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Abstract

In the Air Force Research Laboratory Additive Manufacturing Challenge Series, melted track geometries for a laser powder
bed fusion (L-PBF) process of Inconel 625 were used to challenge and validate computational models predicting melting
and solidification behavior. The impact of process parameters upon single-track single-layer, multi-track single-layer, and
single-track multi-layer L-PBF processes was studied. To accomplish this, a physics-based thermal-fluid model was developed
and calibrated using a proper generalized decomposition surrogate model, then compared against the experimental measure-
ments. The thermal-fluid model was enhanced through the usage of an adaptive mesh and residual heat factor (RHF) model,
based on the scanning strategy, for improved efficiency and accuracy. It is found that this calibration approach is not only
robust and efficient, but it also enables the thermal-fluid model to make predictions which quantitatively agree well with the
experimental measurements. The adaptive mesh provides over a 10-times speedup as compared to a uniform mesh. The RHF
model improves predictive accuracy by over 60%, particularly near starting and ending points of the melted tracks, which
are greatly affected by the thermal behavior of adjacent tracks. Moreover, the thermal-fluid model is shown to potentially
predict lack-of-fusion defects and provide insights into the defect generation process in L-PBF.

Keywords Additive manufacturing - Proper generalized decomposition - Melt pool dynamics - Lack of fusion - Calibration
and validation - Ni-based alloy

Introduction

Metal additive manufacturing (AM) produces metallic parts
by fusing materials in a layer-by-layer fashion directly from
a 3D CAD model [1]. Laser powder bed fusion (L-PBF)
is a promising AM process in which a thin layer of metal-
lic powder is spread on a substrate (or the previous layer)
and a laser source selectively melts and fuses neighboring
powder particles and the previous layer. This is repeated in
a layer-by-layer fashion until the desired final part is formed.
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Since L-PBF has the potential to produce highly customized
parts with complex geometries and internal structures, it has
garnered great interest from the aerospace, automotive, and
biomedical industries [2—4]. Despite offering these advan-
tages and several others, L-PBF is known to struggle with
producing parts which have reliable and repeatable mechani-
cal performance due to inconsistencies in the microstructure
[5]. However, recent studies prove both the microstructure
and mechanical properties of parts produced through AM
are significantly influenced by the size and shape of melt
pool and resulting solidified track [6].

In L-PBF, the formation of the melt pool is the key to
describe the powder/bulk material interactions because it is
an intermediate step between solidification and laser source
absorption [7]. During the process, localized solid powder
is heated up and melted into a liquid after absorbing energy
from the passing laser, then cools down and solidifies into
a bulk material with a resultant microstructure as the laser
moves further away. Porosity in L-PBF may occur due to
improper melt pool formation from insufficient melting
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caused by too little energy absorption or trapped gas caused
by vaporization [8, 9]. Much research has shown that energy
absorption in L-PBF can be traced through a combination
of process parameters such as laser power, scan speed, and
spot size. Hence, desired quality of a part fabricated from
L-PBF may be achieved through controlling the melt pool
by manipulating these processing parameters.

There have been many research efforts aimed at under-
standing the influence of different AM process parameters
and material properties on part quality using computational
models and simulations [10, 11]. Using a heat conduction
model based on the finite element method is one of the most
popular means to model the AM process. For example,
Ghosh et al. compared experimentally observed melt pool
geometries to computational predictions from a heat conduc-
tion model with adequate agreement for various scan speeds
and laser powers [12]. However, Yan et al. demonstrated that
a thermal-fluid model, which considers fluid flow in the melt
pool has greater accuracy of predicting melt pool geometries
for a wider range of process parameters than a heat conduc-
tion model [13]. Additionally, work performed by Gan et al.
used a combination of a heat conduction model, a thermal-
fluid model, and a thermal-fluid-vaporization model to
demonstrate that the added inclusion of vaporization affects
increases predictive accuracy of cooling rates and melt pool
geometries even more [14]. Although some computational
models have been proven to provide sufficient agreement
with experiments, various parameters for the heat source are
typically manually calibrated. Additionally, they are usually
taken to be constant throughout the entire simulation, which
is not physically realistic.

The experiments used to validate and ensure the accuracy
of these aforementioned AM process models are required to
be well designed and highly controlled. However, high peak
temperatures, violent behavior of metallic powder, and the
complex multi-physics nature of the melt pool make con-
ducting reliable in situ measurements difficult. Typically,
ex situ measurements used for model validation observe the
solid/liquid phase boundary at the cross section of fabricated
samples [15]. Recently, in situ observation techniques have
been proposed to conduct time-resolved measurements for
the melt pool depth [16], melt pool visible surface area [17],
and cooling rate [18, 19], enabling the design of highly con-
trolled experiments, though in November 2019, the United
States Airforce Research Laboratory: Materials & Manu-
facturing Directorate Structural Materials, Metals Branch
(AFRL/RXCM) and America Makes publicly announced the
Additive Manufacturing Modeling Challenge Series, which
provided a series of highly controlled additive manufactur-
ing challenges for computational models to simulate for
opportunities of quantitative validation [20, 21]. Model pre-
dictions were submitted by January 31, 2020. Then, all the
experimental results were released in January 2021. Through
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participation in this event, participants were challenged to
confidently simulate the L-PBF process with models that
they independently developed to provide accurate and effi-
cient predictions. A small amount of experimental data were
used for calibration.

This paper describes a computational effort to model one
set of the AFRL AM Challenge Series experiments, which
measured the geometries of solidified laser tracks left behind
by the melt pool for multi-layer and multi-track builds of
Inconel 625 (IN625) using the L-PBF process. Hence, the
rest of the paper is organized as follows: Sect. 2 briefly
describes the experimental methods of the AFRL AM Chal-
lenge Series. Section 3 describes the computational methods
used to model the experiments in detail. Then, Sect. 4 pre-
sents a detailed comparison of the experimental measure-
ments and the computational predictions. Finally, conclu-
sions and key findings of the study are mentioned in Sect. 5.

