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Abstract: The advent of 3D digital printers has led to the evolution of realistic anatomical organ
shaped structures that are being currently used as experimental models for rehearsing and prepar-
ing complex surgical procedures by clinicians. However, the actual material properties are still far
from being ideal, which necessitates the need to develop new materials and processing techniques
for the next generation of 3D printers optimized for clinical applications. Recently, the voxelated
soft matter technique has been introduced to provide a much broader range of materials and a pro-
file much more like the actual organ that can be designed and fabricated voxel by voxel with high
precision. For the practical applications of 3D voxelated materials, it is crucial to develop the novel
high precision material manufacturing and characterization technique to control the mechanical
properties that can be difficult using the conventional methods due to the complexity and the size
of the combination of materials. Here we propose the non-destructive ultrasound effective density
and bulk modulus imaging to evaluate 3D voxelated materials printed by J750 Digital Anatomy 3D
Printer of Stratasys. Our method provides the design map of voxelated materials and substantially
broadens the applications of 3D digital printing in the clinical research area.
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1. Introduction

The advent of additive manufacturing technology and the improved medical imag-
ing techniques, such as high-resolution CT and MRI scanning, enables the translation of
digital images on the computer screens into tangible objects [1,2]. In the biomedical engi-
neering field, additive manufacturing technology can be used for various applications,
such as tissue and organ fabrication [3], implant and prostheses production [4], drug
delivery [5], and production of anatomical structures [6]. In the clinical research area, es-
pecially, 3D-printed anatomical models with realistic anatomical organ shaped structures
have been used as experimental models for presurgical planning through rehearsing and
preparing complex surgical procedures [7-9] to reduce the risk and time on the operating
table, as well as education and training [10]. Besides, anatomical 3D printing can demon-
strate the performance of the newly developed biomedical products [11].

However, several challenges prevent the widespread adoption of anatomical 3D
printing. The actual material properties are still far from being ideal, necessitating the
need to develop new materials and processing techniques for the next generation of 3D
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printers optimized for clinical applications. Due to the limitation of traditional 3D print-
ers, the reduction of complex anatomy to a single surface and the simplification of local
intensity differences are necessary, resulting innon- natural discontinuities and anatomi-
cally inaccurate material properties [1]. To overcome the current issues, recently voxel-
based, volumetric, or three-dimensional pixel-based fabrication technique [12] has been in-
troduced, enabling the control of the color or material being used in a design [13]. The
voxelated soft matter technique can provide a much broader range of materials and sim-
ulate the actual organ that can be designed and fabricated voxel by voxel with high preci-
sion.

Despite the utility of voxelated materials, there are a few quantitative comparisons
of mechanical properties of the 3D printing materials to the actual organic materials, such
as bone [14], heart valves [15], and myocardium [11]. For the practical applications of voxe-
lated 3D printing materials, it is crucial to develop novel high precision material charac-
terization techniques to evaluate the mechanical properties of 3D printed anatomical ma-
terials. Currently, it is challenging using conventional methods due to the complexity and
the size of the combination of materials.

In mechanical property characterization techniques, the methods can be categorized
as destructive and non-destructive techniques. The destructive methods, such as tensile
[16] and nanoindentation [17] tests, are usually study-convenient, which can provide elas-
ticity and plasticity from the same samples. On the other hand, non-destructive methods
only provide elasticity of the samples. The formal mechanical test is commonly used due
to its simplicity. However, that is mainly targeted for hard or homogeneous materials with
a large-force delivery load cell so that it is not appropriate for the soft materials like tissue
phantoms. Although nano-indentation is more capable of testing biomass such as bone
[18], tissue [19], even cells [20], the common nano-indentation platform requires the addi-
tional preparation process of specimens and the mounting techniques [21,22], which are
not conducive to live tissues or tissue-like phantom used in 3D printed materials. Hence,
non-destructive has been considered as a more suitable method for characterizing bio-
mass and tissue phantom.

Ultrasound elastography techniques have been broadly applied in the biomedical
field for characterizing the elasticity and its contrast in-vivo [23], the so-called M-mode
imaging. Those techniques are also used to characterize the elasticity of soft materials [24].
Conventional elastography techniques utilize ultrasound to measure the deformation in-
duced by external stress or radiational pressure [25]. In the linear elastic deformation
range, the externally induced deformation is barely detected by the ultrasound waves.
The speed of longitudinal and transversal waves of materials is used to calculate the elas-
ticity [26]. This technique also necessitates the information related to the density and thick-
ness of the tested sample acquired from conventional methods, such as caliper and weight
scale [27]. The measurement of density and thickness complex geometries of 3D printed
materials are non-trivial and commonly introduces uncertainties.

