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Robust and Adaptive Lower Limb Prosthesis Stance
Control via Extended Kalman Filter-Based Gait
Phase Estimation

Nitish Thatte, Tanvi Shah, and Hartmut Geyer

Abstract—We present a control strategy for powered prostheses
based on a robust estimate of the gait phase that is used to deter-
mine appropriate control actions. We use an extended Kalman
filter (EKF) that fuses joint angle and velocity measurements to
estimate the gait phase, which we define in this work to be a
variable that progresses continuously during stance from zero
at heel strike to one at toe-off. The control strategy uses the
gait phase estimate as the input into Gaussian Process (GP)
functions that specify the desired angles, velocities, and feed-
forward torques for the knee and ankle joints. We compare this
proposed GP-EKF control strategy to two alternative controllers:
A neuromuscular (NM) control strategy, which models leg mus-
cles and hypothesized reflexes, and an impedance (IMP) control
strategy. Our experiments involved seven able-bodied participants
and a single amputee participant. We find that the GP-EKF
control generated knee angle trajectories that were significantly
closer to able-bodied walking data than those produced by
either the NM or IMP controllers. However, ankle trajectories
were less similar. In addition, we find in experiments with the
participants stepping on blocks during stance that the GP-EKF
control resulted in significantly fewer fall-like events than IMP
control. Finally, we evaluate the ability of the proposed control
to track the gait phase across both slowly and rapidly varying
treadmill speeds and find that the EKF’s phase estimate tracked
these gait changes significantly better than a time-based phase
estimate. The proposed control strategy may provide a robust
and adaptive control alternative for powered prostheses.

Index Terms—Prosthetics and Exoskeletons, Sensor Fusion

I. INTRODUCTION

HE number of lower limb amputees in the United States

is projected to increase from 1.6 million in 2005 to 3.6
million in 2050 [1]. Prosthetic legs currently prescribed to
these lower limb amputees are mostly passive or semi-passive
devices; unlike human limbs, they cannot produce positive net
work over a gait cycle. Consequently, amputees often suffer
from slow walking speeds, high energy consumption [2], and
an increased risk of falling [3]. Development of active powered
prostheses may help to address these gait deficiencies and
improve the quality of life for amputees [4].
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Currently, the most widely used control method for powered
transfemoral prostheses is finite state impedance control. This
strategy divides the gait cycle into several discrete states, each
with a different function mapping from joint angle and speed to
torque [5]. This control method relies on the detection of gait
events to trigger state transitions. Detection of these gait events
is usually based on thresholds on sensor values, which as we
show in section III, may be unreliable when gait is disturbed.

To achieve more robust control of lower limb prostheses, re-
searchers have investigated alternative approaches. For example,
neuromuscular controllers specify the desired behavior through
models of muscle dynamics and hypothesized reflexes [6, 7].
However, a potential drawback of this approach is that neuro-
muscular models involve many parameters that may be difficult
to tune, thus limiting clinical applicability.

Another alternative is control based on the continuous
estimation of the phase of gait, usually defined as a number that
increases monotonically from zero at heel strike to one at the
next heel strike. For example, Holgate et al. [8] control an ankle
prosthesis by using the polar angle between the tibia velocity
and the tibia angle to estimate the phase of gait. This estimate,
along with the stride length is then used to look up the desired
ankle angle. Later work by Quintero et al. [9], found that for a
transfemoral prosthesis, forming the polar plot with the integral
of the hip angle instead of the velocity resulted in a more robust
controller due to noise in the velocity signal during impacts.
However, this approach was also found to be sensitive to step-
to-step changes in gait due to drift in the hip angle integral
term [10]. Rezazadeh et al. [10] eliminated the reliance on the
hip integral by introducing discrete state transitions based on
thigh angle and velocity thresholds. However, this approach
may face similar robustness issues as the previously described
finite-state impedance control.

