Available online at www.sciencedirect.com

c@ ScienceDirect P roced ia

MANUFACTURING

Procedia Manufacturing 53 (2021) 594-605

www.elsevier.com/locate/procedia

49th SME North American Manufacturing Research Conference, NAMRC 49, Ohio, USA

Hybrid Blockchain Architecture for Cloud Manufacturing-as-a-service
(CMaaS) Platforms with Improved Data Storage and Transaction Efficiency

Mahmud Hasan?, Kemafor Ogan®, Binil Starly®*

“Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695, United States of America.
*Department of Computer Science, North Carolina State University, Raleigh, NC 27695, United States of America

* Corresponding author. Tel.: +1 919 515 1815; fax: +1-919-515-5281. E-mail address: bstarly@ncsu.edu.

Abstract

Blockchain based decentralized Cloud Manufacturing-as-a-Service (CMaaS) platforms enable customers to gain access to a large capacity of
manufacturing nodes over cryptographically secure networks. In recent times, the Ethereum network has emerged as a popular blockchain
framework for providing provenance and traceability of proprietary manufacturing data in decentralized CMaaS. However, the Ethereum
ecosystem was only designed to store and transmit low volume financial transaction data and little has been done to make it an efficient repository
of large manufacturing data streams in CMaaS systems. In this paper, the authors build on their previous work and report the design,
implementation, and validation of middleware software architectures that allow Ethereum based distributed CMaaS platforms to harness the
benefits of the secure asset models of the Ethereum ecosystem and the immutable big data storage capabilities of the decentralized BigchainDB
database platform. A novel hybrid blockchain architecture enabled by efficient communication protocols and blockchain oracles is proposed.
This architecture allows the transfer and immutable storage of large manufacturing data streams onto global BigchainDB nodes allowing data
rich manufacturing transactions to bypass the transaction fees of the Ethereum ecosystem. Additionally, a machine learning based time series
inference model is proposed which enables the forecast of Ethereum gas price into the future. This allows the CMaaS platform smart contracts to
judiciously assign gas price limits and hence save on transactions ensuing from transfer or creation of assets. The outcomes of this research show
that the designed hybrid architecture can lead to the reduction of significant number of computational steps and hence transaction fees on
Ethereum by offloading large volume data onto BigchainDB nodes. A Random Forest regressor based time series inference model has been
shown to exhibit superior performance in the prediction of Ethereum gas price, that allows the CMaasS to avoid executing transactions in periods
of high gas prices within the Ethereum ecosystem.

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Scientific Committee of the NAMRI/SME

Keywords: blockchain; smart contracts; distributed database; time series; regression; Istm; gas price prediction.

1. Introduction potentials. This also promises to allow the democratization of
manufacturing services where consumers can come up with
highly customized products reflecting their individual needs
[5]. Modern cloud manufacturing platforms like Xometry [6],
CloudNC [7] etc. now have the capability to cater to evolving
customer requirements and can provide request for quote
replies within minutes.

Recent trends in manufacturing suggest that modern
manufacturing systems are increasingly becoming digitalized
and gradually moving towards cloud manufacturing ecosystems
[1]. Connectivity enabled by the presence of highly scalable and
networked architectures [2] and the rise of Cyber-Physical
Systems (CPS) [3] are playing an important role into
transforming conventional manufacturing into Cloud
Manufacturing-as-a-Service (CMaaS) platforms [4] wherein
the assimilation and the subsequent deployment on the cloud,
of hard and soft manufacturing resources have immense

2351-9789 © 2021 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-ne-nd/4.0/)
Peer-review under responsibility of the Scientific Committee of the NAMRI/SME

10.1016/j.promfg.2021.06.060

1.1. CMaaS and digital threads: issues and concerns

The development of Digital Thread (DT) -centric
manufacturing system architectures has led to the adoption

http://crossmark.crossref.org/dialog/?doi=10.1016/j.promfg.2021.06.060&domain=pdf

Mahmud Hasan et al. / Procedia Manufacturing 53 (2021) 594—605 595

CMaaS platforms [8]. A typical DT in a broad CMaaS
organization would span across multiple stakeholders and
intermediary agents. This thread would expose to all
participating entities digitalized manufacturing data right from
the inception of a product till its release. However, the
collection of this data throughout the product lifecycle has
opened business, legal and privacy concerns. Competing
manufacturing service providers are often concerned about how
their proprietary product and manufacturing data are shared
over highly networked CMaaS platforms and DTs [9]. A key
concern of manufacturing entities on CMaaS platforms is over
modalities of data security, privacy and automated contract
negotiation. It spans primarily over the broad issues of cyber-
threats, data theft, loss of intellectual property etc. [10].
Existing gaps in the construction of a cyber-threat resistant DT
originates from the fact that most of these participating agents
would have disparate and incompatible middleware stacks and
this lack of standardization often lays bare major points of
attrition in the overall security framework [9]. Many extant DT
architectures for CMaaS platforms today would alarmingly not
even adequately satisfy the basic security controls laid out in
the National Institute of Standards and Technology (NIST)
standard for security and privacy controls for federal
information systems and organizations [11]. Another issue is
the ownership and provenance of data traversing through these
platforms. Contemporary CMaaS platforms are primarily
centralized systems wherein the right of ownership and onus of
provenance lies concentrated into the control of the central
entity managing the CMaaS. The problem with this paradigm is
in the inherent lack of trust of participating agents over the
centralized control of proprietary data and a pervasive lack of
universal consensus over election of authority.

1.2. Blockchain based CMaaS$ platforms

To address many of the standardization issues of DT’s in
contemporary CMaaS platforms, the NIST through its “Digital
Thread for Smart Manufacturing Project” has been actively
involved in the development of systems and protocols for DT’s
in manufacturing, design and allied sub-processes [12]. There
have also been attempts to formulate models for better
representation and transfer of manufacturing product data
across DT’s [13] that are encapsulated under different standard
protocols like the STEP AP242 standards for manufacturing
information exchange [14], or the use of Quality Information
Framework standards for the exchange of metrology data [15].
Commensurately, a lot of research has also been invested into
solving the issues surrounding manufacturing data integrity,
ownership, provenance, and contract negotiation in CMaaS
platforms. A very recent yet revolutionary technology called
the Blockchain has come as a promising contender for solving
such issues in inherently trustless networks of CMaaS DTs [16,
17]. This is also bolstered from NIST’s vision about the impact
of blockchains in manufacturing wherein it is focused on not
only its ability to enable tamper proof transmission of data but
also due to its unparalleled ability in providing seamless
traceability in these trustless networks [18]. Blockchains are a
network of computer or digital manufacturing nodes, that are a
part of a distributed, decentralized, universally synchronized

and cryptographically intact data ledger, composed of chained
blocks that can be validated by all the nodes participating in the
network [19]. Blockchain based CMaaS platforms have the
potential of reducing costs in supply chain and logistics by more
than 15% through improving security and removing paperwork
[20]. The advantage of decentralized blockchain based systems
over centralized database management systems comes from the
fact that centralized systems are centrally managed. As in
decentralized systems, there are no algorithms and protocols
that can ensure provenance and traceability in centralized
systems. A centralized database management system provides
a single point of attack for cyber threats making it a much less
trustworthy alternative for establishing data intensive CMaaS
platforms. Investigations into product data models and
blockchain based CMaaS and CPS architectures are already
present in literature to act as guidelines for convenient
blockchain adoption in DT [21].

