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We report on critical phenomena in the gravitational collapse of electromagnetic waves. Generalizing
earlier results that focused on dipole electromagnetic waves, we compare here with quadrupole waves in
axisymmetry. We perform numerical simulations of dipole and quadrupole wave initial data, fine tuning
both sets of data to the onset of black hole formation in order to study the critical solution and related
critical phenomena. We observe that different multipole moments have different symmetries, indicating
that the critical solution for electromagnetic waves cannot be unique, at least not globally. This is confirmed
in our numerical simulations: while dipole data lead to a single center of collapse, at the center of symmetry,
quadrupole data feature two separate centers of collapse on the symmetry axis, above and below the center
of symmetry—reminiscent of similar findings reported for critical collapse of vacuum gravitational waves.
While the critical solution for neither the dipole nor the quadrupole data is exactly self-similar, we find that
their approximate echoing periods appear to differ, as do the critical exponents. We discuss whether the
centers of collapse found for dipole and quadrupole data might all have the same properties, which would
suggest a “local uniqueness” of the critical solution. Instead, we provide some evidence—including the
differing echoing periods and critical exponents—suggesting that the critical solutions are distinct even
locally. We speculate on the implications of our findings for critical phenomena in the collapse of vacuum
gravitational waves, which share with electromagnetic waves the absence of a spherically symmetric
critical solution.

DOI: 10.1103/PhysRevD.103.124048

I. INTRODUCTION

Critical phenomena in gravitational collapse were first
reported in the seminal work of Choptuik [1], who studied
massless scalar fields, minimally coupled to gravity, in
spherical symmetry. Considering families of initial data
parametrized by some parameter η, Choptuik distinguished
subcritical data, which ultimately disperse to infinity,
leaving behind flat space, from supercritical data, which
collapse to form a black hole. Reminiscent of similar effects
in other fields of physics and beyond, Choptuik observed
critical phenomena close to the critical parameter η⋆ that
separates subcritical from supercritical data, and hence
marks the threshold of black hole formation. Specifically,
Choptuik noted that the black hole mass found in super-
critical evolutions scales with

MBH ≃ ðη − η⋆Þγ; ð1Þ

where γ is the critical exponent, and that, close to criticality,
the initial data evolve to approach a self-similar critical
solution. Choptuik found the critical exponent and the
critical solution to be unique in his simulations of massless
scalar fields, i.e., independent of the initial data or their
parametrization.

Inspired by Choptuik’s discovery, numerous authors have
studied similar phenomena in the gravitational collapse of
othermattermodels, for different asymptotics, or relaxing the
assumption of spherical symmetry (see, e.g., Ref. [2] for a
review). This body of work has resulted in a heuristic
understanding of critical phenomena, at least in the context
of spherical symmetry. The critical exponent and the critical
solution depend on the matter model but are unique for each
matter model. Depending on the matter model, the critical
solution can be eitherdiscretely self-similar (DSS, e.g., scalar
fields) or continuously self-similar (e.g., perfect fluids; see
Ref. [3] for an example). The scaling law (1) can then be
understood from perturbations of the self-similar critical
solution; in particular, the critical exponent γ is given by the
inverse of theLyapunovexponent of thoseperturbations (see,
e.g., Refs. [4,5]). As pointed out by Ref. [6], similar scaling
applies to all dimensional, global quantities characterizing
the evolution; based on dimensional arguments, the maxi-
mum energy density encountered in subcritical evolutions,
for example, scales with

ρmax ≃ ðη⋆ − ηÞ−2γ ð2Þ

[we have assumed in both Eqs. (1) and (2) that η > η⋆
corresponds to supercritical data]. It has also been noted that,
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for matter models that display a DSS critical solution, the
oscillations in the critical solution are reflected by a periodic
“wiggle” that is superimposed on the scaling laws (1) and (2)
(see Refs. [7,8]).
The situation is less clear in the absence of spherical

symmetry. Studying critical collapse of scalar fields, for
example, the authors of Ref. [9] found that aspherical
deformations may trigger an aspherical unstable mode that
leads to a “bifurcation” of the critical solution—a result that
was later confirmed by Ref. [10]. Note that the existence of
this instability does not seem to contradict Ref. [11], which
used a linear perturbation analysis to show that all
nonspherical modes are stable, since the instability appears
only for large deformations, well in the nonlinear regime
(see Ref. [10]). For sufficiently stiff ultrarelativistic fluids,
unstable aspherical modes exist even in the linear regime
(see Refs. [12,13]).
For the above examples of scalar fields and fluids, there

exists a spherically symmetric critical solution, so that there
is at least a limit in which the critical behavior is well
understood. This is no longer the case for matter models
that do not allow spherically symmetric solutions. The most
important example is the critical collapse of gravitational
waves in the absence of any matter, which we expect to
display properties of gravity alone. While critical phenom-
ena in this vacuum collapse were first reported by
Refs. [14,15], it has been very difficult to reproduce these
results (see, e.g., Table I in Ref. [16] for a summary of
various different attempts). Significant progress was made
by Ref. [17], who evolved so-called Brill wave initial data
(see Ref. [18]), found a critical exponent similar to the
value of γ ≃ 0.37 reported by Ref. [14] but found no
convincing evidence of self-similarity. Moreover, Ref. [17]
found a bifurcation, reminiscent of that reported by
Refs. [9,10], with two separate black holes forming away
from the center. Quite recently, this result was confirmed by
Ref. [19], which considered both Brill and (nonlinear)
Teukolsky waves (see Ref. [20]) as initial data. Moreover,
Ref. [19] found that these different initial datasets lead to
different behavior near the black hole threshold (in agree-
ment with the discussion of Ref. [16]) and report different
critical exponents for the different families of initial data.
The authors of Ref. [19] also report that they do not observe
a universal self-similar solution in the limit of criticality.
All of this suggests the absence of a universal, strictly self-
similar critical solution for the collapse of vacuum gravi-
tational waves.
Suspecting that properties of critical phenomena in the