Here we propose a control strategy for lower limb prostheses
that avoids finite state transitions during stance and is able
to quickly adapt to step-to-step gait variations. The control is
built on a robust and smooth estimate of the phase of gait,
which we define in this work as a variable that starts at zero at
heelstrike and increases linearly to one at toe-off. In section II,
we present an extended Kalman filter (EKF) that estimates
the gait phase and its rate of change based on a multitude of
sensor measurements. The control uses these estimates as inputs
into Gaussian Process (GP) functions that specify the desired
control actions for the prosthesis. In section III, we evaluate
the performance of the proposed controller with experiments
on able-bodied participants and a single amputee participant.
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Finally, in section IV we discuss the results and highlight
potential limitations of this study as well as avenues for future
research.

II. METHODS

The proposed prosthesis controller consists of two com-
ponents. The first is an extended Kalman Filter (EKF) that
estimates the gait phase, defined as the fraction of stance
completed so far (section II-A). Ideally, the gait phase estimate
starts at zero at heel strike and reaches one precisely at toe-off.
The second component is a set of control surfaces, which are
functions of gait phase and rate of change of phase (phase
velocity), that provide desired knee and ankle angles, velocities,
and feedforward torques for generating the prosthesis stance
behavior (section II-B).

A. GP-EKF for estimating gait phase

In contrast to the previously described gait phase variable
approaches for prosthesis control [8—10], which each use a
single source of information, we take a sensor-fusion approach
and combine angle and velocity information from the hip, knee,
and ankle joints of the prosthetic limb. An IMU mounted to
the thigh portion of CMU’s powered knee-and-ankle prosthesis
(fig. 2) provides information about the user’s hip motion, and
encoders on the prosthesis provide information about the knee
and ankle joints. We use these observations in an extended
Kalman filter (EKF) to estimate the gait phase and phase
velocity during stance. The EKF assumes the linear, discrete
time gait phase dynamics

¢t — 1 At Q?l*l
¢ 0 1]|¢i
where ¢ is the gait phase, ¢ is the rate of change of phase, At
is the integration time step and w; ~ N(0, Q). We set
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with 02 = le—7. These dynamics encode the assumption that
the gait phase should evolve continuously, at a roughly constant
rate.

Observations of the prosthesis-side hip, knee, and ankle
angles and velocities inform the evolution of the above
dynamics through learned Gaussian Process (GP) observation
models. For the joint angles, the observation models are of the
form

X = +w, = Axi_1 +wy, (1)
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where GPZf is the mean of a learned GP model of the

angle of joint j as a function of the gait phase ¢ and
vfj ~ N (]0, GPZ’;(@)). Here, GP(QT"2 is the variance of the
same learned GP model.
Similarly, for the joint velocities we use an observation model
of the form
Zt(mj/dq; _ hdgj/dq)(.x}) + v;i@j/d¢¢'t

dO;la do;la . (4)
- (GPﬂ il ¢(¢t) +vt il ¢)¢t

where GPZHj/ 9% is the mean of a Gaussian Process model of
the velocity of joint j (in units of 49;/a¢) as a function of ¢.
In addition, v,d “lde N QO, GP::;” d‘b(gb,)), where GP‘:;"/ 9 is
the variance of the same learned GP model for joint velocity.

To train the GP observation models, the algorithm maintains
a training data set of stance gait data. The training data set
includes the joint angles and velocities (in units of 49;/a¢)
sampled at 100 Hz as well as the actual corresponding gait
phases and phase velocities during stance. We assume that, in
hindsight, the actual gait phase increased linearly from zero
at heel strike to one at toe-off and that the actual gait phase
velocity was constant during stance and equal to 1/7,,, where
T, is the duration of the completed stance. We retrain the GP
models using this gait data after every five completed steps. To
ensure that the test-time performance of the Gaussian Process
models does not degrade as more training data accumulates,
we employ the fully independent training conditional (FITC)
approximation of the GP [11]. This approximation represents
the GP using a fixed-size active set of training points. We use
25 points in our approximation.

