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Abstract 

Blockchain based decentralized Cloud Manufacturing-as-a-Service (CMaaS) platforms enable customers to gain access to a large capacity of 
manufacturing nodes over cryptographically secure networks. In recent times, the Ethereum network has emerged as a popular blockchain 
framework for providing provenance and traceability of proprietary manufacturing data in decentralized CMaaS. However, the Ethereum 
ecosystem was only designed to store and transmit low volume financial transaction data and little has been done to make it an efficient repository 
of large manufacturing data streams in CMaaS systems. In this paper, the authors build on their previous work and report the design, 
implementation, and validation of middleware software architectures that allow Ethereum based distributed CMaaS platforms to harness the 
benefits of the secure asset models of the Ethereum ecosystem and the immutable big data storage capabilities of the decentralized BigchainDB 
database platform. A novel hybrid blockchain architecture enabled by efficient communication protocols and blockchain oracles is proposed. 
This architecture allows the transfer and immutable storage of large manufacturing data streams onto global BigchainDB nodes allowing data 
rich manufacturing transactions to bypass the transaction fees of the Ethereum ecosystem. Additionally, a machine learning based time series 
inference model is proposed which enables the forecast of Ethereum gas price into the future. This allows the CMaaS platform smart contracts to 
judiciously assign gas price limits and hence save on transactions ensuing from transfer or creation of assets. The outcomes of this research show 
that the designed hybrid architecture can lead to the reduction of significant number of computational steps and hence transaction fees on 
Ethereum by offloading large volume data onto BigchainDB nodes. A Random Forest regressor based time series inference model has been 
shown to exhibit superior performance in the prediction of Ethereum gas price, that allows the CMaaS to avoid executing transactions in periods 
of high gas prices within the Ethereum ecosystem. 
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1. Introduction 

Recent trends in manufacturing suggest that modern 
manufacturing systems are increasingly becoming digitalized 
and gradually moving towards cloud manufacturing ecosystems 
[1]. Connectivity enabled by the presence of highly scalable and 
networked architectures [2] and the rise of Cyber-Physical 
Systems (CPS) [3] are playing an important role into 
transforming conventional manufacturing into Cloud 
Manufacturing-as-a-Service (CMaaS) platforms [4] wherein 
the assimilation and the subsequent deployment on the cloud, 
of hard and soft manufacturing resources have immense 

potentials. This also promises to allow the democratization of 
manufacturing services where consumers can come up with 
highly customized products reflecting their individual needs 
[5]. Modern cloud manufacturing platforms like Xometry [6], 
CloudNC [7] etc. now have the capability to cater to evolving 
customer requirements and can provide request for quote 
replies within minutes.  

1.1. CMaaS and digital threads: issues and concerns 

The development of Digital Thread (DT) centric 
manufacturing system architectures has led to the adoption 
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CMaaS platforms [8]. A typical DT in a broad CMaaS 
organization would span across multiple stakeholders and 
intermediary agents. This thread would expose to all 
participating entities digitalized manufacturing data right from 
the inception of a product till its release. However, the 
collection of this data throughout the product lifecycle has 
opened business, legal and privacy concerns. Competing 
manufacturing service providers are often concerned about how 
their proprietary product and manufacturing data are shared 
over highly networked CMaaS platforms and DTs [9]. A key 
concern of manufacturing entities on CMaaS platforms is over 
modalities of data security, privacy and automated contract 
negotiation. It spans primarily over the broad issues of cyber-
threats, data theft, loss of intellectual property etc. [10]. 
Existing gaps in the construction of a cyber-threat resistant DT 
originates from the fact that most of these participating agents 
would have disparate and incompatible middleware stacks and 
this lack of standardization often lays bare major points of 
attrition in the overall security framework [9]. Many extant DT 
architectures for CMaaS platforms today would alarmingly not 
even adequately satisfy the basic security controls laid out in 
the National Institute of Standards and Technology (NIST) 
standard for security and privacy controls for federal 
information systems and organizations [11]. Another issue is 
the ownership and provenance of data traversing through these 
platforms. Contemporary CMaaS platforms are primarily 
centralized systems wherein the right of ownership and onus of 
provenance lies concentrated into the control of the central 
entity managing the CMaaS. The problem with this paradigm is 
in the inherent lack of trust of participating agents over the 
centralized control of proprietary data and a pervasive lack of 
universal consensus over election of authority. 

1.2. Blockchain based CMaaS platforms 

To address many of the standardization issues of DT’s in 
contemporary CMaaS platforms, the NIST through its “Digital 
Thread for Smart Manufacturing Project” has been actively 
involved in the development of systems and protocols for DT’s 
in manufacturing, design and allied sub-processes [12]. There 
have also been attempts to formulate models for better 
representation and transfer of manufacturing product data 
across DT’s [13] that are encapsulated under different standard 
protocols like the STEP AP242 standards for manufacturing 
information exchange [14], or the use of Quality Information 
Framework standards for the exchange of metrology data [15]. 
Commensurately, a lot of research has also been invested into 
solving the issues surrounding manufacturing data integrity, 
ownership, provenance, and contract negotiation in CMaaS 
platforms. A very recent yet revolutionary technology called 
the Blockchain has come as a promising contender for solving 
such issues in inherently trustless networks of CMaaS DTs [16, 
17]. This is also bolstered from NIST’s vision about the impact 
of blockchains in manufacturing wherein it is focused on  not 
only its ability to enable tamper proof transmission of data but 
also due to its unparalleled ability in providing seamless 
traceability in these trustless networks [18]. Blockchains are a 
network of computer or digital manufacturing nodes, that are a 
part of a distributed, decentralized, universally synchronized 

