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Abstract
Termites are a clade of eusocial wood-feeding roaches with > 3000 described species. Eusociality emerged ~ 150 million years 
ago in the ancestor of modern termites, which, since then, have acquired and sometimes lost a series of adaptive traits defin-
ing of their evolution. Termites primarily feed on wood, and digest cellulose in association with their obligatory nutritional 
mutualistic gut microbes. Recent advances in our understanding of termite phylogenetic relationships have served to provide 
a tentative timeline for the emergence of innovative traits and their consequences on the ecological success of termites. While 
all “lower” termites rely on cellulolytic protists to digest wood, “higher” termites (Termitidae), which comprise ~ 70% of 
termite species, do not rely on protists for digestion. The loss of protists in Termitidae was a critical evolutionary step that 
fostered the emergence of novel traits, resulting in a diversification of morphology, diets, and niches to an extent unattained 
by “lower” termites. However, the mechanisms that led to the initial loss of protists and the succession of events that took 
place in the termite gut remain speculative. In this review, we provide an overview of the key innovative traits acquired 
by termites during their evolution, which ultimately set the stage for the emergence of “higher” termites. We then discuss 
two hypotheses concerning the loss of protists in Termitidae, either through an externalization of the digestion or a dietary 
transition. Finally, we argue that many aspects of termite evolution remain speculative, as most termite biological diversity 
and evolutionary trajectories have yet to be explored.

Keywords Sociality · Lower termites · Higher termites · Nutritional mutualism · Symbiosis · Protists · Fungi · 
Termitomyces · Bacteria

Introduction

The emergence of new symbiotic associations is a major 
source of novel evolutionary trajectories. In insect socie-
ties, such as those formed by termites, symbionts are verti-
cally transmitted from parents to offspring and among nest 
mates during social interactions [1, 2]. Termites are a classic 
example of evolutionary innovation through the acquisition 
of obligate symbionts [3–6], and this symbiosis has been 
implicated as a key factor in the origin of termite eusoci-
ality [7, 8]. Although they are often compared to eusocial 
Hymenoptera owing to a convergence of their social traits 
[9], termites became eusocial independently, and through a 
different pathway than ants, bees, and wasps [8]. Termites 
form a clade of eusocial cockroaches (traditionally the order 
Isoptera, today a subgroup of Blattaria [10, 11]), and all ter-
mite species rely upon their nutritional symbionts to digest 
plant material [2, 12]. The most prominent gut symbiotic 
microbes are cellulolytic protists, present in all non-termitid 
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termite families (i.e., “lower” termites: Fig. 1) as well as the 
extant sister group to termites, the wood roach Cryptocer-
cus (Cryptocercidae). These symbionts allowed termites to 
become one of the few animal groups capable of digesting 
lignocellulose [13], resulting in termites attaining abun-
dances and a global biomass comparable to ants [14, 15] 
and wielding a significant impact on ecosystem functioning, 
especially in the tropics [16].

The cellulolytic protists found in the guts of all “lower” 
termites and Cryptocercus originate from two independent 
groups, Parabasalia and Oxymonadida (Preaxostyla) [17, 
18]. Gut protists have evolved through varying degrees of 
horizontal transfer and episodes of co-speciation with their 
hosts [18–24]. In some species of Cryptocercus, there can 
be up to 25 species of protists. By contrast, many termite 
species host a limited number of protist species. This is 
especially true for more phylogenetically derived species 
of termites [23], such as certain Rhinotermitidae that are 
associated with a handful of protist species, down to a single 
species in Termitogeton [25]. This reduction in symbiont 
diversity portends the complete loss of protists in one ter-
mite lineage nested within the paraphyletic Rhinotermiti-
dae—the Termitidae (i.e., “higher” termites: Fig. 1). The 

loss of protists in Termitidae was a major mutualistic shift 
that was compensated by the acquisition, or by the repur-
posing, of bacterial and fungal nutritional mutualists [26]. 
Paradoxically, while the acquisition of lignocellulolytic pro-
tists played a fundamental role in the emergence of termite 
eusociality and their remarkable evolutionary trajectories 
[8], the subsequent loss of protists in Termitidae and their 
alternative mutualisms allowed for an unprecedented diver-
sification in diet and ecological success [27, 28]. Today, 
Termitidae are the most diverse termite lineage, making up 
more than 70% of all termite species [11], and representing 
one of the dominant groups of decomposers throughout the 
terrestrial tropics [14, 26].

Cellulolytic termite gut protists have been transmitted 
across generations since their acquisition in the common 
ancestor of termites and Cryptocercus, and Termitidae are 
the only lineage in which protists were lost [29]. Within this 
unique symbiotic context, we here review the main events 
of termite natural history. First, we highlight some of the 
key innovations that evolved in termites, from the advent of 
eusociality in their ancestors, to the diversification of diet 
and the rise to dominance of Termitidae. Second, we dis-
cuss the two principal evolutionary scenarios that have been 

Fig. 1  The appearance of certain innovative traits during the course of termite evolution. Phylogeny simplified from [28]
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proposed to explain the loss of protists among Termitidae. 
Finally, while our insight into many aspects of termite evo-
lution has improved over the last two decades, we discuss 
some of the more relevant uncertainties that remain.

The main evolutionary transitions of termite 
evolution

“Among the living termites, Mastotermes darwiniensis 
Froggatt (Mastotermitidae) is universally admitted to 
be the most primitive morphologically. However, the 
descriptions of its nesting activities (Hill 1921, 1925) 
would seem to indicate an advance over the behavior 
of kalotermitids usually considered more advanced 
from a morphological standpoint. As Imms (1919) 
and Emerson (1926, p.92) have remarked, in certain 
morphological details Archotermopsis (Kalotermiti-
dae) is more primitive than Mastotermes. One may 
either conclude that Mastotermes has undergone evo-
lution toward more intricate behavior after its diver-
gence from the ancestral isopteran stock, or else that 
degenerative evolution of the behavior patterns has 
occurred in the Termopsinae and other kalotermitids. 
With only meager evidence, I am inclined toward the 
former hypothesis”.
–Alfred E. Emerson (1938) pertinently musing about 
the evolution of nesting behaviour in termites [30].

“The use of termites as models of the termite ances-
tor is untenable, because all termites, no matter how 
basal, are eusocial and thus defined and characterized 
by highly derived characters”.
–Christine Nalepa (2011), noting the limitations of 
inferring the origin of complex termite societies using 
modern termite models [31].

Our understanding of termite evolution and diversifica-
tion has improved owing to increasingly robust phylogenies 
[28, 32–36]. When used in combination with a solid theo-
retical framework [8, 11, 26, 34], modern phylogenetic esti-
mates provide refined inferences of the timeline of key evo-
lutionary transitions and their roles in termite success. Here, 
we present some of the key evolutionary innovations pro-
gressively acquired by termite ancestors prior to the emer-
gence of Termitidae (Fig. 1). This timeline is largely based 
on several extant, species-poor, and early-diverging lineages 
of “lower” termites. These lineages are deemed “basal” and 
exhibit many traits considered ancestral; however, they 
have also evolved their own unique traits [31, 34, 35]. As a 
consequence, it can be challenging to distinguish between 
plesiomorphic (ancestral) and apomorphic (derived) traits, 
and there are still limitations to determine whether a trait 

evolved multiple times independently, or whether it evolved 
once and was then lost on repeated occasions [30, 37, 38]. 
These uncertainties can create confusion and be the subject 
of debate among proponents of contradicting hypotheses. 
One such debate is the evolution of workers, a permanently 
wingless caste incapable of developing into alate imagoes, 
which has important implications for models of termite 
social evolution. The true worker is the result of an irrevers-
ible deviation from the basic egg-to-imago developmental 
line, as opposed to a false worker (pseudergate sensu lato 
according to [39]), which is only a temporarily specialised 
aide retaining the capacity to develop wings and establish 
a new colony. The true worker caste is viewed by many as 
a derived trait, having evolved in several lineages indepen-
dently after the origin of eusociality in termites [40–47], and 
by others as a plesiomorphic trait that evolved once in the 
ancestor of all modern termites and was lost independently 
in several lineages [37, 48–51]. Similar debates continue 
regarding other key innovations among termites, such as the 
role of trophallaxis and brood care, in the initial emergence 
of termite eusociality [26, 52–54]. A careful consideration of 
the biology and ecology of select taxa can provide valuable 
clues, and may allow for hypothesis-testing of the origin of 
certain innovations and their impact on termite diversifica-
tion and ecological success [26, 55]. The following sections 
provide an overview of some major innovations in termites 
prior to the emergence of Termitidae.