collapse of gravitational waves are related to the absence of
a spherically symmetric critical solution, Ref. [21] (here-
after BGH) studied critical collapse of electromagnetic
waves. Electromagnetic waves share with gravitational
waves the absence of spherically symmetric solutions,
but they share with scalar fields a very similar form of
the evolution equations. Since experience shows that the

latter are easier to handle numerically than the former,
electromagnetic waves provide a useful framework for
exploring critical phenomena in the absence of spherical
symmetry. Focusing on dipole waves, BGH found an
approximately DSS critical solution but reported that this
self-similarity is not exact. Moreover, despite the restriction
to dipole waves, BGH found that this critical solution can at
best be approximately universal.
In this paper, we generalize the results of BGH and study

gravitational collapse of electromagnetic waves with differ-
ent multipole moments. We argue that the symmetry of
different multipole solutions alone rules out the existence of
a unique critical solution, at least globally. We then perform
numerical simulations to fine tune families of dipole and
quadrupole data to the onset of black hole formation.
Unlike the dipole families previously considered by BGH,
we find that the quadrupole data result in a bifurcation very
similar to that reported by Refs. [17,19] for gravitational
waves, with two centers of collapse forming on the axis but
away from the center—confirming our expectation that the
critical solution cannot be unique. Because of this bifurca-
tion, it is significantly harder to analyze the properties of
the quadrupole solutions than those of dipole solutions,
both numerically and conceptually. Accordingly, some of
our results are of a qualitative rather than quantitative
nature, but we nevertheless believe that our study provides
interesting and important insights into the effects of multi-
poles on critical phenomena in gravitational collapse.
Our paper is organized as follows. In Sec. II, we review

Maxwell’s equations and provide analytical solutions
describing electromagnetic waves in flat Minkowski space-
times. In Sec. III, we describe our numerical simulations,
starting with initial data based on the analytical solutions of
Sec. II C. We present our numerical results in Sec. IV and
close with a summary and discussion in Sec. V. Throughout
this paper, we adopt geometrized units with G ¼ 1 ¼ c.

II. ELECTRODYNAMICS

A. 3 + 1 decomposition of spacetime

In our calculations, we adopt a “3þ 1” decomposition of
spacetime and write the line element as

ds2 ¼ gabdxadxb ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ:
ð3Þ

Here, gab is the spacetime metric, α is the lapse function, γij
is the spatial metric induced on spatial slices, and βi is the
shift vector. We adopt the convention that indices a; b;…
run over spacetime components, while indices i; j;… run
over spatial components only. In terms of the lapse and the
shift, the unit vector na normal on the spatial slices can be
written as

na ¼ ð−α; 0; 0; 0Þ; na ¼ α−1ð1;−βiÞ: ð4Þ
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The mean curvature K ¼ γijKij, i.e., the trace of the
extrinsic curvature Kij, can be written as the negative
divergence of the normal vector,

K ¼ −∇ana; ð5Þ

where ∇a denotes the covariant derivative associated with
the spacetime metric gab.

B. Maxwell’s equations

We express Maxwell’s equations in terms of a vector
potential Aa, so that the Faraday tensor can be written as

Fab ¼ ∇aAb −∇bAa: ð6Þ

In terms of the Faraday tensor, the stress-energy tensor of
the electromagnetic fields is given by

Tab ¼ 1

4π

!
FacFb

c −
1

4
gabFcdFcd

"
: ð7Þ

Without loss of generality, we may choose an electro-
magnetic gauge in which Φ≡ naAa ¼ 0, so that Aa
becomes purely spatial. In the absence of charges,
Maxwell’s equations may then be written as

dtAi ¼ −αEi ð8aÞ

dtEi ¼ −DjðαDjAiÞ þDjðαDiAjÞ þ αKEi; ð8bÞ

together with the Gaussian constraint

DiEi ¼ 0: ð9Þ

Here, Ea ¼ Fabnb is the electric field as observed by a
normal observer, Di is the covariant derivative associated
with the spatial metric γij, and dt ≡ ∂t − Lβ, where Lβ

denotes the Lie derivative along βi. In terms of these
quantities, we may rewrite the Faraday tensor (6) as

Fab ¼ DaAb −DbAa þ naEb − nbEa: ð10Þ

The magnetic field as observed by a normal observer is
given by

Ba ¼ 1

2
ϵabcdnbFdc; ð11Þ

where ϵabcd is the spacetime Levi-Civita tensor, or the more
familiar expression

Bi ¼ ϵijkDjAk; ð12Þ

where ϵabc ≡ ndϵdabc is the spatial Levi-Civita tensor.
Note that both Ea and Ba are purely spatial, naEa ¼ 0
and naBa ¼ 0.

We compute the energy density ρ as measured by a
normal observer from

ρ≡ nanbTab ¼ 1

8π
ðEiEi þ BiBiÞ ð13Þ

and the momentum density, i.e., the Poynting vector, from

Si ≡ −γianbTab ¼
1

4π
ϵijkEjBk: ð14Þ

Throughout this paper, we will assume axisymmetry,
which, in adapted coordinates, is generated by a Killing
vector field ξa ¼ ∂=∂φ. In twist-free axisymmetry (see
Ref. [22]), we can then reduce Maxwell’s equations (8) to a
single wave equation for Aφ ≡ ξaAa and its conjugate
variable Eφ.
All solutions that we discuss are also either symmetric or

antisymmetric across the equatorial plane, which singles
out a well-defined central observer. We note that the density
ρ in (13) depends on the slicing of the spacetime (but not on
the spatial coordinates) except at the center, where the
central observer represents a preferred normal observer.

