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Abstract

We present numerical investigations into three principal properties of a small-scale dynamo in stably stratified
turbulence: the onset criterion, the growth rate, and the nature of the magnetic field anisotropy in the kinematic
regime. The results suggest that all three dynamo properties are controlled by the scale separation between the
Ozmidov scale and the viscous or resistive scale. In addition to the critical magnetic Reynolds number, this allows
for the definition of critical buoyancy and magnetic buoyancy Reynolds numbers for stratified small-scale dynamo
onset in the high and low magnetic Prandtl number regimes, respectively. The presence of a small-scale dynamo in
stellar radiative zones could affect dynamics through the resulting Maxwell stresses or its influence on large-scale
dynamo mechanisms in regions of differential rotation. Taking the solar radiative zone as a representative example
and applying the onset criterion, we find that the stratification is strong enough to make the small-scale dynamo
marginally active in the stably stratified turbulence of the solar tachocline.

Unified Astronomy Thesaurus concepts: Solar dynamo (2001); Stellar interiors (1606); Solar interior (1500);
Magnetic fields (994); Solar magnetic fields (1503); Stellar magnetic fields (1610)

1. Introduction

Magnetic fields play critical roles throughout many stages of
stellar evolution. In particular, dynamo-generated magnetic
fields in radiative zones (regions of stable stratification) are
thought to be able to efficiently provide torques that maintain
nearly uniform rotation profiles (Aerts et al. 2019). A leading
candidate is the Tayler–Spruit dynamo (Spruit 2002) driven by
instability of a toroidal field wound up by differential rotation in
a spherical geometry. Another possible candidate is the
magnetorotational instability (Kagan & Wheeler 2014; Wheeler
et al. 2015; Rüdiger et al. 2015), a local instability based on a
negative gradient in the angular velocity. However, sufficiently
strong stratification in some stages of evolution (e.g., from steep
composition gradients) is able to inhibit both dynamo mechan-
isms and suppress angular momentum transport (but see Fuller
et al. 2019). Magnetic fields thus appear to be fairly common in
stably stratified regions, with potentially important influences on
a variety of physical processes. However, the influence of stable
stratification on the growth of magnetic fields in turbulence—the
small-scale dynamo (SSD) instability—has not (to our knowl-
edge) been previously investigated. It is thus the purpose of this
paper to examine how stable stratification influences the SSD’s
onset, growth rate, and structure.

The SSD is typically found to accompany any dynamo
mechanism because of its operation on the smallest length scales
and correspondingly fastest timescales. As a result, the SSD may
complement, coexist, or compete with other dynamo mechanisms
present (Kulsrud & Anderson 1992; Schekochihin et al. 2002). In
stably stratified regions, the SSD can be driven by, in principle,
turbulence generated by horizontal/vertical shear instabilities,
breaking internal gravity waves, or convective overshoot. An
unstable SSD should saturate with rough equipartition between
magnetic field energy and turbulent kinetic energy, which could
have two important effects. First, Lorentz forces become strong
enough to feed back on the fluid turbulence and, in a region of
differential rotation, could supply Maxwell stresses that contribute
to angular momentum transport. Second, background, fluctuating

small-scale magnetic fields are also known to significantly
influence any operating large-scale dynamo through quenching
(Vainshtein & Cattaneo 1992; Gruzinov & Diamond 1994;
Bhattacharjee & Yuan 1995; Zhou & Blackman 2019), helicity
fluxes (Blackman & Field 2000; Vishniac & Cho 2001; Ebrahimi
& Bhattacharjee 2014), and magnetic shear-current effects (Squire
& Bhattacharjee 2015). The net effect of the small-scale dynamo
on large-scale field growth is therefore not immediately obvious.
Understanding the interplay of these effects in a realistic
astrophysical setting is a difficult task; as a first step, it is
important to investigate the instability criterion, growth rate, and
magnetic field structure of the stably stratified SSD.

1.1. Small-scale Dynamos

The SSD has been extensively studied in the unstratified case,
which we briefly review. The SSD is categorized as the growth
and sustenance of magnetic fields on length scales l smaller than
the turbulent integral (forcing) scale li in a conducting fluid,
differentiating itself from the large-scale dynamo, which grows
on scales l>li due to some broken symmetry in the turbulence
such as shear or helicity (Brandenburg & Subramanian 2005). A
sufficient initial condition for the SSD to begin operating is a
local, random, weak seed field, an astrophysical requirement
often easily satisfied. In realistic astrophysical systems, the SSD
operates either in the high Prm?1 (interstellar medium or outer
regions of accretion disks) or low Prm=1 (stellar and planetary
interiors or inner regions of accretion disks) regimes, where the
magnetic Prandtl number Prm=ν/η is the ratio of the fluid
viscosity and the magnetic resistivity. Its behavior, stability, and
growth rates can depend strongly on Prm.
The high-Prm regime has been extensively studied analyti-

cally and numerically because the much smaller size of the
resistive scale ~h n

-l Pr lm
1 2 compared to the viscous scale lν

allows for the viscous-scale velocity field acting on the
magnetic field to be modeled as a random and spatially smooth
viscous flow (Kazantsev 1968; Zel’Dovich et al. 1984;
Schekochihin et al. 2004b). The dynamo-generated fields are
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characterized by folds that are straight up to the scale of the
flow with field-direction reversals on resistive scales and a
growth rate comparable to the turnover timescale of the viscous
eddies.

On the other hand, in the low-Prm regime, the resistive scale
~h n

-l Pr lm
3 4 sits inside the inertial range where the lack of

time and length scale separation between magnetic field
stretching and diffusion makes dynamo action difficult to
model. Numerical simulations strongly suggest its existence
and show that its critical magnetic Reynolds number Rmc, the
Rm=PrmRe above which the SSD turns on, is much larger
than in the high-Prm regime but still reaches a finite limit for
Prm→0 (Iskakov et al. 2007; Schekochihin et al. 2007). This
is in qualitative agreement with the analytical model of
Boldyrev & Cattaneo (2004), which predicts a higher Rmc at
low Prm due to the rougher velocity spectra in the inertial range
compared to the viscous range.

1.2. Addition of Stratification

The assumptions of isotropy and homogeneity of the
background turbulence are typically used for drastic theoretical
and computational simplification in SSD theory. They are often
a good approximation in subregions of many large systems
until fields become strong enough to anisotropically feed back
onto the fluid flow starting from the smallest scales, eventually
saturating the dynamo (Schekochihin et al. 2004a). However,
in the context of stellar interiors, these assumptions break down
at large scales in regions of shear flows, convection, and, our
focus, stable stratification. Numerical studies of convection find
robust SSD growth near unity magnetic Prandtl number
(Graham et al. 2010; Favier & Bushby 2012; Hotta et al.
2015; Yadav et al. 2015; Borrero et al. 2017). At a more
realistic lower value of Prm=0.1, the highest-resolution
Rm≈100 convection simulations have yet to demonstrate a
positive SSD growth (Käpylä et al. 2018), due to the
significantly increased computational cost and a potentially
even larger Rmc>300 than in the isotropic-forcing case of
Schekochihin et al. (2007) and Iskakov et al. (2007) at the same
Prm. However, stellar convection zones at Rm=O(1013) are
easily above Rmc=O(102), and therefore the SSD is expected
to be universal in convective turbulence (Borrero et al. 2017).
On the other hand, the effect of stable stratification on the SSD
has not been examined to our knowledge.

Stable stratification generates significant anisotropy by
restricting vertical fluid motions in favor of horizontal fluid
motions, modifying the growth rate and saturation of the SSD. It
is well known that too much anisotropy will shut off the SSD.
Indeed, it can be proven that a two-component, three-dimen-
sional velocity field cannot sustain a dynamo (Zel’Dovich et al.
1984). This begs the first important question this paper attempts
to answer: what is the dynamo onset criterion in the presence of
stratification? Numerical investigations in Section 4 suggest that
the modified dynamo onset criterion is, in addition to Rmc, set
by a critical buoyancy Reynolds number Rbc for a high Prm and
a critical magnetic buoyancy Reynolds number Rbm

c for a low
Prm, where we define Rbm=Prm Rb. A physical understanding
of this criterion is discussed in Section 2. When the onset
criterion is satisfied, the second question naturally follows: what
is the anisotropy of the dynamo-generated magnetic field in the
kinematic limit? Spectral diagnostics in Section 4 find that the
anisotropy in the magnetic field is primarily set by the anisotropy
of the velocity field at the viscous/resistive scales for the

high/low-Prm regimes. Following the kinematic regime, the
dynamo will eventually saturate. We leave understanding the
properties of the saturated field for future study.
In application, we extrapolate our results to the Sun as a

representative of main-sequence stars and consider the solar
tachocline, for which helioseismology and solar models
provide parameter estimates. Stratified turbulence in the
tachocline is thought to be driven by a combination of
overshoot from the overlying solar convection zone and shear
instabilities sourced by solar differential rotation across and
along the layer (Miesch 2005). With the resulting large kinetic
and magnetic Reynolds numbers typically calculated for the
region, an estimate of the SSD growth rate that neglects
stratification suggests the SSD would be very active. However,
we find that the stratified SSD onset criterion is only marginally
satisfied, highlighting the importance of considering the effects
of stratification on the SSD (see Section 5). This suggests that
while equipartitioned small-scale magnetic fields may be
present in the tachocline (absorbing energy from the stratified
turbulence, providing additional Maxwell stresses, and influen-
cing any operating large-scale dynamo mechanism), the SSD
may be suppressed in other parts of the solar radiative zone
where driving mechanisms for stratified turbulence are
expected to be weaker. Generalizing to other stars, we predict
that the SSD may significantly vary in strength depending on
the local level of differential rotation, similar to other radiative-
zone dynamo mechanisms.