Experimental Methods

At ARFL, an EOS M280 commercial L-PBF system was
used to produce single-layer single-track, single-layer multi-
track, and multi-layer single-track (thin-wall) builds of gas-
atomized IN625 powder. A Yb-fiber laser with a Gaussian
spot size diameter of 46 = 0.1 mm was used to melt powder
layers with a height of 40 pm for all the cases [22]. The
atmosphere within the build chamber was supplied purely
with Argon gas and build plates were preheated to 353 K.
The single-track scans were used for the sake of calibra-
tion of the computational models, whereas the multi-track
and thin-wall builds were used as the challenge problems.
However, both calibration and challenge problems were built
on top of AM-printed substrate blocks 5 mm in height. The
blocks were rectangular and extended at least 3 mm beyond
the end points of the laser scan vectors.

All the single-track laser scans traveled 20 mm from their
start position to the their end position, with the laser powers
and scan speeds outlined in Table 2, though The multi-track
cases had pad sizes of 3 mm X 3 mm, 10 mm X 3 mm, and 15
mm X 3 mm. Additionally, the dwell time between the tracks
was 0.5 ms to give the previously melted track time to cool
before the subsequent laser scan begins. The full geometries
of the multi-track cases are showcased in Fig. 6, and the
corresponding laser power and scan speed for each case are
shown in Table 3. Contrarily, two thin-wall specimens were
built using a unidirectional scanning pattern with a length of
5 mm and a powder layer thickness of 40 pm (10 powder lay-
ers) in the build direction. One of the thin walls used a laser
power of 300 W and a scan speed of 1230 mm/s, whereas the
other used 241 W and 1529 mm/s as shown in Table 5. Since
the length of the walls was relatively short, a dwell time
of 27 s was used between the deposition of the subsequent
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layers. Measurements were taken using a combination of
electron backscatter diffraction, to get a top-down descrip-
tion of the track behavior, and optical microscopy on etched
cross sections, to measure the track geometries, though a
full description of the experimental setup, and measurement
procedures can be found in [22].

Computational Models

A framework of integrated computational models was pro-
posed to simulate one set of the AFRL AM Challenge Series
experiments in which the Proper Generalized Decomposi-
tion (PGD) approach [23, 24] was used to calibrate some
unknown parameters of an AM process model. In this work,
a thermal-fluid model considering liquid flow inside the melt
pool driven by the Marangoni effect was developed as the
AM process model to predict the melted track geometries of
the L-PBF process, though the key parameters to model the
interaction between the metal and the laser heat source were
calibrated using a PGD-based surrogate model.

Thermal-Fluid AM Process Model

A well-tested transient three-dimensional thermal-fluid
model [11, 14, 25, 26] is used to predict the thermal field
in the entire part and velocity field in the melt pool region.
To accomplish this, the model solved the governing equa-
tions for mass, momentum, and energy conservation given
as follows:
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where t is the time, u; is the ith component of the velocity,
is the viscosity, p is the pressure, # is the enthalpy, T is the
temperature, p is the density, k is the thermal conductivity
and f is the thermal expansion coefficient. The second com-
ponent of the acceleration of gravity g, is 9.8 m/s* and other
components are zero because the direction of the gravity
acceleration is vertical.

In this study, u is set as a constant, 6 is the approxi-
mate primary dendritic spacing, which is set to 1 um, B
is a small parameter to avoid division by zero and set to

1073. The relationship between enthalpy and temperature
to close the equation set is

T
ph = / pcp(T')dT' + pLf, 4
0

where ¢, is the temperature dependent specific heat capacity,
L is the latent enthalpy of fusion, and f; is the volume frac-
tion of the liquid phase.

The heat source from the laser, Q, is described by a
cylindrical shape with a Gaussian distribution described
below:

2 o (2R
Q={ﬂrideXp< ) p 25 S

0 Zop —2>d

where P is the laser power, # is the absorptivity, r, is the
laser beam radius, d is the depth of the heat source, and
Zyop 18 the z-coordinate of the top surface of the computa-
tional domain (the original point of the z-coordinate is set
to the bottom of the substrate). Although P is a known vari-
able, the other three parameters, i.e., 1, r;,, and d, are treated
as unknowns and they are highly correlated to the vapor
depression phenomenon in the L-PBF process. As reported
in the literature [27, 28], as the laser power increases or
scan speed decreases, a vapor-induced depression appears
and deepens, which leads to higher absorptivity caused by
multiple reflections of the laser beam between the liquid/gas
interface. Thus, we assume the three parameters, i.e., #, 1y,
and d, are related to the ratio between the laser power P and
scan speed V, as follows:

Y
d—¢v (6a)
P
n= max(é‘—/, 0.28) (6b)
P
r, =P v (6¢)

where the coefficients ¢, &, and f are three independent
unknowns calibrated using the PGD method described in
Sect. 3.2. It is noted that the minimum value of the absorp-
tivity # is constrained to 0.28 [27] during the calibration. The
thermal boundary conditions are specified as:

Gener = _hc(T - Too) - O'SE(T4 - T;‘ef) (7)

where £ is the convective heat transfer coefficient, T is the
ambient temperature, o, is the Stefan—Boltzmann constant,
€ is the emissivity, and T, is the reference temperature.

The boundary condition for Eq. (2) at the top surface
(assumed to be flat in this study) is:
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A —fzﬁa (8a)
ou, dy oT
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where y is the surface tension, 2—; is the Marangoni coef-
ficient, and u; is the ith component of the velocity .

The powder layer is treated as a continuous media and
it is distinguished from the substrate through its material
properties. This is achieved through the use of a consoli-
dated factor, a, defined by the range from O to 1. The value
of 0 denotes the material is in the original powder state
(no consolidation), whereas 1 denotes a bulk state (fully
consolidated). As seen from Eq. (9), a is determined by the
temperature history, where T}, is the local peak tempera-
ture, and 7, and 7, are the material’s solidus and liquidus
temperatures, respectively. It should be noted that through
this definition a solely increases monotonically.