1.3. Decentralized CMaaS based on the Ethereum ecosystem

Many different contemporary blockchain platforms have
been demonstrated to be apt for housing decentralized CMaaS
platforms and DTs through numerous research and
implementation use cases. Global permission-less blockchains
like Ethereum [22], or distributed operating systems for
permissioned blockchains like the Hyperledger [23] have been
shown to perform quite effectively in maintaining the data
security, privacy, provenance, traceability of products and
information in a manufacturing supply chain typical in CMaaS
platforms [24]. The Ethereum platform has by far been one of
the most popular [25] and highly standardized platforms for the
deployment of decentralized apps [26] through the
implementation of smart contracts [27] which can be used to
stringently regulate security issues and automate contract
negotiations. The Ethereum platform also provides an efficient
and highly secure fungible asset transfer model through the
implementation of its ERC-20 standard token model that forms
the basis behind the digital cryptocurrency ‘Ether’ [28]. The
security and space constraints inherent in the statically typed
smart contract coding protocols of Ethereum makes sure that
any transfer of fungible assets occurs in purely deterministic
fashion, which is otherwise not guaranteed by the dynamically
typed coding protocols of other blockchain platforms. The
Ethereum ecosystem also allows for the modelling of data and
non-fungible tokens through the implementation of the ERC-
721 [29] token standard and this has been the de facto standard
for the construction of data models of manufacturing assets on
blockchain based CMaaS platforms. Contemporary Ethereum
based implementations of decentralized CMaaS DT and
product models fall short in several ways: (i) While such
systems do benefit from the adoption of the standardized and
secure fungible and non-fungible asset transfer models of the
Ethereum ecosystem, the sheer magnitude of data originating
from manufacturing nodes cannot be efficiently stored on the
Ethereum platform since blockchains are non-ideal data storage
solutions. The computational complexity and inefficiency of
data storage arising from the Proof of Work [30] mining
protocol of the Ethereum blockchain makes data storage an
expensive affair, both computationally and financially. (ii)

596 Mahmud Hasan et al. / Procedia Manufacturing 53 (2021) 594—605

CMaaS platforms based on the Ethereum ecosystem run on
seamless inter-communication of autonomous smart contracts.
Any exchange of data or addition of data to the Ethereum
Virtual Environment (EVM) [31] requires the participating
nodes in the blockchain that are invoking functions from the
smart contracts pay gas fees (gas is a unit of computation on the
EVM) for executing commands on the EVM realized through
transactions [32]. Therefore, transactions cannot be
indiscriminately executed on the EVM. However, generation of
high frequency large volume data transfer events is common in
large CMaaS organizations. Therefore, there is a need of an
efficient, intelligent, and autonomous system that would be able
to judiciously decide in real time when to execute cost-effective
and computationally efficient Ethereum transactions over the
EVM.

In this paper, the authors, as an improvement of their
previous work, propose the design, implementation, and
validation of middleware software architectures and blockchain
oracles that allow the transfer of large volume manufacturing
data onto decentralized and immutable big data storage
platforms like the BigchainDB [33]. BigchainDB is a
distributed database with decentralized control and provides
immutability feature of recorded data. A hybrid blockchain
architecture comprising of the Ethereum network and the
BigchainDB platform is proposed. In this hybrid architecture, a
parallel BigchainDB global distributed network runs along the
more public Ethereum chain. The BigchainDB global database
network records high volume immutable data originating from
manufacturing nodes. The authors also propose the design and
validation of a machine learning based, new inference
middleware, that enables the forecast of Ethereum gas price into
the future based on historical time series data of Ethereum gas
prices. The goal is to allow the CMaaS platform smart contracts
to judiciously assign gas price limits on transactions ensuing
from transfer or creation of assets on the blockchain so that
Ethereum transactions executed by the smart contracts are more
efficient and economical.

This paper is organized as follows: section 2 presents a brief
overview of the existing work in recent literature and
elaborately describes the prior work of the authors that this
paper is based on. Section 3 outlines the design and
implementation of the hybrid blockchain architecture that has
been proposed. Section 4 delineates the design and
implementation of the new machine learning based inference
middleware used for Ethereum gas price forecasts. Section 5
describes the results and outcomes achieved from the research
in this paper. Conclusions, limitations and future research
directions are laid out in section 6.

2. Related work

There has been considerable research in the past on
blockchain based decentralized manufacturing systems. Lee et.
al [21] in their research, have proposed a three level blockchain
architecture for the construction of highly connected cyber
physical production systems. Mandolla et. al [34] have
explored the application of blockchain for CPS integrated
additive manufacturing for the highly regulated aircrafts parts
industry. In a case study of blockchain in manufacturing,

comprising of real manufacturing nodes, the authors Angrish
et. al [35] have introduced the “FabRec” model which
comprises a consortium of manufacturing and computer nodes,
autonomously communicating and negotiating with each other
by means of computer coded smart contracts. Most of the
aforementioned research has proposed important architectures
and data models for blockchain based cloud manufacturing
infrastructures. However, there have been significant research
gaps in extant literature. Lack of proper data, communication
models and appropriate implementation details for digital
assets and smart contracts are major sectors that need
significant investigation. Fungible asset transfer models that
are needed to model assets of monetary value is another sector
where current research does not put appropriate focus on.
Appropriate security and platform consideration required for
blockchain based manufacturing systems and appropriate
middleware that allows seamless communication of different
parts of the system, are all thrust areas where not much work
has been done in the past. Many of the existing research have
also been found to be limited in their proposal of security
measures. These measures are integral in the design of
decentralized CMaaS that deal with assets of monetary value.
They also do not demonstrate implementation of any case study
on any known, industry grade, fault-tolerant public or
consortium blockchain network.

To address some of these knowledge gaps, the authors
presented a decentralized CMaasS platform architecture in their
previous research [4]. The architecture presents the design and
implementation of several manufacturing and blockchain
middleware, an efficient object-oriented design pattern for
smart contracts in constrained Ethereum environments, an
ERC-721 standard digital asset for manufacturing product data
models and a novel algorithm to improve security of fungible
assets on CMaaS platforms. The CMaaS platform architecture
proposed by the authors is primarily based on the Ethereum
ecosystem to take advantage of a standardized infrastructure
with a relatively stringent fungible asset transfer model that is
otherwise not present in other blockchain platforms.
Conventional permissioned blockchain platforms unlike the
Ethereum EVM would allow the construction of smart contract
codes in Turing complete [36], high level dynamically typed
languages as opposed to the statically typed Solidity language
[37] in Ethereum. The use of high-level, dynamically typed
programming to encode blockchain logic as opposed to using
Turing-incomplete (Bitcoin) scripting or highly secure Turing-
complete (Ethereum) scripting is a risk factor for CMaaS
platforms since it makes the process outcomes of code
execution in the blockchain ecosystem less deterministic.