1.3. Paper Outline

Section 2 presents an overview of stratified turbulence by
examining the energy cascade and important length scales.
Section 3 combines all of the simulation growth rates to present
the suggested dynamo onset criterion. Section 3.2 discusses the
role of the thermal Prandtl number.
Section 4 presents the direct numerical simulations in detail.

Section 4.1 describes the setup of the simulations, and
Section 4.2 defines the spectral diagnostics used for analysis.
Section 4.3 then presents results obtained for the Prm=1,
high-Prm, and low-Prm regimes.
Section 5 discusses application to stellar radiative zones.

Section 6 summarizes and concludes.

2. Phenomenology of Stably Stratified Turbulence

We review a phenomenological picture of the energy
cascade across several length scales of stratified turbulence.
An alternative but closely related perspective on stably
stratified turbulence via a scaling analysis of the governing
Boussinesq equations and its extension to the magnetic
induction equation is presented in the Appendix.

2.1. Energy Cascade and Length Scales

Stratified turbulence can be understood by examining the
energy cascade, whose anisotropy is strongly scale dependent.
We consider only the kinematic limit where energies in the
magnetic fields are too small to affect the fluid motion and the
standard hydrodynamic picture holds. Kinetic energy injected at
a rate ò at the integral scale li is dissipated through viscous, òk,
thermal, òp, and resistive, òm (òm=ò), dissipation channels
(ò=òk+òp+òm). The ratio òp/òk is determined by the Froude
number Fr=urms/(Nli) and approaches quasi-equipartition
òpòk at low-enough Fr (Lindborg 2006; Pouquet et al. 2018),
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where urms is the root-mean-square fluid velocity and N>0 is the
Brunt–Väisälä frequency (for definition, see the Appendix).
Unlike Kolmogorov turbulence, which has a single inertial range,
stratified turbulence exhibits three distinct ranges whose scale
separations are controlled by Fr<1 and pn=Re u l 2irms ( ).
At large scales, instabilities in a stratified fluid with no vertical
variation (such as the zigzag instabilities; Billant & Chomaz
2000) restrict vertical scales to below the buoyancy length
lb=urms/N=Frli (alternatively, the scale above which gravity
restricts eddies from turning over in the vertical direction).
In a fluid with li>lb, large-scale turbulence is dominated by
pancake vortices and internal gravity waves that can transfer
energy directly to the buoyancy scale through Kelvin–Helmholtz
instabilities of vertically adjacent vortices and overturning of
internal gravity waves (Waite 2011; Carnevale et al. 2001; Waite
& Bartello 2006). The energy brought to the buoyancy scale is
then transferred through an anisotropic cascade down to the
Ozmidov scale = l NO

3 1 2( ) , where the local eddy turnover
frequency matches the Brunt–Väisälä frequency N. For smaller
scales l<lO, inertia dominates gravity, so the Ozmidov scale acts
as an outer scale for a quasi-isotropic Kolmogorov cascade down
to the viscous scale lν∼Rb−3/4lO, where Rb is the buoyancy
Reynolds number (see below). Thermal energy is likewise
removed at the thermal dissipation scale lκ∼lν when the thermal
Prandtl number is order unity, Pr=ν/κ∼1.

In summary, defining wavenumbers k=2π/l corresponding
to scales l, the scale separations relative to ki are given by

nk k k k: : : , 1i b O ( )

- -Fr Fr Re1 : : : , 21 3
2

3
4 ( )

with kη£kν depending on whether Prm£1. A sketch of the
energy spectra and relative locations of wavenumbers is shown
in Figure 1.

The scale separation between the stratification scales and the
viscous scale determines the nature of the turbulence. In
particular, the ratio of the Ozmidov scale to the viscous scale
kν/kO=Rb3/4 is dependent on the buoyancy Reynolds number

Rb=ReFr2 and has been found to be the relevant parameter
determining the transition between two regimes of stratified
turbulence (see Section Appendix for further detail). When
Rb>1, simulations typically exhibit large horizontal layers
(pancake vortices) in the presence of Kelvin–Helmholtz-type
vortices, internal gravity waves, and smaller-scale 3D turbu-
lent-like structures (Lindborg 2006; Brethouwer et al. 2007;
Waite 2011). This is known as the stratified turbulence regime.
When Rb<1, simulations are typically characterized by thin,
large-scale, stable horizontal layers that are missing smaller-
scale features due to the suppression of instabilities and the
transition to turbulence by viscosity (Brethouwer et al. 2007).
This is known as the viscosity-affected stratified flow regime
(VASF). In summary, a large quasi-isotropic range kO=kν
corresponds to the strongly stratified turbulence regime
(Rb?1), while a highly viscous or too strongly stratified
fluid leads to the VASF regime when kO>kν (Rb<1).
Returning to kinematic dynamo theory, the obvious question

is, how do these stratification scales relate to the dynamo
growth rate at high and low Prm? A priori, one would expect
the highly anisotropic eddies at the largest scales (kkb)
would not contribute to the dynamo, while eddies in the quasi-
isotropic subrange (kkO) would. The contribution of the
buoyancy subrange kb<k<kO is then a priori uncertain. For
high Prm, the fluid viscous scale eddies k∼kν<kη primarily
set the SSD growth rate, so the high-Prm dynamo could
potentially survive into the VASF regime when kb<kν<kO
(i.e., when Rb<1). For low Prm, the fluid resistive scale
eddies k∼kη<kν are thought to set the SSD growth rate, and
the question becomes whether the low-Prm SSD can survive in
an increasingly stratified regime when kb<kη<kO<kν (i.e.,
when Rbm<1).

3. Interpretation of Simulations

In this section, we combine the results of the direct
numerical simulations (DNSs) in Section 4 to examine the
effect of stratification and Prm on the SSD onset criterion. We
feel it is helpful to introduce this result early, as it naturally
follows the previous phenomenological discussion and is
understandable without detailed reference to the simulation
setup.

3.1. Stably Stratified SSD Onset Criterion

The onset criterion at a fixed Prm can be defined as the
critical Reynolds number Rec(Fr) that satisfies γ(Rec, Fr)=0,
where γ is the SSD growth rate. In other words, any larger
Reynolds number Re>Rec at constant stratification Fr will
lead to instability (γ>0). Determining the onset criterion
requires an expensive 2D scan of Re−Fr space for each Prm in
order to reveal the scaling relationship when the dynamo turns
on as stratification is decreased. For example, in the Prm�1
case, a scaling

~ -Re Fr 3c 4 3 ( )

implies kν∼kb, while

~ -Re Fr 4c 2 ( )

implies kν∼kO. An intermediate scaling would satisfy

~ < <-Re Fr m4 3 2 . 5c m ( ) ( )

Figure 1. Sketch of kinetic Eu(k), buoyancy Eθ(k), and magnetic EB(k) energy
spectra for Prm<Pr<1. All parameters are defined in Section 2.
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In Section 4 we show that m=2 is the best fit for Prm=1 and
Prm=8, implying that kO∼kν at onset or, in other words, that
there is likely a critical buoyancy Reynolds number Rbc for
Prm�1. For lower Prm, computational resources limit a full
scan of Re−Fr space, but a scan across a single value of Re at
Prm=0.25 shows that the dynamo shuts off when kO<kη.
This suggests that kO∼kη, as opposed to kb∼kη, controls the
dynamo onset at low Prm, which implies a critical magnetic
buoyancy number Rbm

c >1 for Prm�1. A more detailed
analysis is shown in Section 4.3.

