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Abstract
In the Air Force Research Laboratory Additive Manufacturing Challenge Series, melted track geometries for a laser powder 
bed fusion (L-PBF) process of Inconel 625 were used to challenge and validate computational models predicting melting 
and solidification behavior. The impact of process parameters upon single-track single-layer, multi-track single-layer, and 
single-track multi-layer L-PBF processes was studied. To accomplish this, a physics-based thermal-fluid model was developed 
and calibrated using a proper generalized decomposition surrogate model, then compared against the experimental measure-
ments. The thermal-fluid model was enhanced through the usage of an adaptive mesh and residual heat factor (RHF) model, 
based on the scanning strategy, for improved efficiency and accuracy. It is found that this calibration approach is not only 
robust and efficient, but it also enables the thermal-fluid model to make predictions which quantitatively agree well with the 
experimental measurements. The adaptive mesh provides over a 10-times speedup as compared to a uniform mesh. The RHF 
model improves predictive accuracy by over 60%, particularly near starting and ending points of the melted tracks, which 
are greatly affected by the thermal behavior of adjacent tracks. Moreover, the thermal-fluid model is shown to potentially 
predict lack-of-fusion defects and provide insights into the defect generation process in L-PBF.

Keywords  Additive manufacturing · Proper generalized decomposition · Melt pool dynamics · Lack of fusion · Calibration 
and validation · Ni-based alloy

Introduction

Metal additive manufacturing (AM) produces metallic parts 
by fusing materials in a layer-by-layer fashion directly from 
a 3D CAD model [1]. Laser powder bed fusion (L-PBF) 
is a promising AM process in which a thin layer of metal-
lic powder is spread on a substrate (or the previous layer) 
and a laser source selectively melts and fuses neighboring 
powder particles and the previous layer. This is repeated in 
a layer-by-layer fashion until the desired final part is formed. 

Since L-PBF has the potential to produce highly customized 
parts with complex geometries and internal structures, it has 
garnered great interest from the aerospace, automotive, and 
biomedical industries [2–4]. Despite offering these advan-
tages and several others, L-PBF is known to struggle with 
producing parts which have reliable and repeatable mechani-
cal performance due to inconsistencies in the microstructure 
[5]. However, recent studies prove both the microstructure 
and mechanical properties of parts produced through AM 
are significantly influenced by the size and shape of melt 
pool and resulting solidified track [6].

In L-PBF, the formation of the melt pool is the key to 
describe the powder/bulk material interactions because it is 
an intermediate step between solidification and laser source 
absorption [7]. During the process, localized solid powder 
is heated up and melted into a liquid after absorbing energy 
from the passing laser, then cools down and solidifies into 
a bulk material with a resultant microstructure as the laser 
moves further away. Porosity in L-PBF may occur due to 
improper melt pool formation from insufficient melting 
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caused by too little energy absorption or trapped gas caused 
by vaporization [8, 9]. Much research has shown that energy 
absorption in L-PBF can be traced through a combination 
of process parameters such as laser power, scan speed, and 
spot size. Hence, desired quality of a part fabricated from 
L-PBF may be achieved through controlling the melt pool 
by manipulating these processing parameters.

There have been many research efforts aimed at under-
standing the influence of different AM process parameters 
and material properties on part quality using computational 
models and simulations [10, 11]. Using a heat conduction 
model based on the finite element method is one of the most 
popular means to model the AM process. For example, 
Ghosh et al. compared experimentally observed melt pool 
geometries to computational predictions from a heat conduc-
tion model with adequate agreement for various scan speeds 
and laser powers [12]. However, Yan et al. demonstrated that 
a thermal-fluid model, which considers fluid flow in the melt 
pool has greater accuracy of predicting melt pool geometries 
for a wider range of process parameters than a heat conduc-
tion model [13]. Additionally, work performed by Gan et al. 
used a combination of a heat conduction model, a thermal-
fluid model, and a thermal-fluid-vaporization model to 
demonstrate that the added inclusion of vaporization affects 
increases predictive accuracy of cooling rates and melt pool 
geometries even more [14]. Although some computational 
models have been proven to provide sufficient agreement 
with experiments, various parameters for the heat source are 
typically manually calibrated. Additionally, they are usually 
taken to be constant throughout the entire simulation, which 
is not physically realistic.