C. Electromagnetic waves in flat spacetimes

In the absence of gravity, i.e., in flat spacetimes, we may
adopt the Minkowski metric in Maxwell’s equations (8), so
that α ¼ 1, βi ¼ 0, and K ¼ 0 and so that all covariant
derivatives reduce to their usual flat expressions (in
Cartesian coordinates, in particular, they reduce to partial
derivatives). We may then derive regular analytical solu-
tions to Maxwell’s equations, representing electromagnetic
waves of different multipole moments l, as discussed in
Appendix. In the following, we list results for dipole,
quadrupole, and octupole waves that feature a moment of
time symmetry at t ¼ 0.

1. Dipole waves

In spherical polar coordinates, an analytical dipole
solution, i.e., for l ¼ 1, is given by Ar̂ ¼ Aθ̂ ¼ 0 and

Aφ̂ ¼ A sin θ
!
e−u

2 − e−v
2

ðr=σÞ2
þ 2ue−u

2 − 2ve−v
2

r=σ

"
; ð15Þ

where A is a dimensionless amplitude, σ is a constant with
units of length, and we have introduced the dimensionless
abbreviations

u ¼ r − t
σ

; v ¼ rþ t
σ

: ð16Þ

Note also that we have expressed (15) in terms of an
orthonormal vector component, denoted by the hat;
the corresponding orthonormal basis vector is eφ̂ ¼
ðr sin θÞ−1∂=∂φ. Here and in the following, physical units
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enter through the constant σ only, and we will therefore
express all dimensional results in units of σ.
We can compute the electric field Ei corresponding to the

solution (15) from (8a); evaluating the result at the initial
time t ¼ 0 yields

Eφ̂ ¼ −8A
r sin θ
σ2

e−ðr=σÞ
2 ðt ¼ 0Þ: ð17Þ

We can similarly compute the magnetic field Bi for the
solution (15) from (12). Expanding Ai and Ei about the
center shows that, to leading order, both are linear in r
there. The magnetic field of the dipole wave (15), however,
takes a nonzero value at the center. As a result, the energy
density (13) of the dipole wave (15) also does not vanish at
the center,

ρ ¼ 32A2

9π
t2ð3σ2 − 2t2Þ2

σ8
e−2ðt=σÞ

2 ðr ¼ 0Þ: ð18Þ

In fact, in our numerical simulations of dipole waves, even
when coupled to gravity, we encounter the largest densities
at the center (see Fig. 6 below).
Finally, note that Ai and Ei for the dipole solution are

symmetric across the equator, as can be seen from Eqs. (15)
and (17) above.

2. Quadrupole waves

An analytical l ¼ 2 quadrupole solution to Maxwell’s
equations (8) in flat spacetimes is given by

Aφ̂ ¼ A sin θ cos θ
#
e−u

2 − e−v
2

ðr=σÞ3
þ 2ue−u

2 − 2ve−v
2

ðr=σÞ2

þ 4u2e−u
2 − 4v2e−v

2 − 2e−u
2 þ 2e−v

2

3r=σ

$
; ð19Þ

We again compute the electric field from (8a) to find, at the
initial time t ¼ 0,

Eφ̂ ¼ −
16A
3

r2 sin θ cos θ
σ3

e−ðr=σÞ
2 ðt ¼ 0Þ: ð20Þ

Expanding Ai and Ei about the center shows that, to leading
order, the quadrupole fields are now quadratic in r, while
the magnetic field, computed from (12), is now linear in r.
Accordingly, the energy density of the quadrupole wave
(19) vanishes identically at the center. This is consistent
with results from our numerical simulations of quadrupole
waves, even when they are coupled to gravity, where we
encounter the maximum densities on the symmetry axis,
but away from the center (see Fig. 6 below).
Note also that Ai and Ei for the quadrupole solution (19)

and (20) are antisymmetric across the equator, unlike the
dipole solution (15), which was symmetric (see Fig. 3
below). Since these symmetries are maintained even when

the solutions are coupled to gravity, as we verified numeri-
cally,1 this finding alone indicates that the critical solution
for quadrupole waves cannot be the same as that for dipole
waves. This argument alone demonstrates that the critical
solution for the gravitational collapse of electromagnetic
waves cannot be unique, at least not globally.

3. Octupole waves

While we will focus on dipole and quadrupole waves in
our numerical simulations, we briefly discuss an l ¼ 3
octupole solution to Maxwell’s equations (8) in flat space-
times,

Aφ̂ ¼ Að5cos2θ − 1Þ sin θ
#
e−u

2 − e−v
2

ðr=σÞ4

þ 2ue−u
2 − 2ve−v

2

ðr=σÞ3

þ 8u2e−u
2 − 8v2e−v

2 − 4e−u
2 þ 4e−v

2

5ðr=σÞ2

þ 8u3e−u
2 − 8v3e−v

2 − 12ue−u
2 þ 12ve−v

2

15r=σ

$
; ð21Þ

in order to highlight some qualitative difference from both
the dipole and the quadrupole data. As before, we compute
the electric field from (8a); evaluating the result for the
initial time t ¼ 0 yields

Eφ̂ ¼ −
32A
15

r3ðcos θ2 − 1Þ sin θ
σ5

e−ðr=σÞ
2 ðt ¼ 0Þ: ð22Þ

Expanding the fields about the center shows that Ai and Ei

now scale with r3 there, and Bi scales with r2, so that the
energy density again vanishes at the center. Note also that
octupole waves are again symmetric across the equator. We
see that octupole waves differ qualitatively from both
dipole waves (in terms of the location of the maximum
densities) and quadrupole waves (in terms of the sym-
metry). Therefore, we also expect the corresponding critical
solutions for octupole waves to be different from both
dipole and quadrupole waves—again at least globally.

