtained by lifting the triangulationΔ,
then it is easy to show that C̃Δ = CΔ̃. In other words, the universal cover of the monodromy
complex is the monodromy complex of the triangulation Δ̃. The next result shows that CΔ
carries the entire fundamental group of M (and of Δ).

Lemma 14 If Δ is an ideal triangulation of M and ι : CΔ ↪→ M is the inclusion of its
monodromy complex, then ι∗ : π1(CΔ) → π1(M) is an isomorphism.

Proof We recall that, for each tetrahedron T ∈ Tet(Δ), the subcomplex of CΔ with vertices
labeled with T is a truncated tetrahedron contained in T, thus it bounds a topological 3-ball.
Its boundary is made out of four triangular 2-cells and four hexagonal 2-cells. Similarly, for
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Fig. 4 Every edge in Δ is dual to a 2ks -gon in the monodromy complex

each pair of tetrahedra T,T′ ∈ Tet(Δ) that are glued along a pair of edge-faces (σ, τ ), the
subcomplex of CΔ with vertices

{(T, σ ), (T, σ+), (T, σ−), (T′, τ ), (T′, τ+), (T′, τ−)}
is a triangular prism that bounds a 3-ball inside T ∪ T′. Its boundary is made out of two
triangular 2-cells and three quadrilateral 2-cells.

By adding all of these two types of 3-cells, the monodromy complex CΔ can be extended
to a 3-dimensional CW-complex C′

Δ with the same fundamental group. The complex C′
Δ

deformation retracts onto the dual spine ofΔ, by collapsing every truncated tetrahedron into
a single point and every prism to a line segment between two such points. We refer to [23,
§1.1.2] for the definition of a dual spine of a triangulation, and to [20, §2.7] for the more
specific setting of an ideal triangulation. Since M deformation retracts onto its dual spine
(cf. [23, Thm 1.1.7]), the result follows. ��

4.2 Cochains and cocycles

Let H be a group and C be a finite dimensional CW-complex. A H --cochain on C is a
function from the set of oriented 1-cells of C to H . A H --cocycle on C is a H -cochain with
the following properties:

– oppositely oriented edges of C with the same vertices are mapped to inverse elements of
H ;

– for each oriented 2-cell D, in C, the product of the elements along the boundary of D is
the identity in H .

We denote by C1(C, H) and Z1(C, H) the sets of all H -cochains and H -cocycles on C,
respectively.

An oriented path α in C is simplicial if it is contained in the 1-skeleton of C. For each
simplicial path α and each H -cochain f on C, we define f (α) as the product of the elements
of H along α determined by f . If f is a H -cocycle on C and α and α′ are homotopic (rel.
endpoints) simplicial paths, then it is easy to check that f (α) = f (α′). Furthermore, every
path in C with endpoints in the 1-skeleton is homotopic (rel. endpoints) to a path in the
1-skeleton of C, which allows us to extend the previous definition to any path in C based at
a point in the 1-skeleton.

123



Geometriae Dedicata (2021) 215:69–131 101

Lemma 15 Let u ∈ C be a vertex, then each cocycle c ∈ Z1(C, H) determines a representa-
tion ρc : π1(C, u) → H.

Proof Let [γ ] ∈ π1(C, u) and let γ be a homotopic representative lying in the 1-skeleton ofC.
Every time γ traverses an oriented edge e ofC, the cocycle c determines an element c(e) ∈ H .
Multiplying the resulting group elements determines the value ρc([γ ]). Since products along
the boundaries of 2-cells are trivial, the map ρc does not depend on the representative γ and
is well defined. Moreover, since multiplication in π1(C, u) is given by concatenating paths,
the map ρc is a homomorphism. ��

4.3 Edge gluing equations

We recall that D′
Δ is the codomain of ΨΔ, defined at the beginning of Sect. 4. Here we are

going to determine equations that cut out a semi-algebraic subset DΔ = DRP(M;Δ) of D′
Δ,

which will be shown to be homeomorphic to the space of triangulations of flags FLΔ via
ΨΔ in Sect. 4.4.

We begin by defining a map

Co : D′
Δ → C1(CΔ,PGL(4)).

Let x ∈ D′
Δ. We fix the following notation to describe the components of x . The space

D′
Δ is a subset of (D+

T × R
(E)F
>0 )Tet(Δ), thus for every tetrahedron T ∈ Tet(Δ), we can write

x(T) = (x1(T), x2(T)), where x1(T) ∈ D+
T and x2(T) ∈ R

(E)F
>0 . Since D+

T ⊂ R
(E)F
>0 × R

(E)F
>0 ,

we will adopt the notation

x(T) = (x1(T), x2(T)) = ((τT∗ , εT∗ ), κT∗
) ∈

(

R
(E)F
>0 × R

(E)F
>0

)

× R
(E)F
>0 .

Now we can describe the cochain Co(x). We recall that the 1-cells of CΔ are of three types:
red, blue and green (cf. Sect. 4.1). The vertices of CΔ are pairs (T, σ ) of a tetrahedron
T ∈ Tet(Δ) and an edge-face σ ∈ (E)F. We are going to encode an oriented 1-cell with an
ordered pair (u1, u2) of its starting vertex u1 and final vertex u2.

1. (Red edges) For every T ∈ Tet(Δ) and σ ∈ (E)F, we define the cochain of the oriented
red edge ((T, σ+), (T, σ )) as

Co(x) ((T, σ+), (T, σ )) := Rotσ (x(T)) =

⎡

⎢
⎢
⎢
⎣

0 1 0 0
τTσ 1 −1 − τTσ 0
0 1 −1 0
0 0 0 1

εTσ+

⎤

⎥
⎥
⎥
⎦
. (4.3)

Then we set Co(x) ((T, σ ), (T, σ+)) := (Co(x) ((T, σ+), (T, σ )))−1.
2. (Blue edges) For every T ∈ Tet(Δ) and σ ∈ (E)F, we define the cochain of the oriented

blue edge ((T, σ ), (T, σ )) as

Co(x) ((T, σ ), (T, σ )) := Flipσ (x(T)) =

⎡

⎢
⎢
⎣

0 εTσ 0 0
1 0 0 0
0 0 X T

σ X T
σ X T

σ − εTσ
0 0 −1 −X T

σ

⎤

⎥
⎥
⎦
, (4.4)

where

X T
σ ′ := νσ ′

εT
σ ′−
εT
σ ′+
(τT
σ ′ + 1)

, and νTσ ′ := εT
σ ′−
εT
σ ′+

− εT
σ ′−

+ 1, for σ ′ ∈ {σ, σ }.
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3. (Green edges) For every pair of tetrahedra T,T′ ∈ Tet(Δ) and edge-faces σ, τ ∈ (E)F
such that T and T′ are glued along (σ, τ ), we define the cochain of the oriented green edge
(

(T, σ ), (T′, τ )
)

as

Co(x)
(

(T′, τ ), (T, σ )
) := Glueσ (x(T)) =

⎡

⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −κTσ

⎤

⎥
⎥
⎦
. (4.5)

All of the above transformations depend continuously on the parameters of x and so it is
easy to check that Co is continuous and injective, but not surjective. At first sight, the above
transformations seem mysterious, but they can each be described geometrically. Loosely
speaking, each of the above transformations maps the standard position of its terminal vertex
to the standard position of its initial vertex. This is made precise in the following lemma.

Lemma 16 Let x ∈ D′
Δ and let T and T′ be two tetrahedra in Δ that are glued via the

edge-face pair (σ, τ ). Next, let F be the σ -standard representative of Ψ−1(x(T)1) and let
E be the representative of Ψ−1(x(T′)1) so that (F, E) is in (σ, τ )-standard glued position.
Then

1. Flipσ (x(T)) · F is the σ -standard representative of [F],
2. (Rotσ (x(T)) · F,Rotσ (x(T)) · E) is in (σ+, τ−)-standard glued position, and
3. (Glueσ (x(T)) · F,Glueσ (x(T)) · E) is in (τ, σ )-standard glued position.

Proof All three of these properties follow from direct computations using the definitions of
standard and standard glued positions, and the fact that the entries of x(T) and x(T′) satisfy
the conditions (1), (2), (3) defining D′

Δ. ��
The previous lemma also provides motivation for the suggestive naming of the above

transformations: the transformation Rotσ (x(T)) rotates the edge-face σ = (i j)k to the edge-
face σ+ = (ki) j , Flipσ (x(T)) flips the edge-face σ = (i j)k to the edge-face σ = ( j i)l, and
Glueσ (x(T)) glues the edge-face σ to the edge-face τ .

Now we are going to determine necessary and sufficient conditions for the cochain Co(x)
to be a cocycle. The next lemma shows that Co(x) already satisfies most of the conditions
necessary to be a cocycle.

Lemma 17 Let x ∈ D′
Δ. The cochain Co(x)maps oppositely oriented edges of CΔ to inverse

elements of PGL(4). Furthermore, the product of the matrices associated by Co(x) to the
oriented edges along the boundary of a triangular, quadrilateral and hexagonal 2-cell of CΔ
is trivial.

Proof First, we remark that the cochain Co(x) is defined tomap oppositely oriented red edges
of CΔ to inverse elements of PGL(4). Using that εTσ = εTσ and κTσ κ

T′
τ = 1, it is easy to check

that the same property holds for blue and green edges.
Next we take care of the 2-cells. The proof consists in checking that products of matrices

of the form (4.3),(4.4) and (4.5) along the boundary of triangular, quadrilateral and hexagonal
2-cells of CΔ is trivial. This is a straightforward but tedious computation that requires the
use of the relations among the coordinates of x in D′

Δ. In particular, for triangular 2-cells, it
is enough to use the relations

τTσ (ε
T
σ ε

T
σ+ε

T
σ−) = 1, ∀σ ∈ (E)F, and ∀T ∈ Tet(Δ).
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For the quadrilateral 2-cells, one also needs

τTσ τ
T′
τ = 1, and κTσ− = κTσ ε

T
σ ε

T′
τ+ ,

for all tetrahedra T,T′ ∈ Tet(Δ) glued along the pair of edge-faces (σ, τ ). Finally, for the
hexagonal 2-cells, it is enough to use the relations

τTσ (ε
T
σ ε

T
σ+ε

T
σ−) = 1, and εTσ ε

T
σ+ε

T
σ−ε

T
σop
εT(σ+)op

εT(σ−)op
= 1, ∀σ ∈ (E)F, and ∀T ∈ Tet(Δ).

��
Remark 5 Note that Lemma 16 provides an alternative proof of Lemma 17. Specifically,
Lemma 16 can be inductively used to show that the product of the elements determined by
Co(x) along the triangular, quadrilateral, and hexagonal faces each fix a σ -standard repre-
sentative of some tetrahedron of flags, and is thus trivial.

We recall that CΔ contains a fourth type of 2-cells dual to the edges in Ed(Δ). For every
edge s ∈ Ed(Δ), let ks be the valence of s. Then there is a 2ks-gon in CΔ attached to a loop
around s which is an alternating sequence of green and glue edges (cf. Sect. 4.1):

(((Ts
1, σ

s
1 ), (T

s
2, τ

s
2 ), (T

s
2, σ

s
2 ), . . . , (T

s
ks
, σ s

ks
), (Ts

1, τ
s
1 ))) .

Let

Gs :=
ks∏

i=1

Glueτ s
i
(x(Ts

i ))Flipσ s
i
(x(Ts

i )) (4.6)

be the product of the matrices associated by Co(x) to the boundary of this 2ks-gon. We
remark that Gs is a product of matrices of the form (4.4) and (4.5), therefore

Gs =

⎡

⎢
⎢
⎣

Gs
11 0 0 0
0 1 0 0
0 0 Gs

33 Gs
34

0 0 Gs
43 Gs

44

⎤

⎥
⎥
⎦
. (4.7)

It follows from the definition of cocycles (cf. Sect. 4.2) and Lemma 17 that the cochain Co(x)
is a cocycle if and only if the matrix Gs is trivial for each s ∈ Ed(Δ). This is equivalent to
the following edge gluing equations (of Δ with respect to s ∈ Ed(Δ)):

Gs
11 = Gs

33 = Gs
44 = 1, (4.8)

Gs
34 = Gs

43 = 0.