Acquisition of gut cellulolytic protists 
and proctodeal trophallaxis

Termites and the wood-feeding roaches, Cryptocercus, 
inherited many gut bacteria and cellulolytic protists [56–58] 
from their common ancestor, indicating that symbiosis with 
intestinal microbes preceded the origin of eusociality in 
termites. The ancestor of termites and Cryptocercus was a 
gregarious wood-feeding roach [59, 60], living, confined and 
protected, within a single piece of decaying wood, presum-
ably in contact with the soil. This ancestor progressively 
evolved from a primarily detritivorous diet to a xylophagous 
diet, supplemented by coprophagy [6, 26, 61]. The acquisi-
tion of a xylophagous diet was made possible by associa-
tion with new gut symbionts, in particular with cellulolytic 
protozoa capable of decomposing lignocellulose, and with 
bacteria and archaea that provided nutritional and recycling 
functions [62–66].

The evolution of intricate mutualistic associations, such 
as that of termites and Cryptocercus with their beneficial gut 
microbes, is dependent upon an effective route for transmis-
sion across host generations [2]. In termites and Cryptocer-
cus, transmission flows through proctodeal trophallaxis, dur-
ing which a droplet of faecal food is provided to a nest mate 
together with the microbes it contains [8, 67]. Proctodeal 
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trophallaxis presumably evolved from coprophagy [61, 68], 
which originally allowed the transfer of encysted protists 
surviving in faecal pellets [6]. The presumptive transition 
from coprophagy to proctodeal trophallaxis in the ancestor 
of Cryptocercus and termites was a critical behavioural shift 
that provided a dependable path for the transmission of gut 
microbes across generations of their hosts. This mechanism 
of gut symbiont acquisition is one potential factor that facili-
tated eusociality in the wood-roach ancestor of crown-group 
termites [8, 61].

Shift to alloparental care and the emergence 
of eusociality

Numerous factors have contributed to the evolution of 
eusociality in termites, and these have been the subject of 
various reviews (e.g., [8, 9, 43, 44, 46, 69]). We do not aim 
to provide an exhaustive summary and will focus on one 
catalyst of eusocial evolution in termites: symbiosis with 
gut microbes.

Parental care is widespread in insects, ranging from rudi-
mentary behaviours to complex forms of brood care [70–72], 
and increases the survival rate of offspring and their chance 
of reaching adulthood. Cryptocercus and termites are altri-
cial, as their offspring receive food and protists from their 
parents, and, in the case of termites, from their nest mates 
(older siblings) [7, 8, 56, 73]. Overlapping generations in 
the termite ancestor, possibly favoured by slow ontoge-
netic development, allowed older nutritionally-independent 
immatures to take over the food provisioning of younger 
individuals. The shift from biparental to alloparental brood 
care resulted in a reallocation of parental resources toward 
reproduction with a resulting increased brood size [8, 74]. 
The interdependency of individuals became fixed with 
the dependence of immatures on other nest mates for the 
reacquisition of intestinal symbionts lost during moulting. 
Therefore, in the “proto-termite”, a stable symbiosis with 
gut microbes necessitated obligate group-living conditions 
for all members of the family unit [6, 61].

Within the mutualistic constraints of protists, the switch 
to alloparental care precipitated the termite ancestor toward 
eusociality [8], as developmentally-arrested juvenile off-
spring, not engaged in reproduction, took over brood care 
duties [7]. This shift also resulted in a change from semel-
parity to iteroparity, with overlapping generations, as par-
ents invested in multiple broods and increasing colony sizes. 
Ultimately, the “proto-termite” became fully eusocial with 
the emergence of the first sterile castes. The worker caste 
assumed various functions of extended care within the col-
ony, while the soldier caste took on the role of defending 
colonies otherwise composed primarily of vulnerable indi-
viduals with juvenile morphologies [31, 39].

Lessons from termite fossils

Once eusociality was achieved in the ancestor of termites, 
it allowed for a series of novel innovations. Modern ter-
mites descend from a common ancestor that lived around 
the end of the Jurassic, some 150 million years ago [28, 
34–36]. They are the earliest eusocial organisms known 
from the fossil record, with fossils extending back to the 
early stages of the Early Cretaceous, nearly 130 million 
years ago [35, 75]. Many of the first termite fossils main-
tained a relatively plesiomorphic morphology, retaining 
several cockroach-like features that have been lost by all, 
or most, modern termites [11, 75]. The faunas of termites 
from the Early Cretaceous through earliest Late Creta-
ceous reveal remarkable species diversity, with consider-
able morphological diversification [11, 34]. Most of these 
fossils belong to the “Meiatermes grade” and intercalate 
among modern termite families deemed “basal” (early 
diverging), but cannot be confidently placed within any of 
them, representing stem groups to either individual fami-
lies or entire clades of families (e.g., some comprise the 
stem to the Icoisoptera and Neoisoptera, respectively) [11, 
34]. Nonetheless, these species inform us greatly of the 
rich variety of early termite diversity, including the earliest 
examples of specialized workers and soldiers in the fossil 
record [35]. In fact, from the Early Cretaceous, we see 
evidence of a group that was perhaps already relict in its 
day, with Cratomastotermitidae representing the earliest-
diverging termite group (diverging prior to all modern ter-
mites) and, therefore, coming closest to approximating that 
suite of features to be found in the ancestral termite [34].

The first fossils of extant termite families are more 
recent, with the exception of Mastotermitidae and Stoloter-
mitidae whose fossil record dates back to the Early and 
Middle Cretaceous, respectively [11, 34, 76]. Although the 
lineages that gave rise to many of the more early-diverging 
extant families are ancient, their crown groups are com-
paratively young (e.g., Stolotermitidae, Archotermopsidae, 
Hodotermitidae, Kalotermitidae). Stem groups to these 
would have extended back into the Early Cretaceous, but 
fossil representatives of the crown groups are currently 
confined to the Eocene or younger. The reality of this pat-
tern indicates that the reconstruction of the ancestral ter-
mite based on information from extant termite species is 
largely imperfect because of the paucity of species clearly 
allied to the earliest termite fossils. In addition, the early-
diverging termite lineages intercalating among fossils of 
the Meiatermes grade have evolved some unique traits on 
their own, and lost other traits previously acquired by the 
termite ancestor [75]. Admittedly, all organisms, includ-
ing those still living, are mosaics of plesiomorphic and 
apomorphic traits and it requires comparison across a 
diverse grade of species, ideally early-diverging species, 
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to pull together the suite of plesiomorphies that may have 
characterized the taxon ancestral to them all. Disentan-
gling plesiomorphic and apomorphic traits among basal 
termites has been the subject of intense debate and remains 
complicated, and perhaps impossible, based on observa-
tions of extant species alone [31]. Indeed, all modern ter-
mites are phylogenetically, temporally, and biologically 
divorced from the ancestral termite and the unique paleo-
ecological and paleoclimatological factors that were inte-
gral to its appearance. Furthermore, no species today can 
approximate the varied paleobiotic influences from other 
Late Jurassic lineages whose unique species are similarly 
long extinct. We are left looking through a glass, darkly, 
with our clearest insights from those taxa (cratomastoter-
mitids, basal Meiatermes grade members) closest to that 
auspicious first termite. In any case, the biology of early-
branching termite lineages is indicative of the diversity of 
those evolutionary trajectories taken by the first termites.