and cryptographically intact data ledger, composed of chained 
blocks that can be validated by all the nodes participating in the 
network [19]. Blockchain based CMaaS platforms have the 
potential of reducing costs in supply chain and logistics by more 
than 15% through improving security and removing paperwork 
[20].  The advantage of decentralized blockchain based systems 
over centralized database management systems comes from the 
fact that centralized systems are centrally managed. As in 
decentralized systems, there are no algorithms and protocols 
that can ensure provenance and traceability in centralized 
systems. A centralized database management system provides 
a single point of attack for cyber threats making it a much less 
trustworthy alternative for establishing data intensive CMaaS 
platforms. Investigations into product data models and 
blockchain based CMaaS and CPS architectures are already 
present in literature to act as guidelines for convenient 
blockchain adoption in DT [21].  

1.3. Decentralized CMaaS based on the Ethereum ecosystem 

Many different contemporary blockchain platforms have 
been demonstrated to be apt for housing decentralized CMaaS 
platforms and DTs through numerous research and 
implementation use cases. Global permission-less blockchains 
like Ethereum [22], or distributed operating systems for 
permissioned blockchains like the Hyperledger [23] have been 
shown to perform quite effectively in maintaining the data 
security, privacy, provenance, traceability of products and 
information in a manufacturing supply chain typical in CMaaS 
platforms [24]. The Ethereum platform has by far been one of 
the most popular [25] and highly standardized platforms for the 
deployment of decentralized apps [26] through the 
implementation of smart contracts [27] which can be used to 
stringently regulate security issues and automate contract 
negotiations. The Ethereum platform also provides an efficient 
and highly secure fungible asset transfer model through the 
implementation of its ERC-20 standard token model that forms 
the basis behind the digital cryptocurrency ‘Ether’ [28]. The 
security and space constraints inherent in the statically typed 
smart contract coding protocols of Ethereum makes sure that 
any transfer of fungible assets occurs in purely deterministic 
fashion, which is otherwise not guaranteed by the dynamically 
typed coding protocols of other blockchain platforms. The 
Ethereum ecosystem also allows for the modelling of data and 
non-fungible tokens through the implementation of the ERC-
721 [29] token standard and this has been the de facto standard 
for the construction of data models of manufacturing assets on 
blockchain based CMaaS platforms. Contemporary Ethereum 
based implementations of decentralized CMaaS DT and 
product models fall short in several ways: (i) While such 
systems do benefit from the adoption of the standardized and 
secure fungible and non-fungible asset transfer models of the 
Ethereum ecosystem, the sheer magnitude of data originating 
from manufacturing nodes cannot be efficiently stored on the 
Ethereum platform since blockchains are non-ideal data storage 
solutions. The computational complexity and inefficiency of 
data storage arising from the Proof of Work [30] mining 
protocol of the Ethereum blockchain makes data storage an 
expensive affair, both computationally and financially. (ii) 
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CMaaS platforms based on the Ethereum ecosystem run on 
seamless inter-communication of autonomous smart contracts. 
Any exchange of data or addition of data to the Ethereum 
Virtual Environment (EVM) [31] requires the participating 
nodes in the blockchain that are invoking functions from the 
smart contracts pay gas fees (gas is a unit of computation on the 
EVM) for executing commands on the EVM realized through 
transactions [32]. Therefore, transactions cannot be 
indiscriminately executed on the EVM. However, generation of 
high frequency large volume data transfer events is common in 
large CMaaS organizations. Therefore, there is a need of an 
efficient, intelligent, and autonomous system that would be able 
to judiciously decide in real time when to execute cost-effective 
and computationally efficient Ethereum transactions over the 
EVM. 

In this paper, the authors, as an improvement of their 
previous work, propose the design, implementation, and 
validation of middleware software architectures and blockchain 
oracles that allow the transfer of large volume manufacturing 
data onto decentralized and immutable big data storage 
platforms like the BigchainDB [33]. BigchainDB is a 
distributed database with decentralized control and provides 
immutability feature of recorded data. A hybrid blockchain 
architecture comprising of the Ethereum network and the 
BigchainDB platform is proposed. In this hybrid architecture, a 
parallel BigchainDB global distributed network runs along the 
more public Ethereum chain. The BigchainDB global database 
network records high volume immutable data originating from 
manufacturing nodes. The authors also propose the design and 
validation of a machine learning based, new inference 
middleware, that enables the forecast of Ethereum gas price into 
the future based on historical time series data of Ethereum gas 
prices. The goal is to allow the CMaaS platform smart contracts 
to judiciously assign gas price limits on transactions ensuing 
from transfer or creation of assets on the blockchain so that 
Ethereum transactions executed by the smart contracts are more 
efficient and economical.  

This paper is organized as follows: section 2 presents a brief 
overview of the existing work in recent literature and 
elaborately describes the prior work of the authors that this 
paper is based on. Section 3 outlines the design and 
implementation of the hybrid blockchain architecture that has 
been proposed. Section 4 delineates the design and 
implementation of the new machine learning based inference 
middleware used for Ethereum gas price forecasts. Section 5 
describes the results and outcomes achieved from the research 
in this paper. Conclusions, limitations and future research 
directions are laid out in section 6. 