The experiments used to validate and ensure the accuracy 
of these aforementioned AM process models are required to 
be well designed and highly controlled. However, high peak 
temperatures, violent behavior of metallic powder, and the 
complex multi-physics nature of the melt pool make con-
ducting reliable in situ measurements difficult. Typically, 
ex situ measurements used for model validation observe the 
solid/liquid phase boundary at the cross section of fabricated 
samples [15]. Recently, in situ observation techniques have 
been proposed to conduct time-resolved measurements for 
the melt pool depth [16], melt pool visible surface area [17], 
and cooling rate [18, 19], enabling the design of highly con-
trolled experiments, though in November 2019, the United 
States Airforce Research Laboratory: Materials & Manu-
facturing Directorate Structural Materials, Metals Branch 
(AFRL/RXCM) and America Makes publicly announced the 
Additive Manufacturing Modeling Challenge Series, which 
provided a series of highly controlled additive manufactur-
ing challenges for computational models to simulate for 
opportunities of quantitative validation [20, 21]. Model pre-
dictions were submitted by January 31, 2020. Then, all the 
experimental results were released in January 2021. Through 

participation in this event, participants were challenged to 
confidently simulate the L-PBF process with models that 
they independently developed to provide accurate and effi-
cient predictions. A small amount of experimental data were 
used for calibration.

This paper describes a computational effort to model one 
set of the AFRL AM Challenge Series experiments, which 
measured the geometries of solidified laser tracks left behind 
by the melt pool for multi-layer and multi-track builds of 
Inconel 625 (IN625) using the L-PBF process. Hence, the 
rest of the paper is organized as follows: Sect. 2 briefly 
describes the experimental methods of the AFRL AM Chal-
lenge Series. Section 3 describes the computational methods 
used to model the experiments in detail. Then, Sect. 4 pre-
sents a detailed comparison of the experimental measure-
ments and the computational predictions. Finally, conclu-
sions and key findings of the study are mentioned in Sect. 5.

Experimental Methods

At ARFL, an EOS M280 commercial L-PBF system was 
used to produce single-layer single-track, single-layer multi-
track, and multi-layer single-track (thin-wall) builds of gas-
atomized IN625 powder. A Yb-fiber laser with a Gaussian 
spot size diameter of 4 � = 0.1 mm was used to melt powder 
layers with a height of 40 μ m for all the cases [22]. The 
atmosphere within the build chamber was supplied purely 
with Argon gas and build plates were preheated to 353 K. 
The single-track scans were used for the sake of calibra-
tion of the computational models, whereas the multi-track 
and thin-wall builds were used as the challenge problems. 
However, both calibration and challenge problems were built 
on top of AM-printed substrate blocks 5 mm in height. The 
blocks were rectangular and extended at least 3 mm beyond 
the end points of the laser scan vectors.

All the single-track laser scans traveled 20 mm from their 
start position to the their end position, with the laser powers 
and scan speeds outlined in Table 2, though The multi-track 
cases had pad sizes of 3 mm × 3 mm, 10 mm × 3 mm, and 15 
mm × 3 mm. Additionally, the dwell time between the tracks 
was 0.5 ms to give the previously melted track time to cool 
before the subsequent laser scan begins. The full geometries 
of the multi-track cases are showcased in Fig. 6, and the 
corresponding laser power and scan speed for each case are 
shown in Table 3. Contrarily, two thin-wall specimens were 
built using a unidirectional scanning pattern with a length of 
5 mm and a powder layer thickness of 40 μ m (10 powder lay-
ers) in the build direction. One of the thin walls used a laser 
power of 300 W and a scan speed of 1230 mm/s, whereas the 
other used 241 W and 1529 mm/s as shown in Table 5. Since 
the length of the walls was relatively short, a dwell time 
of 27 s was used between the deposition of the subsequent 



Integrating Materials and Manufacturing Innovation	

1 3

layers. Measurements were taken using a combination of 
electron backscatter diffraction, to get a top-down descrip-
tion of the track behavior, and optical microscopy on etched 
cross sections, to measure the track geometries, though a 
full description of the experimental setup, and measurement 
procedures can be found in [22].