With the learned GP observation models, we follow the
GP-EKF procedure proposed by Ko and Fox [12] to obtain an
estimate of gait phase and phase velocity. In this procedure,
we first predict the next state distribution by propagating the
mean £;_;—; and covariance X,_j,_; of the state using the
dynamics model provided by eq. (1).

Next, we update the state distribution estimate using measure-
ments z, of the joint angles and velocities, the GP observation
models,
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%11 and Z,;_; are the propagated state and covariance
respectively, GP = [GP", GP{*, GP{*1", and GP;,”/"*, GPY,,
and GP‘:;/ 4? are defined similarly,
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R, = bikdiag(GP”,(¢,), GP% (4,), GP (), o
G/ (90), G (8,), P (4,)).

Due to the linearity of Gaussian processes and differentiation,
we can analytically obtain derivatives required by eq. (7) using
the methods provided by Solak et al. [13].

Finally, we reset the state distribution at heel strike to

. 0
Xo = [I/Tn—l]’ Xy = 02x2, (10)

where T,_; is the duration of the previous stance.
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Fig. 1: Examples of learned control surfaces. We fit the surfaces to gait data from Moore et al. [14]. This data includes
information for three speeds, 0.8, 1.2, and 1.6 s, which are shown as the clustered trajectories in the above panels. For an
automatic transition to standing, the surfaces are additionally fit to virtual data that causes the joint angles to approach 5 deg,
the velocities to approach 0degs, and the joint torques to approach O N-m as the phase velocity goes to zero.

B. Control Surfaces

We use the mean estimates of the gait phase ¢ and phase
velocity ¢ as the inputs into learned control surfaces that
provide the desired knee and ankle angles, velocities, and
feedforward torques (Fig. 1). The final desired torques applied
to the prosthesis are then given by

T4 = kp(0a(@, @) — 0) + ka(Ba(g, §) — 6) + (4, ), (11)

where 64, 64, and 14 are the learned control surfaces as
functions of the estimated gait phase and phase velocity, k,
and kq are proportional and derivative gains, and 6 and 6 are
the actual joint angle and velocity.

We learned nine sets of control surfaces by regressing the gait
data of nine individual subjects. Each set of control surfaces
is comprised of functions that map from the gait phase and
phase velocity to desired knee and ankle angles, velocities,
and feedforward torques. We obtain subject-specific gait data
for nine subjects at three speeds, 0.8, 1.2 and 1.6 s, from the
data set provided by Moore et al. [14]. For each subject in the
data set, we split the gait data into individual stance portions
and assumed that during each stance, the actual gait phase
increased linearly from zero at heel strike to one at toe-off and
the phase velocity during stance was constant and equal to 1/7,
where T is the duration of stance. We again used sparse GP
regression with the FITC approximation to regress the knee
and ankle angles, velocities, and torques versus the gait phase
and phase velocity. In this case, we used 100 active vectors to
approximate each GP.

The gait data spans the whole range of gait phases ([0, 1])
but not the whole range of physiological phase velocities, as
the gait speed only varies between 0.8 and 1.6 5. To ensure the

control surfaces generate smooth behaviors at slower speeds
and when standing still (¢ = 0), we additionally trained the GPs
on a grid spanning ¢ € [0,1] and ¢ € [0, min(Pgaca ser)] With
virtual training values derived by interpolating between the
average trajectory at 0.8 ms and desired values at ¢ = 0. When
é = 0, the desired joint angles, velocities and torques were
set to 5deg, 0degs, and O N-m, respectively, thereby creating a
smooth transition to a standing mode. Figure 1 shows examples
of the resulting control surfaces derived from one subject’s

data.