2. Related work 

There has been considerable research in the past on 
blockchain based decentralized manufacturing systems. Lee et. 
al [21] in their research, have proposed a three level blockchain 
architecture for the construction of highly connected cyber 
physical production systems. Mandolla et. al [34] have 
explored the application of blockchain for CPS integrated 
additive manufacturing for the highly regulated aircrafts parts 
industry. In a case study of blockchain in manufacturing, 

comprising of real manufacturing nodes, the authors Angrish 
et. al [35] have introduced the “FabRec” model which 
comprises a consortium of manufacturing and computer nodes, 
autonomously communicating and negotiating with each other 
by means of computer coded smart contracts. Most of the 
aforementioned research has proposed important architectures 
and data models for blockchain based cloud manufacturing 
infrastructures. However, there have been significant research 
gaps in extant literature. Lack of proper data, communication 
models and appropriate implementation details for digital 
assets and smart contracts are major sectors that need 
significant investigation. Fungible asset transfer models that 
are needed to model assets of monetary value is another sector 
where current research does not put appropriate focus on. 
Appropriate security and platform consideration required for 
blockchain based manufacturing systems and appropriate 
middleware that allows seamless communication of different 
parts of the system, are all thrust areas where not much work 
has been done in the past. Many of the existing research have 
also been found to be limited in their proposal of security 
measures. These measures are integral in the design of 
decentralized CMaaS that deal with assets of monetary value. 
They also do not demonstrate implementation of any case study 
on any known, industry grade, fault-tolerant public or 
consortium blockchain network.  

To address some of these knowledge gaps, the authors 
presented a decentralized CMaaS platform architecture in their 
previous research [4]. The architecture presents the design and 
implementation of several manufacturing and blockchain 
middleware, an efficient object-oriented design pattern for 
smart contracts in constrained Ethereum environments, an 
ERC-721 standard digital asset for manufacturing product data 
models and a novel algorithm to improve security of fungible 
assets on CMaaS platforms. The CMaaS platform architecture 
proposed by the authors is primarily based on the Ethereum 
ecosystem to take advantage of a standardized infrastructure 
with a relatively stringent fungible asset transfer model that is 
otherwise not present in other blockchain platforms. 
Conventional permissioned blockchain platforms unlike the 
Ethereum EVM would allow the construction of smart contract 
codes in Turing complete [36], high level dynamically typed 
languages as opposed to the statically typed Solidity language 
[37] in Ethereum. The use of high-level, dynamically typed 
programming to encode blockchain logic as opposed to using 
Turing-incomplete (Bitcoin) scripting or highly secure Turing-
complete (Ethereum) scripting is a risk factor for CMaaS 
platforms since it makes the process outcomes of code 
execution in the blockchain ecosystem less deterministic. 

Although blockchain platforms like Ethereum can assist in 
the avenues of data integrity and provenance, constrained 
environments of the Ethereum ecosystem ensuing from its 
security considerations render them as non-ideal data storage 
solutions particularly in relation to the sheer magnitude of data 
being produced by manufacturing nodes on decentralized 
CMaaS platforms. This was a limitation of the proposed 
platform pointed out by the authors in their work [4]. The 
importance for the encapsulation of big data in manufacturing 
is immense and subsequent mining on this large volume of data 
allows for the extraction of important analytics that can be 
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harnessed for important business and logistic decisions. The 
limitations of the Ethereum ecosystem also renders it incapable 
of encapsulating important product life cycle data that can be 
harnessed for better traceability. Bonnard et. al [38] have 
shown in their research a hierarchical object-oriented model for 
digital chains in additive manufacturing platforms. The authors 
propose the model for better encapsulation of closed-loop 
manufacturing data that are generated in typical additive 
manufacturing processes. Lu et. al [13] in their research have 
demonstrated the importance of capturing service-oriented 
product data through models that can efficiently capture 
changing requirements of downstream production activities. Lu 
and Xu [39] have proposed a generic system architecture for 
the integration of cloud-based manufacturing equipment and 
big data analytics required for on-demand, near real-time 
manufacturing services. Therefore, it is evident that state of the 
art research and on demand cloud manufacturing processes on 
contemporary CMaaS platforms would be in increasing need 
of big data storage and analysis capabilities.  

A potential solution to the dilemma of the constrained 
storage capabilities of the Ethereum ecosystem is to relinquish 
it for permissioned blockchain platform solutions like the 
Hyperledger. The Hyperledger platform allows the 
construction of smart contract codes in high level, dynamically 
typed languages that are more prone to non-deterministic 
outcomes and hence pose more security pitfalls that can be a 
concern to CMaaS stakeholders. Other smart contract based 
blockchain platforms could also have come as solution to this 
problem. Smart Contract platforms like NEM [40] that comes 
with the Proof of Importance consensus protocol is a promising 
candidate but its reliance on the extent of investment or stake 
as a measure of credibility of a mined transaction is postulated 
to affect small and medium enterprises on a decentralized 
CMaaS adversely. Similarly, blockchain platforms like Eosio 
[41, 42] claims to have eliminated transaction fees. They limit 
smart contracts by only devoting a small amount of 
computational time devoted to them. This is postulated to affect 
large enterprise smart contracts requiring more computational 
steps of execution adversely since now verbose smart contracts 
will always be rejected by the blockchain platform. Many 
existing major, decentralized cloud manufacturing platforms 
are based on the public Ethereum ecosystem or its variants and 
hence the decision for forsaking the platform for better data 
storage and big data capabilities while jeopardizing security 
and standardization is not justifiable. In view of all the 
mentioned limitations and roadblocks, there is therefore a: (i) 
need of the evolution of a new, universal blockchain 
architecture that is able to cater to the big data storage 
requirements of any existing blockchain based CMaaS 
platform without the need of any major architectural changes 
to an existing infrastructure. (ii) need of a time and cost 
efficient blockchain database query service. Many read, query 
and write operations in the Ethereum global database are 
carried out in the form of transactions which have to be mined. 
Mining of these transactions is time consuming and requires 
the transfer of fungible assets to the miners in a public 
blockchain network, demanded as a part of the consensus 
protocol. This would cause unnecessary financial depletion for 
a large CMaaS platform with millions of write and query 

operations taking place on its data. Therefore, there is a need of 
intelligent, preferably autonomous decision-making protocols 
within the CMaaS platform that would be able to issue 
transactions in a cost effective and efficient manner. 