We extrapolate the scalings suggested by the simulation results
to stellar parameters in the sketch of the Re−Fr plane shown in
Figure 2. The three turbulence regimes are colored with shades of
green and superimposed with Prm=1 (blue) and Prm=10

−2

(black) dynamo onset curves (labeled γ=0). The SSD instability
regions (γ>0) lie above the γ=0 curves, and, for clarity, only
the Prm=10

−2 instability region is marked by the hashed black
lines. The main effect of lowering the Prm is to raise the dynamo
onset curves, whose horizontal portion for Fr−11 is set by
the y-intercept = -Re Pr Rmc

m
c1 and whose asymptotic portion for

Fr−1?1 is set by = - -Re Pr Fr Rbc
m m

c1 2 . When examining
conditions in the Sun in Section 5, we find that the (Re, Fr) values
in the solar tachocline are plausibly inside the Prm=10

−2 SSD
instability region. Note that the extrapolation to the astrophysical
parameter regime assumes that the scaling found in the
computationally accessible regime is asymptotic, which appears
to be the case for the values of Prm=1, 8 detailed in Section 4.

When considering the stratified SSD onset criterion in the
space of - -Re Fr Prm, the results suggest that all of the
relevant information can be represented in the Rb−Prm plane
instead of separate Re−Fr planes at each Prm. The stratified SSD

onset criterion is then determined by the curve Rbc(Prm).
Combining sets of simulations of varying Fr at fixed Re across
the computationally accessible values of 0.25�Prm�16, we
generate a contour plot in the Rb−Prm plane shown in Figure 3
of the normalized growth rate g g g= 0 , where γ0 is the
unstratified growth rate with all other parameters fixed. The
boundary between the light blue and white contours reveals the
SSD onset criterion curve Rbc as a function of Prm. Dashed lines
mark potential asymptotes in the low/high Prm limits since one
might expect Rbc and Rbm

c to become independent of Prm
(analogously to Rmc) for Prm?1 and Prm=1, respectively.
At higher Prm>4, the onset curve begins to flatten and suggests
Rbc(Prm→∞);0.1; however, it is difficult to be conclusive
with only two values of Prm. At lower Prm<1, Rbm

c increases
with decreasing Prm up to »Rb 9m

c at Prm=0.25, which is
expected since Rmc increases for Prm<1 (Iskakov et al. 2007).
If the Rbm

c curve qualitatively follows the Rmc curve for
Prm<1, it is possible that Rbm

c decreases and plateaus after
Prm0.1, meaning »Rb 9m

c could be near the upper bound for
Rb Pr 0m

c
m( ). Unfortunately it is not possible to simulate

Prm<0.25 or Prm>16 with available resources because of the
difficulty of resolving the three scale separations between the
stratification, resistive, and viscous scales.

3.2. Role of Thermal Prandtl Number Pr

All simulations and most discussions in this paper pertain to
the Pr∼1 regime. However, radiative zones typically have
extremely low Pr that are also much smaller than their
magnetic Prandtl numbers, Pr=Prm<1. Increased thermal
diffusion relative to viscous dissipation increases the thermal
dissipation scale below which buoyancy effects become less
important and fluid motions more isotropic. A lower Pr thus
should lead to a more active SSD. A simple estimate can be
made for how small Pr must be to alter the SSD onset criterion.
Balancing thermal diffusion and eddy turnover time for
Pr=1, the thermal dissipation scale sits at kκ=Pr3/4kν and
will significantly change the stratified turbulence picture when

Figure 2. Small-scale dynamo instability diagram extended to stellar values of
Re, Fr, and Prm for Pr=1 based on the interpretation that Rbm

c is the correct
onset criterion for Prm<1. The solid green line follows the Rb=1 (kO=kν)
scaling, and regions with different shades of green mark different turbulence
regimes. The black hashed region marks where the dynamo is unstable (γ>0),
bounded by the solid black curve of the dynamo onset boundary for the
representative solar tachocline value of Prm=10−2. The solid blue curve
marks the onset boundary for Prm=1 extended from the DNS. The dashed
black and blue lines follow the asymptotes = =Rb Rb 9m m

c and =Rbm
=Rb 3m

c for the Prm=10−2 and Prm=1 cases, respectively.

Figure 3. Contour plot of normalized growth rate g in the Rb−Prm plane using
simulation sets 1, 2, 8, 11, 16, and 18 from Table 1. The SSD onset criterion
curve Rbc(Prm) is seen as the boundary between white and blue contours.
Dashed lines mark potential asymptotes of Rbc(Prm), which scale with Rb at
high Prm and with Rbm at low Prm. The vertical dotted line marks the Prm=1
separation.
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kκ<kO. Equivalently, when

< -Pr Rb , 61 ( )

velocity scales smaller than k>kκ will be more isotropic than
in the Pr∼1 case, resulting in an increased SSD growth rate
and an extended parameter space of unstable dynamos (e.g.,
unstable when kκ<kη instead).

A lower Pr can also affect the SSD depending on the driving
mechanism(s) of the background stratified turbulence, for
example, by enhancing horizontal and vertical shear instabilities
(Zahn 1974; Prat et al. 2016; Lignières 2019; Cope et al. 2020;
Garaud 2020), damping internal gravity waves, or affecting the
nature of nearby convection zones and associated convective
overshoot dynamics (Elliott et al. 2000; Miesch 2005; O’Mara
et al. 2016; Brun et al. 2011). We leave studies of the effect of
low Pr on the SSD for future work.

4. Simulations

4.1. Setup

We use SNOOPY (Lesur & Longaretti 2005), a 3D
pseudospectral code, with low-storage third-order Runge–Kutta
time stepping and 3/2 de-aliasing to carry out DNS of the
incompressible MHD Boussinesq equations:

q n s¶ +  = - - +  +  +u u u B B up N z ,

7
t f

2 2· ˆ ·
( )

q q k q¶ +  = + u u , 8t z
2· ( )
h¶ +  =  + B u B B u B, 9t

2· · ( )
 =  =u B0, 0, 10· · ( )

whereu is the velocity field, θ is the buoyancy variable,B is
the magnetic field normalized by pr4 0 , ρ0 is the constant
plasma density, and σf is the kinetic forcing term. Fluid
velocities in stellar radiative zones are highly subsonic,
implying that compressibility effects will not be important for
the dynamo (Federrath et al. 2011) and justifying use of the
Boussinesq approximation.

All simulations use triply periodic, cubic boxes (L=1), and
the Prandtl number = =n

k
Pr 1 is kept fixed, while the

remaining parameters Prm, Re, and Fr are varied throughout the
paper. We use isotropic, nonhelical, time-correlated forcing
with wavenumbers Î

p
2.25, 3.75k

2
[ ] and correlation time

τc=0.3∼li/urms (urms∼1 in all simulations). We have
compared with forcing of only horizontal wavenumbers (not
shown) as is often implemented in geophysical applications and
have found little effect on turbulent spectra for wavenumbers
k>ki. The smallest scales are known to primarily contribute to
the SSD growth rate, and as a result the SSD ends up being
insensitive to the nature of the large-scale forcing, although
SSD saturation and the large-scale dynamo will likely have a
stronger dependence.

Table 1 shows the parameters used for all sets of simulations
presented in the paper. In a set of simulations, the Brunt–
Väisälä frequency N2 is varied while the amplitude of the
forcing term σf is adjusted to keep urms≈1.

At the beginning of the simulations, isotropic forcing quickly
excites all wavenumbers, and the stratified background
turbulence reaches a steady state within time t≈5τc.
Simulations are integrated in time until the magnetic energy
either has grown from an initialized weak field (|B|≈10−8) by

several orders of magnitude or t≈30τc. The magnetic energy
always stays below the energies of the viscous eddies, keeping
the simulation in the kinematic dynamo regime. Growth rates
are then calculated from a linear fit of E tlog B( ( )) versus t for
t>5τc, where EB is the total magnetic energy.

4.2. Diagnostics

4.2.1. Anisotropy Diagnostics

Several spectral diagnostics are implemented to characterize
the departure from isotropy of both of the components and the
angular energy spectra of the velocity and magnetic fields. Here
we write out the diagnostics for the velocity fieldu(x), whose
Fourier transform is denoted as u kˆ ( ).
To study the component anisotropy, the energy spectra are

simply split into the contribution from each component:

å=
p pÎ - +

kE k u
1

2
, 11

k
u
i

k k
i

,

2( ) ∣ ˆ ( )∣ ( )
∣ ∣ [ ]

with total energy given by = åE k E ku i u
i( ) ( ) (similarly for

magnetic energy components E kB
i ( )).