Although blockchain platforms like Ethereum can assist in
the avenues of data integrity and provenance, constrained
environments of the Ethereum ecosystem ensuing from its
security considerations render them as non-ideal data storage
solutions particularly in relation to the sheer magnitude of data
being produced by manufacturing nodes on decentralized
CMaaS platforms. This was a limitation of the proposed
platform pointed out by the authors in their work [4]. The
importance for the encapsulation of big data in manufacturing
is immense and subsequent mining on this large volume of data
allows for the extraction of important analytics that can be

Mahmud Hasan et al. / Procedia Manufacturing 53 (2021) 594—605 597

harnessed for important business and logistic decisions. The
limitations of the Ethereum ecosystem also renders it incapable
of encapsulating important product life cycle data that can be
harnessed for better traceability. Bonnard et. al [38] have
shown in their research a hierarchical object-oriented model for
digital chains in additive manufacturing platforms. The authors
propose the model for better encapsulation of closed-loop
manufacturing data that are generated in typical additive
manufacturing processes. Lu et. al [13] in their research have
demonstrated the importance of capturing service-oriented
product data through models that can efficiently capture
changing requirements of downstream production activities. Lu
and Xu [39] have proposed a generic system architecture for
the integration of cloud-based manufacturing equipment and
big data analytics required for on-demand, near real-time
manufacturing services. Therefore, it is evident that state of the
art research and on demand cloud manufacturing processes on
contemporary CMaaS platforms would be in increasing need
of big data storage and analysis capabilities.

A potential solution to the dilemma of the constrained
storage capabilities of the Ethereum ecosystem is to relinquish
it for permissioned blockchain platform solutions like the
Hyperledger. The Hyperledger platform allows the
construction of smart contract codes in high level, dynamically
typed languages that are more prone to non-deterministic
outcomes and hence pose more security pitfalls that can be a
concern to CMaaS stakeholders. Other smart contract based
blockchain platforms could also have come as solution to this
problem. Smart Contract platforms like NEM [40] that comes
with the Proof of Importance consensus protocol is a promising
candidate but its reliance on the extent of investment or stake
as a measure of credibility of a mined transaction is postulated
to affect small and medium enterprises on a decentralized
CMaaS adversely. Similarly, blockchain platforms like Eosio
[41, 42] claims to have eliminated transaction fees. They limit
smart contracts by only devoting a small amount of
computational time devoted to them. This is postulated to affect
large enterprise smart contracts requiring more computational
steps of execution adversely since now verbose smart contracts
will always be rejected by the blockchain platform. Many
existing major, decentralized cloud manufacturing platforms
are based on the public Ethereum ecosystem or its variants and
hence the decision for forsaking the platform for better data
storage and big data capabilities while jeopardizing security
and standardization is not justifiable. In view of all the
mentioned limitations and roadblocks, there is therefore a: (i)
need of the evolution of a new, universal blockchain
architecture that is able to cater to the big data storage
requirements of any existing blockchain based CMaaS
platform without the need of any major architectural changes
to an existing infrastructure. (ii) need of a time and cost
efficient blockchain database query service. Many read, query
and write operations in the Ethereum global database are
carried out in the form of transactions which have to be mined.
Mining of these transactions is time consuming and requires
the transfer of fungible assets to the miners in a public
blockchain network, demanded as a part of the consensus
protocol. This would cause unnecessary financial depletion for
a large CMaaS platform with millions of write and query

operations taking place on its data. Therefore, there is a need of
intelligent, preferably autonomous decision-making protocols
within the CMaaS platform that would be able to issue
transactions in a cost effective and efficient manner.

In this paper, the authors have attempted to address these
outstanding issues pertaining to decentralized CMaaS
platforms. The contribution of this paper is: (i) to propose a
hybrid blockchain architecture composed of an Ethereum
backbone that manages data integrity, asset provenance,
contract negotiation and fungible asset transfer through its
secure, public network as mentioned in section 1.3. The second
element in the hybrid architecture is a concurrent BigchainDB
global database that communicates seamlessly with the
Ethereum backbone through the gateways established by a
designed middleware. The function of the middleware is to get
activated by outbound oracles initiated by data storage event
signals from the Ethereum backbone. This eventually leads to
the storage of big data pertaining to manufacturing product
specifications onto a decentralized, immutable BigchainDB
database, transactions on which do not require any transfer of
fungible assets, making it economical by default. The second
contribution of this paper is: (ii) to design and validate a
machine learning based inference middleware that would be
able to predict and infer Ethereum gas price into the future to a
reasonable degree of accuracy. In their previous work cited in
[4], the authors deployed CMaaS smart contracts with default
allowable gas price limits which were high enough to allow any
transaction from the contracts occurring within the Ethereum
ecosystem to get readily mined. To improve the efficiency of
these transactions, the authors have proposed the architecture
of an inference middleware that forecasts Ethereum gas price
based on historical time series data using machine learning
models. The underpinning idea is to enable the CMaaS
platform to automatically conserve resources in terms of gas
fees paid for mining. The inference model forecasts possible
allowable average gas price for a certain transaction event in
the future. This average price is then broadcasted along with
the transaction onto the Ethereum network. The conjecture is
that, by continuously broadcasting low enough gas price limits,
the inference middleware allows to save costs associated with
gas fees for Ethereum transactions. It does this by making sure
that the limit is not too high that it is above the average gas
price limit of a certain day leading to monetary losses, nor is
the limit too low that the transaction is rejected by the network
of miners and is not preferentially mined.

Machine learning based Ethereum transaction gas price
prediction models have been looked into in past literature. Liu
et. al. [43] have explored the application of a suite of machine
learning regression-based prediction models to predict the
lowest gas price in the next block of transaction being mined
within the Ethereum blockchain. To motivate the requirement
to accurately predict future Ethereum gas prices, the authors
have performed cursory analysis on the data collected over one
day’s worth of mined blocks in the Ethereum EVM. The
authors were able to show that, accurate prediction models had
the potential of saving costs as high as around $60 per block in
fiat currency. In their proposed approach [43], the authors have
evaluated few gas price influencing factors namely block
difficulty, block gas limit, transaction gas limit, ether price,

598 Mahmud Hasan et al. / Procedia Manufacturing 53 (2021) 594—605

miner reward etc. to identify how these features affect
transaction gas price by assigning them as input features to a
machine learning model. While such an approach have led to
reasonably accurate gas price prediction models as quoted by
the authors, the limitation of the approach lies in the fact that a
real time system implementing such models would need to
know accurate values of these influencing factors in real time
to decide on the gas price limit on the next transaction. This is
often not a practical proposition since features like block
difficulty level or miner reward are subject to stochastic
variations or non-deterministic events like blockchain hard
forks [44] or protocol changes. The authors in this paper have
on the other hand, used time series machine learning models
and trained them on actual, historical Ethereum gas price data
to come up with prediction models that can predict future
average gas price. The advantage of this approach is that it does
not require the accurate knowledge of a plethora of EVM
variables and relies on much simpler, one dimensional time
series data to make predictions to a reasonable degree of
accuracy.