Remark 6 In general, the entries of Gs are complicated expressions of the coordinates in x ,
however the (1, 1)-entry is simple:

Gs
11 =

ks∏

i=1

ε
Ts

i
σ s

i
, (4.9)

Informally, this says that the product of the edge-ratios of the edges identified with s must
be equal to 1. Similarly, the determinant of Gs is simple to determine:

det(Gs) = Gs
11

(

Gs
33Gs

44 − Gs
43Gs

34

) =
ks∏

i=1

(

ε
Ts

i
σ s

i

)2
κ
Ts

i
σ s

i
. (4.10)
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We denote by DΔ = DRP(M;Δ) the semi-algebraic affine subset of D′
Δ consisting of

those points satisfying the edge gluing equations (4.8), for each edge in Ed(Δ). The set DΔ

is called the parameter space of a triangulation of flags. We summarize the above discussion
in the following result.

Theorem 9 Let x ∈ D′
Δ, then Co(x) is a cocycle if and only if x ∈ DΔ. Namely

Co−1(Z1(CΔ,PGL(4))) = DΔ, and Co
∣
∣
DΔ

: DΔ ↪→ Z1(CΔ,PGL(4)).

We conclude this section with a technical result that will be needed to prove the main
Theorem 10 in the next section.

Let v be an (ideal) vertex in Δ and let α be an oriented simplicial path in CΔ with the
following property. If (Ti , σi )

k
i=0 is the ordered list of vertices of CΔ crossed by α, then

– α crosses an even number of edges (i.e. k is even);
– and for every even j , the vertex v is the initial endpoint of the underlying oriented edge

of σ j .

A path that is homotopic to a path with the above properties is a peripheral path around
v. A more geometric description is that a path is a peripheral path around v if it is homotopic
(rel. endpoints) into the boundary of a neighborhood of the vertex v in Δ. The next lemma
shows that peripheral paths always preserve an incomplete flag.

Lemma 18 Let x ∈ DΔ and let α be an oriented peripheral path around a vertex v of Δ.
Then Co(x)(α) fixes the incomplete flag ([e1], [e∗

2]).
Proof Since Co(x) is a cocycle (cf. Theorem 9), the quantity Co(x)(α) does not depend on
the homotopy class of α. Hence we can assume that α is a path of the form

((T1, σ1), (T2, σ2), . . . , (T2k, σ2k)) ,

where k ∈ N and for every even j , v is the starting endpoint of the underlying oriented edge
σ j .

We observe that α is the concatenation of k oriented peripheral paths around v of length
two. If each of these paths satisfies the conclusion of the lemma, then α also satisfies the
conclusion of the lemma. It is therefore sufficient to prove the statement for α of length two
(i.e. k = 1).

There are only four possibilities for α, namely

(i)
(

(T0, σ0), (T0, σ0), (T0, (σ0)−)
)

, (i i)
(

(T0, σ0), (T0, (σ0)+), (T0, (σ0)+
)

,

(i i i)
(

(T0, σ0), (T1, σ1), (T1, σ1)
)

, (iv)
(

(T0, σ0), (T1, σ1), (T1, (σ1)−)
)

,

where in (i i i) and (iv), the tetrahedron T1 is the unique tetrahedron of Δ glued to T0 along
(σ0, σ1). Using the matrices in (4.3),(4.4) and (4.5) it is easy to check that the cocycle
associated to these paths fixes the incomplete flag ([e1], [e∗

2]). ��

4.4 The parametrization ofFL

In this section we show that the image of the map ΨΔ : FLΔ → D′
Δ is contained in the

parameter space DΔ (cf. Corollary 4), allowing us to write

ΨΔ : FLΔ → DΔ.
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Finally we will prove that ΨΔ is a homeomorphism onto DΔ.
To prove thatΨΔ(FLΔ) ⊂ DΔ, it is enough to show that (Co◦ΨΔ)(p) ∈ Z1(CΔ,PGL(4))

for all p ∈ FLΔ, and conclude using Theorem 9. This is easy to see once we understand
how (Co ◦ ΨΔ)(p) acts on the flags of p. To avoid introducing additional notation, we will
employ the following abuse of notation. If α is an oriented simplicial path in the monodromy
complex CΔ̃ of Δ̃, then there is a unique oriented simplicial path α in CΔ that lifts to α. Then
if c ∈ Z1(CΔ,PGL(4)), we will denote by c(α) := c(α).

Lemma 19 Let p = [Φ, ρ] ∈ FLΔ and letα be an oriented simplicial path in the monodromy
complex CΔ̃ of Δ̃. Let (̃T1, σ1) (resp. (̃T2, σ2)) be the starting (resp. ending) vertex of α, and
set Gα := (Co ◦ ΨΔ)(p)(α). If (Φ, ρ) is the representative pair of p such that Φ(T2) is in
σ2-standard position, then Gα ·Φ(T1) is in σ1-standard position.

Proof We remark that if α is the concatenation of finitely many oriented simplicial paths
satisfying the lemma, then α also satisfies the lemma. Since α is a sequence of oriented edges
in CΔ̃, it will be enough to prove the statement for paths of length one.

Thus suppose α consists of a single oriented edge
(

(̃T1, σ1), (̃T2, σ2)
)

. This edge is either
red, blue or green, and for these edges, the result follows from Lemma 16. For instance, if
the edge is blue the edge above is

(

(̃T2, σ2), (̃T2, σ2)
)

and Gα is Flipσ2(ΨΔ(p)(T2)), where
T2 is the tetrahedron in Δ covered by T̃2. In this case the statement of the lemma is that
Flipσ2(ΨΔ(p)(T2)) maps the σ2-standard position of Φ(T2) to the σ2-standard position of
Φ(T2), which is guaranteed by Lemma 16. The proof for the red and green edges follows
from a similar argument. ��
Corollary 3 For all p = [Φ, ρ] ∈ FLΔ, the cochain (Co ◦ ΨΔ)(p) is a cocycle.

Proof Let α be an oriented simplicial loop in CΔ based at (T, σ ) that bounds a 2-cell in CΔ
and let Gα = (Co ◦ ΨΔ)(p)(α). Since α is homotopically trivial and CΔ̃ = C̃Δ, it follows
that α lifts to an oriented simplicial loop inCΔ̃ based at (̃T, σ ) covering (T, σ ). By Lemma 19
it follows that Gα fixes the σ -standard representative of [Φ(̃T)]. However, the stabilizer of a
tetrahedron of flags is trivial (cf. Lemma 2), and so Gα is the identity in PGL(4). In particular,
this implies that (Co ◦ ΨΔ)(p) is a cocycle. ��
Corollary 4 The image of the map ΨΔ : FLΔ → D′

Δ is contained in DΔ, and thus

ΨΔ : FLΔ → DΔ

is well defined.

Proof Let p ∈ FLΔ. By Corollary 3, (Co ◦ ΨΔ)(p) is a cocycle. Therefore ΨΔ(p) ∈ DΔ,
by Theorem 9. ��

We close this section by showing thatΨΔ is a homeomorphism. This is done by construct-
ing an explicit inverse. Let x ∈ DΔ. We define a triangulation of flags px = [Φx , ρx ] ∈ FLΔ
as follows. First we fix a tetrahedron T̃0 ∈ Δ̃ lifting a tetrahedron T0 ∈ Δ, and an edge-face
σ0 ∈ (E)F. As Co(x) is a cocycle on the monodromy complex CΔ (cf. Theorem 9), we define

ρx : π1(CΔ, (T0, σ0)) → PGL(4)

to be the unique representation determined by Co(x) based at (T0, σ0) (cf. Lemma 15). We
remark that π1(CΔ, (T0, σ0)) is isomorphic to the fundamental group of M (cf. Lemma 14).

Next we define Φx : Ver(Δ̃) → FL. For every vertex v ∈ Ver(Δ̃), let T̃ ∈ Δ̃ be a
tetrahedron with vertex v, and let σ ∈ (E)F be an edge-face of T̃ such that v is the initial
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vertex of the underlying edge in σ . Let α be an oriented simplicial path in CΔ̃ from (̃T0, σ0)

to (̃T, σ ). Henceforth we adopt the notation Gγ := Co(x)(γ ) for all oriented simplicial paths
in CΔ̃. Then we define

Φx (v) := Gα · ([e1], [e∗
2]).

Lemma 20 If x ∈ DΔ, then Φx is well defined.

Proof We must show that Φx is independent of the choice of both the vertex (̃T, σ ) ∈ CΔ̃
and the path α from (̃T0, σ0) to (̃T, σ ). First, suppose that α′ is another path from (̃T0, σ0)

to (̃T, σ ). Let α− be the path from (̃T, σ ) to (̃T0, σ0) obtained by traversing α backwards.
Then α′ · α− is a loop in CΔ̃ based at (̃T0, σ0). Since CΔ̃ is simply connected this loop is
homotopically trivial and thus covers a homotopically trivial simplicial loop γ in CΔ based
at (T0, σ0). Since Co(x) is a cocycle (cf. Theorem 9) it follows that Co(x)(γ ) is trivial, and
so Gα = Gα′ . Hence Φx (v) is independent of α.

Next, suppose (̃T′, σ ′) is another pair satisfying the same properties as (̃T, σ ). Then there
is an oriented peripheral path β from (̃T, σ ) to (̃T′, σ ′), whose concatenation α · β with α is
an oriented simplicial path from (̃T0, σ0) to (̃T′, σ ′). But then by Lemma 18,

Gα·β · ([e1], [e∗
2]) = GαGβ · ([e1], [e∗

2]) = Gα · ([e1], [e∗
2]).

It follows that Φx (v) is also independent of the choice (̃T, σ ), and so Φx is well defined. ��
Next, we show that the pair (Φx , ρx ) is a triangulation of flags.

Lemma 21 If x ∈ DΔ, then (Φx , ρx ) ∈ FLΔ.

Proof In order to prove the lemma we need to show that conditions (1), (2), and (3) from
Sect. 1.5 are satisfied. First, suppose {vi }4i=1 are the vertices of a tetrahedron T̃ ∈ Δ̃, and
let σi ∈ (E)F be an edge-face of T̃ such that vi is the starting vertex of the underlying edge
of σi . Since x1(̃T) ∈ D+

T then Ψ−1(x1(̃T)) ∈ FLT (cf. Theorem 7). We let Fσi

T̃
to be the

σi -standard representative of Ψ−1(x1(̃T)). Let αi be an oriented simplicial path in CΔ̃ from
(̃T0, σ0) to (̃T, σi ).

In σi -standard position, the i-th flag of Fσi

T̃
is ([e1], [e∗

2]), and so by definition Φx (vi ) is

the i-th flag of Gαi · Fσi

T̃
. We claim that

Gαi · Fσi

T̃
= Gα j · Fσ j

T̃
, ∀i, j ∈ {1, 2, 3, 4}, (4.11)

from which it follows that

Φx (̃T) := (Φx (v1),Φx (v2),Φx (v3),Φx (v4)) = Gαi · Fσi

T̃
∈ FLT. (4.12)

To prove (4.11), let β be an oriented simplicial path from (̃T, σi ) to (̃T, σ j ). Then we claim
that

Gαi Gβ = Gαi ·β = Gα j , and Gβ · Fσ j

T̃
= Fσi

T̃
.

Thefirst point follows from the fact thatCo(x) is a cocycle and thatαi ·β andα j are homotopic
paths in C̃Δ. For the second point, observe that sinceF

σ j

T̃
is inσ j -standard position, Lemma19

says that the transformationGβ mapsFσ j

T̃
intoσi -standard position,which isFσi

T̃
. This proves

that (1) is satisfied.
Next, suppose T̃1 and T̃2 are tetrahedra in Δ̃ glued along a face f , and let (σ1, σ2) be a pair

of edge-faces encoding this gluing. For i ∈ {1, 2}, letFσi

T̃i
to be the σi -standard representative
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ofΨ−1(x1(̃Ti )), and letαi be an oriented simplicial path inCΔ̃ from (̃T0, σ0) to (̃Ti , σi ). Then
by (4.12) we have that Gα1 ·Fσ1

T̃1
and Gα2 ·Fσ2

T̃2
are the tetrahedra of flagsΦx (̃T1) andΦx (̃T2),

respectively. Finally, let β be the green edge in CΔ̃ from (̃T1, σ1) to (̃T2, σ2). It follows from
the definition of Co(x) that Gβ is Glueσ2(x (̃T2)). Furthermore, since x ∈ DΔ, the classes
[Fσ1

T̃1
] and [Fσ2

T̃2
] are (σ1, σ2)-glueable and so (Fσ1

T̃1
,Gβ ·Fσ2

T̃2
) are in (σ1, σ2)-standard glued

position. Furthermore, arguing as before, we see that Gα2 = Gα1Gβ and so

(Gα1 · Fσ1
T̃1
,Gα2 · Fσ2

T̃2
) = Gα1 · (Fσ1

T̃1
,Gβ · Fσ2

T̃2
)

are in (σ1, σ2)-glued position. Since x ∈ DΔ, it follows that the gluing parameter for this
pair is positive and so this gluing is geometric. This proves that (2) is satisfied.