The remaining anisotropy can manifest as a variation of the
energy spectra in angular spectra with respect to the angle
q = - k ksin z

1( ). To study the angular dependence of the energy
spectra, following Lang & Waite (2019), we bin each spherical
angular spectrum of the energy spectra further into 2M latitudinal
bands with equal angular spacing Δθ=π/2M. Denote Ok,i as
the set of wavenumbers with |k|ä[k−π,k+π] and angle
θä±[θi,θi+1] measured from the horizontal plane with
1�i�M. The ith angular energy spectrum is then given by

å=
Î

k kE k i
m

u u,
1 1

2
, 12

k
u

i O
j j

k i,

*( ) ˆ ( ) ˆ ( ) ( )

with weights = å =m M O Oi k i j
M

k j, 1 ,∣ ∣ ∣ ∣ to ensure that all of the
angular spectra are equal in the isotropic limit (similarly for the
magnetic spectra EB(k,i)).
A k-dependent dimensionless measure of the angular spectra

anisotropy can then be given by

s m=a k k k , 13u u u( ) ( ) ( ) ( )

the standard deviation s m= å --k M E k i k,u i u u
2 1 2( ) ( ( ) ( ))

divided by the mean μu(k)=M−1∑iEu(k,i) of the angular
bins (similarly for the magnetic field aB(k)). Purely isotropic
turbulence would have au(k)≈0.

4.2.2. Dimensionless Parameters and Scales

The growth rate is studied with respect to the relative
quantitative separation of stratification scales to dissipation scales,
which require a concrete measure of the dimensionless parameters
(Re, Fr) from the simulation output. Because the ratio of thermal
to viscous dissipation òp/òk at fixed energy input ò=òk+òp
varies with Fr, the viscous scale n=n k k

3 1 4( ) would vary at
fixed Re if the Reynolds number was defined as usual relative
to the unchanging, large-scale parameters n=Re u kistd

rms
(Pouquet et al. 2018). This would break the scaling ~nk
Re ki3 4 that is important for our analysis. Instead, we define the
Reynolds number

pn= Re l 2 , 14k i
1 3 4 3 ( ) ( )
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based on the viscous energy dissipation rate, which gives the
standard definition of Re when òp=0. We calculate òk from the
simulation

òn=  ´ u x d x, 15k
2 3∣ ( )∣ ( )

allowing for a direct measure of the effective Reynolds number.
We find Restd/Re increases systematically with Fr−1, as
expected because at lower Fr a larger fraction of the total
energy injection is directed toward the buoyancy cascade.
However, across all of our simulations, Restd/Re is never larger
than ;2 or smaller than ;1.4, and our conclusions would be
mostly unchanged if we used Restd rather than Re in our scaling
analyses.

Stratification scales are calculated using kb/2π=N/urms

and p =k N l u2O i
3

rms
3 1

2( ) , where N is a simulation input and
urms and li are measured from the simulation as

ò=
¥

u E k dk2 , 16rms
0

1 2

( ) ( )
⎡
⎣⎢

⎤
⎦⎥

ò

ò
p=

¥ -

¥l
k E k dk

E k dk
2 . 17i

0
1

0

( )

( )
( )

These definitions are standard and allow for the exact scaling
relations kb=Fr−1ki and kO=Fr−3/2ki.

4.2.3. Transfer Function Diagnostics

Following Alexakis et al. (2005), Beresnyak (2012), Grete
et al. (2017), and St-Onge et al. (2020), we implement shell-
filtered energy-transfer functions Tk[V,A],

å=
Î

V A V AT , , 18k
q O

q q

k

[ ] · ( )

where Ok is the set of wavenumbers |k|ä[k−π,k+π], to
examine the scale-by-scale energy balance of terms in the
momentum, induction, and buoyancy equations corresponding
to choices of V=u,V=B, andV=N2θ, respectively. Here,
Tk[V,A] measures the net rate of energy transfer into Fourier
shell k of V due to the term A in the corresponding equation.

Table 1
Simulation Parameters

Set Prm Re Fr−1 NxNyNz ν−1 N2

1 0.25 {343, 322, 322, 341, 361} {0.2, 1.0, 1.9, 2.8, 3.9} 4483 16000 {1, 16, 64, 128, 256}
2 0.5 {176, 171, 175, 178, 186, 201, 179} { 0.2, 1.0, 1.4, 1.9, 2.8, 3.9, 5.1 } 2563 8000 {1, 16, 32, 64, 128, 256, 384}

3 1 {13, 13, 15, 15} {0.6, 1.2, 1.9, 2.7} 2563 500 {1, 4, 16, 32}
4 1 {32, 30, 30, 30, 30, 30} {0.3, 0.6, 1.2, 1.7, 2.6, 3.7} 2563 1000 {1, 4, 16, 32, 64, 128}

5 1 {54, 53, 51, 52, 52, 53, 54} {0.25, 0.5, 1.1, 1.6, 2.1, 3.2, 4.8} 2563 2000 {1, 4, 16, 32, 64, 128, 256}

6 1 {92, 91, 92, 96, 98, 94, 99, 97, 93} {0.2, 0.5, 1.0, 1.3, 2.0, 2.9, 3.9,
5.3, 6.3}

2563 4000 {1, 4, 16, 32, 64, 128, 256, 384, 512}

7 1 {135, 132, 137, 133, 131, 138, 143,
131, 136}

{0.2, 0.5, 0.9, 1.4, 2, 2.9, 4.1,
5.8, 8.3}

2563 6000 {1, 4, 16, 32, 64, 128, 256, 512, 1024}

8 1 {178, 170, 178, 179, 181, 177, 182,
169, 180}

{0.2, 0.5, 0.9, 1.4, 2, 2.8, 4.1, 5.9, 8} 2563 8000 {1, 4, 16, 32, 64, 128, 256, 512, 1024}

9 1 {228, 228, 220, 229, 228, 223, 225, 218,
212, 216}

{0.2, 0.4, 0.9, 1.3, 2, 2.7, 4.1, 5.7,
8.1, 10.7}

4483 1000 {1, 4, 16, 32, 64, 128, 256, 512,
1024, 2048}

10 1 {342, 345, 338, 351, 330, 348, 344, 335,
338, 314, 302}

{0.2, 0.4, 0.9, 1.3, 2, 2.7, 4, 5.6, 7.9,
9.7, 11}

5043 16000 {1, 4, 16, 32, 64, 128, 256, 512, 1024,
1536, 2048}

11 4 {94, 97, 90, 92, 98, 99, 95, 93, 90} {0.2, 1.0, 1.4, 2.1, 3, 4.1, 5.8,
8.1, 12}

2563 4000 {1, 16, 32, 64, 128, 256, 512,
1024, 2048}

12 8 {4.5, 4.1, 4.1, 3.9} {0.6, 2.7, 5.5, 12} 2563 100 {1, 16, 64, 256}
13 8 {18, 17, 17, 18, 18, 18} {0.4, 1.5, 3, 6.1, 13, 19} 2563 500 {1, 16, 64, 256, 1024, 2048}
14 8 {31, 29, 32, 31, 30, 32} 0.3, 1.3, 2.5, 5.2, 11, 22} 2563 1000 {1, 16, 64, 256, 1024, 4096}
15 8 {53, 53, 52, 54, 53, 53, 53} {0.3, 1., 2.2, 4.8, 9.3, 19, 28} 2563 2000 {1, 16, 64, 256, 1024, 4096, 8192}

16 8 {93, 92, 95, 97, 93, 87, 93} {0.2, 1.0, 1.9, 4.3, 8.8, 16, 37} 4483 4000 {1, 16, 64, 256, 1024, 4096, 16384}

17 8 {133, 132, 131, 136, 131, 123, 124, 123} {0.2, 1.0, 2.1, 4.4, 8.3, 16, 29, 47} 5043 6000 {1, 16, 64, 256, 1024, 4096, 16384,
32768}

18 16 {92, 97, 98, 95, 91, 91, 95, 96} {0.3, 2.9, 6.1, 8.9, 14, 17, 24, 31} 4483 4000 {1, 128, 512, 1024, 3072, 4096, 8192,
16384}

Notes. Each set corresponds to a series of simulations where only the Brunt–Väisälä frequency N is varied. The resolution is denoted by NxNyNz. The magnetic
resistivity and thermal diffusivity (not shown) are given by h n= -Prm

1 and κ=ν (Pr=1), respectively.
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For example, q- -uT N z,k
2[ ˆ] and −Tk[u,B·∇B] measure

the rate of conversion of kinetic energy in velocity Fourier shell
k into buoyancy potential energy and magnetic energy,
respectively.

4.3. Results

Physical space plots of representative simulations in the
three turbulence regimes are shown in Figure 4. The stratified
turbulence regime clearly has vertical layering with intermittent
bursts of turbulence where the magnetic field is primarily
amplified. This is unlike the unstratified case, where the
magnetic field appears uniformly spread out. In the VASF
regime, the flow appears smooth, and the decaying magnetic
field has a similar structure. In this section, we quantitatively
study these patterns in detail for Prm=1, high-Prm, and
low-Prm values.