Computational Models

A framework of integrated computational models was pro-
posed to simulate one set of the AFRL AM Challenge Series 
experiments in which the Proper Generalized Decomposi-
tion (PGD) approach [23, 24] was used to calibrate some 
unknown parameters of an AM process model. In this work, 
a thermal-fluid model considering liquid flow inside the melt 
pool driven by the Marangoni effect was developed as the 
AM process model to predict the melted track geometries of 
the L-PBF process, though the key parameters to model the 
interaction between the metal and the laser heat source were 
calibrated using a PGD-based surrogate model.

Thermal‑Fluid AM Process Model

A well-tested transient three-dimensional thermal-fluid 
model [11, 14, 25, 26] is used to predict the thermal field 
in the entire part and velocity field in the melt pool region. 
To accomplish this, the model solved the governing equa-
tions for mass, momentum, and energy conservation given 
as follows:

where t is the time, ui is the ith component of the velocity, � 
is the viscosity, p is the pressure, h is the enthalpy, T is the 
temperature, � is the density, k is the thermal conductivity 
and � is the thermal expansion coefficient. The second com-
ponent of the acceleration of gravity gi is 9.8m∕s2 and other 
components are zero because the direction of the gravity 
acceleration is vertical.

In this study, � is set as a constant, � is the approxi-
mate primary dendritic spacing, which is set to 1 μm , B 
is a small parameter to avoid division by zero and set to 
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10−3 . The relationship between enthalpy and temperature 
to close the equation set is

where cp is the temperature dependent specific heat capacity, 
L is the latent enthalpy of fusion, and fl is the volume frac-
tion of the liquid phase.

The heat source from the laser, Q, is described by a 
cylindrical shape with a Gaussian distribution described 
below:

where P is the laser power, � is the absorptivity, rb is the 
laser beam radius, d is the depth of the heat source, and 
ztop is the z-coordinate of the top surface of the computa-
tional domain (the original point of the z-coordinate is set 
to the bottom of the substrate). Although P is a known vari-
able, the other three parameters, i.e., � , rb , and d, are treated 
as unknowns and they are highly correlated to the vapor 
depression phenomenon in the L-PBF process. As reported 
in the literature [27, 28], as the laser power increases or 
scan speed decreases, a vapor-induced depression appears 
and deepens, which leads to higher absorptivity caused by 
multiple reflections of the laser beam between the liquid/gas 
interface. Thus, we assume the three parameters, i.e., � , rb , 
and d, are related to the ratio between the laser power P and 
scan speed V, as follows: 

 where the coefficients � , � , and � are three independent 
unknowns calibrated using the PGD method described in 
Sect. 3.2. It is noted that the minimum value of the absorp-
tivity � is constrained to 0.28 [27] during the calibration. The 
thermal boundary conditions are specified as:

where hc is the convective heat transfer coefficient, T∞ is the 
ambient temperature, �s is the Stefan−Boltzmann constant, 
� is the emissivity, and Tref is the reference temperature.

The boundary condition for Eq. (2) at the top surface 
(assumed to be flat in this study) is: 
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 where � is the surface tension, d�
dT

 is the Marangoni coef-
ficient, and ui is the ith component of the velocity .

The powder layer is treated as a continuous media and 
it is distinguished from the substrate through its material 
properties. This is achieved through the use of a consoli-
dated factor, � , defined by the range from 0 to 1. The value 
of 0 denotes the material is in the original powder state 
(no consolidation), whereas 1 denotes a bulk state (fully 
consolidated). As seen from Eq. (9), � is determined by the 
temperature history, where Tpeak is the local peak tempera-
ture, and Ts and Tl are the material’s solidus and liquidus 
temperatures, respectively. It should be noted that through 
this definition � solely increases monotonically.