In 3D printed metals and alloys, dynamic elasticity variations [28] obtained from the
measurement of the longitudinal and transversal wave velocity agree well with the static
elastic properties measured by mechanical tests. However, due to the dispersion of sound
in soft-matter [26], such as hydrogels and composites [29], the difference between static
and dynamic moduli can exceed a couple of orders of magnitude [30,31]. The variation in
the dynamic elastic modulus of soft-material using elastography measurement can pro-
vide useful information about the contrast and the uniformity of 3D printed structures
made from soft-material and composite structures.

In this study, to characterize the voxelated 3D printing materials, one layer of Rubik’s
cube-like sample was designed with nine different materials, including bone-/tissue-/gel-
like materials and mixtures, which are commonly used. That sample was printed by the
recently released commercial J750 digital anatomy 3D printer (DAP) of Stratasys. The fab-
ricated materials were characterized by an ultrasonic elastography technique that
measures the effective density and the dynamic bulk modulus elastography (EBME) [32—
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34]. Through the EBME technique with the non-destructive and non- invasive measure-
ment setup, effective density and dynamic bulk modulus distribution within the raster-
scanned area were calculated.

2. Materials and Methods

Polyjet 3D printing is an additive manufacturing process in which layers of acrylic-
based photopolymers are selectively jetted at precise coordinates onto a build tray. Figure
1 is the illustration of polyjet 3D printing. The liquid resin is jet streamed from the print
heads via controlled piezoelectric pulses. UV lamps, mounted on the print block, partially
cure the resin on each pass. Material is jetted both when the print block travels from left
to right and when it travels from right to left. However, when the print block travels from
right to left, the Z stage moves upwards slightly, allowing the part to be contacted by the
roller mechanism on the print block. The roller, spinning in a clockwise direction, can pick
up the partially cured material, thereby leveling the surface of the part for the next printed
slice. The roller, on each revolution, is scraped clean by a rollerblade. The tray then moves
down again, ready for the next slice to be printed on the next left to right pass. A critical
capability of Polyjet technology is the possibility of jetting multiple materials with differ-
ent properties simultaneously into the same build with micron-level precision. For exam-
ple, elastomeric materials and rigid materials can be jetted uniformly with a determined
ratio, yielding a model with mechanical properties mixed between the two parent mate-
rials, called a Digital Material (DM). Similarly, colored resins can be printed to give rise to
full-color 3D models closely mimicking traditionally manufactured parts. Optically clear
material can also be integrated into builds in this way, allowing for models encased in a
“glass” shell, which can prevent more fragile parts from breaking, and creating an aes-
thetically pleasing model for components such as medical devices or computer chips. As
such, Polyjet 3D printing allows for unparalleled design freedom by allowing for manipu-
lation of both mechanical properties and color on a point-by-point basis.

Printer Jetting Head

X-axis

UV light ——

Printed Voxel-based
Digital Materials

Build Tray .

Figure 1. [llustration of Polyjet 3D printing. The printer jetting head moves along the x- and y-axis
while printing a digital material on the build tray. The build tray moves up and down along the z-
axis during printing. The printed each layer is cured by the UV ramps mounted on the printer
head.
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2.1. A Voxel-Based Digital Materials (Gel-, Tissue-, and Bone-Like Materials)

The Digital Anatomy Printer solution by Stratasys is a combination of unique, inno-
vative printing materials and proprietary software. The novel printing materials include
GelMatrix, TissueMatrix, and BoneMatrix, all of which are printed as DMs. Figure 2 shows
the 3D-printed sample having Rubik’s cube-like matrix shape consisting of nine different
digital materials to be utilized for the material characterization using the EBME technique.
Moreover, the example of 3D printed anatomical models by each material is inserted in the
matrix to show the actual applications of DMs. GelMatrix is an alkaline solution soluble
material utilized when printing small features and, most importantly, in blood vessel type
structures. The GelMatrix material is softer and easier to remove and dissolve than stand-
ard Support706B, utilized in other Stratasys Polyjet printing platforms. It allows for real-
izing a small diameter of blood vessels like structure previously unattainable by 3D print-
ing. Due to its softness, GelMatrix is printed in conjunction with normal Support706B ma-
terial and Agilus30Clear, to give models enough support during the printing process. The
TissueMatrix material is a soft material utilized to mimic tissue anatomy. This material
has a shore value of 30 on the Shore(0 scale, like the feeling of a gummy bear or a gel shoe
insert, which is the softest 3D printable material in the market today. TissueMatrix is typ-
ically printed with Agilus30Clear for handling, due to the propensity of TissueMatrix be-
ing rather adhesive. BoneMatrix material is a high toughness material printed to simulate
bone models. The material has excellent shape memory properties, able to be bent and still
retain its original shape. It also has superior mechanical properties compared to prior ma-
terials. BoneMatrix is printed in conjunction with VeroPureWhite, which gives bone mod-
els their characteristic white color.