4.3.1. Prm=1 Regime Results

Fixing Prm=1, we explore a numerically accessible range
of the remaining 2D space to study the nature of the anisotropy
in the magnetic spectrum and the behavior of the dynamo

growth rate:

g g= =Re Fr Pr, , 1 . 19m( ) ( )
Analyzing an Individual Simulation—Spectral diagnostics of

a representative simulation at moderate stratification with
Re≈220 and Fr−1≈4 are shown in Figure 5. The forcing
(integral), buoyancy, and Ozmidov scales are shown as black,
blue, and green vertical dashed lines. Examining the fluid
spectra component-wise, the energy in the uz(k) component
(Figure 5(a)) strictly above the buoyancy scale k�kb is
notably smaller than in the ux(k) and uy(k) components, cleanly
demonstrating the suppression of vertical motions by stratifica-
tion. The energy in the Bz(k) (Figure 5(b)) component is
likewise significantly lower than in the horizontal magnetic
components, becoming more equipartitioned at smaller scales;
however, the magnetic component anisotropy is robustly
present below the buoyancy scale k�kb, unlike in the fluid
component spectra.
For the angular energy spectra, vertical wavenumbers

(k≈kz) in the velocity field (Figure 5(c)) dominate in energy
at large scales, with the buoyancy wavenumber marking the
transition where the angular spectra anisotropy visibly begins
to decrease. The velocity-field angular spectra anisotropy

Figure 4. Snapshots of physical-space surface plots at t=12τc for representative simulations at Re≈220 and Prm=Pr=1. Top, middle, and bottom rows
correspond to the buoyancy, horizontal velocity, and horizontal magnetic fields, respectively. Left, center, and right columns correspond to the three turbulence
regimes with Froude numbers Fr−1=0, Fr−1≈8, and Fr−1≈16, respectively.
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drives a preferential growth of vertical wavenumber modes in
the magnetic field (Figure 5(d)). The magnetic-field angular
spectra anisotropy appears to be roughly constant across all
scales even though the velocity field notably became more
isotropic below the buoyancy scale. The angular spectra
anisotropy is similar for all components individually (not
shown).

We plot kinetic and buoyancy energy-transfer functions in
Figure 6 to help understand the flow of energy and reaffirm the
role of the stratification scales. The forcing term Tk[u,σf]
supplies energy at the largest scales k≈ki, followed by a
cascade down to smaller scales. At large and intermediate scales,
kkb, the nonlinear (NL) kinetic energy transfer Tk[u,u·∇u]
is primarily channeled into buoyancy energy through

q-uT N z,k
2[ ˆ], which cascades to smaller buoyancy scales

through the NL buoyancy advection term Tk[θ,−u·∇θ]. A
transition occurs in kb<k<kO, where the dominant energy
exchange switches to NL kinetic energy transfer balancing
viscous dissipation Tk[u,ν∇

2u] for the momentum equation and
NL buoyancy energy transfer balancing thermal dissipation
Tk[θ,κ∇

2θ] for the buoyancy equation. Note that a balance
between the transfer functions of two terms does not mean their
influence on the flow is of similar importance: a small transfer
function can signal a net balance between the energy going into
and out of the k shell in question, even if the term has a strong
effect on the flow (as occurs for, e.g., u·∇u). Overall, the
balance between inertia and buoyancy for kkb and inertia and
viscosity for kkb in the transfer rates neatly aligns with the

observed anisotropy for kkb and quasi-isotropy for kkb in
the anisotropy diagnostics.
Comparison of Simulations—At the same approximately

fixed Re≈220, we additionally compare with an unstratified

Figure 5. Simulation with moderate stratification at Re≈220, Fr−1≈4, and Prm=1. Panels (a) and (b) are spectra of individual components of the velocity and
magnetic field, respectively. Panels (c) and (d) are angular energy spectra (q = -k ksin z

1∣ ( ) ∣) of the velocity and magnetic field, respectively. See Section 4.2 for
details.

Figure 6. Net energy-transfer rates for terms in the momentum and buoyancy
equations for the representative Prm=1, Re≈220, Fr−1≈4 simulation.
Averages 〈Tk[V,A]〉t are taken in time over a time interval 3τc at the end of the
simulation. Solid lines correspond to net energy flow into shell k, and dashed
lines correspond to net energy flow out of shell k. The integral, buoyancy, and
Ozmidov wavenumbers are marked by the vertical dashed black, blue, and
green lines, respectively.
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(Fr−1=0) and a stronger (Fr−1≈8) stratification case in
Figure 7. The velocity angular spectra anisotropy au(k) (solid
lines in Figure 7(c)) dramatically rises with increasing
stratification. The general shape of au(k) for k>ki takes on a
peak followed by a steep decrease, in the middle of which sits
the buoyancy wavenumber, confirming the observation in the
Fr−1=4 case in Figure 5(c). The Ozmidov scale appears to
roughly mark the scale at which the steep slope transitions into
a shallower slope. Note that au(k) is finite for k→kν even at
moderate stratification, for example, au(kL/2π=100);0.2
for Fr−1=4, qualitatively agreeing with the hydrodynamic
simulations of Lang & Waite (2019).

Due to the increasing anisotropy at the viscous scales, the
dynamo growth rate drops sharply with increasing stratifica-
tion, as shown in Figure 7(d). The angular spectra anisotropy
aB(k) of the dynamo-generated magnetic field (dashed lines in
Figure 7(c)) likewise increases with stratification but behaves
differently than au(k). For a given Fr, aB(k) stays roughly
constant across all k at the same value as au(k) near the viscous
scales. This suggests that the anisotropy of the generated
magnetic field is dominantly controlled by the most viscous
eddies in the kinematic regime, as expected since the viscous
scales dominate SSD growth (see Section 1.1).

Note that the normalized total magnetic spectrum
(Figure 7(b)) shifts slightly toward lower k. This is because
the tail of the total velocity energy spectrum in Figure 7(a)
moves slightly toward lower k (i.e., the viscous scale increases)
with increasing stratification at fixed urms≈1 and is the reason

we have chosen to base the Reynolds number Re on the exact
value of òk, as described in Section 4.2.
The normalized transfer of kinetic energy in velocity shell k

into magnetic energy is shown separately in Figure 8 for
the three stratifications Fr−1=0, 4, 8. The curves have little
variation with stratification except for a slight relative increase
at the large scales. The main change with stratification is
that the total energy-transfer rate ∫Tk[u,B·∇B] sharply
decreases. In combination with the approximate scale inde-
pendence of both the component-wise anisotropy and aB(k)
shown in Section 4.3.1, the self-similarity of the transfer curve
further suggests that the growth rate is primarily set by the
velocity field at a particular scale and the sharp decrease in total
energy transfer is due to the increased anisotropy at that scale.
A more thorough analysis of the kinetic to magnetic transfer
rates (e.g., shell to shell, component-wise) is left for future
study.
Dynamo Onset Criterion—Next, we would like to under-

stand the dynamo onset curve Rec(Fr) that satisfies
g =Re Fr, 0c( ) . The asymptotic slope of the onset boundary
at higher Re determines if kν=kη scales with either kb, kO, or
an intermediate scale when the dynamo shuts off. This leads to
the scaling relation Equation (5) Rec∼Fr−m discussed in
Section 3.1. We show the contour plot of γ(Re, Fr) in Figure 9
with the γ=0 curve as the boundary between the white and
blue regions. The contour plot is generated by decreasing Fr at
roughly fixed values of Re until the growth rate turns negative,
revealing the dynamo onset boundary.

Figure 7. Comparison of weakly, moderately, and strongly stratified simulations at Re≈220 and Prm=1. (a) Normalized total energy spectra. (b) Normalized
magnetic energy spectra. (c) Dimensionless angular energy spectra anisotropy (see Section 4.2). (d)Magnetic energy vs. time. The vertical gray line marks steady-state
turbulence, after which the growth rate is calculated and fit, shown with dashed lines of the same color.
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Figure 9 shows that the kO∼kν scaling applies since the
dashed green m=2 fit cleanly matches the onset boundary for
Re  30, while any m<2 asymptote would be too shallow to
match the boundary. The fit = -Re Fr3.0c 2 corresponds to a
critical buoyancy number Rbc=3 at Prm=1. This implies
that the Prm=1 dynamo will always be present in the stratified
turbulence regime since, as discussed in Section 2, Rb∼1
corresponds to the transition from the stratified turbulence
regime to the VASF regime.

Growth Rate Scaling—The adjacent contours to the left of
the onset boundary appear to have equal slopes, implying that
the scale separation between the Ozmidov and viscous scale
also controls the scaling of the dynamo growth rate for
Rb>Rbc. We plot the normalized growth rate g Re Rb,( )
(defined in Section 3.1) at approximately fixed values of
Re versus kO/kν=Rb−3/4 in Figure 10. The resulting set of
curves all cross g = 0 at approximately the same kO/kν, but
g Re Rb,( ) still contains a modest Re dependence. This may
be because asymptotic values of Re are only beginning to be
reached at the highest available resolution. For reference, we
superimpose empirical fits of the form

g = -
Rb

Rb
1 20

c n

( )⎜ ⎟⎛
⎝

⎞
⎠

and find that n≈0.5 provides the most accurate fit at the
highest accessible Re.