III. NUMERICS

While we can describe electromagnetic waves in flat
spacetimes analytically, this is no longer possible, of
course, in curved spacetimes, when we take into account
the self-gravity of the electromagnetic radiation. Instead,
we construct such solutions to the Einstein-Maxwell

1Note that the electromagnetic fields enter the stress-energy
tensor quadratically, so that the sources for the gravitational fields
are symmetric for either symmetric or antisymmetric electro-
magnetic fields.
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system numerically, adopting the approach described in this
section.

A. Initial data

We construct initial data that are time symmetric (i.e.,
Kij ¼ 0) and conformally flat (i.e., γij ¼ ψ4ηij, where ψ is
the conformal factor and ηij the flat metric). As our initial
data for the electromagnetic fields, we adopt expressions
that reduce to those of Sec. II C, evaluated at t ¼ 0, in the
limit of weak fields. Specifically, we choose Ai ¼ 0
initially, so that, according to (12), Bi ¼ 0 also. This
means that the momentum density (14) of the electromag-
netic fields vanishes initially and that the momentum
constraint is satisfied identically.
This leaves us with having to solve the Hamiltonian

constraint

D̄2ψ ¼ −2πψ5ρ ð23Þ

only, where D̄2 is the flat Laplace operator and ρ is the
energy density (13). We solve this equation iteratively as
follows. In order to help with the convergence of this
iteration, we adopt as the initial electric fields not the
expressions (17), (20), and (22) themselves but rather those
expressions divided by ψ6 (see also BGH). In practice, we
start with an initial guess for ψ, then compute the electric
field given our choice of the amplitude A, evaluate the
density ρ from (13), and then solve the Hamiltonian
constraint (23) for a new conformal factor ψ. We repeat
the process until convergence to within a desired tolerance
has been achieved. For weak electromagnetic fields, we
have ψ → 1, so that our numerical solutions approach the
analytical solutions of Sec. II C in this regime.
In the absence of gravity, electrodynamics is linear,

which allowed the identification of well-defined multipole
moments in Sec. II C. In the context of general relativity,
however, different multipole moments will couple to each
other through the nonlinearities in Einstein’s equations.
Since Einstein’s equations preserve the symmetry across
the equator, we expect that modes of odd (even) l will be
coupled to other modes of odd (even) l only. In the
following, we will still refer to “dipole” and “quadrupole”
waves, expecting that our data will be dominated by the
corresponding multipole but understanding that nonlinear
coupling introduces other multipoles as well.

B. Evolution

We evolve our initial data using a numerical code that
implements the Baumgarte-Shapiro-Shibata-Nakamura for-
malism [23–25] in spherical polar coordinates. Details of
our numerical approach are described in Refs. [26,27]; in
particular, we use a reference-metric formalism (see, e.g.,
Refs. [28–31]) together with an appropriate rescaling of all
tensorial variables to handle the coordinate singularities at

the origin and on the axis analytically. All spatial deriv-
atives are evaluated using a fourth-order finite-difference
method. The latest version of our code, which we have also
used in BGH, adopts a fourth-order Runge-Kutta time
integrator rather than the “partially implicit Runge-Kutta”
method described in Ref. [26] (see, e.g., Fig. 3 in BGH for a
demonstration of fourth-order convergence).
As discussed in BGH, we evolve the electromagnetic

fields in terms of rescaled variables aφ ≡ Aφ=ðr sin θÞ
and eφ ≡ r sin θEφ.
A new feature in our simulations here concerns the

allocation of the radial grid points. Following Ref. [32], the
radial grid is constructed by mapping a uniform grid in a
variable x, covering the interval [0, 1], to our radial variable
r ¼ rðxÞ, covering the interval ½0; rmax&. We now adopt the
function

r ¼ rmax

1þ A

!
sinhðspxÞ
sinh sp

þ A
tanhðtpxÞ
tanh tp

"
ð24Þ

for this mapping, where sp, A, and tp are dimensionless
parameters. For dipolar waves, which result in collapse at
the origin, we choose A ¼ 0 and sp ¼ 6.57, resulting in the
same “sinh” grid setup as used in BGH: it allows for a high,
nearly uniform resolution near the origin but an increas-
ingly coarse, approximately logarithmic resolution at large
separations from the origin. For higher multipole moments,
for which we observe collapse away from the origin, this
resulted in unnecessarily high resolution near the origin,
and hence an unnecessarily short timestep. We therefore
added the “tanh” term in (24), which makes it possible to
construct a grid that is relatively coarse at the origin,
becomes finer at some distance from the origin, but then
becomes approximately logarithmic again at large separa-
tions. For our simulations of the quadrupole waves, we
adopted sp ¼ 6, A ¼ 0.0015, and tp ¼ 50. All results
shown in Sec. IV for the quadrupole waves were performed
with Nr ¼ 256 radial grid points and the outer boundary at
rmax ¼ 128 (in units of σ), with Nθ ¼ 48 angular grid
points (covering one hemisphere), and with a Courant
factor of 0.4.
We evolve the fields using the “1þ log” slicing con-

dition

ð∂t − βi∂iÞα ¼ −2αK ð25Þ

(see Ref. [33]), starting with the “precollapsed” lapse α ¼
ψ−2 as initial data. We note that, in the simulations of
Refs. [10,13], the 1þ log slicing condition resulted in
spatial slices that reflect the symmetry of the self-similar
critical solutions. On such preferred slices, slicing-
dependent quantities take on invariant meanings; in the
following, we will therefore assume that the density ρ,
defined in (13), provides an adequate diagnostic of our
simulations. As discussed in BGH, the “Gamma-driver”
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shift condition did not allow us to obtain stable evolution
close to the onset of black hole formation. Using zero shift,
however, we were able to complete subcritical solutions
close to the black hole threshold. In all simulations
presented here, we will therefore use zero shift and will
focus on subcritical solutions only.