3. Hybrid blockchain architecture for improved data
storage capabilities

Figure 1 shows the improved version of the hybrid
decentralized CMaaS platform architecture adopted from the
previous work of the authors. For a detailed explanation of the
components of the system, the reader is referred to the work
cited in [4]. The system shows a top physical manufacturing
system layer showing important stakeholders and data flow
processes that interact with a product. The entire CMaaS
system hosts parametrically configurable consumer or
industrial parts which customers want to customize and
manufacture. The process starts with a client modifying the
parameters of the digital twin of a product hosted on the CMaaS
platform through a front-end app on a web browser. When the
client is satisfied with the final parameters of the altered digital
twin of the product, a Request for Quote (RFQ) command can

be initiated. This is when the client middleware shown in
Figure 2, starts making Remote Procedural Calls (RPC) to the
functions encoded within a manufacturing system smart
contract that has been deployed on the Ethereum network layer
— L1, represented by the second layer below the manufacturing
system layer in Figure 1. Depending on the specifications of
the part sent to the blockchain layer, functions from within the
smart contract return a quote to the client. On approval of this
quote, the client can initiate a make order through the client
middleware. This information is duly sent to the Ethereum
network and a make order event is recorded on the blockchain.
This also starts a sequence of blockchain events that the client
middleware subscribes to. The trigger of a make order event
generated from the Ethereum blockchain layer automatically
prompts the client middleware to send off toolpath regeneration
commands to the CNC toolpath regeneration engine hosted by
the CMaaS platform. This is where the CMaaS middleware
takes over and another session of client and CMaaS
middleware communication leads to a regenerated toolpath that
captures the customized design of the client. Details on the
internal components of the CMaaS, manufacturing middleware
and intricacies of the implemented manufacturing system smart
contracts are not focus of this research and is delineated in fine
detail in reference [4]. Once the custom part is successfully
manufactured, a complete takeover of the blockchain network
layer takes place. The end of the machining process is recorded
on the blockchain as an event which eventually leads to the
creation of an ERC-721 token representation of the part on the
blockchain network. The blockchain network also takes care of
the automatic payment of fees by the client due to the
manufacturing service availed and autonomously regulates
issues relevant to refunds and returns via functions encoded
within the smart contracts of the manufacturing system. The
contribution of this research into converting the CMaaS
platform into a hybrid blockchain architecture can be seen from
the new, bottom most layer L2 in Figure 1. This layer, aptly
named the BigchainDB network layer comprises of a parallel
consortium of global nodes of computers executing instances

| Manufacturing System Layer |
Client End

;4

Client interaction
wift digital twin

Ethereum Network Layer — L1

01111101001010

BIGCHAIN @

| BigchainDB Network Layer — L2 |

3 tier middleware stack enabling inter-communication
of clients & machines via CMaa5 cloud

CMaaS

Web browserbased Chaaas =
client Middleware Middleware M'ulllme CMaa5 connected

Cybermanufacturing
Software
Middleware Stack

01111011010 @ 0111101001010 0111101001110010 1111101001010 o1111011010 @

Blockchain based Distributed Ledger Tracking All Critical Events ‘

Large volume manufactunng data packets

—=

Fabrication Services Provider

(_E-a-_z

remote machining
nodes

o111101001010 i) 0111101001110010

Fig. 1. Improved Hybrid architecture of decentralized CMaaS with BigchainDB layer for big data storage.

Mahmud Hasan et al. / Procedia Manufacturing 53 (2021) 594—605

599

—
——
&

e B "/'7\\‘ Client Middleware Architecture
,‘": CMaas ‘ @°Front End Ul Browser e,
(=) ——t .
~ platform ™/ embe.dded y e ~
L) blockchain wallet ¢ BigchainDB }‘-‘
= e — I
) app network Iayer
&
_ Parameter change request. - Model metadata. Transaction signature Private key and Big data DB Query replies.
- Geometry extraction request. - Model geometry file. permission request. cryptocurrency transactions.
_ Toolpath regeneration request access replies
I 1] \%
.) Machine Blockchain Identi . . .
CMaa$s middleware WebGL runtime 3 Ly Blockchain I BigchainDB
: A - coordinate and wallet
interaction layer engine 5 . Interface layer Interface layer
rendering engine management layer I
1
Realtime Toolpath position and Blockchain event RPC calls to
manufacturing node machine status query generation. smart contract
toolpath coordinates. request. functions.
— i
/ . N - N
‘,x-‘ Manufacturing 22 . Blnckcham A
. -) L)
77— middleware ™/ 7— networklayer ™ 7
C) }

4

e — % e
= >

9]

Fig. 2. Improved client middleware with BigchainDB interface.

of decentralized, distributed, immutable BigchainDB database
servers. Communication between layers L1 and L2 is
established by a new addition to the client middleware shown
in Figure 2 section VI as the BigchainDB interface layer. This
layer is primarily a middleware software module encoded in
JavaScript. This layer resides within the client middleware
software architecture and houses event subscribers that
subscribe to specific transaction events. These transaction
events are emitted by the oracles designed as a part of the
CMaaS smart contracts. The event of the completion of the
manufactured part issues transactions on the Ethereum
network. The oracles on issuance of these transactions in turn
emit their own events which trigger subscribers in the
BigchainDB layer to complete the collection of data. The
BigchainDB layer collects large volume metadata about the
part as it keeps on getting manufactured. This information
includes a cryptographically hashed signature of the design file
of the final part, detailed dimensional metadata of the part and
necessary information about both the client and the CMaaS
platform in terms of their Ethereum identities i.e., wallet
addresses.

It is needless to mention that, without the presence of this
newly added BigchainDB network layer L2, storage of this
complex set of information pertinent to product and
manufacturing data would have been a gargantuan task so far
as the Ethereum blockchain database is concerned. Most of this
information quite naturally would involve data of different
types and precision. Due to the restrictive nature of the
Ethereum ecosystem, there is no default support of many
complex datatypes like variable length strings which have to be
used to record modalities like product name or description.
Even if there were support of these data types, the low storage
capabilities of the Ethereum ecosystem would not have allowed
the capture of sufficient product information. Additionally,
immutable registration of these information in the form of

Ethereum transactions would have led to significant monetary
contributions in terms of payable transaction fees for miners.

The logical conclusion to this imminent problem is to store
complex, type and precision diverse information about a
product and its manufacturing process on a database platform
that provides much larger degree of freedom as far as storage
space is concerned. However, at the same time, a compromise
on the immutability and security of the stored data cannot be
made and this makes the decentralized, distributed BigchainDB
database layer an ideal solution to this problem. In addition to
storing complex information in an immutable fashion, the
BigchainDB layer L2 also provides highly efficient, low
latency query functionalities to read from the database as is
common in many conventional centralized database platforms.
The communication and information handshake between layers
L1 and L2 in Figure 1, is enabled by the new BigchainDB
interface layer in Figure 2 section VI of the improved client
middleware. The completion of the manufacture of a part
ordered by the client is represented by the creation of an ERC-
721 token on the Ethereum network L1, and this in turn initiates
outbound Ethereum oracles encoded as smart contracts [45].
This eventually triggers communication between L1 and L2
layers via the new interface in the client middleware. Large
volume, complex data relevant to the product is then sent to L2
layer to be stored securely and immutably. This is how, the
Ethereum and the BigchainDB networks in this hybrid
architecture, work in tandem to allow for the continuous
registration of complex product data. The BigchainDB
decentralized database while storing this information, also
allows for the fast and efficient execution of complex database
queries that would have otherwise not been possible on the
Ethereum chain database.

Figure 3 shows the result of a complex query made against
the BigchainDB database that was implemented as a part of this
research. The query allows for the search and retrieval of

600 Mahmud Hasan et al. / Procedia Manufacturing 53 (2021) 594—605

- data: {
ethereum_client: "@x97698Ae226bE1573c5940dEE4F58D12919826e54",
platform: " DIME Labs CMaas”,
partName: "motor_mount”,
part_STL_hash_md5: “446baac6@6le5d3ccabldg7edachddch”,
- dimension_metadata: {
BaseHeight: 2.25,
FlangeCircleDia: @.2,
TopHeight: 2.3,
CenterCircleDia: 9.2,
DrillDia: @.15,
FilletRadius: .11

Is
timestamp: “16@43@7@92",
- dateObject: {

day: 3,
month: 11,
year: 20820

I
description: "This is a sample part made by the DIME labs CMaaS platform”
I

id: "cBeccc99d44b2@5albab3escefddc251352682eTedf720ebablod33cedet71c8"

Fig. 3. BigchainDB database query result for a sample part made on CMaaS.

information corresponding to an embedded search string or tag
that could be present anywhere within the body of the
information stored in the database. In Figure 3, the result can be
seen as a query that was made using a search string tag of
“DIME” and all the transactions on the BigchainDB which
contained the tag “DIME” anywhere within the body of the
JSON [46] converted information was retrieved. As is evident
from the figure, the BigchainDB database is able to capture
complex data of different types and precision in an immutable
format and this is a direct upshot of the hybrid blockchain
architecture that has been proposed as an improvement in this

paper.