C. Experimental Protocol

We evaluated the similarity of gait to able-bodied walk-
ing data and the robustness of our proposed controller in
experiments conducted with seven able-bodied participants
and an amputee participant. We additionally present data from
an experienced user of the prosthesis (first author of paper),
whose gait characteristics induced a different response from
the prosthesis. All participants provided informed consent to
IRB-approved protocols. The amputee participant wore the
powered prosthesis prototype as shown in fig. 2a, while able-
bodied participants used a shortened version of the prosthesis
attached to an L-shaped adapter (fig. 2b). For more information
on prosthesis specifications see chapter 3 of Thatte [15]. All
participants had at least six hours of prior practice walking
on the prosthesis. The able-bodied participants walked without
assistance from handrails, while the amputee participant used
the handrails for balance.

We compared our proposed control method to a stance
control based on a neuromuscular model (NM) of human
neurophysiology [16] and to finite state impedance control
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Fig. 2: CMU powered prosthesis used in experiments. a)
Prosthesis configuration for amputee testing. b) Prosthesis
configuration for able-bodied testing with L-shaped adaptor.

(IMP) [17]. For these controllers, we generated parameter
sets by fitting control parameters to the same nine subjects’
gait data used to generate the control surfaces described in
section II-B. For the IMP control, we used a threshold on
the knee angle to specify the transition between the first and
second stance states and a threshold on the ankle angle to
specify the transition between the second and third stance
states. For specifics on methods for finding parameters for
these two control strategies, see Thatte [15] section 7.2.1. Prior
to beginning the experiments, participants walked with each
of the nine control surfaces for the GP-EKF control and each
of the nine parameter sets for the NM and IMP controllers
and indicated their preferred setting for each controller type.
All three stance control strategies were paired with the same
swing control strategy, in which minimum jerk trajectories for
the knee and ankle are generated at toe-off and tracked with
PD-feedback combined with a model-based feedforward term
as in Lenzi et al. [18]. In total, we conducted four experiments:

(1) A test of the ability of each control strategy to produce a
normal walking gait pattern. Able-bodied participants walked
without the use of handrails at 0.8 s and the amputee partici-
pant used the handrails and walked at 0.6 ms. All participants
walked with their preferred parameters for each controller for
one minute. We compared the resulting prosthesis knee and
ankle kinematics and kinetics to able-bodied gait data [19].
The amputee subject only participated in this portion of the
experiment.

(2) A comparison of the robustness of the three controllers to
ground height disturbances. We simulated a ground disturbance
by having participants step on 3cm blocks placed on the
treadmill. We tested the controllers in a random order in an
ABCCBA sequence. In each trial, the participants stepped on
blocks 20 times. We recorded the number of fall-like events
(FLEs), defined as instances when participant needed support
from either the handrails or a ceiling mounted harness to regain
balance.

(3) A test of the adaptability of the gait phase estimate.
To test the adaptability, we had participants use the proposed
GP-EKF control while the treadmill speed varied sinusoidally
between 0.4 and 1.2 with a 20s period. We compared the

gait phase and phase velocity estimates given by the EKF filter
to the true gait phase, assumed to increase linearly from zero
at heel strike to one at toe-off, and the true phase velocity,
assumed to equal 1/7;,, where T, is the duration of the current
stance. As a baseline, we compared the EKF to time-based gait
phase and phase velocity estimates, which assume the duration
of the current stance will be the same as the previous stance,
resulting in the gait phase and phase velocity estimates

12)
13)

¢time based = tn/Tn—l
Dtime based = 1/Tnf],

where t, is the time after heel-strike of the current stance and
T,,—1 is the duration of the last stance.

(4) Finally, a test of the ability of the GP-EKF control to
respond to sudden treadmill stops. If the participant stops his
or her gait, then the gait phase estimate should stabilize and the
phase velocity should trend towards zero. The corresponding
desired joint angles should approach 5deg as shown in fig. 1.

We assess significant differences between conditions via the
two-sided paired Wilcoxon signed rank test [20]. Experienced
participant data was not considered for significance testing.