Tpeak - Ts

N

Since a denotes the state of the material at a given time, it is
used to determine state-dependent effective material proper-
ties. By assuming a linear dependence, the effective material
property, 4, is determined by Eq. (10), where A, and 4,y qer
are the appropriate properties for the powder and bulk mate-
rial, respectively. However, in this work it is assumed this
relation only applies to the material’s thermal conductivity,
specific heat capacity, and density.

A= Abulka + A’powder(l —a). (10)

The thermo-physical properties of IN625 are summarized
in Table 1. As listed in Table 1, the densities at ambient
and liquidus temperatures are used for solid and liquid den-
sities, respectively. Values of the bulk density were taken
from the literature [29], though for an accurate description
of the material’s thermal behavior during the L-PBF pro-
cess, temperature-dependent polynomials were used for the
solid’s thermal conductivity and solid’s specific heat capac-
ity as listed in Table 1. Polynomial coefficients were fitted
to previously published experimental measurements [29].
Additionally, a constant convective heat transfer coefficient
was used to approximate the low-velocity shield gas flow
upon the exposed surfaces.

To consider the transient behavior of the vapor depres-
sion caused by localized preheating from adjacent scan
paths (i.e., residual heat), we coupled the thermal-fluid
model with the residual heat factor (RHF) model proposed
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Table 1 Thermo-physical properties of IN625 and process constants

Property/parameter Value References
Solid density (kg m~3) 8440 [29]
Liquid density (kg m~3) 7640 [29]
Powder density (kg m~3) 4330 [30]
Solidus temperature (K) 1563 [31]
Liquidus temperature (K) 1623 [31]
Solid specific heat capacity (J kg=!  0.24417 + 338.39 [30]

K™
Liquild specific heat capacity J kg=!  709.25 [29]

K™)

Powder specific heat capacity (J kg=! 0.25087 + 357.70 [30]
K™Y

Solid thermal conductivity (W m~!  0.0163T +4.5847 [30]
K™

Liquid thermal conductivity (W m~" 30.078 [29]
K™
Powder thermal conductivity (W 0.995 [30]
m~!' K™
Latent heat of fusion (kJ kg™' K=!) 290 [29]
Dynamic viscosity (Pa s) 7%x1073 [31]
Thermal expansivity (1/K) 5% 1073 [31]
Surface tension (N m~1) 1.8 [32]
Marangoni coefficient N m™'K™")  —3.8x 10 [32]
Emissivity 0.4 -
Ambient temperature (K) 295 -
Reference temperature (K) 295 -
Preheat temperature (K) 353 -

Convection coefficient (W m=2K~1) 10 -

Stefan—Boltzmann constant (W 5.67x 10714 -

mm—2K~%)

by H. Yeung and B. Lane [33]. Since the scan path is
composed of discrete points defined by the time step of
the simulation and the scan speed of the laser as shown
in Fig. 1, the RHF at a specific point (or time step) is
defined as

R—d,\*(T -1
RHFi=Z< B k)( Tk>Lk (11)

kes;

where the preheating on point i by a previously scanned
point k depends on the distance between i and k, denoted as
d, elapsed time since k was scanned is denoted by ¢, , and
the normalized laser power at point & is denoted by L,. The
value of L, is equal to 1 when the laser is on, otherwise it is
equal to 0. Threshold values R (0.2 X 1073 in this case) and
T (2 x 1073 in this case) are used to ignore points which had
not interacted with the laser for a sufficient amount of time.
The set S; represents the previous scanned points, i.e.,
S; = {ty < TUdy <R, where i > k}, though this provides
a brief introduction, more detailed descriptions of the RHF
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Fig.1 A schematic of a discrete scan path and the residual heat factor
(RHF) [33].

model are provided in reference [33]. However, it should be
noted that the RHF can be normalized as RHF = 25

RHF{". where
RHF, is equal to the RHF; at the middle of the first track.
Thus, the RHF is equal to 1 at the middle part of the tool-
path, and it is greater than 1 at the corner of the toolpath, as
shown in Fig. 1. The heat source parameters can be coupled
with the RHF as

P
d =¢‘—/RHF2 (12a)
P 2
n =max(¢;RHF”, 0.28) (12b)
P
ry =ﬁ‘—/RHF2 (12¢)

where the coefficients ¢, &, § are the independent unknowns

calibrated using the PGD method and the exponent of the
RHF is an empirical coefficient. This RHF-based heat source
is expected to have larger values of #, r,, and d near starting
and ending points of the tracks where the RHF increases.

Proper Generalized Decomposition Method
for Model Calibration

Identification of model parameters is a challenging task for
AM simulations, especially when the number of unknown
parameters becomes important and local minima issues

arise. The standard way of handling this problem is to use
the genetic algorithm approach [34], in which the compu-
tational model is recalled repetitively to evaluate the trial
set of parameters. However, this method suffers from an
expensive computational cost. Therefore, in our work, we
used a powerful PGD-based surrogate modeling approach
[23, 24] to handle the model parameter identification (cali-
bration) problem, which has a significantly lower compu-
tational cost as compared to the genetic algorithm.

The PGD method used in this work is the Higher-Order
PGD (HOPGD)[23, 24], which is designed for non-intru-
sive data learning and constructing reduced order surro-
gate models. The basic foundation behind PGD approaches
is the separation of variables technique. Considering a
d-dimensional function, f(u,, u,, ..., 4;), which contains
the quantity of interest as a function of d parameters,
Hili=1 4 € D;, the separation of variables results in the fol-
lowing form

fups tos oo ug) = (g, My o on s i)

c 13
= 3 F )P i) F2 ), )

m=1

where f" is an approximation of f, n is the rank of approxi-
mation, and m denotes the m-th mode. Please note that the
superscripts n and m do not represent exponential terms.
The n-rank approximation f” is given by the finite sum of
products of the separated functions: F}"[,_; ;, which are a
priori unknown and should be obtained either with a pre-
computed database [23, 24, 35, 36] or by directly resorting
to physical models [37—40]. Furthermore, each function F’ l’"
that represents a variation of the original function fin the
parameter direction y; is also called a mode function.