The fact thatΦx is ρx -equivariant follows directly from the fact that ρx is defined through
Co(x). Indeed let v ∈ Ver(Δ̃) and let γ ∈ π1(CΔ, (T0, σ0)). Let σ ∈ (E)F be an edge-face
of a tetrahedron T̃ such that v is the starting vertex of the underlying edge in σ with respect
to T̃. Then γ lifts to an oriented simplicial path α · γ̃ · β in CΔ̃ which is a concatenation
of paths starting at (̃T0, σ0), through (̃T, σ ) and (γ · T̃, σ ), and ending at (γ · T̃0, σ0). We
remark that α and β can be chosen to project to the same simplicial path in CΔ, with opposite
orientations, thus Gβ = G−1

α . By definition

ρx (γ ) = Co(x)(α · γ̃ · β) = GαG γ̃ G−1
α .

We conclude that

Φx (γ · v) = Gα·γ̃ · ([e1], [e∗
2]) = GαG γ̃ · ([e1], [e∗

2]) = GαG γ̃ G−1
α ·Φx (v) = ρx (v) ·Φx (v),

which shows that condition (3) is satisfied. ��
The PGL(4)-class of (Φx , ρx ) does not depend on the initial choice of pair (̃T0, σ0),

therefore by Lemmas 20 and 21 we have constructed a well defined map

Θ : DΔ → FLΔ, where Θ(x) = [Φx , ρx ].
It is easy to see that [Φx , ρx ] depends continuously on the coordinates in x , namely Θ is
continuous.

Theorem 10 The map ΨΔ : FLΔ → DΔ is a homeomorphism.

Proof ThemapΨΔ is continuous because it is defined in terms ofΨ andΦ that are continuous,
thus it will be enough to show that Θ = Ψ−1

Δ .
For every T̃ ∈ Tet(Δ̃)

ΨΔ(Θ(x))(̃T) = ΨΔ([Φx , ρx ])(̃T) =
(

Ψ ([Φx (̃T)]), v[Φx ,ρx ]
T̃

)

= (Ψ (Ψ−1(x1(̃T))), x2 (̃T)
) = (x1(̃T), x2 (̃T)

) = x (̃T).

Furthermore, since the projective class of each tetrahedron of flags and each gluing is encoded
by the parameters in DΔ, it follows that the map ΨΔ is also injective. Hence the map ΨΔ is
invertible with inverse Θ . ��

5 Relationship with Thurston’s equations

In this section we discuss how our parameter space of a triangulation of flags is related to
Thurston’s deformation space for hyperbolic structures. The material is described in a more
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general setting, that also includes results of Danciger [13] generalizing Thurston’s technique
to the case of Anti-de Sitter structures and half-pipe structures.

We begin by recalling most of the background, in a unified framework that includes all of
these three geometries (hyperbolic, Anti-de Sitter and half-pipe) as subgeometries (G�,X�)

of real projective geometry (PGL(4),RP
3) (cf. Sect. 5.1). In Sect. 5.2, we review Thurston’s

deformation space DX�
(M;Δ) and the extension map ExtX�Δ : DX�

(M;Δ) → X�(M;Δ),
which associates Thurston’s parameters to (G�,X�)-structures. Next, we show that there is
a straightforward dictionary between our projective parameters and Thurston’s parameters,
which makes it easy to determine when a projective structure is a (G�,X�)-structures (cf.
Sect. 5.3). This leads to the construction of the map ϕ� : DX�

(M;Δ) → DRP(M;Δ) (cf.
Sect. 5.4), which was mentioned in the statement of Theorem 2 in the preface. We give a
complete description of ϕ� (cf. Theorem 13), and show that the maps ϕ�, ExtΔ, and Ext

X�

Δ are
compatible, in the sense that they fit into a certain commutative diagram (cf. Theorem 14).

5.1 Hyperbolic, Anti-de Sitter and half-pipe spaces

Let � ∈ {−1, 1, 0} and let B� be the 2-dimensional R-algebra with basis {1, ι}, such that
ι2 = �. It is easy to check that B−1 is the algebra of complex numbers C, while B1 is the
algebra of pseudo complex numbers. If z = a + ιb ∈ B�, then a =: Re(z) and b =: Im(z) are
called the real part and imaginary part of z, respectively. Each z = a + ιb has a conjugate
z := a − ιb. Thus

2Re(z) = z + z and 2ιIm(z) = z − z. (5.1)

Using conjugation we can define a (pseudo) norm |z|2 := zz = a2 − ι2b2. Elements of B�
are space-like, time-like, or light-like if their norm squared is positive, negative, or zero. Note
that if � = −1, then all non-zero elements are space-like. On the other hand, if � = 0 then
|z|2 = Re(z)2 and all purely imaginary elements are light-like, while the remaining ones are
space-like. Let B×

� denote the invertible elements of B�. It is easy to check that z ∈ B×
� if

and only if z is not light-like, in which case

z−1 = z

|z|2 . (5.2)

In particular ι is not a unit inB0, hence one cannot calculate Im(z) of z ∈ B0 using the second
formula in (5.1).

There is a natural (injective) R-algebra homomorphism from B� to the space of real 2× 2
matrices, given by

z �→
(

Re(z) ι2Im(z)
Im(z) Re(z)

)

.

It follows that multiplication in B� can be encoded using 2 × 2 matrices, by
(

Re(z) ι2Im(z)
Im(z) Re(z)

)(

Re(w) ι2Im(w)
Im(w) Re(w)

)

=
(

Re(zw) ι2Im(zw)
Im(zw) Re(zw)

)

, ∀z, w ∈ B�. (5.3)

A matrix with coefficients in B� is �-Hermitian if it is equal to its conjugate transpose
(where here conjugate refers to conjugation in B�). LetH� be the space of 2× 2 �-Hermitian
matrices with coefficients in B�. The space H� is a real 4-dimensional vector space and
A �→ − det(A)defines a quadratic formonH�.Depending on �, the corresponding symmetric
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bilinear form D� has signature (3, 1) (� = −1), (2, 2) (� = 1), or it is degenerate with
signature (2, 1, 1) (� = 0). Let

C� := {u ∈ H� | D�(u, u) < 0},
and let X� := P(C�) be the image of C� in the projective space P(H�). The boundary ∂X�

consists of projective classes of D�-isotropic vectors, namely projective classes of rank one
matrices in P(H�). The space X� ∪ ∂X� is homeomorphic to a 3-ball (if � = −1), a solid
torus (if � = 1), or a “pinched” solid torus (if � = 0). In all cases, X� is orientable and we
fix an orientation.

The group of orthogonal transformations O(D�) preserves C�, thus its projectivization
PO(D�) acts on X�. In particular, the pair (PO(D�),X�) is a (G, X)-geometry in the sense
of Klein [21]. It is easy to check that

(PO(D�),X�) =
{

(PO(3, 1),H3), if � = −1,

(PO(2, 2),AdS
3), if � = 1.

In his thesis [12], J. Danciger defines a transitional geometry called half-pipe geometry
that captures the geometry of collapsing hyperbolic and Anti-de Sitter structures. Half-pipe
geometry turns out to be a subgeometry of (PO(D0),X0)-geometry with the same model
space X0, but a strictly smaller group of symmetries. To define the symmetry group of half-
pipe geometry, we consider the following construction. Let

B�P1 := {(x, y) ∈ B� × B� | (αx, αy) �= (0, 0), ∀ α ∈ B�\{0}}/∼,
where the equivalence relation ∼ is scalar multiplication by B�. We denote by [x, y] the
equivalence class containing (x, y). There is an embedding B� ∪ {∞} → B�P1 given by

v �→ [v, 1], ∀v ∈ B�, and ∞ �→ [1, 0]. (5.4)

When � = −1 this map is a bijection and this is the standard identification C ∪ {∞} ∼= CP
1.

Next, consider the bijection

Λ� : B�P1 ∼=−→ ∂X�,

[v1, v2] �→
[|v1|2 v1v2
v1v2 |v2|2

]

. (5.5)

The group PSL2(B�) acts both onB�P1 by linear fractional transformations, and onP(H�)

via

A · G := A G AT , for all A ∈ PSL2(B�), G ∈ P(H�). (5.6)

Next, let C : B�P1 → B∗P
1 be the involution given by componentwise conjugation.

This action of both PSL2(B�) and C on P(H�) is faithful, R-linear, and preserves deter-
minants. It gives rise to a subgroup of PO(D�) isomorphic to PSL2(B�) � Z2, which we
henceforth call the group of X�-transformations and denote G�. The index two subgroup of
G� isomorphic to PSL2(B�) is called the group of orientation preserving X�-transformations
and is denoted G+

� . In this paper wewill refer to the (G0,X0)-geometry as half-pipe geometry,
although Danciger’s half-pipe geometry is modeled on (G+

0 ,X0).
For � ∈ {−1, 1}, one finds that G� = PO(D�), thus (G�,X�) is isomorphic to the geometry

(PO(D�),X�). On the other hand, we will shortly see that when � = 0, the group G0 is a
proper subgroup of PO(D0).
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Note that (G�,X�) is a subgeometry of (PGL(4),RP
3), in the sense of Sect. 1.6. For

example, there is an isomorphism of quadratic spaces

J� : H� → R
4, where

(

x v + ιw

v − ιw y

)

�→ 1√
2
(x, y, v, w) , (5.7)

between H� with D� and R
4 with the standard symmetric bilinear form

J� =

⎛

⎜
⎜
⎝

0 −1 0 0
−1 0 0 0
0 0 2 0
0 0 0 −2ι2

⎞

⎟
⎟
⎠
. (5.8)

The map J� descends to equivariant embeddings G� ↪→ PGL(4) and X� ↪→ RP
3.

Lemma 22 For each A ∈ PO(D0) ⊂ PGL(4) there is a unique k ∈ R and a unique B ∈ G0
so that A = Dk B, where Fk := Diag(1, 1, 1, ek). It follows that G0 is a normal subgroup of
PO(D0) and that PO(D0)/G0 ∼= R.

Proof Using (5.7) we can regard X0 as a subset of RP
3 and PO(D0) as a subgroup of

PGL(4). The points V1 = [e1], V2 = [e2], and V3 = [e1 + e2 + e3] are contained in ∂X0.
Let Wi = A−1Vi for 1 ≤ i ≤ 3. By [13, Prop. 2] there is a unique element B ∈ G+

0 mapping
Vi to Wi for 1 ≤ i ≤ 3. As a result, the element G := AB ∈ PO(D0) fixes Vi for 1 ≤ i ≤ 3.

The point [e4] is the unique non–manifold point of ∂X0 and so G also fixes [e4]. Further-
more, since G fixes V1, V2, and V3 it preserves the plane V1V2V3 spanned by these points.
G also preserves the dual hyperplanes tangent to ∂X0 at V1 and V2. These planes are [e∗

2]
and [e∗

1], respectively, and so G preserves the line � containing [e4] and [e3]. It follows that
G fixes [e3] = � ∩ V1V2V3. These properties imply that G = Flog(t) = Diag(1, 1, 1, t)
for some t ∈ R

×. However, if t < 0 then Diag(1, 1, 1, t) = Flog(−t)Diag(1, 1, 1,−1) and
Diag(1, 1,1−1) ∈ G0. Furthermore, Fk ∈ G0 if and only if k = 0, and so uniqueness of the
decomposition follows.

Next, since [e4] is preserved by each element of PO(D�), it follows that every element
B ∈ G+

0 can be written in block form as
[

A 0
cT d

]

,

where A ∈ SL(3,R), c ∈ R
3, and d ∈ R

×. Furthermore, using (5.6) it is easy to check
that the elements of G0 are precisely those elements for which d = ±1. It follows that Fk

normalizes G0, and so G0 is normal in PO(D�) and PO(D�)/G0 ∼= R. ��
For every 3-manifold M with ideal triangulationΔ, the mapJ� induces a “forgetful” map

f� : X�(M;Δ) → RP
3(M;Δ)

that maps a branched (G�,X�)-structure on M (with respect toΔ) to its underlying branched
projective structure (cf. Sect. 1.6).