III. REesuLTs
A. Comparison to Able-Bodied Gait Kinematics and Kinetics

Figure 3 shows the average knee and ankle angles as well as
the corresponding joint moments generated by the prosthesis
controllers during undisturbed walking at 0.8 ms. All three
control strategies produce knee angle trajectories that are similar
to the able-bodied data (first row). The neuromuscular (NM)
control, however, seems to suffer more from knee overextension
during mid-stance and less knee flexion at the end of stance.
For some able-bodied subjects, and to a substantial degree for
the amputee subject, the knee overextension causes the joint
to engage the mechanical hard-stop on the prosthesis. This
triggers a sudden rise in knee torque. Figure 4a summarizes
the root-mean-squared (RMS) error between the mean able-
bodied knee kinematics and the median knee kinematics of
each subject. The GP-EKF control strategy produced knee
trajectories that are significantly more kinematically similar to
able-bodied walking data than those produced by IMP or NM
control.

The second row of fig. 3 shows the average ankle trajectories
for each control strategy. In this case, the GP-EKF control
produced trajectories that were the least similar to able-
bodied data. As shown in fig. 4b, this trend reached statistical
significance compared to impedance (IMP) control, which
produced trajectories most similar to able-bodied walking data.
The dissimilarity of the GP-EKF controller’s ankle trajectories
to the able-bodied reference is largely due to (1) a lack of
ankle push-off plantar flexion in late stance and (2) a lack of
dorsiflexion during mid-stance for 3 out of 8 subjects, who all
chose the same control surface set.

Finally, the third and fourth rows of fig. 3 show the knee and
ankle moments for the three controllers. IMP control produced
knee moments most like those seen in able-bodied walking
by a significant margin (fig. 4c), whereas the GP-EKF and
NM controllers performed comparably. Although the GP-EKF
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Fig. 3: Comparison to able-bodied gait kinematics and kinetics. Average knee angle (row 1), ankle angle (row 2), knee moment
(row 3), and ankle moment (row 4) for the GP-EKF controller (column 1), neuromuscular controller (column 2), and impedance
controller (column 3). Black dashed lines and gray shaded areas show the mean and two standard deviations for very slow

human walking data (from [19]).

control’s ankle moments were the least similar to the able-
bodied ankle moments, the absolute differences were small
(fig. 4d).

B. Robustness to Ground Height Disturbances

Figure 5 shows the number of times able-bodied subjects fell
with each control strategy when stepping on blocks. Subjects
fell significantly more often with the IMP control compared to
either the GP-EKF or NM controllers. However, when using
the neuromuscular control the experienced user fell 8 times,
more than any other subject in any condition.

C. Adaptability of Gait Phase Estimate

The adaptability of the gait phase estimate was tested
by sinusoidally varying the treadmill speed during walking.
Figure 6 shows the average RMS errors of the EKF-based gait
phase estimate and time-based phase estimate compared to the
ground-truth phase obtained in hindsight. For all subjects, the
EKF tracked the true phase significantly more accurately than
did the time-based phase estimate.

For a more specific example, fig. 7 shows the gait phase
estimates during the treadmill speed variation experiment for a
single subject. Because the initial conditions of the EKF and
the time-based phase estimates are identical (compare eq. (10)
and eq. (13)), the phase estimates are similar in early stance.
As the treadmill speed changes from one step to the next, the
time-based phase estimate diverges significantly from the true
phase. The EKF, on the other hand, is able to recover to the true
phase towards the end of stance and more accurately predicts
the toe-off event.

D. Response to Sudden Treadmill Stops

Finally, fig. 8 shows the gait phase (a), and phase velocity
(b) estimates when the treadmill is suddenly stopped halfway
through the stance phase. The EKF’s phase estimates (solid
lines) reflect the fact that the gait cycle has halted, as they do
not continue to progress to one. Moreover, when the treadmill
stops, the knee (c) and ankle angles (d) approach 5deg as
desired for standing (compare fig. 1). In contrast, the time-
based phase estimates (dashed lines in panels (a) and (b))
continue at their initial rate, with the phase reaching one.