The HOPGD relies on the database and falls into the
family of data-driven approaches. The database can be
either from simulations or experiments. Once obtained, the
HOPGD seeks a L? projection of data for computing the
mode functions F?"|,_; ;, which can reproduce (or extrapo-
late) the full parametric function f. Therefore, HOPGD can
be used to construct a surrogate model from data for fast
prediction. The detailed implementation of the method is
presented in [23, 24], and code examples can be found with
the GitHub project (https://yelu-git.github.io/hopgd/).

In this work, the parametric melt pool dimension was
required to calibrate the heat source model. In particular,
the depth and width of the single-track melt pool were the
quantities of interest. For identifying the best heat source
parameters, it was necessary to know the influence of heat
source parameters on the dimension (e.g., the width, W).
This relationship can be described by a multidimensional
function: W(p,, ..., p,) with p; being the parameters we want
to identify for the heat source model. Therefore, the PGD
form of this function can be written as
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WPy pg)) & WP, ... py) = 2 Fl'(p)) - F™(p,),
m=1
(14)

A similar decomposition can be done for the depth of the
melt pool: D(p,, ...,p,)

Assuming the parameters p = [pl, ,pd] belong to a
predefined domain D = D, X --- X D,;, we want to identify
the best p* s.t.

p* = argmin [J(WPSP, We,p) +J(D*P, D¢, p)] (15)
peD
where WPOP = W and DPSP = D" are the predictions of
the PGD surrogate model, J denotes the objective function
which measures the distance between the surrogate model’s
predictions and the experimental measurements. We repeti-
tively performed the following steps to determine the best
parameters:

Step 1. Sample the parameter space D with the adaptive
sparse grid strategy, as described in [24, 41].

Step 2. Compute the melt pool dimension data (W, D)
with the AM thermal-fluid model for the selected data
points.

Step 3. Use HOPGD and data samples to compute the
mode functions in equation (14) and obtain the sur-
rogate model WPGP, pmPGD,

Step 4. Use the surrogate model to optimize the parameters
to match the experimental data. Solve equation (15).

We remark here that the surrogate model used in the above
procedure is extremely cheap to evaluate, since the mode
functions F?"(p;) are known with data and we only need to
perform a 1D interpolation to get the output for a given point
p- This procedure has been applied to a welding problem and
demonstrated great computational efficiency [24]. Thanks
to the sparse sampling strategy, the method is applicable to
high-dimensional problems at a limited cost. This is usually
known as a challenge for other standard surrogate modeling
approaches. In what follows, the PGD refers to HOPGD
unless otherwise stated.

Results and Discussion

The benchmark study includes three stages as shown in
Fig. 2: (1) eleven single-track experiments with various laser
powers and scan speeds were used to calibrate unknown
parameters in our computational thermal-fluid model, (2)
six multi-track and two multi-layer simulations with differ-
ent toolpaths and process parameters were conducted using
the calibrated computational model, and (3) the geometrical
information of melted tracks and layers was extracted from

@ Springer

the simulations and compared with experimental measure-
ments for assessing the predictive capability of the compu-
tational model.

Model Calibration Using Single Tracks

The experimental data provided for calibration is based
on single-track results of eleven cases. The processing
conditions and the corresponding melt pool geometric
descriptions are depicted in Table 2. Since there are eleven
cases for each quantity, we group them into two vectors:
Weé =1[Ws, ..., Wi L D¢ =1[D¢, ... , D{,1to denote the widths
and the depths, respectively. Here, we only consider the
mean value of each case. The deviation data will be consid-
ered by the weight coefficients used in the objective function
and will be clarified later.

Note that each width corresponds to the Top-Down Width
of the released data [30], and each depth corresponds to
Cross section Depth plus Cross section Height [30]. The
Original Depth is the data released before the AFRL AM
Challenge Series results were announced, and unfortunately
it was discovered that this dataset contained some misla-
beled (i.e., incorrect) data points. The Corrected Depth is
the corrected data released by AFRL after the results were
announced. It should be noted that, the widths remain
unchanged.

For calibrating our computational model, the PGD-based
surrogate model is constructed for three heat source related
parameters (see Eq. ()): &, B, ¢. In this case, we can consider
a tensor form of Eq. (14), which reads

WP, B, ¢) = D F'(©) @ F () ® F1 () (16)
m=1

and,

D™PE, B, ¢) = Y FI(©) ®F)(B) ® F,(4). 17)
m=1

As explained in Sect. 3.2, the PGD model is used to mini-
mize the objective function below

J :J(WPGD, We, 5’ ﬁ, d)) +J(DPGD,D6, 5’ ﬁa d))

11
= Y willWrePE, . ¢)
=1 (18)

11
- Wl + ) willDfOPE, . ) — Dl
i=1

where the weight coefficients w;|,_; ;; with the property of
>, w; = lare used to consider the deviation data. This basi-
cally means the larger the deviation is, the smaller the weight
coefficient will be.
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Fig.2 A schematic of this benchmark study including three stages:
calibration, prediction, and experimental comparison. Experimen-
tal data and figures are provided by Air Force Research Laboratory
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Pad Datum 1

(AFRL) Additive Manufacturing (AM) Modeling Challenge Series:
Challenge 2 (https://materials-data-facility.github.io/MID3AS-AM-
Challenge/).