4.3.2. High-Prm Regime

We present the Prm=8 case in detail followed by a
extension to Prm=4 and Prm=16.

Spectra Analysis—A representative single simulation shown
in Figure 11 at Prm=8, Re≈90 and strong stratification
Fr−1=9 (Rb≈1) has similar but exaggerated characteristics
compared to the Prm=1 case. The magnetic field is
predominantly horizontal, with the energy in the vertical
component an order of magnitude smaller across all scales
(Figure 11(b)). The magnetic angular energy spectra anisotropy
(Figure 11(d)) is largest at small scales, but is progressively
more isotropic at larger scales. This is consistent with the

picture of viscous scales primarily driving the kinematic
dynamo since the anisotropy at the viscous scales is quite high
(Figure 11(c)) for this strongly stratified case. We predict that
as the dynamo saturates and the smallest eddies begin to feel
feedback from the Lorentz force, the magnetic angular energy
spectra anisotropy will spread to larger scales as larger and
more anisotropic eddies take over driving the dynamo.
Comparison with an unstratified case with Fr−1=0 and a

simulation in the VASF regime Fr−1=16 (Rb≈0.4) shows a
pattern similar to the Prm=1 comparison in Figure 7. A
comparison of the angular anisotropy a(k) is likewise similar: at
high k, aB(k) is relatively constant and increases alongside au(k)

Figure 8. Energy-transfer rate from velocity shell k into magnetic energy
normalized by the total kinetic to magnetic energy-transfer rate for the
Re≈220, Prm=1 simulations.

Figure 9. Contour plot of the dynamo growth rate γ in the space of Re vs. Fr−1

for Prm=1 using sets 3–10 from Table 1. The blue and green lines are the
scalings = -Re Fr3 4 1 and = -Re Fr3 4 3 2 corresponding to the wavenumber
scalings kν=kb and kν=kO, respectively. Black crosses are individual
simulations, and bold orange crosses correspond to simulations analyzed in
Figures 5 and 7. Note that the onset curve at low Re is horizontal, corresponding
to the critical »Re 20c needed to excite the unstratified Prm=1 dynamo.

Figure 10. Normalized growth rate g at Prm=1 for different Re vs. the scale
separation between Ozmidov and viscous scales kO/kν=Rb−3/4. Top: linear–
linear plot of g vs. kO/kν. Bottom: log–log plot of g-1  vs. kO/kν in order to
look for potential scaling near criticality. Black curves correspond to empirical
fits of Equation (20).
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with increasing stratification. This again supports the picture
that the magnetic field anisotropy is controlled by the fluid
anisotropy at the viscous scales.

Dynamo Onset and Scaling—We plot the growth rate
contour for Prm=8 in Figure 12, which reveals that the onset
curve γ=0 has shifted to the right compared to the Prm=1
case but still scales well with Re∼Fr−2. In other words, at
dynamo onset, kO still scales with kν for Prm=8, but Rbc has
decreased to Rbc≈1/8. The solid green line marks the
transition between stratified turbulence to the left and the
VASF regime to the right, and it is noticeable how the contour
spacing sharply changes across the transition. This can be
clearly seen in the plot of the normalized growth rates in
Figure 13 including other values of Prm=1, 4, 8, 16 with
fixed Re≈90. The normalized growth rate curve indeed shifts
to the right for increasing Prm, but across the transition point
marked by the dashed vertical gray line, the growth rate curve
seems to level out and decreases more slowly with kO/kν for
kO>kν. This highlights the importance of the Rb=1
transition, as well as hinting that the high-Prm dynamo in the
VASF regime could have a somewhat different character. Since
Rb controls the velocity field anisotropy at the viscous scales, it
is plausible that Rbc becomes constant at higher Prm, as is
already suggested by the Rbc(Prm) curve in Figure 3. However,
simulations at even higher Prm would be needed to
confirm this.

4.3.3. Low-Prm Regime

In the low-Prm regime, the resistive scale moves into the
inertial range ( =h nk Pr km

3 4 ), and the dynamo is thought to be

driven by a net dominance of stretching over diffusion by
eddies with kkη, potentially in tandem with the forcing-scale
eddies k∼ki (Iskakov et al. 2007). If forcing scales do
contribute, one might expect that kb or kO instead of ki would
act as the largest dynamo-contributing eddy, since for larger

Figure 11. Spectral diagnostics of the Prm=8 simulation with strong stratification, Re≈90, Fr−1≈9. Plots are analogous to Figure 5.

Figure 12. Contour plot of the dynamo growth rate γ in the space of Re vs.
Fr−1 for Prm=8 using sets 12–17 in Table 1. The blue and green lines are
the scalings = -Re Fr3 4 1 and = -Re Fr3 4 3 2 corresponding to the wave-
number scalings kν=kb and kν=kO, respectively. Black crosses are individual
simulations, and bold orange crosses correspond to simulations analyzed in
Figure 11.
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scales anisotropy would likely cause diffusion to instead
dominate over stretching. The dynamo would then shut off
when the scale separation between kb or kO and kη became too
small. This would correspond to a dynamo stability onset that
scales as

~ -  Rm Fr m4 3 2 , 21m ( ) ( )

with m=4/3 and m=2 implying kb∼kη and kO∼kη,
respectively.

To be truly in the low-Prm regime, a simulation requires at
least an order of magnitude separation between the resistive
and viscous scales since 0.1<Prm<1 corresponds to kη
residing in the bottleneck region, and only for Prm<0.1 does
the kη move into the inertial range. Additionally, achieving
scale separation between the stratification scales is currently not
possible, since even the highest-resolution unstratified simula-
tions have marginal growth rates (RmRmc). Nonetheless,
we show simulation results for Prm=0.5, 0.25, the limit of
available resources.

Single Simulation—Spectral diagnostics for a single simula-
tion at Re≈360, Fr−1=4, and Prm=0.25 are shown in
Figure 14. The magnetic field anisotropy has a pattern opposite
to the high-Prm case in Figure 11. The magnetic field is
primarily horizontal for the larger scales, but becomes isotropic
at smaller scales (Figure 14(b)). Likewise, the angular energy
spectra are anisotropic at larger scales and more isotropic at
smaller scales (Figure 14(d)). This supports the picture that the
fluid eddies at the (now larger) resistive scale primarily
contribute to the dynamo and set the magnetic field anisotropy.
Magnetic fields with k>kη are simply dissipated and lose their
anisotropy.

Onset Criterion and Growth Rate Scaling—We plot the
normalized growth rate for Prm=1, 0.5, 0.25 in Figure 15.
The green curve for Prm=0.25 shows that the dynamo shuts
off even earlier than in the Prm=1 case, suggesting that the
kb∼kη scaling is unlikely. Instead, it seems that the kO∼kη
scaling applies, but with a critical scale separation between kO
and kη needed to enable dynamo growth increasing with

decreasing Prm (see Figure 3). In other words, the Prm=0.25
dynamo requires a larger critical Rbm

c ≈9 for the dynamo to
operate than for Prm=1 where we had = »Rb Rb 3m

c c . The
Rb Prm

c
m( ) curve may similarly qualitatively follow the critical

magnetic Reynolds Rmc(Prm) curve, which increases for
Prm1, peaks around Prm;0.1 when kη resides in the
bottleneck region, and then decreases and plateaus to a constant
for Prm�0.1, when kη enters the inertial range. This suggests
that the measured value of »Rb 9m

c at Prm=0.25 could be
nearing an upper bound for the asymptotic value of Rbm

c for
Prm=1, although larger simulations would be needed to
confirm this.

5. Application to Stellar Radiative Zones

In order to determine the existence of the SSD in stellar
radiative zones, we need representative parameter values of
Re, Fr, and Prm. We turn to the solar tachocline, where
helioseismology and solar models have provided relatively
precise parameter estimates. Stratified turbulence in the upper
region of the solar tachocline could potentially be driven by a
combination of horizontal/vertical shear turbulence and
convective overshoot (Zahn 1992; Miesch 2005). The
horizontal and vertical shears arise from latitudinal and radial
solar differential rotation, respectively.
We consider the case of driving due to horizontal shear

turbulence since in the tachocline the vertical shear is thought to
be stable (Schatzman et al. 2000), although this is not generally
true in stellar radiative zones (see Heger et al. 2000 and references
within). The turbulent velocity around the mean horizontal shear
flow can be taken as =

~
U U 100m s· (Miesch 2005; Cope et al.