Since � denotes the state of the material at a given time, it is 
used to determine state-dependent effective material proper-
ties. By assuming a linear dependence, the effective material 
property, � , is determined by Eq. (10), where �bulk and �powder 
are the appropriate properties for the powder and bulk mate-
rial, respectively. However, in this work it is assumed this 
relation only applies to the material’s thermal conductivity, 
specific heat capacity, and density.

The thermo-physical properties of IN625 are summarized 
in Table 1. As listed in Table 1, the densities at ambient 
and liquidus temperatures are used for solid and liquid den-
sities, respectively. Values of the bulk density were taken 
from the literature [29], though for an accurate description 
of the material’s thermal behavior during the L-PBF pro-
cess, temperature-dependent polynomials were used for the 
solid’s thermal conductivity and solid’s specific heat capac-
ity as listed in Table 1. Polynomial coefficients were fitted 
to previously published experimental measurements [29]. 
Additionally, a constant convective heat transfer coefficient 
was used to approximate the low-velocity shield gas flow 
upon the exposed surfaces.

To consider the transient behavior of the vapor depres-
sion caused by localized preheating from adjacent scan 
paths (i.e., residual heat), we coupled the thermal-fluid 
model with the residual heat factor (RHF) model proposed 
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by H. Yeung and B. Lane [33]. Since the scan path is 
composed of discrete points defined by the time step of 
the simulation and the scan speed of the laser as shown 
in Fig. 1, the RHF at a specific point (or time step) is 
defined as

where the preheating on point i by a previously scanned 
point k depends on the distance between i and k, denoted as 
dik , elapsed time since k was scanned is denoted by tik , and 
the normalized laser power at point k is denoted by Lk . The 
value of Lk is equal to 1 when the laser is on, otherwise it is 
equal to 0. Threshold values R ( 0.2 × 10−3 in this case) and 
T ( 2 × 10−3 in this case) are used to ignore points which had 
not interacted with the laser for a sufficient amount of time. 
The set Si represents the previous scanned points, i.e., 
Si =

{
tik < T ∪ dik < R, where i > k

}
 , though this provides 

a brief introduction, more detailed descriptions of the RHF 
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Table 1   Thermo-physical properties of IN625 and process constants

Property/parameter Value References

Solid density (kg m −3) 8440 [29]
Liquid density (kg m −3) 7640 [29]
Powder density (kg m −3) 4330 [30]
Solidus temperature (K) 1563 [31]
Liquidus temperature (K) 1623 [31]
Solid specific heat capacity (J kg−1 

K −1)
0.2441T + 338.39 [30]

Liquid specific heat capacity (J kg−1 
K −1)

709.25 [29]

Powder specific heat capacity (J kg−1 
K −1)

0.2508T + 357.70 [30]

Solid thermal conductivity (W m −1 
K −1)

0.0163T + 4.5847 [30]

Liquid thermal conductivity (W m −1 
K −1)

30.078 [29]

Powder thermal conductivity (W 
m −1 K −1)

0.995 [30]

Latent heat of fusion (kJ kg−1 K −1) 290 [29]
Dynamic viscosity (Pa s) 7 × 10−3 [31]
Thermal expansivity (1/K) 5 × 10−5 [31]
Surface tension (N m −1) 1.8 [32]
Marangoni coefficient (N m −1 K −1) − 3.8 × 10−4 [32]
Emissivity 0.4 –
Ambient temperature (K) 295 –
Reference temperature (K) 295 –
Preheat temperature (K) 353 –
Convection coefficient (W m −2 K −1) 10 –
Stefan–Boltzmann constant (W 

mm−2K−4)
5.67 × 10−14 –
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model are provided in reference [33]. However, it should be 
noted that the RHF can be normalized as RHF =

RHFi

RHFc

 where 
RHFc is equal to the RHFi at the middle of the first track. 
Thus, the RHF is equal to 1 at the middle part of the tool-
path, and it is greater than 1 at the corner of the toolpath, as 
shown in Fig. 1. The heat source parameters can be coupled 
with the RHF as 

 where the coefficients � , � , � are the independent unknowns 
calibrated using the PGD method and the exponent of the 
RHF is an empirical coefficient. This RHF-based heat source 
is expected to have larger values of � , rb , and d near starting 
and ending points of the tracks where the RHF increases.