Table 2 Experimental data for

: Case number Laser Scan speed Width (pm) Original depth (pm) Corrected depth (pm)
single-track cases power (W) (mm/s)
1 (B10) 300 1230 1120 £ 11.1 89.1 +£23.7 113.4 +21.3
2 (B11) 300 1230 1120+ 11.9 87.2+21.0 118.0 +30.8
3 (B12) 290 953 127.6 £7.0 141.9 +23.1 140.1 + 16.6
4 (B13) 370 1230 1229 + 8.4 140.1 + 16.6 141.9 +23.1
5(B14) 225 1230 96.0 + 13.9 118.0 +30.8 853 +21.0
6 (B15) 290 1588 97.9 + 14.0 1134 +£21.3 89.1 +£23.7
7 (B16) 241 990 112.0 + 13.0 103.7 + 18.5 103.7 + 18.5
8 (B17) 349 1430 110.7 £ 11.3 118.6 +20.5 118.6 +20.5
9 (B18) 300 1230 112.7 +12.7 115.7 £35.2 1157 +352
10 (B19) 349 1058 1299+ 7.0 147.5 +£26.7 147.5 + 26.7
11 (B20) 241 1529 89.3 +12.8 764 +25.2 76.4 +£25.2

For the AFRL AM challenge problems, we used the origi-
nal data of widths and depths for the calibration. The range
of the three parameters is set to be Dg :=[1, 2.5] x 1073,
Dy :=[1.3, 2.0] X 1077, D, :=1[3.8, 45]x 10~7. These
choices were made to ensure the resulting heat source
parameters remained at a reasonable level for all of the
eleven cases. Concerning the computational cost, the total

number of simulation data for constructing the PGD model
is 17. Each of them contains the melt pool dimensions of
the eleven cases and only takes about 20 minutes to com-
pute. The online optimization cost takes less than 1 minute.
The final results obtained by the calibrated parameters are
depicted in Fig. 3. The main discrepancy is observed in the
depth data, especially for cases 5 and 6, which is due to the
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Fig.3 Calibration result with PGD and the original experimental data. Width (m) and depth (m) against case number. CFD prediction is given
by the original thermal-fluid model with the calibrated parameters, and has shown a good agreement with the PGD prediction

mislabeled (incorrect) experimental data points included in
the original experimental dataset.

In the post-challenge phase, the depth data was corrected
in newly released results. Therefore, we have repeated the
calibration using the corrected data (see Fig. 4). The final
calibrated values for the three parameters remain the same as
previously and agree more favorably with the experiments,
which means the right parameters had already been found
even with the original dataset which included a few incorrect
data points. This demonstrates the robustness of the PGD-
based calibration strategy [23, 24]. Hence, we can confirm
that the new corrected data would not affect our multi-track
or multi-layer predictions, which were conducted based on
the original calibrated parameters.

As shown in Fig. 5, the eleven corrected calibration data
cases and corresponding simulation results are organized
according to the heat input, i.e., laser power P divided by

- x107
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——PGD prediction

1.4 ---- CFD prediction
= 1.2
°
z |

0.8
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Case #

scan speed V, as the x-axis. The single-track melt pool
depths and widths are proportional to the heat input and the
calibrated model can accurately capture these trends.

Prediction and Validation of Multi-Track Scans

We conducted six multi-layer simulations with various pro-
cess conditions using the calibrated model (with known heat
source coefficients ¢, &, f) to predict geometrical details
of the melted tracks for the L-PBF process. The substrate
geometries and toolpaths of those six simulations (B26, B27,
B31, B34, B35, and B38) are shown in Fig. 6. The toolpaths
are labeled according to the L-PBF experiments performed
by AFRL. The black frames show the substrate dimensions,
and the arrows represent the laser scan paths. Similar to
the experiments, when the beam reaches the end of a scan
path, there is a 0.5 ms period during which the laser beam is
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Fig.4 Calibration results with PGD and the corrected experimental data. Width (m) and depth (m) against case number. CFD prediction is given
by the original thermal-fluid model with the calibrated parameters, and has shown a good agreement with the PGD prediction

@ Springer



Integrating Materials and Manufacturing Innovation

200 400
- St i A Depth (CFD) 350
® Width (EXP) AWidth (CFD)

160
- O = . .
e ——— 3 e 5
50- o N P B > il . é
R B e E
E T [T ]
Sg0 | | per |
g 80 ......................... 150 g
| ' Rl . :
@ 60 LT e ¥ w
S R o — =

PP SN D A
| 50
0 0
150 170 190 210 230 250 270 290 310 - =L

Heat input, P/V (J/m)

Fig.5 Reorganized calibration results based on the corrected experi-
mental data. The heat input, i.e., laser power P divided by scan speed
V, is used as the x-axis. The red solid markers represent the melted

turned off while the beam moves to the beginning position
of the next scan path. It should be noted that case B35 has a
different scan pattern from the others. A 1 mm length block
is built first and then a larger block with a 9 mm length is
built. Three cases, i.e., B27, B31, and B34, have identical
dimensions of substrates and toolpaths but different process
parameters. The process parameters used for all six cases are
summarized in Table 3.

First, we present the results of case B26. An adaptive
mesh system was designed to accelerate the computation
by only refining the mesh region near the melt pool. This
fine mesh region follows the laser scan. Figure 7 presents
temperature fields and corresponding mesh systems at
three different tracks: the first track (Fig. 7a, d), 15th track
(Fig. 7b, e), and 30th track (Fig. 7c, f). A fine mesh region
with a mesh size of 20 X 5 X 5 pm (Fig. 7g) moves along
the y-direction, which is perpendicular with the laser scan
direction, i.e., x-direction. The design of the adaptive mesh
was inspired by the work done by Mukherjee et al. [42].

We coupled fluid dynamics in the melt pool with heat
transfer during the process, which can significantly improve
the prediction accuracy of melt pool geometry and tempera-
ture field near the high thermal gradient region [14]. Fig-
ure 8 shows a melt pool profile and velocity field inside at
the middle of the 15th track of case B26. The Marangoni
effect leads to a surface tension-driven flow in the melt pool.
The maximum velocity in the melt pool is around 2000
mm/s, which affects the melt pool geometry and solidifica-
tion cooling rate.