IV. RESULTS

A. Minimum lapse and maximum density

We start our analysis by bracketing the critical param-
eters A⋆ for different multipoles. In Fig. 1, we show results
for the lapse function α as a function of proper time τ for
pairs of data bracketing the critical solution, for both dipole
and quadrupole waves. Here and in the following, we refer
to proper time as that as measured by an observer at the
center. The faint lines in the figure represent values of the
lapse as measured by this central observer, while the dark
lines represent minimum values of the lapse on spatial
slices, i.e., on slices with the same coordinate time as that
of the central observer.
For subcritical data, the lapse function approaches unity

at late times, as the wave disperses and leaves behind flat
space. For supercritical data, on the other hand, the lapse
drops to zero at late times. While the lapse is a coordinate-
dependent quantity, other simulations of critical collapse

with 1þ log slicing have shown that such a “collapse of the
lapse” is indeed indicative of black hole formation (see,
e.g., Refs. [10,16,34], compare also with Ref. [35]).
Note from Fig. 1 that, for dipole waves, the dark and

faded lines overlap for most of the evolution, indicating that
the lapse takes its minimum value at the center (see also
Fig. 5 below). This is consistent with the findings of BGH,
which provided evidence for a critical solution with an
accumulation point at the center for dipole waves. For most
of the quadrupole evolution, however, the lapse takes a
minimum away from the center, including during the
collapse of the lapse for supercritical solutions. This is a
first suggestion that, for multipole moments higher than
dipoles, centers of collapse form away from the center—
similar to the “bifurcations” reported by Refs. [9,10,17,19].
This finding may not be surprising, since we might expect
centers of collapse at the locations of the highest densities.
For dipoles, these can be found at the center, but for higher
multipole waves, the energy density ρ vanishes at the center
(see Sec. II C).
Fine tuning the dipole data to about 11 digits results in

quite short oscillation periods late in the evolution (see the
top panel in Fig. 1), indicating that the evolution follows
the critical solution until quite close to the accumulation
event. Fine tuning the quadrupole data to the same number
of digits, on the other hand, does not result in nearly as
short oscillation periods (see the bottom panel in Fig. 1),

FIG. 1. The lapse function α as a function of proper time τ as
observed by an observer at the center, for dipole waves (l ¼ 1) in
the top panel and quadrupole waves (l ¼ 2) in the bottom panel.
The dark lines represent the minimum values of the lapse on
spatial slices with the same coordinate time as that of the central
observer, while the faint lines represent values of the lapse at the
center, both for subcritical solutions (the solid red lines) and
supercritical solutions (the dashed green lines). Note that, for
most of the evolution, the minimum values of the lapse are found
at the center for the dipole waves but away from the center for
quadrupole waves. The solid vertical (orange) lines mark the
times of the snapshots shown in Figs. 3 through 6; Figs. 8 and 9
include an additional snapshot at the time marked by the dashed
vertical line.

FIG. 2. The density ρ [see Eq. (13)] as a function of the “slow
time” (26) for the subcritical solutions shown in Fig. 1. We show
results for dipole waves (l ¼ 1) in the top panel and quadrupole
waves (l ¼ 2) in the bottom panel. For dipole data, we have
included both the maximum values on a given slice of constant
coordinate time (the dark lines) and values at the center (the faint
lines), while for quadrupole waves, we have included the former
only, since the density vanishes identically at the center (see the
discussion in Sec. II C 2). The dotted (blue) lines show the
exponential growth e2T expected for the density in a self-similar
contraction, while the solid (dashed) vertical (orange) lines
indicate the times of the snapshots shown in Figs. 3 through 6
(as well as Figs. 8 and 9).
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meaning that the solution remains significantly further
away from the accumulation event. For the dipole data,
we can therefore estimate the proper time of the accumu-
lation event rather accurately, τdip⋆ ≃ 5.66, but for the
quadrupole data, this is much more difficult. In the
following, we will adopt the value τquad⋆ ≃ 29.5, which
resulted in scaling behavior close to that expected for self-
similar contraction (see Figs. 2, 8, and 9). We caution,
however, that this estimate is rather crude and that the
relative error in this value may be as large as 10% or so;
similar uncertainties affect all other values that we report in
the following.
In Fig. 2, we show the maximum and central density ρ

[see Eq. (13)] as a function of the slow time

T ≡ − logðτ⋆ − τÞ þ T0; ð26Þ

where τ is again the proper time of an observer at the origin
andwherewehave chosen the arbitrary offsetT0 tovanish for
the dipole data and T0 ¼ 2 for the quadrupole data. We note
that there is some ambiguity in how to best define T when the
centers of collapse are not at the origin; as an alternative to
adopting the proper time of an observer at the origin, one
could consider an observer whose worldline passes through
those centers (see also the discussion in Ref. [19]). The
dotted lines in Fig. 2 represent curves proportional to
e2T ∝ ðτ⋆ − τÞ−2, and hence the expected growth rate of
the density in a self-similarly contracting solution.