Insights from the basal groups

The earliest-diverging lineage among modern termites is the 
once cosmopolitan family Mastotermitidae, which includes 
a single extant species, the Australian Mastotermes dar-
winiensis [77]. Mastotermes darwiniensis displays several 
roach-like features, such as eggs laid in an ootheca-like 
structure [78] or the association with the intracellular endo-
symbiont Blattabacterium [79]. It also displays a bifurcated 
developmental pathway with a true worker caste [80], a par-
tially subterranean lifestyle [30, 81], and is the only termite 
species known to explore its environment individually or in 
tandems instead of following trails with a large number of 
foragers [82]. Whether some of these unique characteristics 
represent the condition of the last common ancestor of ter-
mites (basal traits), or whether some of these emerged inde-
pendently within the mastotermitid lineage (derived traits), 
remains unclear [37], as both mutually exclusive scenarios 
are equally parsimonious [51].

Stolotermitidae, Archotermopsidae, and Hodotermiti-
dae form a clade (Teletisoptera) that is the extant sister 
group to the remaining termites, with the exclusion of 
Mastotermitidae [28, 36]. Their earliest-known fossils are 
from ~ 99-million-year-old Burmese amber [76], and time-
calibrated phylogenetic trees indicate that the lineage as a 
whole diverged from other termites during the Early Creta-
ceous, about 130 million years ago [28, 36]. It is likely that 
the individual crown groups of each family in this clade are 
young in comparison to their individual and collective stem 
groups. Because of the clade’s overall antiquity, they could 
provide clues on the biology of the first termites, although 
it is equally likely that their biology are uniquely derived 
for their clade and divergent from that of the ancestral ter-
mite. Extant Stolotermitidae include two genera and ten 

species, and extant Archotermopsidae include three genera 
and six species [11]. Both families are characterised by a 
linear development and are thence devoid of a true worker 
caste [83]. With few exceptions (e.g., Porotermes), these ter-
mites build relatively small colonies that generally include 
less than ten thousand individuals, and feed on decaying 
wood logs that serve as both shelter and food source [84, 
85], although they have the ability to relocate their nests 
[86–89]. Several species of Stolotermitidae and Archoter-
mopsidae have fertile soldiers [90, 91]. Hodotermitidae, the 
third family of this lineage, include three extant genera and 
21 extant species, and are phylogenetically nested within 
Archotermopsidae [36]. Hodotermitidae differ remarkably 
from Archotermopsidae, both morphologically and ecologi-
cally, as they build large, fully subterranean colonies; have 
bifurcated developmental pathways with a sterile worker 
caste [92], with functional eyes; and feed on dry grass that 
they actively forage in arid environments [83]. The diversity 
of basal termite lineages (both extant and extinct) suggests a 
rapid ecological diversification following the acquisition of 
eusociality in the ancestor of termites [34]. The discovery 
of new stem-termite fossils could provide supplementary or 
alternative sources of information from which to infer the 
biology of the common ancestor of termites, and potentially 
help refine the timeline of emergence of novel traits in the 
main termite lineages.

Adaptation to extremely limited resources 
in Kalotermitidae

The Kalotermitidae are the second most diverse family of 
termites [11], and form the sister group of Neoisoptera (col-
lectively known as Icoisoptera = Kalotermitidae + Neoisop-
tera), to which Termitidae belong [28, 34–36, 93]. Time-
calibrated phylogenetic trees estimate that Kalotermitidae 
diverged from Neoisoptera ~ 125 million years ago [28, 34, 
36], and their current earliest fossils belong to the genus Pro-
electrotermes, from ~ 99-million-year-old Burmese amber 
[35, 94]. All modern Kalotermitidae reveal a linear devel-
opment and thus lack a true worker caste [83]. They live in 
rather small colonies, only rarely exceeding 1000 individuals 
at maturity [85]. The degree of moisture each species can 
tolerate varies greatly among genera [95], and some spe-
cies, such as those in the genus Cryptotermes, evolved a 
complete intolerance to water and must infest wood pieces 
that are never exposed to liquid water [96]. Kalotermiti-
dae are relatively weak competitors but strong dispersers, 
and have colonized even the most remote islands. This has 
likely been a diagnostic aspect of their biology for consid-
erable time as kalotermitids are the only fossil termites to 
have occupied Zealandia during the Miocene [97]. Their 
ability to sustain colonies in harsh environments, with lim-
ited resources has permitted them to occupy the broadest 
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geographical distribution of any termite family, as their 
nesting habits may have allowed for repeated transoceanic 
dispersal events. Kalotermitids can thrive in even small dead 
branches of trees, without any contact to the soil, allowing 
them to dominate tree canopies in the tropics [98].

The life history of many species of Kalotermitidae—pro-
ducing small colonies in finite wood pieces on which they 
feed, and presumably unable to colonise new wood pieces—
has been hypothesized by some as resembling that of the 
common ancestor of termites [99]. However, Kalotermiti-
dae are well separated phylogenetically from the base of 
the termite tree, and no more-basal lineages are known to 
have similar biology. Thus, attributing this life history to 
the ancestor of Isoptera would necessitate, quite unparsi-
moniously, repeated parallel and entirely ad hoc losses of 
this biology in the plethora of living and fossil groups lead-
ing up to Kalotermitidae as well as in Neoisoptera. A more 
rational conclusion is that this is instead an apomorphic fea-
ture found within Kalotermitidae. Moreover, this lifestyle is 
not universal to Kalotermitidae and therefore may not be part 
of the kalotermitid groundplan. Some species of Kaloter-
mitidae feed on large rotting logs on the ground and may 
form remarkably large colonies numbering well over 10,000 
individuals, which is especially true for those living in areas 
where Termitidae are uncommon (tropical mountains of 
Southeast Asia or Queensland; Bourguignon and Šobotník, 
personal observations). A special case is the subterranean 
Paraneotermes simplicicornis in the deserts of the southern 
USA that actively dig galleries in the soil [100–102]. In the 
absence of “higher” termites, Kalotermitidae possess a life 
history similar to that of Archotermopsidae and Stolotermiti-
dae [86–88], these features likely representing the ancestral 
condition for kalotermitids. If this is the case, then canopy-
living kalotermitids derived from ground-living ancestors, 
supposedly pushed into marginal niches secondarily by 
more advanced competitors [30, 37]. Currently, the most 
complete phylogenetic estimate for Kalotermitidae is almost 
exclusively focused on the Australian lineages and is there-
fore far from a comprehensive representation of the family 
as a whole [103]. Nevertheless, this tree leaves no doubt 
concerning the derived position of Cryptotermes, the best 
example of kalotermitids that produce diminutive colonies in 
small, dry, dead branches. Future studies, providing a more 
comprehensive phylogeny for Kalotermitidae, are needed 
to determine patterns of trait evolution within the family.