4. Machine learning based inference middleware for
economic Ethereum transactions

Section 3 proposed an indirect solution to carry out
economic Ethereum transactions in CMaaS platforms by
allowing a CMaasS to offload large volume manufacturing data
streams onto BigchainDB nodes instead of on the Ethereum
EVM thereby saving transaction fees. In this section, the
authors wanted to investigate if manufacturing transactions on
such platforms could be further optimized. The goal of this
section was to present a machine learning based inference
middleware that can be proposed to forecast Ethereum
transaction gas price in the future. As has been mentioned
previously, an accurate gas price prediction model would allow
the decentralized CMaaS platform to judiciously assign gas
price limits on upcoming blockchain transactions instead of
using default maximum values that guarantee transaction
mining and acceptance by the miners in the Ethereum network.
Assigning a gas price limit that is not too high from the average
time series trend or nor too low ensures that the transactions
would be mined at economical rates thereby saving cumulative
costs. Since a decentralized CMaaS could see millions of such
transactions happening over the course of time, the need of
such a system is of paramount importance.

800
7; 2
=%
2
3 400
=
o
"
m
© 00

, dund A
2016 2017 2018 2019 2020 2021
Date(UTC)

Fig. 4. Historical time series data of Ethereum gas price.

4.1. Data collection

In order to train machine learning (ML) models on historical
data for time series prediction, there is need of chronological
Ethereum gas price values over a significantly wide time span
such that it allows for the capture of trend and seasonality
patterns by the ML models. The Ethereum foundation has made
daily time series data of past gas price values [47] available
over a period of 4 years and it was this data that was used for
extracting patterns from for the forecasting task. Figure 4
shows a snapshot of this historical time series data of Ethereum
gas price in GigaWei shown along the vertical axis. The time
index of the series starts from a date towards the end of the year
2016 and ends in the year 2020 as represented by the horizontal
axis of the chart.

4.2. Problem framing

Given the time series trend of Ethereum gas prices, the
problem statement of this section was constructed as follows:
“Given recent Ethereum gas price trends, what is the expected
gas price for the week (7 days) ahead?” That means, ML
models that would be able to predict gas price values for at least
7 days into future would be required. Technically, this framing
of the problem is referred to as a multivariate, multi-step time
series forecasting model. This type of a model could be helpful
for the decentralized CMaaS system to do predictions of 7 days
into the future thereby enabling the platform to anticipate and
prepare, much in advance, for any major changes of future gas
price. Quite evidently, the choice of a 7-day prediction window
is a hyperparameter that can be tuned to cater to differing
system needs. For the purpose of this research however, this
value was found to be able to do satisfactory forecasting to
reasonable degree of accuracy.

4.3. Evaluation metric

Based on the assumptions of the model laid out in section
4.2, a forecast of Ethereum gas price would comprise of seven
values, one for each day of the week ahead. It is common for
multi-step forecasting problems to evaluate each time step
separately [48]. This is usually done to contrast the

Mahmud Hasan et al. / Procedia Manufacturing 53 (2021) 594—605 601

performance of different models based on their capabilities at
different lead times. It is always useful to have an error metric
that has the same unit as the feature being predicted.
Consequently, the quintessential continuous regression metric
of Root Mean Square Error (RMSE) was adopted to compare
the forecasting performance of different ML models. To deal
with a single score identifying a model, an average RMSE
value across all the 7 forecast days was evaluated.

RMSE = [*30,(i = ¥i)? (1)

Equation (1) shows the formula for the RMSE metric. It
essentially is used to measure the deviation between the
predicted or forecasted gas price y; and the actual gas price y;.
The smaller the RMSE metric of an ML model on a data point,
the higher is the accuracy of forecast of the model on that data
point.

4.4. Train/Test Subset

The ML training scheme was fashioned after a typical
supervised ML training protocol. The first 3 years’ worth of
data from the time series were used for training the ML models
and the last year of 2020 was used to evaluate the performance
of the models. This was in contrary to how train/test splits are
made on normal datasets where the protocol is to randomly split
the data. It is to be noted that the basis of this problem was time
series data which has temporal structure and hence the
conventional randomly sliced, train/test split is not acceptable.
This is the reason why a train data subset of the first 3 years
was chosen and a subsequent test data subset of the last year
was chosen to make sure the temporal structure of the input
data remains intact. The time series data was divided into
standard weeks. This was a useful way for using the chosen
framing of the model mentioned in section 4.2 where the gas
price for the week ahead could be predicted.

4.5. Walk forward validation

The ML models eventually chosen to be trained on the train
dataset were evaluated using a scheme called walk forward
validation. In this scheme, an ML model being trained is
required to make a prediction in the future over 7 days.
Subsequently, the actual data of those 7 days of the week is
appended to the train set and is made available to the ML
model. This is done so that this new data can now be used as
the basis for making predictions for the subsequent week in the
forecasting window.

4.6. ML model choice and training

In typical ML based time series prediction problems, it is a
norm to first start by training a naive prediction model [49].
The results from such a naive model provide a quantitative idea
as to how difficult the forecasting problem is and also provides
a baseline performance that can be used to compare other, more
complex ML models trained on the same data. Three naive

- daily
180 - weekly
— week-oya

RMSE (GigaWei)
\\\
A

N\

Forecast Days

Figure 5. Performance of Naive forecasting models.

forecasting models were developed as a part of this process.
They are listed down as follows:

e Daily persistence model.
o Weekly persistence model.
o Weekly one year ago persistence model.

The daily persistence model takes the Ethereum gas price
from the last day prior to the period of forecast and uses that
value as the value for each day in the forecast period. Similarly,
the weekly persistence model uses the Ethereum gas price from
the entire prior week as the forecast for the week ahead, and the
weekly one year ago persistence model uses the same week last
year to the predict next week’s gas price. It becomes evident as
to why these models are referred to as naive models. Using
prior days’ or weeks’ values for forecasting would obviously
lead to less than optimum prediction models but acts as a fine
baseline for other models to outperform. Any model
performing worse in terms of RMSE value than the best naive
model can be readily rejected from consideration. A
comparison of the forecasting prediction performance of the
naive models was subsequently performed to choose the final
naive model that would be used as the baseline performer.
Figure 5 shows the average RMSE errors of forecasting
performance for the 3 naive models across a forecasting
window of 7 days. It can be observed that the lowest RMSE
scores were obtained for the daily persistence model across all
days in the forecasting window and hence this model was
eventually chosen as the model with the best baseline
performance. An average RMSE of 77.6 GigaWei was
obtained for the daily persistence model.