FIG. 3. Snapshots of the vector potential Aξ [see Eq. (27)] for a near-critical evolution at the instants marked by the solid vertical lines
in Figs. 1 and 2. We show results for dipole data in the left column and quadrupole data in the right column. Note that the dipole data are
symmetric across the equator, while the quadrupole data are antisymmetric (see also the discussion in Secs. II C 1 and II C 2).
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As observed already by BGH, the evolution for dipole
data is consistent with an approximate DSS critical sol-
ution; while this self-similarity is certainly not exact, the
maxima in the density grow approximately at the expected
rate e2T , and it is possible to identify Δdip ≃ 0.55 as an

approximate echoing period of the DSS critical solution.2

While departures from an exact self-similarity are even
larger for the quadrupole data, we again observe an overall
growth that is not inconsistent with the expected rate.
Moreover, we can again identify a dominant oscillation in
the quadrupole data and can estimate these oscillations to
have a period of approximately Δquad ≃ 0.3. It is difficult to
determine this period of the DSS critical solution accu-
rately, not only because of the departures from an exact
periodicity, but also because of the ambiguities in the
definition of the slow time (26) that we discussed above and
because we can determine τquad⋆ only crudely. Despite these
uncertainties, our findings suggest that the period Δquad is
shorter than Δdip, possibly by a factor of 2.

B. Profiles

We next show profiles of some characteristic functions
for near-critical evolutions at the times marked by the solid
vertical (orange) lines in Figs. 1 and 2, i.e., at times at
which the maximum density ρmax on a spatial slice takes a
(local) maximum in time. In Figs. 3, 5, and 6, we compare
profiles for dipole data in the left column with those for
quadrupole data in the right column.
We start in Fig. 3 with profiles of the vector potential.

Specifically, we show profiles of the gauge-invariant
quantity

Aξ ≡ ξaAa

ðξaξaÞ1=2
¼

Aφ

gφφ
; ð27Þ

which is formed from the vector potential Aa and the
Killing vector generating axisymmetry, ξa. For the dipole
data in the left column, the vector potential is symmetric
across the equator (shown as the x axis; see Sec. II C 1) and
takes a maximum there, while for the quadrupole data in the
right column, it is antisymmetric across the equator (see
Sec. II C 2). For the quadrupole data, Aξ vanishes on the
equator and on both the symmetry axis (shown as the z
axis); note that this results in large gradients close to the
symmetry axis at late times.
As a different way of presenting the same data, we also

show contour plots of Aξ in Fig. 4. In this plot, dashed lines
represent contours of the dipole waves, while solid lines
represent contours of quadrupole waves. Each panel in the
figure represents the data in the corresponding row of
Fig. 3. While it is not clear how exactly to identify a
particular instant of the dipole evolution with one of the
quadrupole evolution, the three chosen times appear to
represent the respective evolutions at similar stages—at
least in terms of the spatial coordinates chosen in our
simulations.

FIG. 4. Equidistant contours of the vector potential Aξ at the
three different times shown in Fig. 3. Here the top (middle,
bottom) panel corresponds to the two times shown in the top
(middle, bottom) row of Fig. 3. Solid lines mark contours for the
quadrupole data in the right column of Fig. 3, while dashed lines
mark those for the dipole data in the left column.

2Recall that the density ρ is quadratic in the dynamical field Aξ
and that the periodicity refers to that of the latter.
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In Fig. 5, we show profiles of the lapse function α, again
for near-critical evolutions. As expected from Fig. 1, the
lapse takes its minimum value at the center for the dipole
data shown in the left column,while it takes aminimumvalue
away from the center for the quadrupole data in the right
column. Note also that the minima become sharper at later
times, which is consistent with a self-similar contraction.
Finally, we show profiles of the density ρ in Fig. 6.

Consistent with our earlier observations, we notice that the
density takes its maxima at the center for dipole data and
away from the center, on the symmetry axis, for quadrupole
data. As expected, the values of these maxima increase as
time advances, and the density profiles become increas-
ingly sharp. The spherical polar coordinates of our code are
ideally suited to resolve the density peaks when they occur
at the center, i.e., for the dipole data. They are not well
suited, however, to resolve density peaks away from the

center, as for the quadrupole data. Evidently, the numerical
resolution of those peaks becomes increasingly poor in our
simulations.

C. Scaling

In Fig. 7, we graph the (global) maximum densities
ρmax encountered in simulations for given amplitudes A of
the initial data [see Eqs. (17) and (20)], versus A⋆ −A,
where A⋆ is the approximate critical value. In Fig. (2),
we have adopted Adip

⋆ ≃ 0.91295765109 and Aquad
⋆ ≃

3.533437407467. We also included, as the dotted lines,
the expected power-law scaling

ρmax ≃ ðA⋆ −AÞ−2γ ð28Þ

[see Eq. (2)], with fitted values of γdip ¼ 0.145 (see BGH)
and γquad ¼ 0.11.

FIG. 5. Same as Fig. 3, but for the lapse function α.
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For critical solutions that are DSS, one would expect a
periodic wiggle superimposed on the scaling (28). The
absence of such a strictly DSS critical solution for
electromagnetic waves is reflected by the absence of a
strictly periodic wiggle in Fig. 7. We nevertheless observe
a general trend in the data that is not inconsistent with a
power-law scaling of the form (28). While the results for
dipole data are based on simulations that resolve the
solution well even close to the black hole threshold, we
expect our numerical results for quadrupole data to be
affected by the lack of sufficient resolution away from the
center, and therefore to be less reliable. Our results
nevertheless suggest that the critical exponent for the
quadrupole data is different from that for dipole data.
This is consistent with the finding of Ref. [19], who
reported critical exponents for vacuum gravitational wave
collapse that also depend on the choice of initial data.