The DAP software is employed to stream each material to a specific location in the
matrix. It is a unique class of the Polyjet family that implements the voxel level control
into models and provide material architectures that mimic human-like anatomical tissues.
Contrary to the standard Polyjet jet technique, which uniformly mixes materials to provide
a specific material property or color, the DAP software dynamically mixes the materials
based on the geometry. For example, when printing a femur, there is a cortical bone layer
on the exterior and a cancellous bone layer in the interior. The DAP software has several
presets, capable of mimicking dense bone to porous bone, which dynamically changes the
model’s architecture with just a click. The software can also change the layer thickness
based on the model’s overall geometry and user inputs, i.e., smaller femur bones will have
proportionally thinner cortical layers than larger ones. There are hundreds of presets in
the software that allows the user to manipulate models to simulate human tissue.

2.2. Experiment Setup

The dimension of the sample and the schematic diagram of the experimental setup is
shown in Figure 3. The sample was designed as one layer of a Rubik’s cube-like shape
with nine different materials. Each material is the 1/3 x 1/3 x 1/3 cubic inch-material was
printed by the ]J750 Digital Anatomy 3D Printer (Stratasys, Eden Prairie, MN, USA). We
scanned a 20 mm x 20 mm area on the 3D printed sample block using the EBME technique
underwater. An Olympus Panametrics V316-N-SU (Olympus-IMS, Waltham, MA, USA)
0.125-inch diameter 20 MHz unfocused immersion transducer was used to generate a
pulse, 10-35 MHz with a repetition rate of 200, for the raster scan and record signals re-
flected by the samples. A JSR Ultrasonic DPR 300 Pulse/Receiver (Imaginant, Inc., Pitts-
ford, NY, USA) internally operated the pulse source and a time trigger. The data were
collected by a Tektronix MDO 3024b (Tektronics Inc., Beaverton, OR, USA). For the raster
scan, the three axes translation stages controlled by the three axes motion controller, LC
Series Linear Stages of Newmark Systems, Inc., was used. The scanned area of the sample
was 20 mm x 20 mm at 0.5 mm interval alongs the x- and y-axis for both. The acquisition
rate was 512 signals per 20s.
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Figure 2. Nine different constitute materials of Rubik’s cube-like matrix sample printed by J750
Digital Anatomy 3D Printer (DAP) of Stratasys using voxelated digital materials (DMs) (Gel-/Tis-
sue-/Bone-like materials) and 3D printed anatomical models printed using each material (inserts).
(a) VeroPureWhite is a base material and has a white color. (b) GelSupport is utilized for printing
small blood vessels or porous space in bones. (¢) Agilus30Clear is a transparent base material. (d) A
DM to represent a degenerative intervertebral disc that is slightly dense. (e) TissueMatrix/Agi-
lusDM400, 400 refers to 400 pm agilus “skin,” representing soft anatomy, commonly things like
muscle, fat, and skin. (f) VeroMagenta is a base material having magenta color. (g) General bone
represents any bone that is non-vertebrae, skull, long bone, or ribs. (h) A DM to represent a tumor
in the bone. (i) A DM to represent a solid internal organ, any solid internal organ. Tech- Labs and
Stratasys took the pictures of all anatomical models.
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Figure 3. The schematic of the experimental setup of the dynamic bulk modulus elastography (EBME) raster scan and the
dimension of the printed sample. The sample has Rubik’s cube-like shape with 9 different materials. The sample was
printed by J750 DAP of Stratasys.
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3. Theoretical Framework

The effective dynamic bulk modulus and density can be determined by the acoustic
impedance and the longitudinal speed of sound of the measured sample through their
relation. Here, we summarized the mechanism of EBME with equations to provide the
acoustic impedance of samples. This mechanism is based on the analysis of the reflected
short acoustic pulses, i.e., echos, from the boundary of samples that are embedded in the
fluid with the known mechanical properties. Then, the unknown impedance of the sample
can be obtained through the relation between the input signal, the first reflected signal,
and the second reflected signal. The detailed mathematical works are provided in the sup-
plementary materials.