A suite of 12 supervised ML algorithms known to be quite
robust for regression forecasting were chosen as candidate
models to be trained on the data. The chosen models included
the lasso regularized polynomial regression [50], the elastic net
regressor [51], the extreme gradient boosted regressor [52], the
decision tree regressor [53], the random forests regressor [54],
the K nearest neighbor regressor [55], the support vector
regressor [56], the extra tree regressor [57], the gradient
boosting regressor [58], the ada-boosted ensemble regressor
[58], 1D convolutional neural network regressor [59] and a
sequence modelled LSTM regressor [60].

Figure 6 shows the neural network architecture for the
prediction model based on the 1D convolutional regressor. It

602 Mahmud Hasan et al. / Procedia Manufacturing 53 (2021) 594—605

input: | [(? 21, 1)]
InputLayer
output: | [(?, 21, 1)]
input: ?,21,1
ConvlD i ()
output: | (?, 19, 16)
Y
) input: | (2, 19, 16)
MaxPoolinglD
output: | (2,9, 16)
A
input: | (2,9, 16
Flatten il ()
output: | (?, 144)
Y
input: | (?, 144)
Dense
output: | (?, 10)
input: | (7, 10)
Dense
output: | (?,7)

Fig. 6. Architecture of the 1D convnet.

can be observed that an input shape of 21 features representing
the past 21 days’ worth of Ethereum gas price values were used
to forecast the next 7 day’s Ethereum gas price represented by
the output dense feature vector of size 7. These were
hyperparameters of the model and the specific values of the
input, output and layer sizes of the neural network were found
after a series of trial and errors that were used to tune the model
to its best possible performance.

Figure 7 shows the neural network architecture of the LSTM
model. This model also takes in a sequence of 21 values of
Ethereum gas prices and uses them to forecast the next set of
values as the output. It is to be noted that the suit of the ML
models chosen did not include more conventional statistical
time series models like the auto regressive moving average
models. This was a conscious decision since such statistical
models are generally parametric and hence are much harder to
tune and train on unconventional time series data with less
profound trend and seasonality features as is the case for the
historical Ethereum gas price data.

input: | [(% 21, 1)]
[(2, 21, 1)]

Istm_2_input: InputLayer

!

input: | (2,21,1)
output: (2, 16)

output:

Istm_2: LSTM

input: | (?, 16)
(2, 10)

dense_17: Dense
output:

input: | (?, 10)

dense_18: Dense
output: | (2, 7)

Fig. 7. Architecture of LSTM network.

5. Results

The proposed hybrid blockchain architecture was
implemented using Ethereum as the blockchain network layer,
L1 and the global BigchainDB test net as the layer L2 with
reference to Figure 2. It was made to communicate in tandem
with a CMaaS manufacturing layer deployed on a Flask [61]
server infrastructure. Oracles encoded within the smart
contracts deployed on L1 allowed the intercommunications
between L1 and L2. It is to be noted that the global BigchainDB
node is a global instance of the database and only retains
information for a certain period of time, apt for testing
purposes. It is a challenging task to accurately assess the
potential computational and financial benefits provided by the
hybrid blockchain architecture introduced in section 3. There
are no standardized means to find a single score that could be
used to assess the improved performance of a decentralized
CMaaS platform after the implementation of the proposed
architecture. However, some insight can be drawn from a
sample data encapsulation by the BigchainDB network layer.
As has been mentioned previously, Figure 3 shows the result of
a complex query made against the BigchainDB database that is
now used to store large volume processing and manufacturing
data. This JSON encoded data shown in the Figure 3 was stored
in the BigchainDB layer after the information was sent by the
client middleware when it was triggered by events emitted by
outbound Ethereum oracles. A cursory measure of performance
could be derived from the calculation of computational steps
i.e. gas units saved from being expended if the information
stored by the JSON data object were otherwise to be stored
directly on the Ethereum network layer instead of on the
BigchainDB layer. The amount of gas units expended is
directly proportional to the size of information encapsulated by
the JSON data object.

Table 1. Ethereum fee schedule for data storage [22].

Name Description Value (Gas) Total Cost
(Gas)

Gsser SSTORE operation cost 20,000

Grxpata Non-zero-byte data cost 68 / byte 80,508

GTRANSACTION Flat transaction cost 21,000

The JSON data object pertinent to the manufacturing
information shown in Figure 3 was found to have a size of 581
bytes. Table 1 shows the Ethereum fee schedule for data
storage [22]. This schedule determines how much gas units are
expended when storing information of a certain size on the
Ethereum network. Each information registration transaction
on the Ethereum network is a function of the three fee elements
shown in Table 1. The total cost of an information storage
operation in terms of total gas units can thus be expressed in
the form of equation 2.

Cost = Gssgr + Grransacrion + Size * Grxpara 2

Using equation 2, the total gas cost for storing the
information encapsulated by the JSON data object directly on
the Ethereum network would have been 80,508 gas units. This
is the amount of the computational steps that can be saved if

Mahmud Hasan et al. / Procedia Manufacturing 53 (2021) 594—605 603

the information can be stored on the BigchainDB layer. The
amount of gas units can easily be converted to fiat currency to
gauge the amount of financial savings. Using the average per
unit gas price of 55 GigaWei for the month of November 2020,
this amounts to a total of around 4,427,940 GigaWei required
for the storage of the information. This value in fiat currency is
equivalent to around $2. While this calculated cost might seem
to appear low, it must be remembered that a decentralized
CMaaS platform would typically execute thousands of such
data storage transactions every day. Additionally, the amount
calculated in this section is under the conservative assumption
that the JSON data object is only 581 bytes. A CMaaS platform
could store manufacturing and process metadata which could
be much larger than 581 bytes. Hence the total computational
and financial cost savings ensuing from the implementation of
this hybrid blockchain architecture can easily grow
exponentially.

Table 2. RMSE comparison of trained ML models with Naive model.

ML Model Test RMSE Naive RMSE
Random Forest 70.6

Extra Tree 72.6

Elastic Net 72.9

Lasso 72.9

LSTM 76.4

XGB 76.5 77.6
KNN 76.7

Gradient Boost 78.7

CNN 80.5

Ada Boost 83.4

Support Vector 89.7

Decision Tree 107.3

To assess how well the trained ML models introduced in
section 4.6 were able to forecast the time series Ethereum gas
price, the performance of the models on the test set were
compared to that of the Naive daily persistence model in terms
of RMSE values. Table 2 shows the RMSE comparison of the
12 models with the Naive daily persistence model. It can be
observed that the best performing model was a Random Forest
regressor model with the least RMSE score of 70.6 on the test
set, which was lower than the naive RMSE of 77.6. The random
forest model was therefore able to forecast Ethereum gas prices
with larger degree of accuracy when compared to the naive
model. This trained random forest model was serialized and
then deployed on the decentralized CMaaS platform server
encapsulated in an inference middleware, so that the client
middleware would then be able to use forecasted gas prices
from this inference middleware to judiciously assign gas price
limits on future Ethereum transactions, thereby leading to
eventual cost savings. The models starting from Gradient
Boosting and ending in Decision Trees had RMSE values
worse than the naive model and hence were rejected from the
available pool of forecasting regressors. Figure 8 shows the
predicted trends forecasted by the top 2 performing models on
the test data set. The trends were overlaid on the actual test data
set for comparison of deviations. It can be observed that the

random forest regressor model does in fact closely resemble the
actual time series trend of the test data set.

--- random forest
-~ actual

RMSE (GigaWei)

--- extra tree
--- actual

RMSE (GigaWei)

Forecast Days

Figure 8. Predicted trends of top 2 ML models overlaid with actual trends.