D. Uniqueness of the critical solution
It is clear from both our discussion in Sec. II C as well as

Figs. 3–6 that the critical solution cannot be unique
globally. At least in principle, however, it is possible that
the critical solution remains unique locally. For quadrupole
data, this might be the case if each one of the centers of
collapse behaved just like that for dipole data: while the
critical solution would differ globally, it might be very
similar in the vicinity of each center of collapse. Referring
to the appearance of two centers of collapse as a bifurcation
might suggest exactly that, namely, the new off-center
centers of collapse are indeed such “copies” of the dipole
center of collapse, with very similar properties.
There is some evidence, however, that suggests other-

wise. We first observe from Fig. 2 that the echoing period
Δquad for quadrupole waves appears different from that for
dipole waves, Δdip. As we discussed in Sec. IVA, there is

FIG. 6. Same as Figs. 3 and 5, but for the density ρ.
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some ambiguity even conceptually in how to define T for
quadruole waves, and hence Δquad. Our results nevertheless
suggest that Δquad is smaller than Δdip, as one might expect
if the oscillations are indeed associated with a higher-order
mode. If, on the other hand, the centers of collapse for
quadrupole waves had the same properties as that for dipole
waves, we would expect to observe the same period Δ
for both.
Similarly, if the centers of collapse for quadrupole waves

were copies of the single center of collapse for dipole
waves, one would expect the critical exponent γ to be

identical. Our data, shown in Fig. 7, instead suggest that
γquad is somewhat smaller than γdip. While this result may
well be affected by numerical error resulting from the poor
numerical resolution of the off-center peaks on our spheri-
cal grids, it is consistent with the findings of Ref. [19],
which similarly found different critical exponents for
different families of initial data in simulations of critical
collapse of vacuum gravitational waves.
If, on the other hand, the two centers of collapse are

indeed features of a distinct critical solution, then one
would expect the distance between the two peaks to scale
together with the rest of the solution. While the two peaks
do appear to approach each other in Fig. 4, for example, we
caution that the spatial coordinates shown there have no
immediate physical meaning. We therefore show in Fig. 8
the density ρ along the symmetry axis as a function of
proper distance R from the center at the four times marked
by the vertical lines in Figs. 1 and 2. The inset shows the
“raw” data, while the large panel shows both density and
proper distance rescaled assuming a self-similar contrac-
tion. Clearly, the agreement of the rescaled quantities at
different times is not perfect—and in the absence of a strict
self-similarity, we cannot expect that—but evidently the
agreement of the rescaled quantities is significantly better
than that of the raw data.
In Fig. 8, proper distance was measured along a spatial

slice, which makes this distance a slicing-dependent
quantity. Alternatively, we consider null geodesics that
propagate along the symmetry axis, emitted from the center
of symmetry at (slow) times Temit. For each null geodesic,
we introduce an affine parameter λ normalized such that
λ ¼ 0 at the center and dλ=dt measured along the null-
geodesic equal to dT=dt at the center. With this normali-
zation, the parameter λ “inherits” the natural scaling of the
self-similar solution.

FIG. 7. The maximum densities encountered for dipole (top
panel) and quadrupole waves (bottom panel) as a function of
A⋆ −A. The dotted lines are fits ρmax ≃ ðA⋆ −AÞ2γ with γdip ¼
0.145 for the dipole waves (see BGH) and γquad ¼ 0.11 for the
quadrupole waves.

FIG. 8. The density ρ along the axis of symmetry (i.e., the z axis
in Fig. 6) as a function of proper distance R from the center, for a
near-critical quadrupole evolution. We show results for the four
different times marked by all four vertical lines in Figs. 1 and 2,
including the three times shown in the snapshots of Fig. 6.
The inset shows the raw data, while the main plot shows the
data rescaled according to the expectation for a self-similar
contraction.

FIG. 9. The density ρ along the trajectories of null geodesics
emitted from the center at slow times Temit, chosen so that the
geodesics pass through the same density peaks as those shown
in Fig. 8.
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In Fig. 9, we show graphs of rescaled densities e−2Tρ as a
function of λ for such null geodesics, chosen such that they
pass through the same peaks in the density as those shown
in Fig. 8. While the last three peaks again agree reasonably
well, the first peak shows a larger deviation, but that might
be caused by its null geodesic having been emitted from the
center before the solution enters its approximately self-
similar stage. We again conclude that our results are not
inconsistent with a self-similar decrease in the distance
between the two peaks—suggesting that the two centers of
collapse might be features of a global critical solution for
quadrupole waves, rather then copies of the center of
collapse encountered for dipole waves.

V. SUMMARY AND DISCUSSION

In this paper, we study critical phenomena in the
gravitational collapse of electromagnetic waves.
Generalizing results of BGH, which focused on dipole
initial data, we also consider quadrupole initial data and
find several qualitative differences. Most importantly, we
observe that dipole data feature a single center of collapse
at the center of symmetry, but quadrupole data feature a pair
of centers of collapse on the symmetry axis, above and
below the center of symmetry. A similar bifurcation has
previously been reported for both (nonspherical) scalar
fields [9,10] and gravitational waves [17,19]. This obser-
vation alone demonstrates that the critical solution for
electromagnetic waves cannot be unique, at least not
globally. Actually, this conclusion follows already from
the fact that electromagnetic waves with odd l are
symmetric across the equator, while those with even l
are antisymmetric (see Sec. II C). The absence of a unique
critical solution may be a general feature of critical collapse
in cases that do not allow a spherically symmetric critical
solution; this, in fact, has also been suggested by the toy
model presented in Ref. [36].
The above conclusion leaves open the possibility that the

critical solution might be unique locally, in the sense that
the two centers of collapse observed for quadrupole data,
for example, might be copies of that found for dipole data.
In fact, referring to the appearance of two centers of
collapse as a “bifurcation” might suggest such a behavior.
We provide some evidence to the contrary, however,
namely, that the critical solution for quadrupole data is
distinct from that for dipole data even locally. In particular,
we observe different echoing periods and critical exponents
for the different multipole moments; some of these obser-
vations appear to be consistent with results for gravitational
wave collapse (e.g., Refs. [17,19]). We also find that the
distance between the centers of collapse found for quadru-
pole waves appears to scale in a manner that is not
inconsistent with an approximately self-similar contraction.
Together, these findings suggest that the two centers of
collapse found for quadrupole waves might be features of a