IV. DiscussioN

We proposed a new approach for the control of powered
transfemoral prostheses. The approach uses a robust estimate
of the gait phase derived from an EKF that integrates multiple
sensor measurements to determine the desired knee and ankle
angles, velocities, and torques from trained control surfaces.
The proposed approach produced knee kinematics that were
more similar to able-bodied walking data than did NM or IMP
control, matched NM control and improved upon IMP control
in terms of gait robustness to ground height disturbances, and
adapted the phase estimate to both gradual and abrupt changes
in speed more quickly than a time-based phase estimate.

We believe that a key reason for the robustness improvements
of the proposed GP-EKF control and NM control over IMP
control is the smoothness of the gait phase estimation in these
two controllers. In NM control, the gait phase estimation is
implicit and encoded in the internal states of virtual muscles,
which are modulated by musculoskeletal dynamics and reflexes.
In the proposed control presented here, the EKF directly infers a
robust estimate of the gait phase from multiple measurements.
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In either case, the resulting control commands are smooth
and do not normally change abruptly from one moment to
the next. In contrast, IMP control estimates a discrete notion
of the gait phase by splitting the stance portion of gait
into three states that are triggered by joint angle thresholds.
Consequently, in the ground height disturbance experiments,
subjects were occasionally caught off-guard by unexpected
transitions, triggered by abnormal kinematics when stepping
on a block, which then caused large, sudden changes in torque.
Unexpected state transitions between the mid-stance and late-
stance state were especially consequential, as in the late-stance
state, knee torque trends towards zero to allow for passive knee
flexion, while the ankle plantarflexes. If a user’s center of mass
is positioned incorrectly, this combination of joint torques can
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Fig. 8: Response to sudden treadmill stops. Estimated gait
phase (a) and phase velocity (b), and the measured knee (c)
and ankle (d) angles when the treadmill is suddenly stopped
halfway through stance. When gait stops, the EKF-estimated
phase stabilizes to a constant value (solid traces), phase velocity
falls to zero, and the joint angles approach 5deg as desired by
the control surfaces (compare fig. 1). The time-based phase
estimate fails to respond (dashed lines). Vertical black dotted
line indicates heel strike of final stance.

cause a sudden collapse of the knee, which was the cause for
many of the observed FLEs with IMP control.

NM control too can result in unexpected FLEs due to
incorrect gait phase estimation. The experienced user fell a
total of eight times when stepping on blocks with the NM
control (see square marker fig. 5). These FLEs were the
result of a modeled reflex that reduces knee extensor muscle
stimulation in late stance in proportion to ankle plantarflexion,
thereby allowing for passive knee flexion leading into swing.
In contrast to less experienced subjects, the experienced user
was able to control the knee over-extension during stance and
achieve more normal knee flexion in late-stance during normal
walking (see fig. 3 row 1, column 2), However, this increased
knee flexion during normal walking may have increased the
prosthesis’ susceptibility to premature knee collapse when
disturbed. While the modeled neuromuscular reflexes seem to
work well during steady-state walking and during disturbed
walking for inexperienced users, the large increase in FLEs

for the experienced user exposes the difficulty of relying on
heuristic reflexes to obtain robust control across a range of gait
characteristics. In contrast, the proposed EKF approach takes a
principled approach to gait phase estimation and thus resulted
in the fewest FLEs.