6. Conclusion

In this paper, the framework of a hybrid blockchain
architecture for an improved decentralized CMaaS platform
was proposed as a continuation of the previous work of the
authors. It was shown that, by integrating a parallel
BigchainDB network of distributed database alongside the
Ethereum blockchain backbone of the decentralized CMaaS,
significant portion of the data storage payload could be
offloaded to the BigchainDB layer. Through the design and
implementation of server based plug-and-play middleware and
outbound Ethereum oracles, large volume manufacturing and
process metadata could be transferred to be stored seamlessly
on the BigchainDB layer without the need of storing data
intensive information onto the Ethereum network through
computationally intensive, high cost transaction processes. The
novel hybrid blockchain architecture comprising of the
aforementioned elements was shown to reduce significant costs
associated with data storage events on Ethereum blockchain
based CMaasS platforms.

In a quest to further reduce costs from manufacturing
transactions on blockchain based CMaaS platforms, a machine
learning based inference middleware was also designed and
deployed as a part of this research. The middleware houses a
trained machine learning model based on the Random Forest
Regressor algorithm that can accurately predict and forecast
Ethereum gas prices. It was shown that the trained prediction
model was able to forecast gas price to reasonable degree of
accuracy with a low RMSE score of 70.6, outperforming a
naive daily persistence model. The ability of the decentralized
CMaaS platform to predict Ethereum gas price allows it to
judiciously assign allowable gas price limit to upcoming
transactions, making sure that they are not too high as is the
case when default modes of transactions are adopted. This
allows the CMaaS platform to autonomously decide when to
broadcast a transaction to the Ethereum network with an aim to
minimize transaction costs. If the Ethereum ecosystem is going

604 Mahmud Hasan et al. / Procedia Manufacturing 53 (2021) 594—605

through a period of relatively higher gas prices, the inference
middleware can temporarily hold the transaction from being
broadcasted so that it can later be released in times of lower gas
prices. This does not pose any additional time restrictions for
quick delivery products in the CMaaS since these fluctuations
of gas prices occur over temporal frequencies in the order of
seconds. Such a system allows the platform to save a significant
amount in terms of mining fees, on thousands of transactions
that occur in blockchain based CMaaS platforms.

The hybrid blockchain architecture proposed in this paper is
enabled by an improved client middleware and Ethereum
oracles. This means, there are several steps involved before
large volume data can make its way to the BigchainDB
network. The inter-communication of different middleware and
time-consuming oracles can introduce unwanted latency if real
time performance is mandated. To conquer this limitation,
there is need of much simpler architectures where there are
lesser number of information exchange steps. The need of a
single, universal blockchain platform with secure asset transfer
models and big data capabilities is thus imperative and remains
an avenue of future research.

Acknowledgements

This work was supported by the National Science
Foundation grant #1764025.

References

[1] Helo, P., Hao, Y., Toshev, R., & Boldosova, V. (2021). Cloud
manufacturing ecosystem analysis and design. Robotics and Computer-
Integrated Manufacturing, 67, 102050.

[2] Li, Y., Tao, F., Cheng, Y., Zhang, X., & Nee, A. Y. C. (2017). Complex
networks in advanced manufacturing systems. Journal of Manufacturing
Systems, 43, 409-421.

[3] Napoleone, A., Macchi, M., & Pozzetti, A. (2020). A review on the
characteristics of cyber-physical systems for the future smart factories.
Journal of Manufacturing Systems, 54, 305-335.

[4] Hasan, M., & Starly, B. (2020). Decentralized cloud manufacturing-as-a-
service (CMaaS) platform architecture with configurable digital assets.
Journal of Manufacturing Systems, 56, 157-174.

[5] Starly, B., Angrish, A., Pahwa, D., Hasan, M., Bharadwaj, A., & Cohen, P.
(2020). Democratizing Innovation through Design Automation,
Manufacturing-As-A-Service Marketplaces and Intelligent Machines.

[6] Custom manufacturing on demand. (n.d.). Retrieved March 01, 2021, from
https://www.xometry.com/

[7]1 The worlds most Intelligent Cnc Factory: Groundbreaking Al (2021,
February 19). Retrieved March 01, 2021, from https://cloudnc.com/.

[8] Helu, M., Hedberg Jr, T., & Feeney, A. B. (2017). Reference architecture
to integrate heterogeneous manufacturing systems for the digital thread.
CIRP journal of manufacturing science and technology, 19, 191-195.

[9] Lubell, J. (2015, August). Extending the cybersecurity digital thread with
XForms. In Balisage: the markup conference.

[10] Sturm, L. D., Williams, C. B., Camelio, J. A., White, J., & Parker, R.
(2017). Cyber-physical vulnerabilities in additive manufacturing systems:
A case study attack on the. STL file with human subjects. Journal of
Manufacturing Systems, 44, 154-164.

[11] Force, J. T., & Initiative, T. (2013). Security and privacy controls for
federal information systems and organizations. NIST Special Publication,
800(53), 8-13.

[12] Thompson, K. (2020, December 11). Digital thread for smart
manufacturing. Retrieved March 01, 2021, from
https://www.nist.gov/programs-projects/digital-thread-smart-
manufacturing.

[13] Lu, Y., Wang, H., Xu, X. "ManuService ontology: a product data model
for service-oriented business interactions in a cloud manufacturing
environment". (2019) Journal of Intelligent Manufacturing, 30 (1), pp. 317-
334.

[14] Fischer K, Rosche P, Trainer A, Feeney AB, Hedberg TD. Investigating
the impact of standards-based interoperability for design to manufacturing
and quality in the supply chain (No. Grant/Contract Reports (NISTGCR)-
15-1009). 2015.

[15] Michaloski, J., Hedberg, T., Huang, H., Kramer, T., & Michaloski, J.
(2016). End-to-end quality information framework (QIF) technology
survey. US Department of Commerce, National Institute of Standards and
Technology.

[16] Yaqoob, L, Salah, K., Uddin, M., Jayaraman, R., Omar, M., & Imran, M.
(2020). Blockchain for digital twins: Recent advances and future research
challenges. IEEE Network, 34(5), 290-298.

[17] Huang, S., Wang, G., Yan, Y., & Fang, X. (2020). Blockchain-based data
management for digital twin of product. Journal of Manufacturing Systems,
54,361-371.

[18] Krima, S., Krima, S., Hedberg, T., & Feeney, A. B. (2019). Securing the
digital threat for smart manufacturing: A reference model for blockchain-
based product data traceability. US Department of Commerce, National
Institute of Standards and Technology.

[19] Arcenegui, J., Arjona, R., & Baturone, 1. (2020, October). Secure
Management of IoT Devices Based on Blockchain Non-fungible Tokens
and Physical Unclonable Functions. In International Conference on
Applied Cryptography and Network Security (pp. 24-40). Springer, Cham.

[20] Kumar, A., Abhishek, K., Nerurkar, P., Ghalib, M. R., Shankar, A., &
Cheng, X. (2020). Secure smart contracts for cloud - based manufacturing
using Ethereum blockchain. Transactions on Emerging
Telecommunications Technologies, e4129.

[21] Lee, J., Azamfar, M., & Singh, J. (2019). A blockchain enabled Cyber-
Physical System architecture for Industry 4.0 manufacturing systems.
Manufacturing Letters, 20, 34-39.

[22] Wood, G. (2014). Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 151(2014), 1-32.