Emergence of the frontal gland

The emergence of the frontal gland likely facilitated the eco-
logical dominance of Neoisoptera, sister clade to Kaloter-
mitidae (Fig. 1). The frontal gland is a unique character 
defining the Neoisoptera and is an unpaired saccular defen-
sive gland with no equivalent among other insects [104]. 

Although the gland was long considered to be a soldier-
specific organ, it also occurs in presoldiers, imagoes, and 
workers of some lineages [105–110]. The opening, the fon-
tanelle, is positioned on the forehead, and the secretory cell-
lined reservoir is often confined to the head but can reach 
deep into the abdomen in soldiers of certain species and 
imagoes of Rhinotermitinae [105, 107, 108, 111–113]. The 
frontal gland secretion has several functions, including the 
production of contact poisons, irritants or repellents, glues 
and incapacitating agents, anti-healing compounds, or alarm 
pheromones coordinating defensive activities [105, 107, 
114]. The secretion, generally released following mandibu-
lar action in soldiers, is accumulated in copious amounts in 
many termite species, rendering them unpalatable to larger 
predators [105, 107, 115].

The evolution of the frontal gland allowed for the devel-
opment of new defensive strategies. Termite groups basal to 
Neoisoptera primarily rely upon static warfare, i.e., robust 
and heavily sclerotized soldiers with toothed crushing man-
dibles defending key junctions of the gallery system. By 
contrast, Neoisoptera often rely on soldiers with smooth, 
sharp, and elongate slashing mandibles, that are mobile 
and actively search for enemies to combat [107, 111, 116]. 
Slashing mandibles overlap to a greater degree compared to 
crushing mandibles, and can therefore inflict more serious 
injury with smaller force [111]. This trend led to a decrease 
in the volume of mandibular muscles, freeing space in the 
head capsule for specialization of the frontal gland, poten-
tially allowing for novel adaptive strategies against emerging 
predation pressures [111, 117–119].

Setting the plot for the rise of Termitidae: 
the ecological and developmental diversity 
of non‑termitid Neoisoptera

Similar to Kalotermitidae, the earliest fossil of Neoisoptera, 
Archeorhinotermes rossi, was recovered from ~ 99-million-
year-old Burmese amber [120]. Other fossils of Neoisoptera 
are from the Cenozoic and universally belong to extant ter-
mite families (see [11]). Neoisoptera are composed of four 
families—Stylotermitidae, Serritermitidae, Rhinotermitidae, 
and Termitidae—which exhibit considerable variation in life 
history. When compared with the remaining “lower” ter-
mites, the relationship between protozoan gut communities 
and their termite host seems to have been altered in some 
non-termitid Neoisoptera, with a notable reduction in pro-
tistan species diversity [25]. Stylotermitidae were the first to 
diverge, while Rhinotermitidae, as currently constituted, are 
paraphyletic to both Serritermitidae and Termitidae [28, 36, 
121]. Relationships among the main lineages of Rhinoter-
mitidae are not fully resolved, and vary among studies (e.g., 
compare [28, 36, 93]), confounding the reconstruction of 
life-history patterns among the constituent groups. However, 
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the Termitidae are unambiguously recovered as sister to a 
clade composed of Reticulitermes, Coptotermes, and Heter-
otermes (which could be reconstituted as Heterotermitidae), 
allowing us to speculate on those attributes that perhaps pre-
ceded the termitid divergence (Fig. 1).

Non-termitid Neoisoptera have diverse ecological and 
developmental strategies. Stylotermitidae, represented 
solely by the extant genus Stylotermes, diverged from other 
Neoisoptera ~ 85 million years ago [28, 121]. Stylotermitidae 
live inside large trunks, usually associated with wounds or 
hollows, and feed at the margin of living tissues [121]. They 
make small colonies, composed of a few hundred individu-
als [122], and seem to have a linear developmental path-
way with no worker caste [121], although this remains to 
be confirmed.

Serritermitidae and Rhinotermitidae are represented by 
two and 12 genera, respectively. Serritermitidae and the 
three rhinotermitid genera Prorhinotermes, Termitogeton, 
and Psammotermes have linear developmental pathways 
without worker castes and make relatively small colonies 
composed of a few thousand individuals [123–127], with 
the exception of Psammotermes that lives in large colonies 
comprising hundreds of thousands of individuals [85, 126]. 
Prorhinotermes has limited foraging abilities, but can move 
out of their log and colonise new wood pieces; [128], while 
among “lower” termites, Serritermes is the sole true inqui-
line (i.e., species living inside the nest of another termite 
species) [11, 127].

In sharp contrast, the nine other “rhinotermitid” genera 
possess a true worker caste [83], and make large colonies 
that can include more than several million individuals [85, 
129]. Many have extensive foraging abilities and are catego-
rised as separate-piece nesters (sensu Abe [129]) or mul-
tiple-piece nesters (sensu Shellman-Reeve [43]), for their 

ability to extend their colony across many wood items, with-
out the construction of a central nest physically separated 
from the food source [43, 130]. Several genera also build 
centralised nests using faecal material, and display elaborate 
soil-excavation behaviours [30, 131, 132]. These traits are 
particularly well characterised in the sister group of Termiti-
dae (Fig. 1), the clade comprising the three most economi-
cally important pest genera of “subterranean termites”—
Coptotermes, Heterotermes, and Reticulitermes [11, 27, 36, 
133–136]. These genera extensively reuse faecal wastes for 
construction, ranging from simple faecal lining alongside 
galleries, to complex sponge-like structures (= carton nest, 
Fig. 2) filling the voids created from feeding damage in large 
pieces of wood. These structures are also used to replace 
the original wood’s mechanical properties and increase the 
surface-to-volume ratio within voids [137].

The success of the clade comprising Coptotermes, Het-
erotermes, and Reticulitermes is possibly a direct result of 
their ability to sustain populous colonies that actively manip-
ulate their surrounding environment and maintain suitable 
homeostatic conditions in the nest and foraging sites [129, 
138, 139]. In addition, species of this clade often supple-
ment their nitrogen-poor diet (wood) with organic-rich and 
microbial-rich matter acquired from the soil [140, 141], and 
which may have opened the door for the soil microbes to 
their faecal nest [141, 142]. These peculiar biological traits 
may provide some clues about the life history of the com-
mon ancestor of Termitidae prior to the loss of gut protists.

Fig. 2  Nest centre, including royal chamber, of the carton nest of 
Coptotermes gestroi, resulting from the reuse of faecal material, 
organic matter from the soil, and soil microbes (photo: T. Chouvenc)

Fig. 3  Simplified diversification of derived Neoisoptera from [28]. 
The loss of nutritional mutualistic protozoa marked the emergence of 
Termitidae. While all termites possess various degrees of mutualistic 
relationships with intestinal Bacteria and Archaea, this figure high-
lights the characteristic partners involved in their obligate mutualis-
tic relationship for nutritional purposes, and their respective locations 
relative to the termite hindgut. Excluding the subfamilies Sphaeroter-
mitinae and Macrotermitinae, most other Termitidae are soil feeders, 
with many instances of independent reversal to a wood-feeding diet



2756 T. Chouvenc et al.

1 3

The rise of Termitidae and diet 
diversification

The loss of protozoa marks the transition 
to Termitidae

The loss of protists and their associated bacterial endosym-
bionts in Termitidae arguably marked the most important 
evolutionary innovation in termites since the emergence of 
eusociality (Fig. 3). The nutritional mutualists that replaced 
protistan functions allowed for the specialization of Ter-
mitidae into new niches, promoting their diversification and 
ecological dominance [26]. These nutritional mutualisms 
include novel symbiotic partners in combination with pre-
existing intestinal bacterial and archaeal symbionts [5]. The 
emergence and rise of Termitidae were consequently marked 
by a series of specializations unique to the family, physio-
logically and ecologically separating them from “lower” ter-
mites, and beyond the critical mutualistic and dietary shifts 
discussed hereafter. Among such innovative traits, all Ter-
mitidae have inherited and maintained a true worker caste, 
rooted within a rigid bifurcated developmental scheme [83, 
143]. Worker gut morphology and physiology departed from 
the ancestral conformation found among “lower” termites 
[144, 145]. Termitidae have also evolved a staggering diver-
sity of morphologies and functions in soldiers, characterised 
by extreme modification of the mandibles and the frontal 
gland. Some species have soldiers with vestigial mandibles, 
fully dependent on chemical secretion for defence [107]. On 
the opposite end of the spectrum, soldiers with symmetric or 
asymmetric snapping mandibles have evolved independently 
several times within Termitidae [146, 147]. Finally, some 
lineages of Termitidae lost the soldier caste entirely and are 
exclusively defended by workers [148].