Lemma 23 The map f� : X�(M;Δ) → RP
3(M;Δ) is injective for � ∈ {−1, 1}. For � = 0,

each non-empty fiber of f0 is homeomorphic to R.

Proof Using (5.7) we can assume that X� ⊂ RP
3 and PO(D�) ⊂ PGL(4). In each case,

the group of projective transformations that preserves X� is PO(D�). When � = ±1, G� =
PO(D�), and the result follows.
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When � = 0, suppose M0 ∈ X0(M;Δ) and let (dev0, hol0) be a representative pair
for f0(M0). For every M ∈ X0(M;Δ) in the same f0-fiber as M0, let (dev, hol) be a
representative pair. Then there is A ∈ PO(D0) such that (dev, hol) = A ◦ (dev0, hol0) (up to
precomposing the developing maps with an isotopy). By Lemma 22, there is a unique way to
write A = Dk B, for B ∈ G0 and Dk = Diag(1, 1, 1, ek), thus there is a map g from the fiber
to R given by g(M) = k. By Lemma 22, the map g is well defined and injective. To see that
g is surjective, observe that if k ∈ R andMk is the half-pipe structure with developing map
Dk ◦ dev0, then g(Mk) = k. ��

Suppose that J : H� → R
4 is another isomorphism of quadratic spaces between H�

with D� and R
4 with another quadratic form J , of the same signature as J� (cf. (5.8)).

Then it is easy to check that J gives rise to equivariant embeddings G� ↪→ PGL(4) and
X� ↪→ RP

3. Let GJ and XJ be the respective images of these embeddings, then (GJ ,XJ )
is a projectively equivalent model of (G�,X�)-geometry inside of (PGL(4),RP

3)-geometry.
The triple (GJ ,XJ ,J ) is a marked projective model for (G�,X�)-geometry. If the marking
if forgotten, then (GJ ,XJ ) is an unmarked projective model for (G�,X�)-geometry. We will
generally not specify if a model is marked or unmarked when it is obvious from the context.
There are two important notions of equivalence for marked projective models that we now
discuss. Two marked projective models (GJ ,XJ ,J ) and (GJ ′ ,XJ ′ ,J ′) are projectively
equivalent if there is a transformation A ∈ PGL(4) such that

(GJ ′ ,XJ ′ ,J ′) = (A · GJ · A−1, A · XJ , A ◦ J )

and are (G�,X�)-equivalent if (GJ ,XJ ) = (GJ ′ ,XJ ′) and there is B ∈ G� so that J ′ =
J ◦ B. Since quadratic forms of the same signature are isometric it follows that different
marked projective models of (G�,X�)-geometry are projectively equivalent. The following
lemma describes when different marked models are (G�,X�)-equivalent.

Lemma 24 Let (GJ ,XJ ,J ) and (GJ ′ ,XJ ′ ,J ′) be two marked projective models for
(G�,X�)-geometry and let A ∈ PGL(4) be a projective isomorphism between the marked
models (GJ ,XJ ,J ) and (GJ ′ ,XJ ′ ,J ′). Then there is a map B : X� → X� that makes the
following diagram commute

(G�,X�) (GJ ,XJ )

(G�,X�) (GJ ′ ,XJ ′)

B

J

A
J ′

Moreover, if � = ±1, then B ∈ G�. If � = 0, then there is k ∈ R so that B = Ck B ′, where
B ′ ∈ G0 and Ck is given by

[

x v + ιw

v − ιw y

]

�→
[

x v + ιekw

v − ιekw y

]

.

Proof When � = ±1 the lemma is a consequence of the fact that G� = PO(D�). When � = 0,
the result follows from Lemma 22 and thinking about how the map Dk act on X�. ��

An immediate consequence of Lemma 24 is that if � = ±1 then any twomarked projective
models are (G�,X�)-equivalent. However, if � = 0, not there are marked projective models
that are not (G�,X�)-equivalent. This fact will have the consequence that Thurston’s param-
eters are not projectively invariant for this definition of half-pipe geometry (see Remark 9
for more details).
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Remark 7 For every projective model (GJ ,XJ ) for hyperbolic geometry, there is a (non-
unique) affine patch A of RP

3 where XJ is an ellipsoid in A. In particular, every projective
model for hyperbolic space is strictly convex in RP

3, namely for each V ∈ ∂XJ , every
tangent plane to ∂XJ at V locally intersects Σ only at V . This is a special case of proper
convexity, which will be discussed in Sect. 6.

5.2 Thurston’s parameters and equations

In [29], Thurston uses ideal triangulations to construct (branched) hyperbolic structures from
solutions to a collection of complex equations. This technique was extended to Anti-de Sitter
space and half-pipe space by Danciger in [13]. In this section we recall this construction,
adapted to the framework of real projective structures introduced in Sect. 5.1.

A projective tetrahedron is a region in RP
3 that is projectively equivalent to the projec-

tivization of the positive orthant in R
4. Note that a projective tetrahedron is the convex hull

of its vertices in any affine patch that fully contains it. Let � ∈ {−1, 1, 0} and let (GJ ,XJ )
be a projective model for the (G�,X�)-geometry. An ideal XJ -tetrahedron is a projective
tetrahedron whose vertices are contained in ∂XJ , and whose interior is contained in XJ .
This notion is projectively invariant, therefore it does not depend on the projective model.
In particular we can define an ideal X�-tetrahedron as a region of X� that corresponds to an
ideal XJ -tetrahedron in some, and hence all, of the projective models.

Remark 8 IfX� is projectively equivalent toH
3, then four points in ∂X� are always the vertices

of a unique idealX�-tetrahedron. This is a consequence of the fact that every projectivemodel
for H

3 is strictly convex in RP
3 (cf. Remark 7). On the other hand, in Anti-de Sitter space

and half-pipe space there are quadruples of points on the boundary that are not the vertices
of any ideal tetrahedron, in the respective geometries (cf. Lemma 25).

Let T ⊂ X� be an ideal X�-tetrahedron, with a fixed ordering of its vertices
(V1, V2, V3, V4), and letσ = (i j)k ∈ (E)F.Henceforthwe use the identificationB�∪{∞} ↪→
B�P1 ∼= ∂X� described in (5.5), to identify the vertices of T with elements in B�P1. Since
PSL2(B�) acts simply transitively on ordered triples of points of B�P1, there is a unique
element of G+

� mapping

Vi �→ ∞ = Λ−1
�

([

1 0
0 0

])

, Vj �→ 0 = Λ−1
�

([

0 0
0 1

])

, and Vk �→ 1 = Λ−1
�

([

1 1
1 1

])

.

Under this transformation, the last vertex Vl is mapped to some zTσ ∈ B�\{0, 1} ⊂ B�P1. The
number zTσ is called the Thurston’s parameter of T with respect to σ . We recall that an ideal
X�-tetrahedron T with ordered vertices (∞, 0, 1, z) is positively oriented if the orientation
induced onT by the ordering of its vertices agreeswith the orientation onX�. By construction,
zTσ is a G+

� -invariant of T, but if � = 0 then it is not a PO(D0)-invariant of T (see Remark 9
for more details).

Each ideal X�-tetrahedron has twelve Thurston’s parameters, one for each edge-face, but
they are not independent. They obey to the following internal relations:

zσ = zσ , zσ = zσop , and zσ+ = 1

1 − zσ
, ∀σ ∈ (E)F. (5.9)

On the other hand, not every element of B�P1 is the Thurston’s parameter of an X�-
tetrahedron.
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Lemma 25 ([12] Prop. 33) Let � ∈ {−1, 1, 0}. An element z ∈ B� ⊂ B�P1 is the Thurston’s
parameter of an ideal X�-tetrahedron if and only if z and 1−z are space-like. In that case, the
ideal X�-tetrahedron with vertices (∞, 0, 1, z) is positively oriented if and only if Im(z) > 0.

Now let M be an orientable 3-manifold with an ideal triangulation Δ. We recall that
Tet(Δ) and Ed(Δ) are the set of tetrahedra and edges of Δ. We denote by BTet(Δ)×(E)F

� the
set of functions z∗∗ : Tet(Δ)× (E)F → B� and by zTσ := z∗∗(T, σ ). The X�--parameter space

of M (with respect to Δ) is the set DX�
(M;Δ) of points z∗∗ ∈ BTet(Δ)×(E)F

� such that:

1. for all T ∈ Tet(Δ) and all σ ∈ (E)F, the numbers zTσ and 1 − zTσ are space-like, and
Im(zTσ ) > 0;

2. for all T ∈ Tet(Δ), the numbers {zTσ }σ∈(E)F satisfy the internal relations (5.9);
3. for every edge s ∈ Ed(Δ), fix once and for all an orientation on s, and define Tet(Δ)s

to be the cyclically ordered ks-tuple ((Ts
1, . . . ,T

s
ks
)) of tetrahedra that abut s, cyclically

ordered to follow the “right hand rule” by placing the thumb in the direction of s. Let σ s
i

be the outgoing edge-face of Ts
i around s. Then z∗∗ satisfies

ks∏

i=1

zTi
σi

= 1. (5.10)

Equation (5.10) is called the Thurston’s gluing equation of s.
Intuitively, (1) and (2) ensure that the parameters arise as the Thurston’s parameters of

positively oriented ideal X�-tetrahedra. As PSL2(B�) acts simply transitively on ordered
triples of points of B�P1, there is always a unique orientation preserving X�-transformation
that realizes each face pairing.

Finally, (3) ensures that, when we glue all X�-tetrahedra around an edge, the last and the
first match to close up the cycle (with possible branching along the edge). A more formal
analysis of this discussion leads to the following result. It is a consequence of the work of
Thurston [29] in the hyperbolic setting, and of Danciger [13] for Anti-de Sitter and half-pipe
settings.

Lemma 26 ([29, §3], [13]) Let � ∈ {−1, 1, 0}. For every z∗∗ ∈ DX�
(M;Δ) there is a unique

branched (G�,X�)-structure on M (with respect to Δ) made up of ideal X�-tetrahedra, with
Thurston’s parameters z∗∗. In particular, this induces a continuous injective map

ExtX�Δ : DX�
(M;Δ) → X�(M;Δ).

It should be noted that the map in Lemma 26 crucially depends on the triangulation Δ,
and in general is not surjective.

5.3 Hyperbolic, Anti-de Sitter and half-pipe tetrahedra of flags

Let � ∈ {−1, 1, 0} and let (GJ ,XJ ,J ) be a marked projective model for the (G�,X�)-
geometry. For each ideal XJ -tetrahedron T, there is a preferred tetrahedron of flags FT =
(Vm, ηm)

4
m=1 associated to it, where

1. {Vm}4m=1 is the set of vertices of T;
2. each ηm is the unique plane tangent to XJ at Vm .

Conversely, we say that a tetrahedron of flags F = (Vm, ηm)
4
m=1 is an X�--tetrahedron of

flags if there is a marked projective model (GJ ,XJ ,J ) and an ideal XJ -tetrahedron whose
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associated tetrahedron of flags is F . In that case we say that (GJ ,XJ ,J ) is a marked oscu-
lating model for F . If F is an X�-tetrahedron of flags with osculating model (GJ ,XJ ,J ),
then we can use J to pull the vertices of F (i.e. the points of each of the flags) back to ∂X�.
Thus given an edge-face σ we can compute the Thurston’s parameter (with respect to J ) of
this tetrahedron of flags, which we denote zF,Jσ .

Remark 9 By Lemma 24, when � = ±1, the Thurston’s parameters are independent of the
marking and are hence projective invariants. When � = 0 different markings give rise to
Thurston’s parameters with the same real part, but different imaginary parts, and so the real
part is a projective invariant, but the imaginary part is not.

Furthermore, Lemma 24 also shows that for half-pipe tetrahedra the imaginary parts of
Thurston’s parameters are uniformly distorted by different markings. Specifically, if E and
F are X0-tetrahedra with osculating models (G,X ,J ) and (G,X ,J ′), then

Im(zF,Jσ )

Im(zE,Jτ )
= Im(zF,J

′
σ )

Im(zE,J
′

τ )
, ∀σ, τ ∈ (E)F.