[23] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De
Caro, A., ... & Muralidharan, S. (2018, April). Hyperledger fabric: a
distributed operating system for permissioned blockchains. In Proceedings
of the thirteenth EuroSys conference (pp. 1-15).

[24] Zyskind, G., & Nathan, O. (2015, May). Decentralizing privacy: Using
blockchain to protect personal data. In 2015 IEEE Security and Privacy
Workshops (pp. 180-184). IEEE.

[25] Thomson, G. (2020, July 03). Dapp volume hits $12 billion as Ethereum
dominates. Retrieved November 03, 2020, from
https://decrypt.co/34494/dapp-volume-hits-12-billion-as-ethereum-
dominates.

[26] Lee, T. N. (2017). Traditional firms are opening up to blockchain and its
decentralised apps. LSE Business Review.

[27] Wang, S., Yuan, Y., Wang, X., Li, J., Qin, R., & Wang, F. Y. (2018, June).
An overview of smart contract: architecture, applications, and future trends.
In 2018 IEEE Intelligent Vehicles Symposium (IV) (pp. 108-113). IEEE.

[28] Victor, F., & Liiders, B. K. (2019, February). Measuring ethereum-based
erc20 token networks. In International Conference on Financial
Cryptography and Data Security (pp. 113-129). Springer, Cham.

[29] Entriken, W., Shirley, D., Evans, J., & Sachs, N. (2018). Erc-721 non-
fungible token standard. Ethereum Foundation.

[30] Gervais, A., Karame, G. O., Wiist, K., Glykantzis, V., Ritzdorf, H., &
Capkun, S. (2016, October). On the security and performance of proof of
work blockchains. In Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security (pp. 3-16).

[31] Hirai, Y. (2017, April). Defining the ethereum virtual machine for
interactive theorem provers. In International Conference on Financial
Cryptography and Data Security (pp. 520-535). Springer, Cham.

[32] Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., & Smaragdakis,
Y. (2018). Madmax: Surviving out-of-gas conditions in ethereum smart
contracts. Proceedings of the ACM on Programming Languages,
2(OOPSLA), 1-27.

[33] McConaghy, T., Marques, R., Miiller, A., De Jonghe, D., McConaghy, T.,
McMullen, G., ... & Granzotto, A. (2018). BigchainDB: a scalable
blockchain database. white paper, BigChainDB (2016). Query date, 02-26.

Mahmud Hasan et al. / Procedia Manufacturing 53 (2021) 594—605 605

[34] Mandolla, C., Petruzzelli, A. M., Percoco, G., & Urbinati, A. (2019).
Building a digital twin for additive manufacturing through the exploitation
of blockchain: A case analysis of the aircraft industry. Computers in
Industry, 109, 134-152.

[35] Angrish, A., Craver, B., Hasan, M., & Starly, B. (2018). A case study for
Blockchain in manufacturing: “FabRec”: A prototype for peer-to-peer
network of manufacturing nodes. Procedia Manufacturing, 26, 1180-1192.

[36] Veldhuizen, T. L. (2003). C++ templates are turing complete.

[37] Dannen C. Introducing ethereum and solidity Vol. 1. Berkeley: Apress.;
2017.

[38] Bonnard, R., Hascoét, J. Y., Mognol, P., Zancul, E., & Alvares, A. J.
(2019). Hierarchical object-oriented model (HOOM) for additive
manufacturing digital thread. Journal of Manufacturing Systems, 50, 36-
52.

[39] Lu, Y., & Xu, X. (2019). Cloud-based manufacturing equipment and big
data analytics to enable on-demand manufacturing services. Robotics and
Computer-Integrated Manufacturing, 57, 92-102.

[40] NEM Blockchain. (2021, February 26). Retrieved March 01, 2021, from
https://nem.io/platforms/

[41] Eosio blockchain software & services. (2021, February 25).
Retrieved March 01, 2021, from https://eos.io/

[42] Huang, Y., Wang, H., Wu, L., Tyson, G., Luo, X., Zhang, R., ... & Jiang,
X. (2020). Characterizing eosio blockchain. arXiv preprint
arXiv:2002.05369.

[43] Liu, F., Wang, X., Li, Z., Xu, J., & Gao, Y. (2020, January). Effective
GasPrice Prediction for Carrying Out Economical Ethereum Transaction.
In 2019 6th International Conference on Dependable Systems and Their
Applications (DSA) (pp. 329-334). IEEE.

[44] Kiffer, L., Levin, D., & Mislove, A. (2017, November). Stick a fork in it:
Analyzing the ethereum network partition. In Proceedings of the 16th ACM
Workshop on Hot Topics in Networks (pp. 94-100).

[45] Adler, J., Berryhill, R., Veneris, A., Poulos, Z., Veira, N., & Kastania, A.
(2018, July). Astraea: A decentralized blockchain oracle. In 2018 IEEE
International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (pp.
1145-1152). IEEE.

[46] Introducing JSON. (n.d.). Retrieved November 08, 2020, from
https://www.json.org/json-en.html

[47] Historical Ethereum Gas Price Values. (n.d.). Retrieved November 08,
2020, from https://etherscan.io/chart/gasprice

[48] Brownlee, J. (2018). Deep learning for time series forecasting predict the
future with MLPs, CNNs and LSTMs in Python. Machine Learning
Mastery Publishers, Melbourne, Australia.

[49] Akpinar, M., & Yumusak, N. (2017). Naive forecasting of household
natural gas consumption with sliding window approach. Turkish Journal of
Electrical Engineering & Computer Sciences, 25(1), 30-45.

[50] Owen, A. B. (2007). A robust hybrid of lasso and ridge regression.
Contemporary Mathematics, 443(7), 59-72.

[51] Zou, H., & Hastie, T. (2005). Regularization and variable selection via the
elastic net. Journal of the royal statistical society: series B (statistical
methodology), 67(2), 301-320.

[52] Chen, T., He, T., Benesty, M., Khotilovich, V., & Tang, Y. (2015).
Xgboost: extreme gradient boosting. R package version 0.4-2, 1-4.

[53] Dobra, A. (2002). Classification and regression tree construction.
Retrieved September, 18, 2011.

[54] Gromping, U. (2009). Variable importance assessment in regression:
linear regression versus random forest. The American Statistician, 63(4),
308-319.

[55] Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia, 4(2), 1883.

[56] Drucker, H., Burges, C. J., Kaufman, L., Smola, A. J., & Vapnik, V.
(1997). Support vector regression machines. In Advances in neural
information processing systems (pp. 155-161).MIT Press.

[57] Ahmad, M. W., Reynolds, J., & Rezgui, Y. (2018). Predictive modelling
for solar thermal energy systems: A comparison of support vector
regression, random forest, extra trees and regression trees. Journal of
cleaner production, 203, 810-821.

[58] He, H., Yang, Y., & Pan, Y. (2019). Machine learning for continuous
liquid interface production: Printing speed modelling. Journal of
Manufacturing Systems, 50, 236-246.

[59] Kucukoglu, I., Atici-Ulusu, H., Gunduz, T., & Tokcalar, O. (2018).
Application of the artificial neural network method to detect defective
assembling processes by using a wearable technology. Journal of
manufacturing systems, 49, 163-171.

[60] Zhang, J., Wang, P., Yan, R., & Gao, R. X. (2018). Long short-term
memory for machine remaining life prediction. Journal of manufacturing
systems, 48, 78-86.

[61] Grinberg, M. (2018). Flask web development: developing web
applications with python. " O'Reilly Media, Inc.".