2020). The horizontal integral scale is usually taken as =l l Ri i
 

(Zahn 1992; Cope et al. 2020) and the Brunt–Väisälä frequency
to be on the order of a millihertz (Hughes et al. 2007),

=
~

N N 1mHz· . With n n= ´ -3 10 m s3 2· (Hughes et al.
2007), the resulting Reynolds number is n=

~
Re Ul10 i

13 ·   and
the Froude number is =

~ ~-Fr U N l10 i
4 · ( ) . Estimates for the

magnetic Prandtl number at the tacholine place 10−3�
Prm�7×10−2, which we write as Prm=10−2·α (Hughes
et al. 2007). Using these, we calculate the stratification and
dissipation length scales in Table 2.
The scale separation between the Ozmidov and resistive

scales lO/lη≈30 is slightly more than an order of magnitude
and corresponds to a magnetic buoyancy Reynolds number of

a

n
»

~

~Rb
U

N l
100 . 22m

i

3

2
( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ 

If we take the value =Rb O 10m
c ( ) at Prm=0.25 as a rough

upper bound for Rb Pr 1m
c

m( ) as argued in Section 4.3.3, then
Equation (22) plausibly predicts an active small-scale dynamo
in the parameter regime of the solar tachocline.
Equation (22) is fairly sensitive to parameter estimates, and it

is clear that the strength of the small-scale dynamo may have
strong vertical variation across the tachocline. For example,
near the top of the tachocline,

~
N 1 (since N= 0 at the

convective–radiative interface), and li could instead be argued
to be on the order of a convective plume (li∼Hp=Re, where
Hp∼0.05 Re is a pressure scale height), significantly increas-
ing Rbm due to both effects. Additionally, in radiative zones
with radial differential rotation unstable to a vertical shear

Figure 13. Normalized growth rate g vs. kO/kν at fixed Re≈90 for increasing
Prm�1 using sets 6, 11, 16, and 18 in Table 1. The top panel plots g directly,
while the bottom panel plots g-1  on a log–log scale.

12

The Astrophysical Journal, 906:61 (17pp), 2021 January 1 Skoutnev, Squire, & Bhattacharjee



instability, li would be on the order of the vertical shear
gradient length scale, which leads to a much larger Rbm
compared to the driving by a horizontal shear instability
considered here. On the other hand, the true size of U is poorly
understood and may be lower than its upper bound (as well as
variation of the driving mechanisms with height), which would
easily lead to a reduction of Rbm due to the sensitive
scaling ~

~
Rb Um

3
.

5.1. Qualifications and Discussion

Role of Other Instabilities—In reality, stellar radiative zones
are affected by a variety of different instabilities that will
saturate nonlinearly in complex ways. These may affect the
SSD, and vice versa. Understanding the saturated state would
require reexamining these instabilities with the SSD in mind,
which is outside the scope of this paper. For example, a
growing subequipartition toroidal field in the tachocline (e.g.,
as a result of a large-scale dynamo) would be accompanied by
the much faster growing SSD, and the final state would be a
mixture of the saturated large-scale dynamo and the SSD.
Indeed, in addition to fossil fields, the SSD may provide the
seed magnetic fluctuations needed for the Tayler–Spruit or
mean-field dynamos in radiative zones.
Low Magnetic Prandtl Number—The existence of the

low-Prm SSD below Prm=O(10−2) is a core assumption for
the validity of our proposed scalings and predictions for the

Figure 14. Spectral diagnostics of the Prm=0.25 simulation with strong stratification, Re≈360, and Fr−1≈4. Plots are analogous to Figure 5.

Figure 15. Normalized growth rate g vs. kO/kη at fixed = »Rm Pr Re 90m

for decreasing Prm�1 using sets 1, 2, and 6 in Table 1. The top panel plots g
directly, while the bottom panel plots g-1  on a log–log scale.

Table 2
Length Scales in the Tachocline

lb

~

~ m10U

N
5( )

lO
~

~ m10U

N l

3

i

3 2

3 2 1 2

⎛
⎝⎜

⎞
⎠⎟

lη n

a ~
l

U

i
1 4 3 4

3 4 3 4
⎜ ⎟⎛
⎝

⎞
⎠

  30 m

lν n
~ m1l

U

i
1 4 3 4

3 4
⎜ ⎟⎛
⎝

⎞
⎠

 
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SSD in stellar radiative zones. Computational resources limit
the maximum value of Rm, which is currently too close to the
large value of the critical Rm and leads to small growth rates.
However, the conclusions of Iskakov et al. (2007) and
Schekochihin et al. (2007) indicate that, at the extremely high
Rm in stars, the low-Prm SSD should be well within the
unstable regime when considering isotropic, homogeneous
turbulence. The results of this paper build on and extend this
prediction to stably stratified turbulence.

Low Thermal Prandtl Number—The above estimate also
does not consider the effect of a low Pr as discussed in
Section 3.2. Using Table 2, the buoyancy number is

= ~nRb l l 10O
4 3 4( ) subject to the same caveats as

Equation (22). The low Pr∼10−6 in the tachocline easily
satisfies the criterion Pr�Rb−1 (Equation (6)), implying that
the tachocline likely contains a much stronger SSD than
suggested by the prediction based on Pr = 1 following
Equation (22).

Mean Shear—Additionally, the effects of a horizontal or a
vertical mean shear on the SSD are not considered in this paper.
The effect of mean shear on the SSD has only been directly
studied in the unstratified case, where full solutions of the
Navier–Stokes equation for the shear flow show that the
turbulence resulting from shear instabilities helps drive the SSD
(Singh et al. 2017; Currie & Tobias 2019), while prescribed
flows at much higher Rm show a suppression of the SSD
(Tobias & Cattaneo 2013). The significant complexity added
when combining shear and stratification makes it difficult to
estimate whether shear even decreases or increases SSD action
and is left for future study.

6. Summary and Conclusion

We present theoretical arguments and simulations of the
kinematic small-scale dynamo in stably stratified turbulence to
determine the dynamo onset criterion, study the scaling of the
dynamo growth rate with increasing stratification, and
characterize the dynamo-generated magnetic field. All simula-
tions solve the MHD Boussinesq equations using the SNOOPY
code with isotropic, time-correlated forcing and Pr=1. The
main results are itemized below:

1. In the presence of stratification with Pr1 and
Rm>Rmc, direct numerical simulations suggest that
the additional criterion for the onset of the SSD is
Rb>Rbc for Prm�1 and = >Rb Pr Rb Rbm m m

c for
Prm�1, where Rb=ReFr−2 and Rbm are the buoyancy
Reynolds and magnetic buoyancy Reynolds numbers.
Here, Rbm

c and Rbc are both dependent on Prm, analogous
to Rmc. Simulations and theoretical arguments suggest
that Rb 9m

c  is a likely upper bound for Rbm
c in the

low-Prm limit, while Rbc;0.1 for the high-Prm limit.
For Prm = 1, = »Rb Rb 3m

c c .
2. The SSD onset criterion is satisfied in the solar

tachocline with Rbm=O(102), assuming =Rb O 10m
c ( )

for Prm=1. However, we also argue that the low
thermal Prandtl number of the tachocline softens the
onset criterion. Therefore, the results imply that an SSD is
plausibly active in the tachocline provided a combination
of horizontal/vertical shear turbulence and convective
overshoot serves as a driving mechanism for stratified
turbulence.

3. Analyzing individual simulations shows that anisotropy
in both of the components of the magnetic field and the
angular energy spectrum is roughly constant across all
scales and is primarily set by the anisotropy present at
the viscous/resistive scales for high/low Prm. Vertical
modes (kPg) of the magnetic field contain more energy
than horizontal modes in the angular energy spectrum,
and vertical components of the magnetic field contain less
energy than the horizontal components across all scales.
This is unlike the velocity field, which is out of
equipartition only for scales k<kb and whose anisotropy
varies strongly with scale.

The presence of a small-scale dynamo in differentially
rotating regions of radiative zones could have important effects.
When the SSD saturates, it will likely reach approximate
equipartition with at least the energy available in the isotropic
fluid scales k�kO, which would allow feedback on the flow
through Maxwell stresses or affect any possible large-scale
dynamo mechanism. As an example of the latter, the magnetic
fluctuations in a radial shear flow would satisfy conditions for
possible operation of the magnetic shear-current effect (Squire
& Bhattacharjee 2015), allowing a large-scale toroidal field to
grow and be directly stored in the stratified region. The
interplay of such effects with the saturated state of the stably
stratified SSD will be the subject of future work.
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Burrows, Alexander Philippov, and Ammar Hakim for insightful
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University. V.S. was supported by Max-Planck/Princeton Center
for Plasma Physics (NSF grant PHY-1804048). A.B. was
supported by the DOE Grant for the Max Planck Princeton Center
(MPPC). J.S. was supported by a Rutherford Discovery Fellow-
ship RDF-U001804 and Marsden Fund grant UOO1727, which
are managed through the Royal Society Te Apārangi.
Software: SNOOPY (Lesur & Longaretti 2005).