The next result shows that determining when a tetrahedron of flags is an X�-tetrahedron
of flags is simple, using edge ratios and triple ratios. We recall that given a tetrahedron of
flags F = (Vm, ηm)

4
m=1 and an edge-face σ , we denote by eFσ (resp. tFσ ) the edge ratio (resp.

triple ratio) of F with respect to σ (cf. Sect. 2.2). We also recall that

XF
σ := μF

σ tFσ eFσ
tFσ + 1

and Yσ = tFσ + 1

tFσ μ
F
σ

, where μF
σ := eFσ−eFσ+ − eFσ− + 1,

and further define

jFσ := eFσ − (XF
σ )

2. (5.11)

Theorem 11 Let � ∈ {−1, 1, 0} and let F = (Vm, ηm)
4
m=1 be a tetrahedron of flags. Then

the following are equivalent:

1. F is an X�-tetrahedron of flags;
2. tFσ = 1 for all σ ∈ (E)F;
3. eFσ = eFσop

for all σ ∈ (E)F.

Furthermore, the osculating model of an X�-tetrahedron of flags is hyperbolic, Anti-de Sitter,
or half pipe if jFσ > 0, jFσ < 0, or jFσ = 0, respectively. In each case, if zFσ is a Thurston’s
parameter (with respect to some marking) then we have the following relations:

eFσ = ∣∣zFσ
∣
∣
2
, XF

σ = Re(zFσ ), and jσ = −ι2Im(zFσ )2, ∀σ ∈ (E)F. (5.12)

Proof Before embarking on the proof we observe that if the relations (5.12) are satisfied
for the Thurston’s parameters with respect to some marking then they are satisfied for the
Thurston’s parameters with respect to any other marking. This is a consequence of Remark 9
and the fact that the last relation is trivially satisfied when � = 0. As a result we are free
to compute Thurston’s parameters with respect to any marking we wish when proving the
theorem.

Henceforth we are going to drop the superscript in the parameters of F .
((2) ⇔ (3)): This is a consequence of the internal consistency equations (cf. Lemma 5)

and the relations

eσ
eσop

= eσ eσ−eσ+
eσop eσ−eσ+

= eσ eσ−eσ+
eσop eσ−eσ+

= 1

tσ tσ
, and t2σ = eσop e(σ+)op e(σ−)op

eσ eσ+eσ−
.
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((1) ⇔((2))+((3)): We begin by noticing that the property of being an X�-tetrahedron of
flags is PGL(4)-invariant, thus we can assume without loss of generality that F is in σ -
standard position for any σ = (i j)k ∈ (E)F. Henceforth suppose F is in σ -standard position
(cf. Lemma 6) and fix δ ∈ R>0). We consider the isomorphism of quadratic spaces

Jδ : H� → R
4, where

(

x v + ιw

v − ιw y

)

�→ 1√
2

(

x, y, v,−w

δ

)

, (5.13)

between H� with D� and R
4 with the symmetric bilinear form

Jδ =

⎛

⎜
⎜
⎝

0 −1 0 0
−1 0 0 0
0 0 2 0
0 0 0 −2ι2δ2

⎞

⎟
⎟
⎠
. (5.14)

It is easy to check that the underlying projective quadric ∂XJδ of RP
3 corresponding to Jσ

contains the points Vi , Vj , and Vk and is tangent to the planes ηi and η j at Vi and Vj . The
point Vl ∈ ∂XJδ if and only if

− 2eσ + 2X2
σ − 2ι2δ2 = 0 ⇐⇒ −ι2δ2 = jσ . (5.15)

We remark that this condition is satisfied in the half-pipe setting if and only if jσ = 0, while
in the other cases we get the condition that δ = √| jσ |

Furthermore, the planes tangent to ∂XJδ at V3 and V4 are

[e∗
1 + e∗

2 − 2 · e∗
3], and

[
1

eσ
· e∗

1 + e∗
2 − 2Xσ

eσ
· e∗

3 − 2 jσ
eσ

· e4∗
]

.

From Lemma 6 it follows that F is an X�-tetrahedron of flags, with osculating model
(GJδ ,XJδ ,Jδ), if and only if

tσ = 1, eσ−eσ+ = 1

eσ
, μσ = 2Xσ

eσ
, and μσ (Yσ − Xσ ) = 2 jσ

eσ
.

Using the internal consistency equations (cf. Lemma 5), one can check that these equations
are equivalent to

tσ = 1, tσ = 1, and μσ = μσ ,

which, in turn, are equivalent to statements (2) +((3), once one observes that (2) implies that
eσ− = eσ− ).

For the final part of the proof, suppose thatF is anX�-tetrahedron of flags, with osculating
model (GJ ,XJ ,J ). Once again we can assume that F is in σ -standard position, and by the
above discussion, we may take J = Jδ . Then the fact that XJδ is hyperbolic, Anti-de Sitter,
or half pipe if jσ > 0, jσ < 0, or jσ = 0, follows directly from the form of Jδ in (5.14).

Furthermore, one can check that

Vi = [Jδ(Λ�(∞))] , Vj = [Jδ(Λ�(0))] , and Vk = [Jδ(Λ�(1))] .

Hence, by definition of Thurston’s parameter,

[eσ · e1 + e2 + Xσ · e3 − e4] = Vl = [Jσ (Λ�(zσ ))]

=
[

|zσ |2 · e1 + e2 + Re(zσ ) · e3 − Im(zσ )
δ

· e4
]

,

and the last part of the lemma follows. ��
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Fig. 5 A geometric interpretation of the parameter jσ

Remark 10 In the above proof we remarked that equation (5.15) is always satisfied in the
half-pipe setting, while in the other cases we get the condition that δσ = √| jσ |. This has
the following implications. For � ∈ {−1, 1}, if F is an X�-tetrahedron of flags in σ -standard
position, then there is a unique (marked) osculating model (GJσ ,XJσ ,Jσ ) for F , obtained
by replacing δσ = √| jσ | in (5.13). In particular, there is a unique Thurston’s parameter zFσ
associated to F which is the Thurston’s parameter of the underlying ideal XJσ -tetrahedron,
with respect toσ . This can be explicitly computed from the edge ratios using equations (5.12).

On the other hand, for � = 0, if F is an X�-tetrahedron of flags in σ -standard position,
then there is a unique unmarked osculating model but a 1-real parameter family of marked
osculating models (GJσ ,XJσ ,Jσ ), for all δσ ∈ R>0. Consequentially, for each of these
models there is a Thurston’s parameter zFσ that can be associated to F . The real part of zFσ
(which is equal to the norm) is invariant and can be determined by equations (5.12), while
the imaginary part depends on the model, according to the relation Im(zFσ ) = δσ .

Remark 11 If σ = (i j)k, then the parameter jσ has a geometric interpretation. Let P∗ be
the pencil of lines of RP

3 through the point of intersection P := ηiη jηk . Then P∗ can be
identified with the projective plane η := Vi Vj Vk by sending each line to its intersection with
η. The restriction of the form Jσ with this plane (for any possible value of δσ ) has signature
(2, 1). The fourth point Vl determines a line in the pencil P∗ and jσ is positive, negative, or
zero, depending on whether the corresponding point in η is time-like, space-like, or light like
(see Fig. 5).

Next, we turn our attention to gluings of X�-tetrahedra of flags. Given any two X�-
tetrahedra of flags F and E , and edge-faces σ, τ ∈ (E)F, it follows from Theorem 11 that
[F] and [E] are (σ, τ )-glueable since all triple ratios are equal to 1. On the other hand, even
when E and F are in (σ, τ )-standard glued position, the osculating model for F is typically
different from the osculating model for E . In other words, while the individual tetrahedra of
flags can be inscribed in a projective model of (G�,X�), the glued tetrahedra might not be
inscribed in a common model of (G�,X�). The following theorem shows that there is a pair
of values for the gluing parameter of (F, E) for which the two osculating models coincide,
one of which corresponds to a geometric gluing.
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Theorem 12 Let � ∈ {−1, 1, 0}. Let σ, τ ∈ (E)F, and let F and E be two X�-tetrahedra of
flags in (σ, τ )-glued position. Consider a marked osculating model for each of them, and let
zFσ (resp. zEτ ) be the corresponding Thurston’s parameter of F with respect to σ (resp. of E
with respect to τ ). Then the marked osculating model for F is equal to the marked osculating
model for E if and only if

gE,τ
F,σ = ± Im(zEτ )

Im(zFσ )
. (5.16)

Furthermore, the gluing is geometric if and only if gE,τ
F,σ = Im(zEτ )

Im(zFσ )
.

Proof Once again, without loss of generality we can assume that F and E are in (σ, τ )-
standard glued position. Let σ = (i j)k and τ = (i ′ j ′)k′. For each X�-tetrahedron of
flags we fix a marked osculating model. Let zFσ , zEτ be the Thurston’s parameters of F
and E , with respect to σ and τ in these models. We recall that each model is unique in
the hyperbolic and Anti-de Sitter setting, while there is a 1-parameter family of choices
for half-pipe (cf. Remark 10). Since F is in σ -standard position, the marked osculating
model is (GJF

σ
,XJF

σ
,JF

σ ), as defined in (5.13), for some non-zero δFσ = Im(zFσ ). If

E = (Wm, ζm)
4
m=1, then

Wl ′ =
[

e1 + ∣∣zEτ
∣
∣
2 · e2 + Re(zEτ ) · e3 + gE,τ

F,σ · e4
]

. (5.17)

To compare the osculating models, we consider the unique XJF
σ
-tetrahedron of flags E0 :=

(W 0
m, ζ

0
m)

4
m=1, in σ -standard position, with Thurston’s parameter zEτ . Then

W 0
l =

[

|zEτ |2 · e1 + e2 + Re(zEτ ) · e3 − Im(zEτ )
Im(zFσ )

· e4
]

.

of both (GJF
σ
,XJF

σ
) and (GJG

τ
,XJG

τ
). There are exactly two transformations in GJF

σ
∩GJG

τ

that map

(W 0
i , ζ

0
i ) �→ (W j ′ , ζ j ′), (W 0

j , ζ
0
j ) �→ (Wi ′ , ζi ′), and (W 0

k , ζ
0
k ) �→ (Wk′ , ζk′).

They are

G− :=

⎡

⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦
, and G+ :=

⎡

⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −1

⎤

⎥
⎥
⎦
.

It follows that (GJF
σ
,XJF

σ
,JF

σ ) = (GJ E
τ
,XJ E

τ
,J E

τ ) if and only if either

G+ · (W ′
4, ζ

′
4) = (Wl ′ , ζ

′
l ′), or G− · (W ′

4, ζ
′
4) = (Wl ′ , ζ

′
l ′).

This is equivalent to (5.16). The final statement follows from the fact that G+ is orientation
preserving, while G− is orientation reversing. ��

5.4 Proof of Theorem 2

We are now ready to construct the map ϕ� : DX�
(M;Δ) → DRP(M;Δ) mentioned in the

statement of Theorem 2. First, we recall that DΔ = DRP(M;Δ) is a subset of
Y :=

((

R
(E)F
>0 × R

(E)F
>0

)

× R
(E)F
>0

)Tet(Δ)
,
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and that we can describe every x ∈ Y as

x(T) = (x1(T), x2(T)) = ((τT∗ , εT∗ ), κT∗
) ∈

(

R
(E)F
>0 × R

(E)F
>0

)

× R
(E)F
>0 , ∀T ∈ Tet(Δ).

For � ∈ {−1, 1, 0}, we define a map ϕ� : DX�
(M;Δ) → Y . For every z∗∗ ∈ DX�

(M;Δ) and
every T ∈ Tet(Δ), let

ϕ�(z
∗∗)(T) := ((τT∗ , εT∗ ), κT∗

)

, such that τTσ = 1, εTσ = ∣∣zTσ
∣
∣
2
, and κTσ = Im(zTσ )

Im(zT′
τ )

,

where T′ is the unique tetrahedron glued to T along the edge-face pair (σ, τ ). We claim that
the image of ϕ� is contained in DΔ, and that it can be explicitly described. We recall that
the coordinates of points in DΔ are edge ratios, triple ratios and gluing parameters of some
triangulation of flags, thus we henceforth refer to them with their usual symbols eTσ , tTσ and
gT
σ . Let S�(M;Δ) ⊂ DΔ be the subset of points satisfying the following additional equations

1. for each T ∈ Tet(Δ) and each σ ∈ (E)F,

eTσ = eTσop
;

2. for each T,T′ ∈ Tet(Δ) glued along the edge-face pair (σ, τ ) (see (5.11) for the defini-
tion),

jTσ = (gT
σ )

2 jT
′

τ ;
3. for each T ∈ Tet(Δ) and each σ ∈ (E)F,

jTσ

⎧

⎪⎨

⎪⎩

> 0, if � = −1,

< 0, if � = 1,

= 0, if � = 0.