In this paper, the authors have attempted to address these 
outstanding issues pertaining to decentralized CMaaS 
platforms. The contribution of this paper is: (i) to propose a 
hybrid blockchain architecture composed of an Ethereum 
backbone that manages data integrity, asset provenance, 
contract negotiation and fungible asset transfer through its 
secure, public network as mentioned in section 1.3. The second 
element in the hybrid architecture is a concurrent BigchainDB 
global database that communicates seamlessly with the 
Ethereum backbone through the gateways established by a 
designed middleware. The function of the middleware is to get 
activated by outbound oracles initiated by data storage event 
signals from the Ethereum backbone. This eventually leads to 
the storage of big data pertaining to manufacturing product 
specifications onto a decentralized, immutable BigchainDB 
database, transactions on which do not require any transfer of 
fungible assets, making it economical by default. The second 
contribution of this paper is: (ii) to design and validate a 
machine learning based inference middleware that would be 
able to predict and infer Ethereum gas price into the future to a 
reasonable degree of accuracy. In their previous work cited in 
[4], the authors deployed CMaaS smart contracts with default 
allowable gas price limits which were high enough to allow any 
transaction from the contracts occurring within the Ethereum 
ecosystem to get readily mined. To improve the efficiency of 
these transactions, the authors have proposed the architecture 
of an inference middleware that forecasts Ethereum gas price 
based on historical time series data using machine learning 
models. The underpinning idea is to enable the CMaaS 
platform to automatically conserve resources in terms of gas 
fees paid for mining. The inference model forecasts possible 
allowable average gas price for a certain transaction event in 
the future. This average price is then broadcasted along with 
the transaction onto the Ethereum network. The conjecture is 
that, by continuously broadcasting low enough gas price limits, 
the inference middleware allows to save costs associated with 
gas fees for Ethereum transactions. It does this by making sure 
that the limit is not too high that it is above the average gas 
price limit of a certain day leading to monetary losses, nor is 
the limit too low that the transaction is rejected by the network 
of miners and is not preferentially mined.  

Machine learning based Ethereum transaction gas price 
prediction models have been looked into in past literature. Liu 
et. al. [43] have explored the application of a suite of machine 
learning regression-based prediction models to predict the 
lowest gas price in the next block of transaction being mined 
within the Ethereum blockchain. To motivate the requirement 
to accurately predict future Ethereum gas prices, the authors 
have performed cursory analysis on the data collected over one 
day’s worth of mined blocks in the Ethereum EVM. The 
authors were able to show that, accurate prediction models had 
the potential of saving costs as high as around $60 per block in 
fiat currency. In their proposed approach [43], the authors have 
evaluated few gas price influencing factors namely block 
difficulty, block gas limit, transaction gas limit, ether price, 
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miner reward etc. to identify how these features affect 
transaction gas price by assigning them as input features to a 
machine learning model. While such an approach have led to 
reasonably accurate gas price prediction models as quoted by 
the authors, the limitation of the approach lies in the fact that a 
real time system implementing such models would need to 
know accurate values of these influencing factors in real time 
to decide on the gas price limit on the next transaction. This is 
often not a practical proposition since features like block 
difficulty level or miner reward are subject to stochastic 
variations or non-deterministic events like blockchain hard 
forks [44] or protocol changes. The authors in this paper have 
on the other hand, used time series machine learning models 
and trained them on actual, historical Ethereum gas price data 
to come up with prediction models that can predict future 
average gas price. The advantage of this approach is that it does 
not require the accurate knowledge of a plethora of EVM 
variables and relies on much simpler, one dimensional time 
series data to make predictions to a reasonable degree of 
accuracy. 

3. Hybrid blockchain architecture for improved data 
storage capabilities 

Figure 1 shows the improved version of the hybrid 
decentralized CMaaS platform architecture adopted from the 
previous work of the authors. For a detailed explanation of the 
components of the system, the reader is referred to the work 
cited in [4]. The system shows a top physical manufacturing 
system layer showing important stakeholders and data flow 
processes that interact with a product. The entire CMaaS 
system hosts parametrically configurable consumer or 
industrial parts which customers want to customize and 
manufacture. The process starts with a client modifying the 
parameters of the digital twin of a product hosted on the CMaaS 
platform through a front-end app on a web browser. When the 
client is satisfied with the final parameters of the altered digital 
twin of the product, a Request for Quote (RFQ) command can 