Appendix
Scaling Analysis

Here we present a scaling analysis of the governing
equations for an alternative but closely related perspective on
stratified turbulence. Scaling of the Boussinesq equations in
Section A.1 serves as a plausible derivation of the two stratified
turbulence regimes and helps with understanding the nature of
the corresponding velocity fields. Section A.2 then extends the
scaling assumptions to the induction equations and makes
predictions on when and why the dynamo shuts off with
increasing stratification.

A.1. Boussinesq Equations

In the Boussinesq approximation with gravity =g gẑ and
background density profile r z( ) relative to a reference density
ρ0, the perturbative velocity ¢u , density r¢, and pressure ¢p
satisfy

r
r
r

n¶ ¢ + ¢ ¢ ¢ = -  ¢ -
¢

+ ¢ ¢u u u up
g
z

1
, A1t

0 0

2· ˆ ( )

r r
r

k r¶ ¢ + ¢ ¢ ¢ = - ¢ - + ¢ ¢¢ u
d

dz
u , A2t z

2· ( )
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 ¢ =u 0, A3· ( )

where ν is the viscosity and κ is the thermal diffusivity.
Temperature perturbations r r a¢ = - ¢Tp0 are directly related
to density perturbations through the isobaric thermal expansion
coefficient αp. The dimensional variables here are labeled with
primes, while the dimensionless variables in the scaling
analysis will be left unprimed.

Due to the buoyant restoring force, vertical displacements in
Equations (A1)–(A3) undergo oscillations at the Brunt–Väisälä
frequency r r= - >N g d dz 02

0( ) . Consider a horizontal
velocity scale U and horizontal length scale lh imposed on the
system. The dimensionless measure of stratification is the
Froude number Fr=U/(lhN), comparing buoyancy timescales
N−1 to advection timescales lh/U. Billant & Chomaz (2001)
and Godoy-Diana et al. (2004) provide dominant balance
arguments for Equations (A1)–(A3) under strong stratification
Fr=1, resulting in the dimensionalized quantities below:

a
r

r
r r¢ = ¢ = ¢ = = ¢u uU u U

Fr
u

U

gl
p U p, , , ,

A4

h h z z
v

2
0

2

0
2

( )

¢ = ¢ = ¢ = ¢ =x l x y l y z l z t
l

U
t, , , , A5h h v

h ( )

where lv=α lh is the emergent typical vertical scale of the
flow. The above scalings lead to the following dimensionless
equations generally describing strong Boussinesq stratification:

a a
+  = - +  + 

u
u u

D

Dt

Fr
u p

Re

1 1
,

A6

h h
z z h h h z h

2

2
2

2
2

( )

⎜ ⎟⎛
⎝

⎞
⎠

a

r
a

+ 

= - - +  + 

Fr
D u

Dt

Fr
u u

p
Fr

Re
u

1
, A7

h z
z z z

z h z z

2
2

2

2
2

2
2 ( )⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

r
a

r
a

r+  = +  + 
D

Dt

Fr
u u

RePr

1 1
, A8h

z z z h z

2

2
2

2
2 ( )⎜ ⎟⎛

⎝
⎞
⎠

a
 +  =u

Fr
u 0, A9h h z z

2

2
· ( )

where D/Dt=∂t+u·∇ is the convective derivative,
the Reynolds number is n=Re Ulh , the Prandtl number
is Pr=ν/κ, and the subscripts h and z correspond to
horizontal and vertical components. The horizontal momentum
Equation (A6) contains two possible balances depending on the
buoyancy Reynolds number Rb=ReFr2, which measures the
size of the vertical advection to the vertical diffusion term.
When Rb?1, the diffusion terms can be dropped, and the
dominant balance sets α=Fr, resulting in the following
system of equations:

+  = -
u

u
D

Dt
u p, A10h h
z z h h· ( )

r= - -p0 , A11z ( )

r
r+  =

D

Dt
u u , A12h
z z z ( )

 +  =u u 0. A13h h z z· ( )

The limit of strong stratification Fr=1 with Rb?1 thus
leads to neglecting the vertical acceleration term in
Equation (A11), while the vertical advection term in
Equation (A10) and vertical divergence in Equation (A13)
stay order one. Although the vertical velocity is small,
¢ ~u FrUz , the vertical velocity length scales do not collapse

to zero and instead are restricted to the buoyancy scale
lv∼lb=U/N (independent of Re), leading to balancing of the
horizontal and vertical gradients. These equations support
internal gravity waves and smaller-scale 3D turbulent-like
structures at and below the buoyancy scale, both of which are
observed in simulations (Lindborg 2006; Brethouwer et al.
2007; Waite 2011). This is the stratified turbulence regime
discussed in Section 2 with the scale separation requirement
kO?kν that is equivalent to Rb?1.
On the other hand, for Rb<1, the vertical diffusion terms

dominate the vertical advection terms (assuming Pr1), and
the dominant balance of the vertical diffusion term in the
horizontal momentum Equation (A6) sets α2Re=1 (Godoy-
Diana et al. 2004). Vertical scales then become negligible,
= -l Re lv h

1 2 (independent of Fr). The resulting equation set,

= - + 
u

u
D

Dt
p , A14h h
h z h

2 ( )

r= - -p0 , A15z ( )

r
r= + 

D

Dt
u

Pr

1
, A16h

z z
2 ( )

 =u 0, A17h h· ( )

physically represents vertically, viscously coupled quasi-2D
planes of flow. Indeed, simulations are typically characterized
by thin, large-scale, stable horizontal layers that are missing
smaller-scale features due to the suppression of instabilities and
the transition to turbulence by viscosity (Brethouwer et al.
2007). This is the viscosity-affected stratified flow regime
(VASF) discussed in Section 2 with the scale separation
requirement kO<kν that is equivalent to Rb<1.

A.2. Induction Equation

We extend the scaling analysis of Section Appendix for
insight into the dynamo behavior in the presence of strong
stratification. We assume the magnetic field components scale
in the same way as the velocity field, Bz=(Fr2/α)Bh, and
likewise assume that the magnetic fields vary on similar
horizontal lh and vertical lv=αlh length scales. When
comparing with simulations, these assumptions are seen to be
incorrect: Bz/Bh scales with Rb in the stratified turbulence
regime (when α=Fr), while uz/uh scales with Fr; see
Figure 16. We suspect this behavior occurs because the
magnetic field anisotropy is primarily set by the anisotropy au
of the viscous/resistive scale eddies in the high/low-Prm
regime (see Section 4.3), while au is determined by Rb instead
of Fr. Despite this minor discrepancy, the scaling analysis
provides valuable qualitative insight; it correctly predicts that
the dynamo onset criteria scale with Rb in the stratified
turbulence regime and that the dynamo is killed near the
transition to the VASF regime.
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Application of the scaling assumptions to the induction
equation gives

a a

a

+  =  + 

+  + 

B B B u
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Consider first the strongly stratified turbulence limit Rb?1.
With α=Fr constrained from the momentum equation, the
induction equation takes on the form

+  =  +  + B B B u B
D

Dt
u B

RbPr

1
, A21h

h z z h h h z z h
m

z h
2( ) ( )

+  =  +  + B
D

Dt
B u B B u

RbPr
B

1
, A22h

z z z z h h z z z
m

z z
2( ) ( )

 +  =B B 0. A23h h z z· ( )

This corresponds to the usual form of the isotropic induction
equation but with a lower “effective” magnetic Reynolds
number RbPrm as well as an anisotropic resistivity. We have
defined Rbm=RbPrm as the magnetic buoyancy Reynolds
number. Taken at face value, it suggests a dynamo should be
possible if Rbm is larger than a critical Rbc

m, analogous to the
typical requirement Rm>Rmc.
On the other hand, in the VASF regime (Rb<1), the

vertical advection and vertical divergence terms drop out,
giving the equation set (with α=Re−1/2)

=  + B B u B
D

Dt Pr

1
, A24h

h h h h
m

z h
2( ) ( )

=  + B
D

Dt
B u

Pr
B

1
, A25h

z h h z
m

z z
2( ) ( )

 =B 0, A26h h· ( )

which decouples the horizontal and vertical components of the
induction equation, implying that no dynamo can be possible.
Note that the scaling result is independent of Prm. A higher Prm
would only lead to a slower resistive decay of magnetic energy.
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Figure 16. Scaling of vertical to horizontal 2Ez/Eh energy of the velocity and magnetic fields vs. Fr−2 and Rb for Prm=1. We use the ratio of the vertical to
horizontal energies as a proxy for the ratio of the vertical to horizontal field magnitudes (e.g., ~E E B B2 2z h z h

2 2 for the magnetic fields). In the isotropic case, 2Ez/
Eh=1 for both the kinetic and magnetic energies.
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