Remark 12 For every x ∈ S�(M;Δ), the coordinates of x satisfy the additional relations

jTσ+ = e2σ+ jTσ , ∀T ∈ Tet(Δ), σ ∈ (E)F. (5.18)

This is a consequence of the fact that all triple ratios in x are 1 (cf. Theorem 11 part (3)
⇒ (2)). It follows that, if � �= 0, all of the jTσ+ ’s are determined by any one of them, via
equations (2) and (5.18).

Theorem 13 Let M be an orientable 3-manifold with an ideal triangulation Δ, then

ϕ�(DX�
(M;Δ)) = S�(M;Δ), ∀� ∈ {−1, 1, 0}.

Furthermore, if � ∈ {−1, 1}, then ϕ� is injective. Otherwise, DX0(M;Δ) is a trivial line
bundle over S0(M;Δ), where two points z∗∗, w∗∗ ∈ DX0(M;Δ) belong to the same fiber if
and only if there is a constant k ∈ R such that

Re(zTσ ) = Re(wT
σ ), and Im(zTσ ) = ek · Im(wT

σ ), ∀T ∈ Tet(Δ), σ ∈ (E)F.

Proof Webegin by showing that ϕ�(DX�
(M;Δ)) ⊂ S�(M;Δ). Suppose z∗∗ ∈ DX�

(M;Δ). It
follows from thedefinitionofϕ� and the internal relations (5.9) thatϕ�(z∗∗) satisfies the internal
consistency equations (2.3)–(2.6) (cf. Lemma 5), and the face pairing equations (3.1) (cf.
Lemma 10). To show that the gluing consistency equations (3.4) and (3.5) (cf. Lemma 12) are
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also satisfied, it is enough to notice that every Thurston’s parameter zσ satisfies the additional
relation

Im(zσ+) = ∣∣zσ+
∣
∣2 Im(zσ ).

Next we show that ϕ�(z∗∗) satisfies the edge gluing equations (4.8). For every edge s ∈ Ed(Δ),
fix an orientation on s, and let ((Ts

1, . . . ,T
s
ks
)) be the cyclically ordered ks-tuple of tetrahedra

that abut s, cyclically ordered to follow the “right hand rule” by placing the thumb in the
direction of s. Let τ s

i and σ s
i be the respective incoming and outgoing edge-faces of Ts

i ,
around s. Henceforth we are going to drop the superscript s. Using that the coordinates of
ϕ�(z∗∗)(T) satisfy

zTi
σi

= zTi
τi
, and gTi

τi
=

Im
(

zTi
σi

)

Im(zTi−1
τi−1 )

=
Im
(

zTi
σi

)

Im(zTi−1
σi−1 )

,

we deduce that each gluing map (4.5) can be factored as Glueτi (ϕ�(z
∗∗)(T)) = G ′

i−1Gi ,
where

G ′
i =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1/Im(zTi

σi )

⎤

⎥
⎥
⎦
, and Gi =

⎡

⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −Im(zTi

σi )

⎤

⎥
⎥
⎦
.

Thus we can rewrite the product in (4.8) as

Gs = G ′
ks

G1 Flipσ1(ϕ�(z
∗∗)(T))G ′

1G2 . . .G
′
ks−1Gks Flipσks

(ϕ�(z
∗∗)(T)). (5.19)

On the other hand, from the definition (4.4),

Flipσi
(ϕ�(z

∗∗)(T)) =

⎡

⎢
⎢
⎢
⎢
⎣

0
∣
∣
∣zTi
σi

∣
∣
∣

2
0 0

1 0 0 0
0 0 Re(zTi

σi ) ι
2Im(zTi

σi )
2

0 0 −1 −Re(zTi
σi )

⎤

⎥
⎥
⎥
⎥
⎦

,

and so

Gi Flipσi
(ϕ�(z

∗∗)(T))G ′
i =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0

0
∣
∣
∣zTi
σi

∣
∣
∣

2
0 0

0 0 Re(zTi
σi ) ι

2Im(zTi
σi )

0 0 Im(zTi
σi ) Re(zTi

σi )

⎤

⎥
⎥
⎥
⎥
⎦

.

It follows from (5.3) that Gs is conjugate to
⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0
∏ks

i=1

∣
∣
∣zTi
σi

∣
∣
∣

2
0 0

0 0 Re
(
∏ks

i=1 zTi
σi

)

ι2Im
(
∏ks

i=1 zTi
σi

)

0 0 Im
(
∏ks

i=1 zTi
σi

)

Re
(
∏ks

i=1 zTi
σi

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (5.20)

However, z∗∗ ∈ DX�
(M;Δ) satisfiesThurston’s gluing equations (5.10), thusGs is the identity

matrix. This concludes the proof that ϕ�(z∗∗) ∈ DΔ. The fact that ϕ�(z∗∗) ∈ S�(M;Δ) is a
direct consequence of Theorem 11 and Theorem 12.
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To prove that ϕ� is surjective, let x ∈ S�(M;Δ). Recall that we refer to the coordinates
of x with the usual symbols eTσ , tTσ and gT

σ . Let δ
∗∗ ∈ R

Tet(Δ)×(E)F
>0 be a function satisfying

δTσ+ = eσ+δ
T
σ , δTσ = gT

σ δ
T′
τ , and − ι2(δTσ )

2 = jTσ , T ∈ Tet(Δ), σ ∈ (E)F,(5.21)

where T′ is the unique tetrahedron glued to T along (σ, τ ). If ι2 ∈ {−1, 1}, then δ∗∗ is uniquely
determined by δTσ =

√∣
∣ jTσ
∣
∣. In this case, the first two equations of (5.21) are consequences

of the assumption that x ∈ S�(M;Δ) (cf. Remark 12). On the other hand, if ι2 = 0, then
jTσ = 0 by definition of S0(M;Δ), and the last equation of (5.21) is trivial. In that case δ∗∗ is
only determined up to positive rescaling.

Next we consider the function z∗∗ ∈ BTet(Δ)×(E)F
� defined by

zTσ := XT
σ + ιδTσ ∈ B�, ∀T ∈ Tet(Δ), σ ∈ (E)F. (5.22)

It is easy to check that if z∗∗ ∈ DX�
(M;Δ), then ϕ�(z∗∗) = x . Indeed it is enough to notice

that

∣
∣zTσ
∣
∣
2 = (XT

σ )
2 − ι2(δTσ )

2 = (XT
σ )

2 + jTσ = eTσ , and
Im(zTσ )

Im(zT′
τ )

= δTσ

δT
′

τ

= gT
σ .

(5.23)

Therefore we are left to show that z∗∗ ∈ DX�
(M;Δ). It follows from the definitions that

each number zTσ is the Thurston’s parameter of some positively oriented idealX�-tetrahedron
(cf. Lemma 25), and that they satisfy the internal relations (5.9). Now let s ∈ Ed(Δ) be an
oriented edge. Using (5.23) and the definition of S�(M;Δ), one can rewrite every edge ratio,
triple ratios and gluing parameter in terms of z∗∗ in the edge gluing equations, to show that Gs

is conjugate to the matrix in (5.20). But since x ∈ S�(M;Δ), Gs is the identity matrix, and
therefore z∗∗ satisfies the Thurston’s gluing equation (5.10) of s. This concludes the proof of
the first part of the lemma.

For the second part, it is enough to notice that every δ∗∗ ∈ R
Tet(Δ)×(E)F
>0 defines a map

ψ� : S0(M;Δ) → DX�
(M;Δ),

via (5.22), such that ϕ� ◦ ψ� = 1. If � ∈ {−1, 1}, then δ∗∗ is uniquely determined and
ψ� ◦ ϕ� = 1, implying that ϕ� is injective. On the other hand, if � = 0 then δ∗∗ is only
determined up to positive rescaling, and each ψ0 is a section of ϕ0. ��

We conclude this section by showing that the maps ϕ�, f�,ExtΔ and ExtX�Δ fit nicely in
a commutative diagram. We recall that ExtΔ is the extension map from Theorem 6, which
associates each triangulation of flags to a branched real projective structure. Similarly, the
map ExtX�Δ associates points in the X�-parameter space to branched (G�,X�)-structures (cf.
Lemma 26). Finally, f� is the “forgetful” map that associates a (G�,X�)-structure to the
underlying projective structure (cf. Sect. 5.1).

Theorem 14 Let � ∈ {−1, 1, 0}, and let M be an orientable 3-manifold with an ideal trian-
gulation Δ. Then the following diagram commutes

DX�
(M;Δ) X�(M;Δ)

S�(M;Δ) ⊂ DRP(M;Δ) RP(M;Δ)
ϕ�

ExtX�Δ

f�
ExtΔ

(5.24)
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Proof Let z∗∗ ∈ DX�
(M;Δ), and consider the branched projective structures

p1 := f�
(

ExtX�Δ (z∗∗)
)

, and p2 := ExtΔ
(

ϕ�(z
∗∗)
)

.

Let dev1, dev2 be developing maps for p1 and p2, respectively. It is clear from the defini-
tions that dev1 maps all tetrahedra of Δ̃ to ideal XJ -tetrahedra, for some osculating model
(GJ ,XJ ,J ). The same is true for dev2, for some other model (GJ ′ ,XJ ′ ,J ′), by Theo-
rem 11 and Theorem 12. Thus p1 is a (GJ ,XJ )-structure, while p2 is a (G′

J ,X
′
J )-structure.

It is easy to check that, in both cases, the Thurston’s parameters of all these tetrahedra are
exactly z∗∗. It follows that these structures are projectively equivalent, hence p1 = p2. ��
Proof of Theorem 2 Theorem14 establishes that themaps inTheorem2fit into the appropriate
commutative diagram. The map f = f−1 is injective by Lemma 23 and ExtHΔ = ExtX−1

Δ is
injective by Lemma 26. However, commutativity of the diagram then implies that the map
ϕ = ϕ−1 must also be injective. ��

6 Properly convex projective structures

A specific type of projective structures of interest in this work are properly convex projective
structures. A subset Ω ⊂ RP

n is properly convex if it has non-empty interior, its closure
is disjoint from some hyperplane η ⊂ RP

n , and it is convex in the affine patch determined
by RP

n\η. In this context, a projective structure on an n-manifold M is properly convex if
its developing map is a diffeomorphism onto some properly convex set Ω . In that case the
holonomy representation is an isomorphism onto a discrete group Γ ⊂ PGL(n + 1). The
quotient manifold Ω/Γ is a properly convex manifold and the developing map descends to
a diffeomorphism M → Ω/Γ , called marking. We let CP(M) denote the subset of RP(M)

consisting of (marked) properly convex projective structures.
This section is concerned with those properly convex structures whose geometry near the
non-compact part is particularly well behaved. This is the concept of a generalized cusp,
which will be introduced in Sect. 6.1. When M is hyperbolic, recent work of Cooper and
Tillmann [9] shows that every cusp of a properly convex manifold diffeomorphic to M is
a generalized cusp (cf. Theorem 15). The main goal of this section will be to understand
how to decorate generalized cusps with flags (cf. Lemma 27), and to prove Theorem 3 (cf.
Sect. 6.2).

6.1 Generalized cusps

Generalized cusps are properly convex generalizations of cusps of finite volume hyperbolic
manifolds. A generalized cusp is a properly convex manifold with virtually abelian funda-
mental group that admits a codimension 1 foliation by compact, strictly convex hypersurfaces.
In this context, an embedded codimension 1 submanifold Σ ⊂ M is an orientable strictly
convex if for each V ∈ Σ , every tangent plane to Σ at V locally intersects Σ in a single
point (namely V ). A good example to keep in mind is a cusp of a finite volume hyperbolic
3-manifold. Such a cusp is foliated by tori, each of which is covered by a (strictly convex)
horosphere.

Generalized cusps are classified in [1], andwe now describe the classification in the setting
of 3-manifolds. In dimension three, every generalized cusp is of the form C = Ω/Γ , where
C ∼= T 2 × (0,∞) and T 2 is a 2-torus. For each generalized cusp we can define a projective
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invariant called the type, which is an integer 0 ≤ t ≤ 3 (see [1, § 1]). Loosely speaking, the
type gives the dimension of the largest subgroup of Γ that is diagonalizable overR (a slightly
different definition applies when t = 3). Furthermore, for each C there is a non-negative
vector u = (λ1, λ2, λ3) ∈ R

3≥0, where λi = 0 if and only if i > t .