We created a variable, solidID, to record the melted
region at each track as shown in Fig. 9. The original sub-
strate and powder layer are assigned to be zero value of the

track depth. The blue solid markers represent the melted track width.
The hollow markers represent calibrated simulation results. Two
dashed lines indicate the trends of the simulation results

solidID. If the temperature at a specific cell is higher than
the solidus temperature during the i track of laser scan, the
solidID of it will be assigned to 7, and i is from 1 to 30 for
case B26 because it has a total number of 30 tracks. Figure 9
also shows three cross sections at different positions in the
x-direction, which present the cross-sectioned melted areas.
It is noted that the original point of the x-direction (x'= 0
mm) is the starting point of the laser scan. Cross section
A-A (x' = 0.1 mm) is close to the starting point of the tool-
path, cross section B-B (x = 1.5 mm) is at the middle of
the toolpath, and cross section C—C (X = 2.9 mm) is close
to the ending point.

These cross-sectioned melted areas are useful because
they can be compared with experimental observations by
optical microscope or scanning electron microscope. Fig-
ure 10 shows the comparison of melted tracks between
the computational results and experimental measurements
at two cross sections, A—A and B-B, of case B26. The
simulations predict the geometrical pattern and size of the
fusion boundary (highlighted by black lines) at the two
cross sections of case B26: cross section A—A that is close
to the starting point and the cross section B-B at the mid-
dle of the toolpath. With the assumption of the flat top sur-
face in the model, the free surfaces of the melted tracks in
the experiments are not considered in this study. It can be
seen that first melted track (at left-most) is smaller than the
others because the first track scans on a room-temperature
substrate while the subsequent laser tracks, after the first,
scan with a heated substrate. Residual heat transfers from
the preceding laser scans to the substrate, which gener-
ates a larger melt pool and resulting melted track. Another
interesting fact shown in Fig. 10 is that, at the A—A cross
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Fig.6 Substrate geometries and toolpaths of the six simulations
(B26, 27, B31, B34, B35, and B38). The start point is marked as a
green dot and the ending point is marked as a red dot. The arrows

represent the scan paths of the laser. The color associated with those
arrows represents the order of the toolpath. The violet arrow is the
first track and the yellow one is the last track

Table 3 Process parameters

. Case number Laser power  Scan speed Hatch spacing  Toolpath plane The
used for multi-track cases (W) (mm/s) (mm) dimensions (mm) number of
tracks
B26 300 1230 0.1 3x3 30
B27 300 1230 0.1 10x3 30
B31 300 1230 0.075 10x3 30
B34 300 1230 0.125 10x3 30
B35 300 1230 0.1 10x3 60
B38 290 953 0.1 15%x3 30

section, the melted tracks of odd-numbered laser scans
(except the first scan) are deeper and wider than those of
the even-numbered scans. However, at the B—B cross sec-
tion the melted tracks of odd- and even-numbered scans
have similar size and shape. This difference only appears
near the starting and ending points of the laser scans where

@ Springer

the melt pool is hotter, deeper, and wider due to residual
heat generated by the previous scan.

To illustrate this transient behavior at the starting and
ending regions of the toolpath, Fig. 11 presents the evolution
of the melt pool represented by red isotherms of the solidus
temperature at different times for which the laser traverses
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(b) 15t tr
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A oes o oos

(c) 30" track:

Fig. 7 Predicted temperature fields at different tracks and correspond-
ing adaptive mesh systems for case B26. a Predicted temperature field
for the 1st track. b Adaptive mesh system at the 1st track. ¢ Predicted
temperature field for the 15th track. d Adaptive mesh system at the

the first and second tracks. The peak temperature, depth, and
width of the melt pool at each time are also marked. At the
end of the first track as shown in Fig. 11a, the melt pool is

Fig. 8 Melt pool profile and velocity field in the melt pool at the mid-
dle of the 15th track of case B26. A red isotherm at solidus tempera-
ture represents the melt pool boundary. Arrows indicate velocity of
liquid metal and are colored by velocity magnitude. Temperature is
also shown as the color legend

Adaptive mesh

Fine mesh region
(9) (mesh size: 20 x 5 x 5 um)
i TTTITTTANTRUURE

15th track. d Predicted temperature field for the 30th track. f Adap-
tive mesh system at the 30th track. g magnification view of fine mesh
region at the 15th track

well developed and reaches a steady state in which the size
and shape of the melt pool are approximately unchanged
in time. Since there is a 0.5 ms dwell time between the two
tracks, the melt pool shrinks quickly while the laser is turned
off as shown in Fig. 11b. However, the 0.5 ms dwell time is
not long enough to cool down the whole melt pool. When
the beam is on at the starting point of the second track,
the melt pool generated by the first scan still exists, which
leads to a new melt pool with a higher peak temperature
generated at the hot substrate as shown in Fig. 11c, d. The
high peak temperature inside the melt pool could result in
stronger recoil pressure and form a deeper vapor depression
that increases the thermal energy input by multiple reflec-
tion of the laser beam [27]. An experimental study captured
the similar phenomenon using X-ray imaging technique is
reported in reference [43]. When the laser moves away from
the starting point, the size and peak temperature gradually
decrease until the melt pool reaches a steady state (Fig. 11e,
D).

To consider these transient dynamics and accurately pre-
dict the melt pool dimensions at the transient regions of the
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Fig.9 Morphology of the melted tracks described by the solidID.
a Three-dimensional view of the substrate and melted tracks. Three
positions of cross sections are also marked. b A—A cross section at

(a) A-A cross section of B26 case:
Simulation:

(b) A-A cross section: x’ = 0.1 mm

(c) B-B cross section: x’ = 1.5 mm
YUUUUUUVUIUIUIIIIY

¥ = 0.1 mm (x'= 0 mm indicates the starting point of the toolpath in
x-direction). ¢ B-B cross section at X = 1.5 mm. d C-C cross section
atx =2.9 mm

Experiment:

(b) B-B cross section of B26 case:
Simulation:

Experiment:

Fig. 10 Comparison of melted track geometries between simulation and experimental measurement. a A—A cross section of case B26 b B-B

cross section of case B26

toolpath, we coupled the thermal-fluid model with a resid-
ual heat factor (RHF) model as described in Section 3.1.
Figure 12 shows quantitative comparisons of melted track
geometries between experiments and two computational
models with and without considering the RHF. The defini-
tions of the melted track geometries, i.e., D,,,, D,, W,, and
W, are provided in Fig. 13 and the caption of Fig. 12. More
detailed definitions are provided in reference [22]. For each
case, tracks are numbered from 1 to N, where 1 is the first
track deposited, and N is the last. In all cases, measurements
of the four quantities mentioned above begin on track 4,
and end on track N-3 (i.e., ignoring the first three and last
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three). The average and standard deviation of each quantity
for the even- and odd-numbered tracks are plotted in Fig. 12.
The error bar represents the standard deviation. The model
predictions with RHF (green bars) match the experiments
(blue bars) quite well at both the middle (x = 1.5 mm) and
beginning (x = 0.1 mm) of the toolpath. However, if the
RHF is ignored in the model (i.e., the model without RHF),
the melted track size is underestimated for the odd-numbered
scans at the beginning of the toolpath (x = 0.1 mm). That
is because, by coupling with the RHF, the thermal-fluid
model considers adaptive heat source depth and absorptivity,
which increase when the laser creates a new track. Similar
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Fig. 11 Evolution of melt pool for the first and second scans of case B26. The melt pool dimensions and its peak temperature are also marked.
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Fig. 12 Quantitative comparisons of four melted track dimensions
between experimental measurements and model predictions with and
without residual heat factor (RHF). a Distance D,,, measured along
the vertical direction from lowest to highest points of a melted track.
b Distance W, measured along the horizontal direction from the low-
est portion of a track in the vertical direction to the lowest value in
the horizontal coordinate of the track. ¢ Distance D, measured along
the vertical direction from the lowest point of a track in the vertical
direction, to the intersection of melted track boundaries for the track

with the subsequent track. If there is no intersection with an adjacent
track, set D, = D,,, for that track. d Distance W, measured along the
horizontal direction extending from the lowest horizontal coordinate
for any part of a track to the lowest horizontal value along the inter-
face between the track and the next subsequent track. In case there is
no overlap with a subsequent track, record the distance from the low-
est to the highest horizontal value for the track. An illustration includ-
ing these distances is provided in Fig. 13
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Track
n

Fig. 13 Schematic of a measurement plane with desired measure-
ments [30]

phenomenon appears for other multi-track cases (i.e., B27,
B31, B34, B35, and B38). The quantitative comparisons of
melted track geometries for those cases are provided in Sup-
plementary Figs. 1 to 5.

More interestingly, the developed model can predict lack-
of-fusion patterns in the L-PBF process. Lack of fusion,
where there is no complete adherence of the current melt
to the surrounding part, is a type of AM process-induced
defect that has a negative influence on as-built mechani-
cal properties. It is caused by insufficient energy input that
cannot create a large enough overlapping region between
two adjacent tracks [44]. Figure 14a shows the predicted

(a) B35: Power:300W,
Scan speed:1230 mm/s
Hatch spacing: 0.10 mm

Fig. 14 Lack-of-fusion pattern for case B35: a predicted density field
after laser scanning presenting the lack-of-fusion pattern. The color
legend indicates the density at spatial points. The blue represents the
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lack-of-fusion patterns for case B35. The toolpath of this
case is provided in Fig. 6. As shown in Fig. 14a, the color
legend indicates the density field after the L-PBF process.
The minimum value (illustrated as blue) is the effective pow-
der density (4300kg/m?) and the maximum value (illustrated
as red) is the solid material density (8400kg/m?). The top
layer is originally assigned as the effective powder density.
During the L-PBF process, if the peak temperature of a spa-
tial point is higher than the solidus temperature, the density
of this point will be updated that of the liquid. After the
temperature drops down to solidus temperature, the density
is converted to that of the bulk solid, which is much higher
than the effective powder density. The values of those densi-
ties are provided in Table 1.

During this process, a few powders between two laser
scanned tracks might remain unmelted if the energy input
from the laser is insufficient to create a large enough melt
pool. Those small regions become lack of fusion after the
toolpath is complete. For example, Fig. 14b shows a few
unmelted powders and open pores between the laser scans
reported in reference [45]. Our model can predict the lack-
of-fusion regions (small blue dots in Fig. 14a) between laser

8.4e+03

I:EOOO

— 7000

(b) Experimentally
observed lack-of-fusion
Micgo.grack i

— 6000
“'Openpore |4

[5000
436+03

Density (kg/m?)

effective powder density (4300kg/m?) and the red represents the
solid material density (8400kg/m?). b Experimentally observed lack
of fusion from the top view reported in reference [45]
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scanned tracks and toolpath blocks. The pattern of the lack
of fusion depends on toolpath strategy and process param-
eters. The developed model is a potential effective tool to
optimize the process parameters for mitigating or eliminat-
ing the lack-of-fusion defect. For example, Fig. 15 shows
predicted lack-of-fusion patterns for three cases: B27, B31,
and B34. These cases have the same toolpath pattern and
process parameters except for the hatch spacing. The hatch
spacing of the three cases is 0.125 mm, 0.1 mm, and 0.075
mm, respectively. It can be clearly seen that decreasing hatch

B34: Power:300W,
Scan speed: 1230 mm/s
Hatch spacing: 0.125 mm

(@)

B27: Power:300W,
(b) Scan speed:1230 mm/s
Hatch spacing: 0.1 mm

B31: Power:300W,
Scan speed:1230 mm/s
Hatch spacing: 0.075 mm

(€)

spacing from 0.125 mm to 0.075 mm mitigates the lack-of-
fusion defect in the L-PBF, which demonstrates the effec-
tiveness of our model as a process optimizer for the L-PBF
process.