Some improvements can be made in the implementation of
the proposed control. First, the normal walking experiments
revealed that the ankle trajectories produced by the GP-EKF
control were significantly less similar to able-walking data than
those produced by NM or IMP controls (see fig. 4b). The GP-
EKF ankle trajectories in fig. 3 show that peak ankle flexion
is achieved later in stance and that the ankle insufficiently
plantarflexes at toe-off. These kinematic issues are also present
in the desired angles commanded by the GP control surfaces.
Therefore, this issue likely stems from a premature cutoff
between stance and swing in the gait dataset used to generate
the control surfaces. Extending the training data stance duration
slightly should increase the desired ankle plantarflexion at the
end of stance and engage the peak ankle dorsiflexion earlier.
Improving the ankle’s push off through this change may also
help increase the comfortable walking speed achievable with
this control strategy from 0.8 w5 for the able-bodied subjects
and 0.6 1 for the amputee-subject to closer to a typical walking
speed for an able-bodied adult of 1.2/ [19].

Second, in the current study, we held constant the impedance
about the desired trajectory, represented by k, and kg
in eq. (11). However, recent research has investigated how
impedance varies continuously throughout gait [21]. These
results could be used to parameterize impedance as a function of
gait phase. Taking this step could help improve the similarity of
the knee and ankle torques produced by the GP-EKF controller
to those seen in able-bodied walking data. However it is
important to note, the closeness of prosthetic gait to able-
bodied walking data may not be the best metric of prosthesis
performance, as amputee requirements may be significantly
different from non-amputees. Therefore, further research should
also focus on determining improved performance metrics for
powered prostheses.

Our work bears some resemblance to the complementary
limb motion estimation (CLME) approach proposed by Vallery
et al. [22]. This approach uses linear regression to learn a
direct mapping between the angles and velocities of the user’s
limbs to the prosthesis’ joint angles and velocities. There are
two key differences between our and the CLME approach. First,
our approach only uses signals from sensors mounted to the
prosthesis itself, whereas the CLME approach used many IMUs
mounted to the torso and sound side leg. Donning these sensors
may be impractical for everyday use by an amputee in the real
world. Second, the CLME approach directly maps from human
to prosthetic joint angles and velocities via linear regression.
In contrast, our approach goes through the latent gait phase
and phase velocity states first, which decouples the observation
models from the prosthesis control models. This allows us to
separately learn the observation models and tune the control
models to optimize user preference and performance.

There are several avenues for future research to expand
the proposed control approach. First, we only used prosthesis
joint angles and velocities for the observation models. It is
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worth investigating if additional measurements such as ground
reaction forces, accelerations, and EMG signals improve the
state estimate. Second, we used a simple, two-state model to
represent the entirety of the coupled human-prosthesis state
during stance. Adding additional state variables may help
capture important behaviors such as balance recovery actions
taken by the upper body. To this end, dimensionality reduction
techniques could help identify better state representations
from gait data. New state representations need to satisfy two
constraints that our current model satisfies: (1) The evolution
of the state needs to approximately abide by some Markov
dynamics model so we can perform the predict step of the
EKF. (2) The evolution of state throughout stance should be
knowable in hindsight after a step is completed so that the
observation model can be learned online. Fourth, with more
advanced state and observation models, more advanced forms of
state estimation may be necessary, including unscented Kalman

filters or particle filters such as the one proposed by Dhir et al.

[23], which allows for continuous gait phase estimation using
discrete heel and toe contact sensors. Finally, in this work, we
focused on phase estimation and control of the stance portion
of the gait cycle. However, in future work we could instead
define the gait phase as starting at zero at heel strike and
progressing to one at the next heel strike, thereby allowing
the phase estimate to parameterize both the stance and swing
behaviors.

V. CONCLUSION

In this work, we have demonstrated a novel prosthesis
controller based on a robust and smooth estimate of the phase
of gait derived from an EKF. Crucially, the proposed GP-EKF
control was more robust to ground height disturbances than the
popular finite-state impedance control strategy and was able to
adapt to gait changes within a single gait cycle. While we can
likely make further improvements to the control strategy, the
work highlights the importance of reliable state estimation for
robust prosthesis control.
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