be initiated. This is when the client middleware shown in 
Figure 2, starts making Remote Procedural Calls (RPC) to the 
functions encoded within a manufacturing system smart 
contract that has been deployed on the Ethereum network layer 
– L1, represented by the second layer below the manufacturing 
system layer in Figure 1. Depending on the specifications of 
the part sent to the blockchain layer, functions from within the 
smart contract return a quote to the client. On approval of this 
quote, the client can initiate a make order through the client 
middleware. This information is duly sent to the Ethereum 
network and a make order event is recorded on the blockchain. 
This also starts a sequence of blockchain events that the client 
middleware subscribes to. The trigger of a make order event 
generated from the Ethereum blockchain layer automatically 
prompts the client middleware to send off toolpath regeneration 
commands to the CNC toolpath regeneration engine hosted by 
the CMaaS platform. This is where the CMaaS middleware 
takes over and another session of client and CMaaS 
middleware communication leads to a regenerated toolpath that 
captures the customized design of the client. Details on the 
internal components of the CMaaS, manufacturing middleware 
and intricacies of the implemented manufacturing system smart 
contracts are not focus of this research and is delineated in fine 
detail in reference [4]. Once the custom part is successfully 
manufactured, a complete takeover of the blockchain network 
layer takes place. The end of the machining process is recorded 
on the blockchain as an event which eventually leads to the 
creation of an ERC-721 token representation of the part on the 
blockchain network. The blockchain network also takes care of 
the automatic payment of fees by the client due to the 
manufacturing service availed and autonomously regulates 
issues relevant to refunds and returns via functions encoded 
within the smart contracts of the manufacturing system. The 
contribution of this research into converting the CMaaS 
platform into a hybrid blockchain architecture can be seen from 
the new, bottom most layer L2 in Figure 1. This layer, aptly 
named the BigchainDB network layer comprises of a parallel 
consortium of global nodes of computers executing instances 

Fig. 1. Improved Hybrid architecture of decentralized CMaaS with BigchainDB layer for big data storage. 
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of decentralized, distributed, immutable BigchainDB database 
servers. Communication between layers L1 and L2 is 
established by a new addition to the client middleware shown 
in Figure 2 section VI as the BigchainDB interface layer. This 
layer is primarily a middleware software module encoded in 
JavaScript. This layer resides within the client middleware 
software architecture and houses event subscribers that 
subscribe to specific transaction events. These transaction 
events are emitted by the oracles designed as a part of the 
CMaaS smart contracts. The event of the completion of the 
manufactured part issues transactions on the Ethereum 
network. The oracles on issuance of these transactions in turn 
emit their own events which trigger subscribers in the 
BigchainDB layer to complete the collection of data. The 
BigchainDB layer collects large volume metadata about the 
part as it keeps on getting manufactured. This information 
includes a cryptographically hashed signature of the design file 
of the final part, detailed dimensional metadata of the part and 
necessary information about both the client and the CMaaS 
platform in terms of their Ethereum identities i.e., wallet 
addresses.  

It is needless to mention that, without the presence of this 
newly added BigchainDB network layer L2, storage of this 
complex set of information pertinent to product and 
manufacturing data would have been a gargantuan task so far 
as the Ethereum blockchain database is concerned. Most of this 
information quite naturally would involve data of different 
types and precision. Due to the restrictive nature of the 
Ethereum ecosystem, there is no default support of many 
complex datatypes like variable length strings which have to be 
used to record modalities like product name or description. 
Even if there were support of these data types, the low storage 
capabilities of the Ethereum ecosystem would not have allowed 
the capture of sufficient product information. Additionally, 
immutable registration of these information in the form of 

Ethereum transactions would have led to significant monetary 
contributions in terms of payable transaction fees for miners.  

The logical conclusion to this imminent problem is to store 
complex, type and precision diverse information about a 
product and its manufacturing process on a database platform 
that provides much larger degree of freedom as far as storage 
space is concerned. However, at the same time, a compromise 
on the immutability and security of the stored data cannot be 
made and this makes the decentralized, distributed BigchainDB 
database layer an ideal solution to this problem. In addition to 
storing complex information in an immutable fashion, the 
BigchainDB layer L2 also provides highly efficient, low 
latency query functionalities to read from the database as is 
common in many conventional centralized database platforms. 
The communication and information handshake between layers 
L1 and L2 in Figure 1, is enabled by the new BigchainDB 
interface layer in Figure 2 section VI of the improved client 
middleware. The completion of the manufacture of a part 
ordered by the client is represented by the creation of an ERC-
721 token on the Ethereum network L1, and this in turn initiates 
outbound Ethereum oracles encoded as smart contracts [45]. 
This eventually triggers communication between L1 and L2 
layers via the new interface in the client middleware. Large 
volume, complex data relevant to the product is then sent to L2 
layer to be stored securely and immutably. This is how, the 
Ethereum and the BigchainDB networks in this hybrid 
architecture, work in tandem to allow for the continuous 
registration of complex product data. The BigchainDB 
decentralized database while storing this information, also 
allows for the fast and efficient execution of complex database 
queries that would have otherwise not been possible on the 
Ethereum chain database.  

Figure 3 shows the result of a complex query made against 
the BigchainDB database that was implemented as a part of this 
research. The query allows for the search and retrieval of 

Fig. 2. Improved client middleware with BigchainDB interface. 
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information corresponding to an embedded search string or tag 
that could be present anywhere within the body of the 
information stored in the database. In Figure 3, the result can be 
seen as a query that was made using a search string tag of 
“DIME” and all the transactions on the BigchainDB which 
contained the tag “DIME” anywhere within the body of the 
JSON [46] converted information was retrieved. As is evident 
from the figure, the BigchainDB database is able to capture 
complex data of different types and precision in an immutable 
format and this is a direct upshot of the hybrid blockchain 
architecture that has been proposed as an improvement in this 
paper.  