Table 4 lists computational parameters and computational
time for all six multi-track cases. Two mesh systems, i.e.,
uniform mesh and adaptive mesh systems, are compared for
each case. It can be seen from the last column of Table 4, the
adaptive mesh system can significantly reduce the computa-
tional time by decreasing the number of cells required and

.
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Fig. 15 Lack-of-fusion patterns for three cases. Magnification views are also shown to visualize the local lack-of-fusion patterns. a B34. b B27.
¢ B31
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Table 4 Computational parameters, mesh systems, and computational
time for multi-track cases. All the simulations were conducted at
Northwestern computer cluster “Ares.” The in-house code (AM-CFD)

was paralleled using OpenMP. Each simulation case ran on one clus-
ter node that consists of two, 12-core Xeon E5-2680v3 2.5 GHz pro-
cessors with 64 GB of memory

Case number Mesh system Size of Cells number  Physical Time step Iterations =~ Computational time
scan time (ms) (ps) number (hour)
region at each
(mm) time step
B26 Uniform 3*3 5.3 million 92 20 50 17
Adaptive 3*3 0.66 million 92 20 50 1.5 (11x speedup)
B27 Uniform 10*3 15 million 271 20 50 140
Adaptive 10*3 2 million 271 20 50 13 (11x speedup)
B31 Uniform 10*3 15 million 362 20 50 168
Adaptive 10*3 2 million 362 20 50 15 (11x speedup)
B34 Uniform 10*3 15 million 217 20 50 112
Adaptive 10*3 2 million 217 20 50 10 (71x speedup)
B35 Uniform 10*3 15 million 287 20 50 140
Adaptive 10*3 2 million 287 20 50 13 (11x speedup)
B38 Uniform 15*3 21 million 511 20 50 453
Adaptive 15*3 3 million 511 20 50 45 (10x speedup)

achieve an order of magnitude speedup as compared with
the uniform mesh system.

Prediction and Validation of Multi-Layer Scans

Lastly, we simulated two thin-wall specimens, B21 and
B25, consisting of 10 consecutive 40 um thick layers each
with a track length of 5 mm. Similar to the experiments,
the laser moves in the same direction for each layer dur-
ing the processes. Each case used a different laser power
and scan speed as shown in Table 5. Figure 16a shows
the simulated result for case B21. The as-built material
is represented in red, while the substrate is colored blue.
For a quantitative comparison, we divided the wall into
three measurement zones shown in Fig. 16a, i.e., Zone
l: x =0 mm to x = 0.5 mm, Zone 2: x = 0.5 mm to x =
4.5 mm, and Zone 3: X = 4.5 mm to x = 5 mm. The aver-
age and standard deviation of the height above the sub-
strate pad datum and the total cross-sectional area for the
entire portion of the wall above the substrate pad datum
were measured for each measurement zone as shown in
Fig. 16b. It should be noted that the cross-sectional area
and the height were measured from cross sections col-
lected approximately every 200 pm in each zone. There
is a minimum of 3 cross sections collected within Zones
1 and 3, and approximately 20 cross sections in Zone 2.
Figure 17 shows the comparisons of the height and cross-
sectional area for the three different zones between the
experimentally measured and computationally predicted
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Table 5 Process parameters used for multi-layer cases

Case num- Laser Scan Layer Track The

ber power  speed thickness  length number of
W) (mm/s) (pm) (mm) layers

B21 300 1230 40 5 10

B25 241 1529 40 5 10

results. The simulated height and area agree well with the
measurements at Zone 2 and Zone 3, which indicates the
developed model can predict the steady-state melt pool
geometry well. However, at Zone 1, i.e., the beginning
region of each layer, the model underestimates the results.
This implies that some transient behaviors occurring at the
beginning of each layer are being neglected by the model.
More detailed analysis of the multi-layer experiments can
be found in reference [22].

Conclusions

In this work, we proposed an integrated computational
framework including physics-based modeling, data-driven
calibration, and experimental validation. This framework
was demonstrated for a systematic benchmark study of the
L-PBF AM process for Inconel 625 material. Predicted
results from the model were compared against experimen-
tal measurements from the AFRL AM Challenge Series of
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Fig. 16 As-built multi-layer structure and its measurements for case B21. a As-built material in red and substrate in blue. b A schematic of the
height and cross-sectional area measurements for three Zones, i.e., Zone 1: X =0-0.5 mm, Zone 2: x = 0.5-4.5 mm, and Zone 3: x = 4.5-5 mm

cially at the regions near the starting and ending points
of the toolpath.
Dwell time between adjacent scan tracks is an important

melted track geometries for both single-layer single-track,
single-layer multi-track, and multi-layer thin-wall builds.
From these studies, we conclude: 5.

With an appropriate calibration procedure using a small
amount of experimental data, the proposed thermal-fluid
model can quantitatively predict melted track geome-

parameter that affects the uniformity of the melted track
geometries. The simulation provides a way to analyze
this phenomenon and reduce variability of the melt pool
during the process.

tries in multi-track and multi-layer L-PBF processes of 6. The developed model has the capability to capture lack-
Inconel 625 material. of-fusion defect during the L-PBF process. It can poten-
The PGD-based calibration approach is robust and effi- tially be used as an effective tool for mitigating lack-of-
cient even when using noisy AM experimental data. fusion porosity by optimizing the process parameters,
The developed toolpath-based adaptive mesh strategy although more validation studies are needed for testing
is effective for L-PBF computations, and can achieve a the lack-of-fusion predictions in the future.

speedup of more than 10 times compared to auniformmesh 7. The developed model can predict the steady-state melt

approach.

The residual heat factor (RHF) model can capture
transient dynamics of the melt pool at the ends of the
toolpath for multi-track AM process. The thermal-fluid
model coupled with the RHF model has greater accuracy
in predicting melted track geometries and patterns espe-

pool geometry well. However, the model underesti-
mates the height and cross-sectional area at the begin-
ning region of each layer for multi-layer AM process
because some transient behaviors are not captured at the
beginning of each layer by the model. Further enhanced
transient modeling will be pursued in the future.
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Fig. 17 Quantitative comparisons of height and cross-sectional area between experimental measurements and model predictions: a cross-sec-
tional area for case B21, b height for case B21, ¢ cross-sectional area for case B25, and d height for case B25
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