As Termitidae have a wide diversity of diets, morpholo-
gies, and behaviours, not seen in any “lower” termite, it is 
hypothesized that the initial loss of protozoa and the con-
comitant nutritional changes intrinsically played a critical 
role in permitting such a breadth of specializations to appear. 
However, the processes that allowed for the transition from 
a mutualism with protists toward alternative (and arguably 
more efficient) mutualistic associations in Termitidae remain 
speculative [4, 19, 28, 149]. The fundamental diets of ter-
mites are coarsely based on either wood (poorly decayed 
plant organic matter) or soil (highly decayed matter) [150]. 
All Termitidae descend from a wood-feeding ancestor, but 
up to 85% of termitid species have evolved to feed on soil 
in association with their symbiotic gut bacteria and archaea 
[58, 151]. Many species within some derived termitid 
clades reverted to the plesiomorphic condition of digesting 
wood, which they digest with the help of symbiotic intes-
tinal bacteria [28, 152, 153]. In addition, two lineages of 

wood-feeding Termitidae, Macrotermitinae and Sphaeroter-
mitinae, evolved an external pre-stomach [154], sometimes 
incorrectly referred as an “external rumen” [26, 149]. The 
external digestion of Macrotermitinae is composed of a 
fungal comb, while that of Sphaerotermitinae is a bacte-
rial comb [155–157]. Both an early externalization of the 
digestion or an early switch to soil-feeding during termitid 
evolution are potential explanations for the loss of protists 
and the subsequent emergence of Termitidae (Fig. 3). The 
following two sections provides an overview of the biology 
and evolution of the two primary feeding strategies used in 
Termitidae.

The external digestion of Macrotermitinae–
Sphaerotermitinae

Two sister lineages of extant Termitidae use an external 
digestion (Fig. 4): Sphaerotermitinae and Macrotermitinae 
[28]. The only described species of Sphaerotermitinae, 
Sphaerotermes sphaerothorax, builds bacterial combs with 
undetermined functions, but that presumably participate in 
their nutrition [155]. Macrotermitinae comprise 12 genera 
and 373 species and have an obligate mutualism with 34 
known species of Termitomyces (Agaricales: Basidiomy-
cota) fungi [158] that participate in the nutrition of their 
host, including the digestion of the lignocellulose matrix, 
provision of essential amino acids, and production of meta-
bolic water [159–161]. Therefore, the nutritional mutual-
istic functions largely moved from the termite gut to the 
fungal comb in Macrotermitinae [19, 162]. A similar shift 
has been hypothesized for Sphaerotermitinae and their 
bacterial combs, but this remains to be confirmed. While 
Macrotermitinae and Sphaerotermitinae most likely inher-
ited their externalized digestion from a common ancestor 
[28], it is unknown whether the initial nutritional mutualist 
was fungal or bacterial. However, it is noteworthy that the 
diversification of extant Termitomyces and macrotermitine 
lineages in Africa both started some 31–37 Ma [27, 163, 

Fig. 4  Fungal comb of Macrotermes (photo: J. Šobotník)
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164], which roughly coincides with the Eocene–Oligocene 
extinction event at ~ 34 Ma [165]. This raises the possibil-
ity that either termite fungiculture could have already been 
established and that all Macrotermitinae are descendants 
of a single fungus-growing ancestral lineage that survived 
the extinction event, or that termite fungiculture emerged 
in context with the Eocene–Oligocene extinctions, which 
would imply that the ancestral nutritional comb could have 
been other than fungal.

External digestive systems have evolved independently 
multiple times in insects, and fungiculture specifically 
may have evolved several times in beetles, once in ants 
(Attini), and once in the termite subfamily Macrotermitinae 
[166–168]. The mechanisms of coevolution between Mac-
rotermitinae and their Termitomyces symbiont has received 
extensive attention and revealed a dynamic association with 
frequent switches between partners [167, 169–172]. Species 
of Termitomyces are not specific to one termite host species, 
and host switches at lower taxonomic levels of their termite 
hosts are frequent, but exhibit a lineage-specific pattern of 
associations at higher taxonomic levels of their host termites 
[163, 167, 173–175]. These frequent switches are linked to 
the mode of transmission of Termitomyces. In most species 
of Macrotermitinae, the sexual spores of Termitomyces that 
serve as the inoculum of fungus gardens are acquired from 
the environment by the first foraging workers [169, 176], 
implying an open system in which various strains of fungi 
compete and are selected during termite colony foundation 
[177]. This horizontal mode of Termitomyces transmission, 
relying on the acquisition of spores from the surrounding 
soil, presumably represents the ancestral condition of fungus 
acquisition and transmission. Vertical transmission of Termi-
tomyces is also known to have evolved secondarily in at least 
two independent lineages of Macrotermitinae, once in a sin-
gle Macrotermes species, Macrotermes bellicosus, and once 
in Microtermes [178], allowing for oversea colonization of 
Madagascar from continental Africa in the latter [177].

All modern Macrotermitinae and Termitomyces have 
paired to establish an intricate mutualistic system, which has 
similarities with other “insect farmers” [179]. The ecological 
conditions that allowed for this symbiosis to emerge remain 
speculative. One hypothesis for the origin of fungal garden-
ing in social insects is that the nest structure, built using 
colony wastes, provided a nutritional substrate for potential 
mutualists [166]. Sands [180] suggested that the mutualis-
tic association between fungi and termites emerged as the 
ancestor of fungus-growing termites stored, or incorporated 
in their nest structure, unprocessed or partially digested 
wood material that inadvertently promoted the growth of 
saprophytic microorganisms. The opportunistic Agaricales 
fungi, which may have gradually invaded the termite nest 
structure [181, 182] may have then been progressively used 
and subsequently farmed by the ancestor of Macrotermitinae 

[162, 168, 171]. Following this scenario, the emerging nest 
structures fostered the colonization of the nest by opportun-
istic soil fungi that later became obligate nutritional sym-
bionts (Leucocoprinus in attine ants, Termitomyces in Mac-
rotermitinae) [162, 166]. A similar scenario can be posited 
for the origin of bacterial combs in Sphaerotermitinae.

Soil‑feeding termite biology

While the “lower” termites primarily feed on wood, and 
occasionally on grass, most termitid species feed on dead 
plant matter at an advanced stage of decomposition, from 
rotten wood to bare soil [150, 152]. Species feeding on 
highly rotten wood that has become soil-like, or on soil 
below rotten logs, are referred to as wood/soil interface feed-
ers or feeding-group III, while those feeding on the fully 
humified organic matter present in apparently mineral soil 
are referred to as true soil-feeders or feeding-group IV [152]. 
As these groups overlap broadly in the state of decomposi-
tion of their diet [150], we here use the term soil-feeder 
indistinctively for both feeding-group III and IV.