4. Machine learning based inference middleware for 
economic Ethereum transactions  

Section 3 proposed an indirect solution to carry out 
economic Ethereum transactions in CMaaS platforms by 
allowing a CMaaS to offload large volume manufacturing data 
streams onto BigchainDB nodes instead of on the Ethereum 
EVM thereby saving transaction fees. In this section, the 
authors wanted to investigate if manufacturing transactions on 
such platforms could be further optimized. The goal of this 
section was to present a machine learning based inference 
middleware that can be proposed to forecast Ethereum 
transaction gas price in the future. As has been mentioned 
previously, an accurate gas price prediction model would allow 
the decentralized CMaaS platform to judiciously assign gas 
price limits on upcoming blockchain transactions instead of 
using default maximum values that guarantee transaction 
mining and acceptance by the miners in the Ethereum network. 
Assigning a gas price limit that is not too high from the average 
time series trend or nor too low ensures that the transactions 
would be mined at economical rates thereby saving cumulative 
costs. Since a decentralized CMaaS could see millions of such 
transactions happening over the course of time, the need of 
such a system is of paramount importance. 

4.1. Data collection 

In order to train machine learning (ML) models on historical 
data for time series prediction, there is need of chronological 
Ethereum gas price values over a significantly wide time span 
such that it allows for the capture of trend and seasonality 
patterns by the ML models. The Ethereum foundation has made 
daily time series data of past gas price values [47] available 
over a period of 4 years and it was this data that was used for 
extracting patterns from for the forecasting task. Figure 4 
shows a snapshot of this historical time series data of Ethereum 
gas price in GigaWei shown along the vertical axis. The time 
index of the series starts from a date towards the end of the year 
2016 and ends in the year 2020 as represented by the horizontal 
axis of the chart.  

4.2. Problem framing 

Given the time series trend of Ethereum gas prices, the 
problem statement of this section was constructed as follows: 
“Given recent Ethereum gas price trends, what is the expected 
gas price for the week (7 days) ahead?” That means, ML 
models that would be able to predict gas price values for at least 
7 days into future would be required. Technically, this framing 
of the problem is referred to as a multivariate, multi-step time 
series forecasting model. This type of a model could be helpful 
for the decentralized CMaaS system to do predictions of 7 days 
into the future thereby enabling the platform to anticipate and 
prepare, much in advance, for any major changes of future gas 
price. Quite evidently, the choice of a 7-day prediction window 
is a hyperparameter that can be tuned to cater to differing 
system needs. For the purpose of this research however, this 
value was found to be able to do satisfactory forecasting to 
reasonable degree of accuracy.  

4.3. Evaluation metric 

Based on the assumptions of the model laid out in section 
4.2, a forecast of Ethereum gas price would comprise of seven 
values, one for each day of the week ahead. It is common for 
multi-step forecasting problems to evaluate each time step 
separately [48]. This is usually done to contrast the 

Fig. 4. Historical time series data of Ethereum gas price. 

Fig. 3. BigchainDB database query result for a sample part made on CMaaS. 
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performance of different models based on their capabilities at 
different lead times. It is always useful to have an error metric 
that has the same unit as the feature being predicted. 
Consequently, the quintessential continuous regression metric 
of Root Mean Square Error (RMSE) was adopted to compare 
the forecasting performance of different ML models. To deal 
with a single score identifying a model, an average RMSE 
value across all the 7 forecast days was evaluated. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖∗)2𝑛𝑛

𝑖𝑖=1                                                  (1) 

 
Equation (1) shows the formula for the RMSE metric. It 
essentially is used to measure the deviation between the 
predicted or forecasted gas price 𝑦𝑦𝑖𝑖∗ and the actual gas price 𝑦𝑦𝑖𝑖 . 
The smaller the RMSE metric of an ML model on a data point, 
the higher is the accuracy of forecast of the model on that data 
point. 

4.4. Train/Test Subset 

The ML training scheme was fashioned after a typical 
supervised ML training protocol. The first 3 years’ worth of 
data from the time series were used for training the ML models 
and the last year of 2020 was used to evaluate the performance 
of the models. This was in contrary to how train/test splits are 
made on normal datasets where the protocol is to randomly split 
the data. It is to be noted that the basis of this problem was time 
series data which has temporal structure and hence the 
conventional randomly sliced, train/test split is not acceptable. 
This is the reason why a train data subset of the first 3 years 
was chosen and a subsequent test data subset of the last year 
was chosen to make sure the temporal structure of the input 
data remains intact. The time series data was divided into 
standard weeks. This was a useful way for using the chosen 
framing of the model mentioned in section 4.2 where the gas 
price for the week ahead could be predicted. 

4.5. Walk forward validation 

The ML models eventually chosen to be trained on the train 
dataset were evaluated using a scheme called walk forward 
validation. In this scheme, an ML model being trained is 
required to make a prediction in the future over 7 days. 
Subsequently, the actual data of those 7 days of the week is 
appended to the train set and is made available to the ML 
model. This is done so that this new data can now be used as 
the basis for making predictions for the subsequent week in the 
forecasting window. 

4.6. ML model choice and training 

In typical ML based time series prediction problems, it is a 
norm to first start by training a naïve prediction model [49]. 
The results from such a naïve model provide a quantitative idea 
as to how difficult the forecasting problem is and also provides 
a baseline performance that can be used to compare other, more 
complex ML models trained on the same data. Three naïve 

forecasting models were developed as a part of this process. 
They are listed down as follows: 

• Daily persistence model. 
• Weekly persistence model. 
• Weekly one year ago persistence model. 