Proper Generalized Decomposition Method 
for Model Calibration

Identification of model parameters is a challenging task for 
AM simulations, especially when the number of unknown 
parameters becomes important and local minima issues 
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arise. The standard way of handling this problem is to use 
the genetic algorithm approach [34], in which the compu-
tational model is recalled repetitively to evaluate the trial 
set of parameters. However, this method suffers from an 
expensive computational cost. Therefore, in our work, we 
used a powerful PGD-based surrogate modeling approach 
[23, 24] to handle the model parameter identification (cali-
bration) problem, which has a significantly lower compu-
tational cost as compared to the genetic algorithm.

The PGD method used in this work is the Higher-Order 
PGD (HOPGD)[23, 24], which is designed for non-intru-
sive data learning and constructing reduced order surro-
gate models. The basic foundation behind PGD approaches 
is the separation of variables technique. Considering a 
d-dimensional function, f (�1,�2,… ,�d) , which contains 
the quantity of interest as a function of d parameters, 
�i|i=1,d ∈ Di , the separation of variables results in the fol-
lowing form

where f n is an approximation of f, n is the rank of approxi-
mation, and m denotes the m-th mode. Please note that the 
superscripts n and m do not represent exponential terms. 
The n-rank approximation f n is given by the finite sum of 
products of the separated functions: Fm

i
|i=1,d , which are a 

priori unknown and should be obtained either with a pre-
computed database [23, 24, 35, 36] or by directly resorting 
to physical models [37–40]. Furthermore, each function Fm

i
 

that represents a variation of the original function f in the 
parameter direction �i is also called a mode function.

The HOPGD relies on the database and falls into the 
family of data-driven approaches. The database can be 
either from simulations or experiments. Once obtained, the 
HOPGD seeks a L2 projection of data for computing the 
mode functions Fm

i
|i=1,d , which can reproduce (or extrapo-

late) the full parametric function f. Therefore, HOPGD can 
be used to construct a surrogate model from data for fast 
prediction. The detailed implementation of the method is 
presented in [23, 24], and code examples can be found with 
the GitHub project (https://yelu-git.github.io/hopgd/).

In this work, the parametric melt pool dimension was 
required to calibrate the heat source model. In particular, 
the depth and width of the single-track melt pool were the 
quantities of interest. For identifying the best heat source 
parameters, it was necessary to know the influence of heat 
source parameters on the dimension (e.g., the width, W). 
This relationship can be described by a multidimensional 
function: W(p1,… , pd) with pi being the parameters we want 
to identify for the heat source model. Therefore, the PGD 
form of this function can be written as

(13)

f (�1,�2,… ,�d) ≈ f n(�1,�2,… ,�d)

=

n∑

m=1

Fm
1
(�1)F

m
2
(�2)⋯Fm

d
(�d),Fig. 1   A schematic of a discrete scan path and the residual heat factor 

(RHF) [33].
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A similar decomposition can be done for the depth of the 
melt pool: D(p1,… , pd).

Assuming the parameters p =
[
p1,… , pd

]
 belong to a 

predefined domain D = D1 ×⋯ ×Dd , we want to identify 
the best p∗ s.t.

where WPGD = Wn and DPGD = Dn are the predictions of 
the PGD surrogate model, J denotes the objective function 
which measures the distance between the surrogate model’s 
predictions and the experimental measurements. We repeti-
tively performed the following steps to determine the best 
parameters: 

	Step 1.	 Sample the parameter space D with the adaptive 
sparse grid strategy, as described in [24, 41].

	Step 2.	 Compute the melt pool dimension data (W, D) 
with the AM thermal-fluid model for the selected data 
points.