Soil-feeding has been adopted by about half of all known 
termite species, and by a majority of the species of Ter-
mitidae, in which about ~ 85% of the species are soil-feeders 
[11, 183]. All subfamilies of Termitidae include soil-feeding 
species, with the exception of the two subfamilies endowed 
with externalized digestive systems, Macrotermitinae and 
Sphaerotermitinae, which only include species relying on 
wood as their primary food source. The prevalence of soil-
feeding among Termitidae is likely underestimated as soil-
feeding lineages, such as Apicotermitinae, are particularly in 
need of taxonomic revision and are known to include many 
undescribed species [148, 183, 184]. This is best illustrated 
by faunistic surveys of African and South American tropi-
cal rainforests, which reveal that soil-feeding termites are 
diverse, and generally make up > 50%, and sometimes up to 
80%, of the termite fauna (e.g., [148, 150, 185–187]. Soil-
feeding termites are also extremely abundant in tropical rain-
forests, and their biomass often outweighs that of termites 
with different feeding habits [187–189]. The acquisition of 
a soil-based diet therefore contributed significantly to the 
ecological success of Termitidae.

Both wood-feeding and soil-feeding Termitidae are asso-
ciated with stable communities of intestinal prokaryotes, the 
composition of which differs substantially among the two 
feeding types [58, 151, 190]. Soil-feeders have been reported 
to have an increased abundance of Ruminococcaceae and 
Lachnospiraceae (Firmicutes) compared to wood-feeders, 
which have increased abundance of Treponema (Spiro-
chaetes) and Fibrobacteres often associated with wood-
fiber particles [151, 190–193]. These patterns remain to 
be confirmed by studies with more comprehensive termite 
sampling. In both wood-feeders and soil-feeders, the gut 
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bacterial communities actively participate in the nutrition 
of their termite host. Soil-feeders are able to digest cellulose 
[194, 195], despite the relative scarcity of cellulose in their 
diet. A large part of their diet appears to be the microbial 
biomass of the soil, and the nitrogen-rich organic residues 
associated with clay particles [195–198]. In consequence, 
the ammonia concentration in the intestines of soil-feeding 
termites reaches levels similar to that of carnivorous organ-
isms [199], confirming that soil-feeding Termitidae feed on 
a nitrogen-rich diet, unlike wood-feeding Termitidae and all 
“lower” termites that feed on nitrogen-poor wood [200].

External digestion and soil‑feeding 
as potential proximal causes for the loss 
of protozoa

The proximal causes for the loss of protozoa remain specu-
lative. Both the external nutritional comb and soil-feeding 
habits evolved early in Termitidae (~ 65–54 Ma), either 
of which might have been the driving factor in the loss 
of mutualistic protozoa. The externalization of the diges-
tion hypothesis has been most discussed [4, 19, 139, 149, 
162, 180], although based on an erroneous placement of 
Macrotermitinae as sister to all other Termitidae [28, 36]. 
Such a phylogenetic placement is no longer supported as 
the most recent estimate of relationships, based on thou-
sands of nuclear genes, recovered all termites with an exter-
nal digestion (Macrotermitinae and Sphaerotermitinae) as 
reciprocally monophyletic sister groups and together sister 
to all remaining Termitidae, allowing for the possibility of 
an alternative narrative for the loss of protozoa [28].

In the case of the early externalization of the diges-
tion, external symbionts may have acted as a new source 
of enzymes and nutrients, making symbiotic gut protozoa 
redundant and ultimately obsolete. Following this scenario, 
the loss of protozoa was achieved while conserving a pri-
mary wood diet, and soil-feeders appeared subsequently dur-
ing a re-internalization of the digestion event. The alterna-
tive explanation for the loss of protozoa is an early shift from 
wood-feeding to soil-feeding in the ancestor of all modern 
Termitidae, depriving the cellulolytic gut protozoa from a 
cellulose-rich diet and starving them to extinction [28]. This 
shift might have been eased by the association with new gut 
microbes trophically acquired from the soil. In this scenario, 
the externalization of the digestion in the nutritional comb of 
Macroterminae and Sphaerotermitinae occurred secondarily, 
following the rapid return to a wood-feeding diet from a soil-
feeding ancestor [28]. However, data regarding diet and nest-
ing structures are almost exclusively available for extant ter-
mites only owing to the incomplete fossil record [34, 164], 
rendering it challenging to accurately reconstruct the pat-
tern of events [201, 202]. Molecular phylogenetic trees fail 

to resolve the matter as the branching pattern among early 
termitid lineages leaves both scenarios equally probable. 
Therefore, the actual sequence of events that eventually led 
to the loss of gut protozoa and the emergence of Termitidae 
remains unclear. We outline the two possible scenarios here.

Loss of protozoa in Termitidae scenario A: 
the externalization of the digestion in a nutritional 
comb

In this scenario, the externalization of the primary functions 
of lignocellulose digestion outside the termite hindgut was 
the proximal cause for the loss of protists in a subterranean 
ancestor (Fig. 5). The common ancestor to the Heterotermes-
Coptotermes-Reticulitermes lineage and Termitidae was a 
wood-feeder and most likely lived in populous colonies, with 
the ability to forage through a system of underground galler-
ies connecting many wood items. We here argue that these 
three primary traits (wood-feeding, large colonies, soil for-
agers) were likely necessary requirements for the externali-
zation of the digestion in the Macrotermitinae + Sphaeroter-
mitinae ancestor, as the nutritional comb may have emerged 
only under a narrow range of conditions [168]. Given that 
termites evolved from a wood roach ancestor with a nitro-
gen-limited but carbon-rich diet, all “lower termites” retain 
hardwired nitrogen-conservation mechanisms [8, 203–205] 
and a remarkable absence of a carbon-conservation strategy 
[206]. Therefore, such a subterranean ancestor with large 
colonies and a relatively fast, wood-based metabolism, 
owing to easy access to resources through subterranean for-
aging (water, space, wood, organic-rich soil layers) resulted 
in the excretion and accumulation of excess carbon within 
their faecal matter.

Species that make large colonies in many of the derived 
Rhinotermitidae often reuse such faecal material as part of 
their nest structure, which is taken to an extreme in Cop-
totermes, with elaborate carton nests [19]. Such faecal nests 

Fig. 5  Scenario A: the externalization of the digestion hypothesis



2759Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae  

1 3

could be interpreted as analogous to the excretion of excess 
carbon by aphids via honeydew from similar physiologi-
cal constraints. Aphid honeydew is a potential nutritional 
resource for ants, which in return protect the aphids in a 
loose mutualistic relationship [207]. Similarly, in subterra-
nean termites, the faecal nest serves as a nutritional niche 
for a wide range of opportunistic symbiotic soil microorgan-
isms, primarily bacteria [208]. Although such microbes are 
unlikely to provide a nutritional benefit to the termites in 
Rhinotermitidae, microbial communities have attained sec-
ondary functions in providing homeostatic conditions within 
the termite nest, and levels of protection against the invasion 
of the colony by soil entomopathogens [139]. Therefore, car-
ton nests, such as in Coptotermes, are essentially bacterial 
combs with no putative nutritional benefits for the termites.