The daily persistence model takes the Ethereum gas price 
from the last day prior to the period of forecast and uses that 
value as the value for each day in the forecast period. Similarly, 
the weekly persistence model uses the Ethereum gas price from 
the entire prior week as the forecast for the week ahead, and the 
weekly one year ago persistence model uses the same week last 
year to the predict next week’s gas price. It becomes evident as 
to why these models are referred to as naïve models. Using 
prior days’ or weeks’ values for forecasting would obviously 
lead to less than optimum prediction models but acts as a fine 
baseline for other models to outperform. Any model 
performing worse in terms of RMSE value than the best naïve 
model can be readily rejected from consideration. A 
comparison of the forecasting prediction performance of the 
naïve models was subsequently performed to choose the final 
naïve model that would be used as the baseline performer. 
Figure 5 shows the average RMSE errors of forecasting 
performance for the 3 naïve models across a forecasting 
window of 7 days. It can be observed that the lowest RMSE 
scores were obtained for the daily persistence model across all 
days in the forecasting window and hence this model was 
eventually chosen as the model with the best baseline 
performance. An average RMSE of 77.6 GigaWei was 
obtained for the daily persistence model.  

A suite of 12 supervised ML algorithms known to be quite 
robust for regression forecasting were chosen as candidate 
models to be trained on the data. The chosen models included 
the lasso regularized polynomial regression [50], the elastic net 
regressor [51], the extreme gradient boosted regressor [52], the 
decision tree regressor [53], the random forests regressor [54], 
the K nearest neighbor regressor [55], the support vector 
regressor [56], the extra tree regressor [57], the gradient 
boosting regressor [58], the ada-boosted ensemble regressor 
[58], 1D convolutional neural network regressor [59] and a 
sequence modelled LSTM regressor [60].  

Figure 6 shows the neural network architecture for the 
prediction model based on the 1D convolutional regressor. It 

Figure 5. Performance of Naive forecasting models. 
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can be observed that an input shape of 21 features representing 
the past 21 days’ worth of Ethereum gas price values were used 
to forecast the next 7 day’s Ethereum gas price represented by 
the output dense feature vector of size 7. These were 
hyperparameters of the model and the specific values of the 
input, output and layer sizes of the neural network were found 
after a series of trial and errors that were used to tune the model 
to its best possible performance. 

Figure 7 shows the neural network architecture of the LSTM 
model. This model also takes in a sequence of 21 values of 
Ethereum gas prices and uses them to forecast the next set of 
values as the output. It is to be noted that the suit of the ML 
models chosen did not include more conventional statistical 
time series models like the auto regressive moving average 
models. This was a conscious decision since such statistical 
models are generally parametric and hence are much harder to 
tune and train on unconventional time series data with less 
profound trend and seasonality features as is the case for the 
historical Ethereum gas price data. 

5. Results 

The proposed hybrid blockchain architecture was 
implemented using Ethereum as the blockchain network layer, 
L1 and the global BigchainDB test net as the layer L2 with 
reference to Figure 2. It was made to communicate in tandem 
with a CMaaS manufacturing layer deployed on a Flask [61] 
server infrastructure. Oracles encoded within the smart 
contracts deployed on L1 allowed the intercommunications 
between L1 and L2. It is to be noted that the global BigchainDB 
node is a global instance of the database and only retains 
information for a certain period of time, apt for testing 
purposes. It is a challenging task to accurately assess the 
potential computational and financial benefits provided by the 
hybrid blockchain architecture introduced in section 3. There 
are no standardized means to find a single score that could be 
used to assess the improved performance of a decentralized 
CMaaS platform after the implementation of the proposed 
architecture. However, some insight can be drawn from a 
sample data encapsulation by the BigchainDB network layer. 
As has been mentioned previously, Figure 3 shows the result of 
a complex query made against the BigchainDB database that is 
now used to store large volume processing and manufacturing 
data. This JSON encoded data shown in the Figure 3 was stored 
in the BigchainDB layer after the information was sent by the 
client middleware when it was triggered by events emitted by 
outbound Ethereum oracles. A cursory measure of performance 
could be derived from the calculation of computational steps 
i.e. gas units saved from being expended if the information 
stored by the JSON data object were otherwise to be stored 
directly on the Ethereum network layer instead of on the 
BigchainDB layer. The amount of gas units expended is 
directly proportional to the size of information encapsulated by 
the JSON data object.  

Table 1. Ethereum fee schedule for data storage [22]. 

Name Description Value (Gas) Total Cost 
(Gas) 

GSSET SSTORE operation cost 20,000  

GTXDATA Non-zero-byte data cost 68 / byte 80,508 

GTRANSACTION Flat transaction cost 21,000  

 
The JSON data object pertinent to the manufacturing 
information shown in Figure 3 was found to have a size of 581 
bytes. Table 1 shows the Ethereum fee schedule for data 
storage [22]. This schedule determines how much gas units are 
expended when storing information of a certain size on the 
Ethereum network. Each information registration transaction 
on the Ethereum network is a function of the three fee elements 
shown in Table 1. The total cost of an information storage 
operation in terms of total gas units can thus be expressed in 
the form of equation 2. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐺𝐺𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝐺𝐺𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇                (2) 

Using equation 2, the total gas cost for storing the 
information encapsulated by the JSON data object directly on 
the Ethereum network would have been 80,508 gas units. This 
is the amount of the computational steps that can be saved if 

Fig. 7. Architecture of LSTM network. 