The sample acoustic impedance in the raster-scanned imaging can be written as [32],

P1 ’ p
1= — 4 +1
— — 7
Pe — Do Pe — Po 15

p—l_z ’ ZO_ ’
Pe — Po
1)
P1 P1
1———)+ [1—-4——
( pe—po) Pe = Do 1 7
21:ZO pl ) §SZ_<1
+2 0
Pe — Po

where pe is the pressure amplitude of the emission pulse from the ultrasound penducer, po is the
pressure amplitude of the first echo that occurred from the first interface between water ambient
and the measured sample, and p; is the pressure amplitude of the reflection from the second bound-
ary between the sample and water ambient. p.is measured from a separate bistatic calibration with-
out any sample in the ambient water. po and p, are obtained from the raster scan imaging. c is the

sample sound velocity obtained from the time of flight of the wave in the tested sample at the meas-
ured position during the scan, described as ¢ = 2d/(T1 - To), where Ti1and Toare the first peaks of the
first and second reflected signals are selected from the absolute maximum values of each pulse. (see
Supplementary Materials) d is the sample thickness. Z1 is the impedance of the tested sample at the
scanned position. The ambient water impedance is known and defined as Zo = poco, where po=1000
kg/m?3 and co= 1480 m/s at room temperature.

In this study, the time point of starting the pulse is important to evaluate the time

delay and calculate the sound velocity values. The MATLAB® pre-programmed peak
finding function was applied to localize the positive peaks and negative valleys. The time
point and amplitude of the first and second peaks or valleys were the poand p1 in the
calculation. During the calibration for determining pe the time window was moved to the
center of the received signal p.with the sample rate as the EBEM scan. The longitudinal
sound velocity c in the sample was calculated by the time delay between two measured
reflected signals obtained as reflections from its boundaries. From impedance and speed
of sound, the bulk modulus (Equation (2)) and mass density (Equation (3)) of each elastic
layer are easily calculated as

Kdynzpc2= Zc, ()

VA
Perf = ¢ 3)

4. Results

The EBME scan, the elasticity distribution, was shown in Figure 4. The dynamic bulk
modulus map and the effective density map illustrated a well fused nine materials com-
bination. With the photograph overlapped with the scanned results, the smooth bounda-
ries between the materials cannot be clearly identified because of the connective inter-
faces. The region of softer materials attached to hard materials provides a smaller defor-
mation response due to the stress and results in a higher estimate of the elasticity that is
measured.
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Figure 4b shows the EBME scanned dynamic bulk modulus distribution of nine differ-
ent materials. The color scale was in the range between 2.2 GPa to 3.7 GPa, where the typical
bulk modulus of DI-water is about 2.1 GPa which is not frequency-dependent in the given
ultrasoundrange. In the tested sample, the soft tissue materials (upper-center/-right, mid-
dle-center/-left, and lower- center/-right) had lower dynamic bulk modulus values, below
3.2 GPa. Among them, the lower- center (tumor phantom) provided a higher averaged
dynamic modulus. In the phantom tumor area, the microstructure was formed where
softer tissue phantom is embedded in the small harder tumor phantom pullets. The EBME
scan also illustrated the interval structure of the tumor pullets in the dynamic modulus
map. Besides those softer phantoms, the other three materials depict a significantly higher
dynamic bulk modulus (upper-left, lower-left, and middle-right), as expected. Those ma-
terials are the phantoms for harder anatomy such as bone, which had high dynamic elas-
ticity beyond 3.2 GPa.

In Figure 4c, the EBME scanned effective density map is exhibited. The effective den-
sity variation range in the scanned map was from 1176 kg/m?3 to 1625 kg/m?. The general
property difference in the effective density map was well-matched with the dynamic bulk
modulus map shown in Figure 4b. Besides the upper center attenuated material region,
the other materials have an effective density at 20 MHz, all above 1150 kg/m?. Due to the
dehydration and rehydration, those two regions of the materials, upper- and lower-center,
had thinner thickness values comparing with other materials, which introduced uncer-
tainty in the EBME measurements. The contrasting behavior can be indicative of the non-
uniform thickness in the dynamic bulk modulus and effective density maps.

The results are summarized in Table 1 and compared with the reference values, such
as elastic modulus and polymerized density, given by the provider, Stratasys [35]. Unfor-
tunately, there is no such material property for the digital mixtures because it is too soft
to measure elasticity using the conventional mechanical testing methods for the gel-like
material. Moreover, the material properties of digital materials are defined case by case,
and they would be fully anisotropic. Even a material itself is not ho-mogeneous as shown
in Figure 4.