When t = 3, define φu : R
3≥0 → R by φ(x1, x2, x3) = xλ11 xλ22 xλ33 and Ωu =

φ−1
u ((0,∞)). Next let Hu be the 2-dimensional abelian Lie subgroup of PGL(4) consist-

ing of elements of the form
⎡

⎢
⎢
⎣

ey1 0 0 0
0 ey2 0 0
0 0 ey3 0
0 0 0 1

⎤

⎥
⎥
⎦
, (6.1)

where
∑3

i=1 λi yi = 0. The setΩu is properly convex, and is foliated by the (strictly convex)
level sets of φu , called horospheres. Both Ωu and each leaf of this foliation is Hu-invariant.
Furthermore, every generalized cusp of type 3 is projectively equivalent toΩu/Γu , for some
u and some lattice Γu in Hu (see [1, Thm 0.1]).

When t < 3, define φu : R
t≥0 × R

3−t → R by φu(x1, x2, x3) = xt+1 +∑t
i=1 λi xi −

1
2

∑3
t+2 x2i . Note that with this definition, it is possible for some of the sums in the definition

of φu to be empty depending on the value of t . For each t , letΩu = φ−1
u ((0,∞)) and define

Hu to be the 2-dimensional abelian Lie subgroup of PGL(4) consisting of elements of the
form
⎡

⎢
⎢
⎣

1 x1 x2
x21+x22

2
0 1 0 x1
0 0 1 x2
0 0 0 1

⎤

⎥
⎥
⎦
,

⎡

⎢
⎢
⎣

ey1 0 0 0

0 1 x1
x21
2 + λ1y1

0 0 1 x1
0 0 0 1

⎤

⎥
⎥
⎦
,

⎡

⎢
⎢
⎣

ey1 0 0 0
0 ey2 0 0
0 0 1 −λ1y1 − λ2y2
0 0 0 1

⎤

⎥
⎥
⎦
,

t = 0, t = 1, t = 2. (6.2)

Again, the set Ωu is properly convex and foliated by the strictly convex level sets of φu .
Both the domain and the foliation are Hu-invariant and each type t < 3 generalized cusp is
projectively equivalent to Ωu/Γu for some u and some lattice Γu in Hu . We depicted one
example of Ωu for each type 0 ≤ t ≤ 3 in Fig. 6.

Given a properly convex domain Ω , a flag (V , η) is a supporting flag if V ∈ ∂Ω , and η
is a supporting plane for Ω . If C = Ω/Γ is a generalized cusp then (V , η) is a supporting
flag for C if (V , η) is a supporting flag forΩ and it is Γ -invariant. Generalized cusps always
admit supporting flags, and when t �= 3 there is a canonical one, which we now describe.
To describe this canonical flag one needs the concept of a radial flow which we briefly recall
(for more details refer to [1, §1.1].

A radial flow ϕs on RP
3 is a 1-parameter flow by projective transformations with the

property that there is a unique plane η ⊂ RP
3 and a unique point V ∈ RP

3 so that ϕs acts
trivially on η for each s, and lim

s→−∞ϕs(x) = V for any x /∈ η. Up to reparametrization

and applying projective transformations there are exactly two radial flows distinguished by
whether or not V ∈ η (see [8, §6] for details). In the former case we call the radial flow
parabolic, and in the latter case it is hyperbolic. The point V (resp. plane η) is called the
center (resp. dual center) of the radial flow.

It turns out that for each generalized cusp C = Ωu/Γu there is a distinguished radial flow
that centralizes the group Γu and for which ϕs(Ωu) ⊂ Ωu for s ≤ 0. These radial flows
can be described in a “coordinate free” way and hence they are (up to reparametrization) a
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Fig. 6 The domains Ωu for type 0 (top left), 1 (top right), 2 (bottom left), and 3 (bottom right)

projective invariant of the generalized cusp (see [1, Prop. 1.29]. If 0 ≤ t < 3, then the radial
flow is parabolic and has center V = [et+1] and dual center η = [e∗

4]. In this case we see
that (V , η) is an incomplete flag that is Γu invariant. Furthermore, the point V ∈ ∂Ωu and
the plane η is a supporting plane for Ωu . If t = 3, then the radial flow is hyperbolic and has
center V = [e4] and dual center η = [e∗

4]. In this case the center and dual center do not form
a flag, however η is a supporting plane for Ωu . The intersection of η with ∂Ωu is a triangle
and if we let V ′ be one of the vertices of this triangle, then (V ′, η) is a supporting flag.

For future reference we record the above discussion in the following lemma. In addition,
we show that these flags are some of only finitely many possible supporting flags of C .

Lemma 27 If C = Ω/Γ is a generalized cusp, then Γ preserves at least one and at most
finitely many (incomplete) flags in RP

3. Furthermore, at least one of these flags can be chosen
to be a supporting flag for C.

Proof As mentioned above, existence follows from the above discussion concerning radial
flows.

Recall that, depending on the type 0 ≤ t ≤ 3 of C , the group Γ is a lattice in one of the
Lie groups Hu defined in (6.1) and (6.2). When t > 0, it is easy to check using (6.1) and
(6.2) that a generic element g ∈ Γ will preserve only finitely many incomplete flags.

On the other hand, if t = 0, then each g preserves infinitely many incomplete flags.
Specifically, we have that

g =

⎡

⎢
⎢
⎣

1 y1 y2
1
2 (y

2
1 + y22 )

0 1 0 y1
0 0 1 y2
0 0 0 1

⎤

⎥
⎥
⎦
, for some y1, y2 ∈ R,
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thus g pointwise fixes the line � = [e1][−y2e2+ y1e3], and preserves each plane in the pencil
of planes through �. It follows that g preserves any incomplete flag where the point lies on �
and the plane comes from the pencil through �. Furthermore, every g-invariant incomplete
flag arises in this way. However, if g′ ∈ Γ is such that 〈g, g′〉 ∼= Γ , then the fixed line �′ for
g′ is such that �∩�′ = [e1] and �′ ⊂ [e∗

4]. It follows that ([e1], [e∗
4]) is the unique incomplete

flag preserved by Γ . ��
Remark 13 Notice that if one instead uses complete flags, then Lemma 27 is false. For exam-
ple, a type t = 0 generalized cusp preserves the complete flags ([e1], [e1][v], [e1][e2][e3]),
for any point [v] contained in the line [e2][e3]. However, for types 1, 2, and 3 there are at
most finitely many complete invariant flags.

6.2 Proof of Theorem 3

Let M be an orientable non-compact 3-manifold, which is the interior of a compact manifold
M̂ whose boundary is a finite union of disjoint 2-tori T1, . . . , Tn . Let N1, . . . ,Nn be open
neighbourhoods of T1, . . . , Tn in M̂ , with pairwise disjoint closures. We call Ek = Nk\Tk an
end of M .

For each end Ek of M , there is a conjugacy class of peripheral subgroups corresponding
to im(π1(Ek) → π1(M)), where different choices of basepoint give different conjugacy
classes. Let Γk ≤ π1(M) be a representative for this class, and let (dev, hol) be a developing
pair of a properly convex projective structure on M . Let Ẽk be the lift of Ek to the universal
cover of M corresponding to Γk . In this setting, the end Ek is a generalized cusp end if (up
to isotopy) dev(Ẽk)/ hol(Γk) is projectively equivalent to a generalized cusp (cf. Sect. 6.1).
By hol-equivariance of dev, this notion does not depend on the choice of representative
Γk and therefore it is well defined. Next, we define CPc(M) ⊂ CP(M) to be the set of
properly convex projective structures on M such that each end is a generalized cusp end.
Fortunately, by recent work of Cooper and Tillmann, no generality is lost by focusing on
properly convex structures with generalized cusps. More precisely, we have the following
which is an immediate consequence of Theorem 0.3 of [9]

Theorem 15 Suppose that M is a finite volume hyperbolic manifold, then every end of a
properly convex structure on M is a generalized cusp. In other words CPc(M) = CP(M).

We are now ready to prove Theorem 3. In the proof, we are implicitly going to make use
of the identification DΔ

∼= FLΔ (cf. Theorem 10).

Proof of Theorem 3 Let p0 = [Φ0, ρ0] ∈ FLΔ such that σ0 = [Φ̂0, ρ0] := ExtΔ(p0) ∈ CPc,
and let σ1 = [dev1, ρ1] ∈ CPc be a properly convex structure near σ0. We want to show that,
if σ1 is close enough to σ0, then there is p1 ∈ FLΔ close to p0 such that σ1 = ExtΔ(p1).

Let v ∈ Ver(Δ) and let Ev be the corresponding end in M . For every lift ṽ ∈ Ver(Δ̃) of v
there is a corresponding lift Ẽv of Ev and a peripheral subgroup Γv ≤ π1(M). Since σ0 is a
properly convex structure coming from a triangulation of flags, the flagΦ0 (̃v) = (V0, η0) is a
supporting flag for Φ̂0(Ẽv)/ρ0(Γv). If σ1 is close enough to σ0, then there is a representative
pair (dev1, ρ1) of σ1 whose holonomy ρ1 is close to ρ0. In particular there is a ρ1(Γv)-
invariant flag (V1, η1) that is close to (V0, η0). It is possible that (V1, η1) is not unique if
the type of the generalized cusp at v corresponding to σ1 is larger than the generalized cusp
corresponding to σ0, however in this case one can be chosen arbitrarily as long the choice is
made equivariantly for all lifts of v.
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Thus we have just defined a ρ1-equivariant map Φ1 : Ver(Δ̃) → FL, such that Φ1(̃v) =
(V1, η1). By construction, the map Φ1 maps each ṽ ∈ Ver(Δ̃) close to its Φ0-image. Since
the property of being a tetrahedron of flags is an open condition in the space of quadruples of
flags and there are only finitely many tetrahedra inΔ, it follows thatΦ1 maps the vertices of
each T̃ ∈ Tet(Δ̃) to a tetrahedron of flags. The property of a pair of tetrahedra of flags being
geometric is also an open condition and so it follows that p1 := [Φ1, ρ1] ∈ FLΔ.

Next,we claim that ExtΔ(p1) = σ1. Clearly there are representative developing/holonomy
pairs for ExtΔ(p1) and σ1 where the holonomy is the same. Furthermore, since Φ1 and Φ0

are close, it follows from Theorem 6 that Φ̂1 and Φ̂0 are also close. Since σ0 and σ1 are close
it follows that Φ̂0 and dev1 are close. These two facts imply that Φ̂1 and dev1 are nearby
developing maps with the same holonomy. Therefore ExtΔ(p1) = σ1 by the Ehresmann-
Thurston principle (cf. Theorem 5).

Finally, the finiteness–to–one property of ExtΔ is a consequence of the fact that each vertex
ṽ ∈ Ver(Δ̃) corresponds to a generalized cusp end, and by Lemma 27, such ends can be
decorated with incomplete flags in only finitely many ways. Generically, a point in the image
of ExtΔ consists of generalized cusps of type 3 (6.1). The corresponding holonomy fixes four
distinct points {Vi } of RP

3, and preserves three planes {V1V2V3, V1V2V4, V1V3V4, V2V3V4},
for a total of 12 distinct incomplete flags. To see that all of these choices are admissible, recall
that a projective structure can be changed in its equivalence class so that, near an end, its
properly convex domain Ω is “maximal” or “minimal”. Namely it does or does not include
the unique projective tetrahedron with vertices {Vi } that keep the domain properly convex.
More precisely, suppose V1 is the center of the radial flow associated to the generalized
cusp, while V2V3V4 is the dual center. Then V2, V3 and V4 are always contained inΩ , while
V2V3V4 ∩Ω = ∅ if and only if the domain is chosen to be minimal at such end. Depending
on whether Ω is minimal or maximal, we have the following supporting flags:

(minimal) {(V2, V2V3V4), (V3, V2V3V4), (V4, V2V3V4)};
(maximal) {(V1, V1V2V3), (V1, V1V2V4), (V1, V1V3V4)};
(both) {(V2, V1V2V3), (V2, V1V2V4), (V3, V1V2V3), (V3, V1V3V4),

(V4, V1V2V4), (V4, V1V3V4)}.
��

7 Examples

In this section we describe some instances where we are able to (partially) solve our glu-
ing equations, and describe the geometry of the corresponding projective structures. The
discussion of these examples in this section also proves Theorem 4.