	Step 3.	 Use HOPGD and data samples to compute the 
mode functions in equation (14) and obtain the sur-
rogate model WPGD,DrmPGD.

	Step 4.	 Use the surrogate model to optimize the parameters 
to match the experimental data. Solve equation (15).

We remark here that the surrogate model used in the above 
procedure is extremely cheap to evaluate, since the mode 
functions Fm

i
(pi) are known with data and we only need to 

perform a 1D interpolation to get the output for a given point 
p . This procedure has been applied to a welding problem and 
demonstrated great computational efficiency [24]. Thanks 
to the sparse sampling strategy, the method is applicable to 
high-dimensional problems at a limited cost. This is usually 
known as a challenge for other standard surrogate modeling 
approaches. In what follows, the PGD refers to HOPGD 
unless otherwise stated.

Results and Discussion

The benchmark study includes three stages as shown in 
Fig. 2: (1) eleven single-track experiments with various laser 
powers and scan speeds were used to calibrate unknown 
parameters in our computational thermal-fluid model, (2) 
six multi-track and two multi-layer simulations with differ-
ent toolpaths and process parameters were conducted using 
the calibrated computational model, and (3) the geometrical 
information of melted tracks and layers was extracted from 

(14)

W(p1,… , pd) ≈ Wn(p1,… , pd) =

n∑

m=1

Fm
1
(p1)⋯Fm

d
(pd),

(15)p∗ = arg min
p∈D

[
J
(
WPGD,We, p

)
+ J

(
DPGD,De, p

)]

the simulations and compared with experimental measure-
ments for assessing the predictive capability of the compu-
tational model.

Model Calibration Using Single Tracks

The experimental data provided for calibration is based 
on single-track results of eleven cases. The processing 
conditions and the corresponding melt pool geometric 
descriptions are depicted in Table 2. Since there are eleven 
cases for each quantity, we group them into two vectors: 
We = [We

1
,… ,We

11
] , De = [De

1
,… ,De

11
] to denote the widths 

and the depths, respectively. Here, we only consider the 
mean value of each case. The deviation data will be consid-
ered by the weight coefficients used in the objective function 
and will be clarified later.

Note that each width corresponds to the Top-Down Width 
of the released data [30], and each depth corresponds to 
Cross section Depth plus Cross section Height [30]. The 
Original Depth is the data released before the AFRL AM 
Challenge Series results were announced, and unfortunately 
it was discovered that this dataset contained some misla-
beled (i.e., incorrect) data points. The Corrected Depth is 
the corrected data released by AFRL after the results were 
announced. It should be noted that, the widths remain 
unchanged.

For calibrating our computational model, the PGD-based 
surrogate model is constructed for three heat source related 
parameters (see Eq. ()): �, �,� . In this case, we can consider 
a tensor form of Eq. (14), which reads

and,

As explained in Sect. 3.2, the PGD model is used to mini-
mize the objective function below

where the weight coefficients wi|i=1,11 with the property of ∑
i wi = 1 are used to consider the deviation data. This basi-

cally means the larger the deviation is, the smaller the weight 
coefficient will be.
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n∑
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1
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2
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2
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m
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m
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2
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For the AFRL AM challenge problems, we used the origi-
nal data of widths and depths for the calibration. The range 
of the three parameters is set to be D� ∶= [1, 2.5] × 10−3 , 
D� ∶= [1.3, 2.0] × 10−7 , D� ∶= [3.8, 4.5] × 10−7 . These 
choices were made to ensure the resulting heat source 
parameters remained at a reasonable level for all of the 
eleven cases. Concerning the computational cost, the total 

number of simulation data for constructing the PGD model 
is 17. Each of them contains the melt pool dimensions of 
the eleven cases and only takes about 20 minutes to com-
pute. The online optimization cost takes less than 1 minute. 
The final results obtained by the calibrated parameters are 
depicted in Fig. 3. The main discrepancy is observed in the 
depth data, especially for cases 5 and 6, which is due to the 

Fig. 2   A schematic of this benchmark study including three stages: 
calibration, prediction, and experimental comparison. Experimen-
tal data and figures are provided by Air Force Research Laboratory 

(AFRL) Additive Manufacturing (AM) Modeling Challenge Series: 
Challenge 2 (https://​mater​ials-​data-​facil​ity.​github.​io/​MID3AS-​AM-​
Chall​enge/).