Fig. 6. Architecture of the 1D convnet. 
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the information can be stored on the BigchainDB layer. The 
amount of gas units can easily be converted to fiat currency to 
gauge the amount of financial savings. Using the average per 
unit gas price of 55 GigaWei for the month of November 2020, 
this amounts to a total of around 4,427,940 GigaWei required 
for the storage of the information. This value in fiat currency is 
equivalent to around $2. While this calculated cost might seem 
to appear low, it must be remembered that a decentralized 
CMaaS platform would typically execute thousands of such 
data storage transactions every day. Additionally, the amount 
calculated in this section is under the conservative assumption 
that the JSON data object is only 581 bytes. A CMaaS platform 
could store manufacturing and process metadata which could 
be much larger than 581 bytes. Hence the total computational 
and financial cost savings ensuing from the implementation of 
this hybrid blockchain architecture can easily grow 
exponentially. 

Table 2. RMSE comparison of trained ML models with Naïve model. 

ML Model Test RMSE Naïve RMSE 

Random Forest 70.6  

Extra Tree 72.6  

Elastic Net 72.9  

Lasso 72.9  

LSTM 76.4  

XGB 76.5 77.6 

KNN 76.7  

Gradient Boost 78.7  

CNN 80.5  

Ada Boost 83.4  

Support Vector 89.7  

Decision Tree 107.3  

 
To assess how well the trained ML models introduced in 

section 4.6 were able to forecast the time series Ethereum gas 
price, the performance of the models on the test set were 
compared to that of the Naïve daily persistence model in terms 
of RMSE values. Table 2 shows the RMSE comparison of the 
12 models with the Naïve daily persistence model. It can be 
observed that the best performing model was a Random Forest 
regressor model with the least RMSE score of 70.6 on the test 
set, which was lower than the naïve RMSE of 77.6. The random 
forest model was therefore able to forecast Ethereum gas prices 
with larger degree of accuracy when compared to the naïve 
model. This trained random forest model was serialized and 
then deployed on the decentralized CMaaS platform server 
encapsulated in an inference middleware, so that the client 
middleware would then be able to use forecasted gas prices 
from this inference middleware to judiciously assign gas price 
limits on future Ethereum transactions, thereby leading to 
eventual cost savings. The models starting from Gradient 
Boosting and ending in Decision Trees had RMSE values 
worse than the naïve model and hence were rejected from the 
available pool of forecasting regressors. Figure 8 shows the 
predicted trends forecasted by the top 2 performing models on 
the test data set. The trends were overlaid on the actual test data 
set for comparison of deviations. It can be observed that the 

random forest regressor model does in fact closely resemble the 
actual time series trend of the test data set. 

6. Conclusion 

In this paper, the framework of a hybrid blockchain 
architecture for an improved decentralized CMaaS platform 
was proposed as a continuation of the previous work of the 
authors. It was shown that, by integrating a parallel 
BigchainDB network of distributed database alongside the 
Ethereum blockchain backbone of the decentralized CMaaS, 
significant portion of the data storage payload could be 
offloaded to the BigchainDB layer. Through the design and 
implementation of server based plug-and-play middleware and 
outbound Ethereum oracles, large volume manufacturing and 
process metadata could be transferred to be stored seamlessly 
on the BigchainDB layer without the need of storing data 
intensive information onto the Ethereum network through 
computationally intensive, high cost transaction processes. The 
novel hybrid blockchain architecture comprising of the 
aforementioned elements was shown to reduce significant costs 
associated with data storage events on Ethereum blockchain 
based CMaaS platforms. 

In a quest to further reduce costs from manufacturing 
transactions on blockchain based CMaaS platforms, a machine 
learning based inference middleware was also designed and 
deployed as a part of this research. The middleware houses a 
trained machine learning model based on the Random Forest 
Regressor algorithm that can accurately predict and forecast 
Ethereum gas prices. It was shown that the trained prediction 
model was able to forecast gas price to reasonable degree of 
accuracy with a low RMSE score of 70.6, outperforming a 
naïve daily persistence model. The ability of the decentralized 
CMaaS platform to predict Ethereum gas price allows it to 
judiciously assign allowable gas price limit to upcoming 
transactions, making sure that they are not too high as is the 
case when default modes of transactions are adopted. This 
allows the CMaaS platform to autonomously decide when to 
broadcast a transaction to the Ethereum network with an aim to 
minimize transaction costs. If the Ethereum ecosystem is going 

Figure 8. Predicted trends of top 2 ML models overlaid with actual trends. 
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through a period of relatively higher gas prices, the inference 
middleware can temporarily hold the transaction from being 
broadcasted so that it can later be released in times of lower gas 
prices. This does not pose any additional time restrictions for 
quick delivery products in the CMaaS since these fluctuations 
of gas prices occur over temporal frequencies in the order of 
seconds. Such a system allows the platform to save a significant 
amount in terms of mining fees, on thousands of transactions 
that occur in blockchain based CMaaS platforms. 

The hybrid blockchain architecture proposed in this paper is 
enabled by an improved client middleware and Ethereum 
oracles. This means, there are several steps involved before 
large volume data can make its way to the BigchainDB 
network. The inter-communication of different middleware and 
time-consuming oracles can introduce unwanted latency if real 
time performance is mandated. To conquer this limitation, 
there is need of much simpler architectures where there are 
lesser number of information exchange steps. The need of a 
single, universal blockchain platform with secure asset transfer 
models and big data capabilities is thus imperative and remains 
an avenue of future research.  
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