We here suggest that such faecal nests and associated 
microbes eventually attained an alternative secondary func-
tion in the ancestor of Termitidae, with an exaptation involv-
ing external nutritional symbionts. The recurrent incorpora-
tion of soil microbes into the faecal nest [141] eventually 
included microbial communities with lignocellulolytic 
capabilities and other functions complementary to termite 
metabolism. One argument for such reuse of faecal material 
is that in Macrotermitinae the nutritional comb is the result 
of a primary passage of masticated wood through the gut as 
“faecal pellets” which are then inoculated with fungus [171, 
172]. The required passage of the wood through the termite 
gut may, therefore, reflect the ancestral mechanism of how 
nutritional external symbionts initially took advantage of 
the feacal nest. An added argument is that carton nests in 
dying Coptotermes colonies or abandoned sections of the 
nest, can be invaded by a series of saprophytic microorgan-
isms, including Basidiomycetes soil fungi, such as Leuco-
coprinus [209] (Fig. 6). Such observations demonstrate that 
opportunistic microorganisms may be suppressed from the 

carton by Coptotermes or its allied microorganisms, but it 
remains a niche for potential decomposers.

The opportunistic saprophytes are indeed inhibited by 
termites and their associated microbes [139, 141, 209], 
however, the ancestor of Termitidae may have let certain 
saprophytes use parts of the fecal nest or abandoned forag-
ing sites. Once termites started reusing such processed fae-
cal nests, it would have allowed access to novel metabolites 
and enhanced wood-digestion processes. The new microbial 
association with such a termitid ancestor ultimately resulted 
in the protozoa being redundant, allowing for the potential of 
their loss. Once such a loss occurred it would have opened 
an ecological vacuum within termite guts, providing a newly 
available niche in the termite intestine for facultative gut-
inhabiting bacteria [5]. In addition, once termites started 
feeding on such decayed materials, it might have easily 
opened the door for feeding on similar materials already 
present in the soil, making the nutritional comb dispensa-
ble. While the physiological constraints of the termite gut 
may have rendered the direct and immediate substitution of 
protists to bacteria within the hindgut unlikely, the process 
of first externalizing the digestion would have eased the rein-
ternalization in the termitid ancestor where the nutritional 
comb was not yet engaged in a fully obligate relationship. 
Accordingly, in this scenario, three major consecutive events 
were necessary for the emergence of extant Termitidae: (1) 
the externalization of the digestion to a nutritional comb 
that led to the loss of protozoa, (2) a shift to a soil-like diet 
in one of the termitid lineages, which in turn led to (3) the 
reinternalization of the digestion in soil-feeders, with steps 
2 and 3 potentially being interdependent.

Loss of protozoa in Termitidae scenario B: The 
transition to soil‑feeders

As an alternative scenario, the loss of intestinal protists 
in Termitidae takes its origin in the early switch to a soil-
feeding habit in the common ancestor of modern Termitidae 
(Fig. 7). Such a switch potentially triggered the extinction 
of gut protists because of their inability to feed on sub-
strates other than lignocellulose [28]. Soil is impoverished 
in organic compounds that are efficiently decomposed, 
such as cellulose, and is enriched in recalcitrant materials, 
such as lignin, tannins, and other aromatic compounds, that 
aggregate with carbohydrates and proteins to form humic 
and fulvic acids [210, 211]. Studies on soil-feeding termites 
suggest that they feed on the microbial biomass present in 
the soil, and are able to mobilize the nitrogen-rich organic 
residues associated with clay particles [195–198]. Soil-
feeding termites have also retained prokaryotic communities 
that encode for many glycoside hydrolase families, suggest-
ing that they retained, to a certain extent, a carbohydrate 
metabolism [212], which may have allowed for subsequent 

Fig. 6  Carton material from a dead Coptotermes colony invaded by 
Leucocoprinus (as observed in [209])
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reversals to wood-feeding habits. However, the high ammo-
nia concentration in the intestines of soil-feeding termites 
indicates that their diet is nitrogen-rich [199], and there-
fore that the proportion of cellulose in their diet is relatively 
small, possibly to the extent that it led to the extinction of 
microbial clades unable to use feeding substrates other than 
cellulose, including protists. Alternatively, the gut micro-
bial communities of wood-feeding termites may have expe-
rienced significant changes following the host switching to 
a diet based on soil, and the extinction of gut protists would 
have been triggered by drastic changes in gut physiochemical 
conditions, such as extreme alkalinity, with pH > 12 [213, 
214], which might have taken place in a soil-feeding ances-
tor to mobilize recalcitrant humic compounds.

The exploitation of a new dietary niche may have been 
the primary driver for protistan loss in the ancestor of Ter-
mitidae. The sister clade to Termitidae, comprised of Heter-
otermes, Coptotermes, and Reticulitermes, has the ability to 
forage in soil layers, with potential trophic interactions for 
nitrogen acquisition [129, 140, 141], suggesting that their 
common ancestor already possessed such behavioural and 
foraging traits. However, in the termitid lineage, the funda-
mental shift towards soil-feeding associated with a relatively 
nitrogen-rich diet, would have improved the acquisition of 
the building blocks necessary for colony growth, while 
maintaining the minimal cellulolytic functions required for 
the energy metabolism of the colony with diverse endog-
enous and exogenous cellulase sources [215]. In such an 
optimized diet, protists may not only have become obso-
lete in their functions to their host and been passively lost 
over time; they may have been actively suppressed by the 
inherent biochemical changes within the termite gut and/
or starved to extinction. In addition, in a positive feedback, 
the loss of protists freed up space within termite guts and 
may have allowed for a reconfiguration of gut morphology 
[145], with new layers of competition and mutualism among 

new putative microbial partners, as a novel ecological niche 
to exploit.

This scenario, whereby the switch to soil-feeding trig-
gered the loss of protists, therefore implies that the emer-
gence of the external nutritional comb in Macrotermitinae 
and Sphaerotermitinae was secondary, and derived from 
a soil-feeding termitid ancestor. However, such digestion 
externalization could only have been possible in the presence 
of a nest structure nutritionally suitable for the growth of 
external symbionts, which may only have emerged from the 
excess of carbon-rich faeces of a wood feeder (as explained 
in scenario A). Therefore, the externalization of the digestion 
mandates that the soil-feeding ancestor of Macrotermitinae 
and Sphaerotermitinae likely reverted to a wood-feeding diet 
prior to the colonization of microorganisms of such faecal 
nests. Thus, in this scenario, three major consecutive events 
were necessary for the emergence of an external nutritional 
comb: (1) the switch to a soil diet and loss of protozoa, (2) 
a reversal to wood-feeding in the ancestral stem of the Mac-
rotermitinae + Sphaerotermitinae lineage, and (3) the acqui-
sition of external nutritional mutualists, with steps 2 and 3 
potentially being interdependent. Alternatively, the ancestral 
termitid was only facultatively a soil-feeder, potentially suf-
ficiently so as to lead to protistan loss (as outlined above), 
but with enough flexibility that termitids began to switch 
back to principle wood-feeding in the ancestor of Macroter-
mitinae + Sphaerotermitinae. This scenario might have been 
precipitated by environmental changes taking place after the 
Eocene–Oligocene transition, such as global cooling and 
aridification. Such a modification of the scenario outlined 
would have eased step 2.