Table 2   Experimental data for 
single-track cases

Case number Laser 
power (W)

Scan speed 
(mm/s)

Width ( μm) Original depth ( μm) Corrected depth ( μm)

1 (B10) 300 1230 112.0 ± 11.1 89.1 ± 23.7 113.4 ± 21.3
2 (B11) 300 1230 112.0 ± 11.9 87.2 ± 21.0 118.0 ± 30.8
3 (B12) 290 953 127.6 ± 7.0 141.9 ± 23.1 140.1 ± 16.6
4 (B13) 370 1230 122.9 ± 8.4 140.1 ± 16.6 141.9 ± 23.1
5 (B14) 225 1230 96.0 ± 13.9 118.0 ± 30.8 85.3 ± 21.0
6 (B15) 290 1588 97.9 ± 14.0 113.4 ± 21.3 89.1 ± 23.7
7 (B16) 241 990 112.0 ± 13.0 103.7 ± 18.5 103.7 ± 18.5
8 (B17) 349 1430 110.7 ± 11.3 118.6 ± 20.5 118.6 ± 20.5
9 (B18) 300 1230 112.7 ± 12.7 115.7 ± 35.2 115.7 ± 35.2
10 (B19) 349 1058 129.9 ± 7.0 147.5 ± 26.7 147.5 ± 26.7
11 (B20) 241 1529 89.3 ± 12.8 76.4 ± 25.2 76.4 ± 25.2

https://materials-data-facility.github.io/MID3AS-AM-Challenge/
https://materials-data-facility.github.io/MID3AS-AM-Challenge/
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mislabeled (incorrect) experimental data points included in 
the original experimental dataset.

In the post-challenge phase, the depth data was corrected 
in newly released results. Therefore, we have repeated the 
calibration using the corrected data (see Fig. 4). The final 
calibrated values for the three parameters remain the same as 
previously and agree more favorably with the experiments, 
which means the right parameters had already been found 
even with the original dataset which included a few incorrect 
data points. This demonstrates the robustness of the PGD-
based calibration strategy [23, 24]. Hence, we can confirm 
that the new corrected data would not affect our multi-track 
or multi-layer predictions, which were conducted based on 
the original calibrated parameters.

As shown in Fig. 5, the eleven corrected calibration data 
cases and corresponding simulation results are organized 
according to the heat input, i.e., laser power P divided by 

scan speed V, as the x-axis. The single-track melt pool 
depths and widths are proportional to the heat input and the 
calibrated model can accurately capture these trends.

Prediction and Validation of Multi‑Track Scans

We conducted six multi-layer simulations with various pro-
cess conditions using the calibrated model (with known heat 
source coefficients � , � , � ) to predict geometrical details 
of the melted tracks for the L-PBF process. The substrate 
geometries and toolpaths of those six simulations (B26, B27, 
B31, B34, B35, and B38) are shown in Fig. 6. The toolpaths 
are labeled according to the L-PBF experiments performed 
by AFRL. The black frames show the substrate dimensions, 
and the arrows represent the laser scan paths. Similar to 
the experiments, when the beam reaches the end of a scan 
path, there is a 0.5 ms period during which the laser beam is 

Fig. 3   Calibration result with PGD and the original experimental data. Width (m) and depth (m) against case number. CFD prediction is given 
by the original thermal-fluid model with the calibrated parameters, and has shown a good agreement with the PGD prediction

Fig. 4   Calibration results with PGD and the corrected experimental data. Width (m) and depth (m) against case number. CFD prediction is given 
by the original thermal-fluid model with the calibrated parameters, and has shown a good agreement with the PGD prediction



Integrating Materials and Manufacturing Innovation	

1 3

turned off while the beam moves to the beginning position 
of the next scan path. It should be noted that case B35 has a 
different scan pattern from the others. A 1 mm length block 
is built first and then a larger block with a 9 mm length is 
built. Three cases, i.e., B27, B31, and B34, have identical 
dimensions of substrates and toolpaths but different process 
parameters. The process parameters used for all six cases are 
summarized in Table 3.