7.1 Figure-eight knot complement

Let M8 be the figure-eight knot complement also known as the manifold m004 in the SnapPy
cusped census [10]. M8 has an ideal triangulation Δ consisting of two tetrahedra with the
gluing pattern shown in Fig. 7. Here we describe a curve in the parameter space D8 :=
DRP(M8;Δ).We recall thatD8 can be regarded as semi-algebraic subset ofR

48
>0. Specifically

we have an edge and a gluing parameter for each pair (T, σ ) ∈ Tet(Δ)×(E)F (we do not need
the triple ratios since they can be recovered from the edge ratios using (2.5)). For each of the
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Fig. 7 An ideal triangulation for the figure-eight knot complement

Table 1 Table of edge ratios for the figure-eight knot complement

σ (12)3 (21)4 (34)1 (43)2 (13)4 (31)2 (24)3 (42)1 (14)2 (41)3 (23)1 (32)4

eσ + + + + − − + + − − − −
fσ − − − − + + − − + + + +

Table 2 Edge-face table for (7.1)

i 1 2 3 4 5 6 7 8 9 10 11 12

σi (31)2 (43)2 (34)1 (13)4 (21)4 (12)3 (24)3 (23)1 (14)2 (24)3 (23)1 (14)2

two tetrahedra T1 and T2 there is an edge ratio and gluing parameter for each edge-face. Let
eσ (resp. fσ ) denote the edge ratio of the edge-face σ for the tetrahedron T1 (resp. T2) and
let gσ (resp. hσ ) denote the gluing parameter of the edge-face σ for the tetrahedron T1 (resp.
T2). We now define a 1-parameter family of points in D8. First, let each eσ and fσ be equal
to either t±1 according to Table 1. Next, if σ = (23)1 or (41)3 then let hσ = 1/gσ = t2. For
all other σ , let hσ = gσ = 1.

Letting t range over (0,∞) gives a path in R
48
>0. We now show that this path lies in D8.

In both rows of Table 1, conjugate edge-faces have the same sign and there are the same
number of +’s and −’s and so the internal consistency relations (2.7) are satisfied for both
tetrahedra. It is straightforward to check that the gluing consistency equations (3.4) and (3.5)
are satisfied for each relevant pair of edge-faces, for each point on this curve. There are two
sets of edge equations for this ideal triangulation (one for each edge class). More specifically,
let σi be the edge-face determined by the values in Table 2. These equations are equivalent
to the following matrices being equal to the identity:

M1 =
6
∏

i=1

Fi+1
σi

Gi+1
σi

, and M2 =
12
∏

i=7

Fi+1
σi

Gi+1
σi

. (7.1)

Here G1
σi

:= Glue(hσi ), G2
σi

:= Glue(gσi ), F1
σi

:= Flipσi
([F1]), and F2

σi
:= Flipσi

([F2])
where [Fi ] is the tetrahedron of flags corresponding to the parameters for Ti , and superscripts
in (7.1) are taken mod 2. Using one’s favorite computer algebra system it is easily verified
that both of the elements in (7.1) are trivial, and so this curve lies in D8.

This curve of solutions turns out to contain many points corresponding to properly convex
projective structures on the figure-eight knot complement. To see this we observe that every
parameter is equal to 1 for the solution with t = 1. It is easy to check using Theorem 13 that
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Fig. 8 The cusp cross section for the figure-eight, its intersection with the monodromy graph, and a merid-
ian/longitude pair

Fig. 9 A gluing for the figure-eight sister

Table 3 Table of edge ratios for figure-eight sister

σ (12)3 (21)4 (34)1 (43)2 (13)4 (31)2 (24)3 (42)1 (14)2 (41)3 (23)1 (32)4

eσ + + + + − − − − + + − −
fσ − + − + − − − − + + + +

this solution comes from a hyperbolic structure on M8. In fact, it can be checked that both
tetrahedra are regular and ideal, and so this is the complete hyperbolic structure on M8.

Using Fig. 8, one can compute the peripheral holonomy.More precisely, one can homotope
the meridian and longitude to the monodromy graph. Each edge of the monodromy graph
corresponds to a Flip, Rot, or Glue matrix, and by multiplying this sequence of matrices,
one computes the relevant holonomy. In the case of the figure-eight knot, one finds that (up
to projective scaling) that for all values of t , the meridian is unipotent and for t �= 1, the
longitude has two distinct eigenvalues (one with multiplicity 1 and another with multiplicity
3). It follows from [1] that for t �= 1 the peripheral holonomy is that of a type 1 cusp. Since
the holonomy of a type 1 cusps preserves a complete flag it follows from [8, Thm 0.2] that
for values of t near 1 these projective structures are properly convex and from [1, Thm 0.6]
it follows that these structures are finite volume. This proves Theorem 4 for M8.

7.2 Figure-eight sister manifold

Let N8 be themanifoldm003 in theSnapPy [10] cusped census (thismanifold is also knownas
the figure-eight sister). N8 also admits an ideal triangulationΔwith two tetrahedra, displayed
in Fig. 9.Wewill again adopt the convention that eσ and gσ are the edge and gluing parameters
for the first tetrahedron, while fσ and hσ are the parameters for the second tetrahedron. We
again define a curve by setting t2 = h(14)2 = h(32)4 = 1/g(24)3 = 1/g(13)4, and setting each
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Table 4 Edge-face table for (7.2)

i 1 2 3 4 5 6 7 8 9 10 11 12

σi (41)3 (24)3 (23)1 (43)2 (34)1 (12)3 (31)2 (31)2 (24)3 (23)1 (12)3 (14)2

Fig. 10 The cusp cross section for the figure-eight sister, its intersection with the monodromy graph, and a
meridian/longitude pair

of the remaining gluing parameters equal to 1. Next, as before, we let eσ and fσ take values
t±1 according to Table 3.

As with the previous example it is a simple, but tedious matter to check that the internal
consistency and gluing consistency equations are satisfied for the points on this curve. Once
again, there are two sets of edge equations coming from the following two matrices being
trivial:

N1 =
6
∏

i=1

Fi+1
σi

Gi+1
σi

, and N2 =
12
∏

i=7

Fi+1
σi

Gi+1
σi

, (7.2)

where againG1
σi

= Glue(hσi ),G
2
σi

= Glue(gσi ), F1
σi

= Flipσi
([F1]), and F2

σi
= Flipσi

([F2])
where [Fi ] is the tetrahedron of flags corresponding to the parameters for Ti , superscripts in
(7.2) are takenmod 2 and σi is determined by Table 4. Again, these matrices can be computed
and checked to be the identity, so the edge equations are also satisfied. Thus the above curve
is contained in DRP(N8,Δ).

As with the case for M8, this curve consists of many properly convex structures on N8,
allowing us to prove Theorem 4. Using Fig. 10 one can again compute the peripheral holon-
omy of the corresponding structures and see that for t �= 1 it is the holonomy of a type 1
cusp. Again using results from [8] and [1], it follows that for t near 1 the resulting structures
are properly convex and finite volume. This concludes the proof of Theorem 4 for N8.

This case is of additional interest since for N8, such structures were not previously known
to exist.

7.3 Hopf link orbifold

We close this section by describing solutions to the gluing equations for an orbifold O whose
underlying space is S3 andwhose singular locus is the union of theHopf link and an unknotted
arc connecting the two boundary components, where all singular components have order 3
(cf. Fig. 11). The main takeaway from this example is that there is no hope for Theorem 3
to hold for arbitrary orbifolds. As we will see, the reason for this failure stems from the fact
that the peripheral holonomy of an orbifold need not preserve an incomplete flag.
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Fig. 11 (Left) An ideal triangulation for the Hopf link orbifold. (Right) The singular locus of the Hopf orbifold

The orbifold O admits an ideal triangulation with a single tetrahedron (cf. Fig. 11). This
orbifold has two cusps, each of which has a cross section that is an Euclidean 2-orbifold with
underlying space S2, and singular locus three points each of order 3.

Wenowdescribe how to solve (amodified version of) the gluing equations for this orbifold.
The three equivalence classes of edges in the triangulation in Fig. 11 correspond to the three
components of the singular locus. Each of these components has degree 3 and so we must
modify the edge equations so that instead of the corresponding product of transformations
being equal to the identity, they are instead equal to an elliptic element of order 3. In other
words, the holonomy around each edge must preserve a pair of projective lines, one of which
is fixed pointwise and onewhere the action is elliptic of order 3. LetDO be the set of solutions
of these modified gluing equations.

Let σ = (i j)k. For this example we adopt the notation ei j := eσ for the edge parameters
and g(i j)k = gσ for the gluing parameters, of the tetrahedra. We begin by noting some simple
equations. Since the edges (12) and (34) are only glued to themselves, it follows from (4.9)
that e312 = e334 = 1. Since we are only interested in real solutions, they imply that

e12 = e34 = 1. (7.3)

Furthermore, the previous equation, together that the internal consistency equations, imply
that

e13e14e23e24 = 1. (7.4)

Furthermore, the edge transformations can be calculated as

Glue(g(21)4)Flip(12)3, and Glue(g(34)1)Flip(43)2,

Glue(g(42)1) Flip(24)3 Glue(g(32)4)Flip(23)1 Glue(g(31)2)Flip(13)4 Glue(g(41)3)Flip(14)2,
(7.5)

where Flip(i j)k := Flip(i j)k([F]) with [F] equal to the tetrahedron of flags determined by
the ei j .

Since Eqs. (7.3) and (7.4) are satisfied, it follows that each of the transformations in (7.5)
is of the form

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 m33 m34

0 0 m43 m44

⎤

⎥
⎥
⎦
.

Such a matrix has order 3 if and only if both its trace and determinant are 1. The determinants
of the first two matrices in (7.5) are easily calculated to be g(21)4 and g(34)1 (cf. (4.10)),
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Table 5 Gluing parameters for Hopf link orbifold

σ (12)3 (21)4 (34)1 (43)2 (13)4 (31)2 (24)3 (42)1 (14)2 (41)3 (23)1 (32)4

gσ 1 1 1 1 1/3 1/3 1/3 1/3 3 3 3 3

and so both of these gluing parameters must be equal to 1. Assuming that, then the first two
matrices in (7.5) have trace 1 if and only if e14 = e23 = 3.

Setting the trace and determinant of the last matrix in (7.5) to 1 and solving the face
equations gives a unique solution

e12 = e34 = 1, e13 = e24 = 1/3, e14 = e23 = 3. (7.6)

with the values of gσ being determined by Table 5. It follows that DO consists of a single
point. It is easy to check that this solution corresponds to the complete hyperbolic structure on
O , which is constructed from an ideal tetrahedron whose Thurston parameter is the third root

of unity z = − 1
2 +

√
3
2 i . The cusps of the orbifold O are rigid cusps (i.e. their Teichmüller

space is trivial). It follows that there are no incomplete hyperbolic structures on O , and so
the gluing equations detect all hyperbolic structures on O .

In light of Theorem 3, it is tempting to conclude that O does not admit convex projective
structures other than the complete hyperbolic structure, however, this is not the case. In recent
work by Porti and Tillmann [26] have computed the moduli space of convex projective
structures on O and found that it has dimension 2. Notice that this does not contradict
Theorem 3 since O is an orbifold and not a manifold). There is a slightly subtle reason that
our equations do not detect these projective structures. In this case, the peripheral subgroups
do not preserve an incomplete real flag (cf. Lemma 18). More precisely, if H is a peripheral
subgroup of O then H is virtually abelian with finite index abelian normal subgroup H ′. For
the non-hyperbolic convex projective structures on O , the subgroup H ′ preserves finitely
many incomplete flags (the cusps turn out to be type 3 generalized cusps). The group H acts
on the set of incomplete flags preserved by H ′, however this action does not have a global
fixed point. Since the peripheral subgroup does not preserve an incomplete flag it cannot
be detected by our gluing equations. More generally, we conjecture that for orbifolds, our
equations will detect the convex projective structures near the hyperbolic structure for which
the peripheral subgroups preserves an incomplete flag. It would be interesting to compute
deformation spaces of convex projective structures for other orbifolds in order to see which
projective structures have peripheral holonomy that preserves an incomplete flag.
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