Discussion

Termites: 150 Ma of evolutionary uncertainty 
since eusociality

Extant termites display a broad spectrum of traits that 
emerged from innovations, gains and losses of characters 
and functions, which propelled their evolutionary trajecto-
ries away from their ancient blattodean roots. Undoubtedly, 
the transition to eusociality in the termite ancestor allowed, 
and ultimately precipitated, the evolution of unique charac-
teristics that fostered their ecological success. As a result, 
the initial conditions and traits that have led to the emer-
gence of eusociality in termites ~ 150 Ma ago have received 
ample scrutiny, resulting in a plethora of hypotheses and 
tentative explanations over the decades and revealing routes 
to eusociality distinct from those proposed for social Hyme-
noptera [4, 8, 9, 30, 69, 90, 216, 217]. The evolutionary 
processes that led various traits to emerge after eusociality 

Fig. 7  Scenario B: the soil-feeder (edaphophagy) hypothesis
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was attained often remain highly speculative owing to the 
many convergences and repeated losses during termite diver-
sification, but these ultimately led to diverse physiological, 
ecological, and morphological adaptations and exaptations 
[30, 37, 51]. As highlighted in this review, many evolution-
ary scenarios pertaining to the emergence of traits and their 
timelines possess various degrees of uncertainty. However, 
we here support the hypothesis that two distinct mutualistic 
shifts had a critical role within the history of termite evolu-
tion: (1) the initial acquisition of intestinal protists within the 
context of alloparental care as one of the key events that ena-
bled or facilitated the emergence of eusociality in termites, 
and (2) the much later loss of these protists, associated 
with the gain of alternative mutualists, that ultimately trig-
gered the emergence of the most successful termite group, 
the Termitidae. Interestingly, there is a progressive loss of 
protozoan diversity in more derived “lower” termites [23, 
25], which culminates in their complete loss in the “higher” 
termites. Regardless of the factors that led to this protistan 
disappearance from the guts, they presumably cascaded a 
series of changes that fundamentally altered the inherent 
physiology and ecological performance of Termitidae.

Toward the resolution of the loss‑of‑protists 
scenario

The recent clarification of the phylogenetic position of 
Sphaerotermes within Termitidae has revealed a need to 
reassess the putative events that led to the loss of protists 
[28]. While the general hypothesis that the initial exter-
nalization of the digestion resulted in the loss of protists 
remains plausible, an alternative explanation, namely a 
switch to soil-feeding as the proximal cause for protistan 
loss, is in fact equally parsimonious. In this review, we argue 
that these two scenarios are equally probable, and that it 
remains unclear which came first—the external nutritional 
comb or soil-feeding. There is also a certain possibility 
that both scenarios occurred independently on two distinct 
branches of the termitid tree, in which case protists were lost 
twice independently, once through the externalization of the 
digestion to a nutritional comb in the ancestor of Macroter-
mitinae and Sphaerotermitinae, and once in the ancestor of 
all other Termitidae through the acquisition of soil-feeding 
habits. Regardless of which scenario triggered the initial loss 
of protists, the origin of Termitidae took place ~ 65–54 Ma, 
following the end-Cretaceous mass extinction and leading 
into the Paleocene-Eocene Thermal Maximum, raising the 
possibility that changing global conditions and niche open-
ings played a critical role in the initial dietary switch in the 
progenitors of the termitids. The discovery of new termite 
fossils spanning either side of the Mesozoic–Cenozoic 
boundary, as well as from the Paleocene and Early Eocene, 
may provide morphological clues from early termitids (such 

as mandibular structures associated with wood- versus soil-
feeding), allowing inference of their diets. Alternatively, 
the potential discovery of trace fossils, particularly nest 
structures, from early termitids would provide evidence, or 
absence thereof, of a primitive nutritional comb [164].

Although insect paleontology is experiencing a revival, 
as illustrated by the many new fossils that have been 
described during the past decade, only one fossil, that of 
Nanotermes isaacae [218], provides relevant information 
on early termitid lineages. Nanotermes isaacae is known 
from ~ 50-million-year-old Cambay amber, and is upward 
of 20 million years older than all other known fossils of 
Termitidae, such as those found in Dominican amber [219], 
which are exclusively comprised of crown-Termitidae. The 
only available alate imago of N. isaacae was smaller than 
that of any known extant termites, and its actual affiliation 
with modern lineages of Termitidae is unclear. Because no 
other castes of N. isaacae are yet known, the shape of the 
alate imago mandible is the only character informative of 
the diet of this minute, early termitid species [220]. Unfor-
tunately, the mandibles of the only known specimen of N. 
isaacae are not exposed, and the Cambay amber in which 
the fossil is preserved is inadequate for micro-CT scanning 
owing to minimal differential density between the matrix 
and comparatively soft-bodied arthropods, such as this spec-
imen. It is possible that N. isaacae is representative of the 
termitid stem group, or could be a stem group to one of the 
constituent lineages within the family. While the diet of early 
termitid lineages cannot be inferred from currently available 
fossils, future discoveries of stem-Termitidae might help 
determine the feeding ecology of early termitid lineages.

Both a robust termite phylogeny and more fossil occur-
rences have the potential to provide important clues to 
resolve such questions. The phylogenetic relationships 
among the main termite lineages are now well-resolved, and 
often with high support, providing the opportunity to recon-
struct the evolution of various traits (e.g., [221]), includ-
ing diet. Because “lower” termites are all wood-feeders, 
there is no doubt that Termitidae descend from an initially 
wood-feeding ancestor. However, ancestral diet reconstruc-
tions indicate that soil-feeding habits evolved early in the 
evolution of Termitidae. This transition was either directly 
after termitids diverged from their sister lineage (Cop-
totermes + Heterotermes + Reticulitermes), in which case 
the switch to soil-feeding coincides with the loss of gut pro-
tists (unless there are as-of-yet undiscovered fossil taxa that 
intercalate between these two events), or in the common 
ancestor of the sister group to Macrotermitinae + Sphaeroter-
mitinae, in which case the loss of gut protists has another 
cause, putatively an externalization of the digestion. The 
present molecular phylogenies are inconclusive and neither 
support nor reject any of the two scenarios, although they do 
support that the most recent common ancestor of the termitid 
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sister group to Macrotermitinae + Sphaerotermitinae was a 
soil-feeder, and that wood-feeding habits were secondarily 
reacquired in some lineages in this clade [28]. Future phy-
logenetic works that resolve the position of Foraminitermi-
tinae, or include new key taxa, such as the foraminitermitine 
Pseudomicrotermes alboniger, have the potential to shed 
brighter light on the precise timing of the initial acquisition 
of soil-feeding in Termitidae.

Epilogue: our comprehension of termite evolution 
remains fragmentary

In this review, we provide an overview of crucial steps of 
termite evolutionary scenarios and their consequences to the 
recent global fauna. From the initial emergence of eusoci-
ality to the remarkable diversification it generated, major 
strides in our understanding of termite evolution have been 
achieved within the last two decades. Nonetheless, these 
clarifications and new discoveries only scratch the surface 
of the complexity of an often-misunderstood group of euso-
cial roaches. All major representative groups of termites 
invariably possess species that display traits that differ from 
what often defines their genera, or even sometimes their 
own family, reflective of the mosaic nature of taxa. Argu-
ably, termites often rule by the exception. Unfortunately, 
aside from a limited number of studied termite species 
(most of them owing to their pest status), the vast majority 
of termite diversity and their inherent biology remains to 
be investigated, revealing a large void of biological knowl-
edge, ultimately limiting our ability to decipher and interpret 
such social complexity and its evolution. Accordingly, our 
extrapolations and explanations are assuredly over-simpli-
fications for the time being, and this review highlights the 
still-limited state of our knowledge. Ultimately, there is a 
need for engaged research in this fascinating and important 
group of eusocial animals whose abundance is comparable 
to that of ants and humans [14, 26]. Regardless of shortfalls, 
recent breakthroughs in our understanding of phylogenetic 
relationships among most major termite groups and in their 
inherent nutritional requirements have opened new avenues 
of research, expanding possible evolutionary trajectories ter-
mites may have undertaken and that are in need of critical 
investigation.
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