global critical solution for quadrupole waves, rather than
two distinct local copies of the dipole critical solution.
Given the similarities between some of our observations

and those for critical collapse of gravitational waves (e.g.,
Refs. [17,19]), we speculate that, for both electromagnetic
and gravitational waves, the absence of a spherically
symmetric critical solution might lead to the absence of
a unique critical solution (see also Ref. [36]). Fine tuning a
given family of initial data may, in both cases, lead to an
approximately self-similar critical solution, with associated
approximate scaling and critical exponents, but they may
be different for different families of initial data.
As we discussed in Sec. III A, multipoles of odd (even)

order l will couple gravitationally to other modes of odd
(even) order. This coupling may lead to a “competition”
between different modes of odd (even) order, not unlike the
competition between a scalar field and a Yang-Mills field as
discussed in Ref. [37]. While scalar and Yang-Mills fields
have two distinct critical solutions individually, the authors
of Ref. [37] found that, for sufficient fine-tuning, the scalar
field always dominates, so that, on sufficiently small scales,
the critical solution becomes unique again. It is possible
that the coupling between all electromagnetic modes of
either odd or even order leads to a similar competition, and
it is further possible that, with sufficient fine-tuning, one
such mode will again dominate on sufficiently small scales
(ignoring any additional competition between electromag-
netic and gravitational degrees of freedom). If so, this
would result in the emergence of only two critical sol-
utions: one for which the electromagnetic fields are
symmetric across the equator and a second one for which
they are antisymmetric.
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APPENDIX: ANALYTICAL SOLUTIONS TO
MAXWELL’S EQUATIONS IN FLAT VACUUM

SPACETIMES

In order to derive the analytical solutions of Sec. II C, we
first combine Maxwell’s equations (8) into a single equa-
tion for the vector potential Aa,

−∂2
t Aa þ∇b∇bAa −∇a∇bAb ¼ 0; ðA1Þ
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where, as before, we have assumed vacuum. Further
assuming axisymmetry in a flat spacetime, and adopting
spherical polar (Minkowski) coordinates, we focus on
solutions for which only the Aφ̂ component is nonzero;
Eq. (A1) can then be written as

−∂2
t Ãþ ∂2

r Ãþ 1

r2 sin θ
∂θðsin θ∂θÃÞ −

Ã
r2sin2θ

¼ 0; ðA2Þ

where we have defined Ã ¼ rAφ̂. We now look for
separable solutions of the form

Ãðt; r; θÞ ¼ gðt; rÞfðθÞ: ðA3Þ

Inserting this ansatz into (A2) shows that the angular
functions fðθÞ have to satisfy

1

sin θ
∂θðsin θ∂θfÞ −

f
sin2θ

¼ −lðlþ 1Þf; ðA4Þ

where l is a constant, while the time-radial functions gðt; rÞ
satisfy

−∂2
t gþ ∂2

rg −
lðlþ 1Þ

r2
g ¼ 0; ðA5Þ

a special case of the Euler-Poisson-Darboux equation.
Regular solutions flðθÞ to (A4) exist if l is a positive

integer; these solutions are related to the components of the
axisymmetric magnetic vector spherical harmonics. In the
following, we adopt

f1ðθÞ ¼ sin θ ðl ¼ 1Þ
f2ðθÞ ¼ cos θ sin θ ðl ¼ 2Þ
f3ðθÞ ¼ ð5cos2θ − 1Þ sin θ ðl ¼ 3Þ ðA6Þ

for dipole, quadrupole, and octupole waves. Solutions to
(A5) can be then constructed with the ansatz

glðt; rÞ ¼
Xl

j¼0

cjrj−lF
ðjÞ
' ðxÞ; ðA7Þ

where the cj are constants and where FðjÞ
' ðxÞ ¼

djF'ðxÞ=dxj is the jth derivative of a function F'ðxÞ of
x ¼ r' t describing ingoing (þ) or outgoing (−) waves
(see, e.g., Ref. [38]).

We can construct dipole waves by adopting l ¼ 1 in the
above expressions, in which case the ansatz (A7) reduces to

g1 ¼
c0F'
r

þ c1F
ð1Þ
' : ðA8Þ

Inserting this into (A5) yields c1 ¼ −c0. We choose c0 ¼ 1,
so that (A8) reduces to

g1 ¼
F'
r

− Fð1Þ
' : ðA9Þ

We may then assemble the dipole solution for Aφ̂ from

Aφ̂
' ¼ g1f1

r
¼

!
F'
r2

−
Fð1Þ
'
r

"
sin θ; ðl ¼ 1Þ: ðA10Þ

A time-symmetric solution can be constructed from a
superposition of ingoing and outgoing waves,

Aφ̂ ¼ Aφ̂
− − Aφ̂

þ ðA11Þ

with Fþ ¼ F−. Choosing regular functions F' that are
even in x will then result in regular solutions for the vector
potential Aφ̂. In particular, the Gaussian profile

F' ¼ Aσ2e−ðr'tÞ2=σ2 ðA12Þ

yields the dipole solution (15).
Quadrupole (l ¼ 2) and octupole (l ¼ 3) waves can be

constructed similarly. Specifically, we find

g2 ¼
F'
r2

−
Fð1Þ
'
r

þ Fð2Þ
'
3

ðA13Þ

for quadrupole waves and

g3 ¼
F'
r3

−
Fð1Þ
'
r2

þ 2Fð2Þ
'

5r
−
Fð3Þ
'
15

ðA14Þ

for octupole waves. Combining these with the respective
angular functions f2 and f3 in (A6), using a superposition
of ingoing and outgoing waves, and choosing Gaussian
profiles for F' then yields the quadrupole waves (19) and
the octupole waves (21).
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