For the given properties, by assuming Poisson’s ratio, about 3.5-4, the static bulk
modulus of (a) VeroPureWhite and (f) VeroMagenta can be calculated, and that value is
similar to the dynamic bulk modulus measured by the EBME technique. However, the
effective density is quite different, about 24-37%, with the reference value, polymerized
density. It is because the effective values are influenced by the correlation between the
size of microstructure, approximately 14-27 um, and the wavelength of 20 MHz, 75 pm.

Y (mm)

(B} ¥

Figure 4. (a) The photograph of the 3D printed sample consisting of nine different materials described in Figure 2. The
scanned area is depicted with the dashed line (20 mm x 20 mm). (b) The dynamic bulk modulus elastography, ranging
from 2.2 GPa to 3.7 GPa, overlapped with the photograph of the sample. (c) The effective density distribution map, ranging
from 1176 kg/ms3to 1625 kg/m3, overlapped with the photograph of the sample.
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Table 1. Summary of the comparison of material properties between EBME results, such as dynamic bulk modulus, effec-
tive density and average speed of sound, and reference values, such as elastic modulus and polymerized density, given
by the provider, Stratasys [35].

. Dynamic Bulk Modu- Refer?n'ce Modulus ,Of Effective Density, Peff| REf_erence Pol'ymer- Average Speed of
Material lus, Kiyn (GPa) Elasticity, Eref_static (kg/m?) ized Density, Sound (m/s)
T (GPa) [35] Pref (kg/m3) [35]

(a) VeroPureWhite 3.35+0.13 2.0-3.0 1452 + 70 1170-1180 1590 + 40
(b) GelSupport 2.55+0.09 N/A 1176 + 40 N/A 1625 +18
(c) Agilus30Clear 3.47+0.17 N/A 1532 + 66 1140-1150 1478 + 26
(d) Degenerative interverte- 299+0.16 N/A 1274+ 80 N/A 1642 +54
bral disc

(e) TissueMatrix/Agi-

lusDMA400 3.08+0.14 N/A 1342 +75 N/A 1600 + 38
(f) VeroMagenta 3.69 £ 0.06 2.0-3.0 1609 + 33 1170-1180 1425 +15
(g) General Bone 3.62 +0.05 N/A 1625 + 30 N/A 1370 £ 11
(h) Solid Tumor 3.26£0.12 N/A 1412 + 61 N/A 1635 +29
(i) Solid internal organ 3.25+0.12 N/A 1403 + 63 N/A 1651 + 37

5. Discussion

In practical biomedical imaging applications, phased array transducers are com-
monly used [24]. These normally yield much lower resolution and worse signal- to-noise
ratio than immersion plane wave transducers or immersion focusing transducers without
advanced signal processing procedures. The proposed material characterization techniques can
distinguish material properties, effective bulk modulus, and effective dynamic density, with high
resolution, about +4%. Hence, this technique is suitable to characterize material properties of a sam-
ple printed by additive manufacturing which has anisotropic properties of inhomogeneous materi-
als. This study focused on bio-printed objects for proving the concept of inspecting materi-
als and interfaces. However, in principle, this technique could be applied to other man-
ufacturing processes and other 3D printing techniques, such as casting, molding, and
other additive manufacturing, e.g., FDM and SLM. In any manufacturing process where
the porosity or density affects the quality of the manufactured, the processing quality may
be monitored or inspected by comparing effective density measurements to a standard
calibrated reference. Increased resolution may be addressed by implementing an acoustic
lens [36] to narrow the wave-sample interaction region or increase signal- to-noise ratios.

6. Conclusions

In this study, we used the recently developed ultrasound elastography technique to
characterize voxelated materials printed by J750 DAP, polyjet type 3D printer, which can
print tissue-/bone-/gel- like materials and mixtures. This printing technique has unparal-
leled design freedom by manipulating both mechanical properties and color on a voxel-
by-voxel basis. Therefore, the high precision material characterization technique (Spatial
resolution and magnitude) is critical to differentiate the distribution of material proper-
ties. Our method demonstrated the capability to provide the design map of voxelated ma-
terials and substantially broaden the applications of 3D digital printing in the clinical re-
search area. Furthermore, this technique can be used as a health monitoring system of the
3D printer itself because the printer has aging effects through the continuing operation
resulting in incomplete printing or defects and voids in the sample.

Supplementary Materials: The following are available online at www.mdpi.com/2073-
4360/13/1/123/s1, Figure S1: Numerical simulation of EBME test on a single measurement of a bone-
like material in ambient DI water.
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