First, we present the results of case B26. An adaptive 
mesh system was designed to accelerate the computation 
by only refining the mesh region near the melt pool. This 
fine mesh region follows the laser scan. Figure 7 presents 
temperature fields and corresponding mesh systems at 
three different tracks: the first track (Fig. 7a, d), 15th track 
(Fig. 7b, e), and 30th track (Fig. 7c, f). A fine mesh region 
with a mesh size of 20 × 5 × 5 μ m (Fig. 7g) moves along 
the y-direction, which is perpendicular with the laser scan 
direction, i.e., x-direction. The design of the adaptive mesh 
was inspired by the work done by Mukherjee et al. [42].

We coupled fluid dynamics in the melt pool with heat 
transfer during the process, which can significantly improve 
the prediction accuracy of melt pool geometry and tempera-
ture field near the high thermal gradient region [14]. Fig-
ure 8 shows a melt pool profile and velocity field inside at 
the middle of the 15th track of case B26. The Marangoni 
effect leads to a surface tension-driven flow in the melt pool. 
The maximum velocity in the melt pool is around 2000 
mm/s, which affects the melt pool geometry and solidifica-
tion cooling rate.

We created a variable, solidID, to record the melted 
region at each track as shown in Fig. 9. The original sub-
strate and powder layer are assigned to be zero value of the 

solidID. If the temperature at a specific cell is higher than 
the solidus temperature during the ith track of laser scan, the 
solidID of it will be assigned to i, and i is from 1 to 30 for 
case B26 because it has a total number of 30 tracks. Figure 9 
also shows three cross sections at different positions in the 
x-direction, which present the cross-sectioned melted areas. 
It is noted that the original point of the x-direction ( x′ = 0 
mm) is the starting point of the laser scan. Cross section 
A–A ( x′ = 0.1 mm) is close to the starting point of the tool-
path, cross section B–B ( x′ = 1.5 mm) is at the middle of 
the toolpath, and cross section C–C ( x′ = 2.9 mm) is close 
to the ending point.

These cross-sectioned melted areas are useful because 
they can be compared with experimental observations by 
optical microscope or scanning electron microscope. Fig-
ure 10 shows the comparison of melted tracks between 
the computational results and experimental measurements 
at two cross sections, A–A and B–B, of case B26. The 
simulations predict the geometrical pattern and size of the 
fusion boundary (highlighted by black lines) at the two 
cross sections of case B26: cross section A–A that is close 
to the starting point and the cross section B–B at the mid-
dle of the toolpath. With the assumption of the flat top sur-
face in the model, the free surfaces of the melted tracks in 
the experiments are not considered in this study. It can be 
seen that first melted track (at left-most) is smaller than the 
others because the first track scans on a room-temperature 
substrate while the subsequent laser tracks, after the first, 
scan with a heated substrate. Residual heat transfers from 
the preceding laser scans to the substrate, which gener-
ates a larger melt pool and resulting melted track. Another 
interesting fact shown in Fig. 10 is that, at the A–A cross 

Fig. 5   Reorganized calibration results based on the corrected experi-
mental data. The heat input, i.e., laser power P divided by scan speed 
V, is used as the x-axis. The red solid markers represent the melted 

track depth. The blue solid markers represent the melted track width. 
The hollow markers represent calibrated simulation results. Two 
dashed lines indicate the trends of the simulation results
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section, the melted tracks of odd-numbered laser scans 
(except the first scan) are deeper and wider than those of 
the even-numbered scans. However, at the B–B cross sec-
tion the melted tracks of odd- and even-numbered scans 
have similar size and shape. This difference only appears 
near the starting and ending points of the laser scans where 

the melt pool is hotter, deeper, and wider due to residual 
heat generated by the previous scan.

To illustrate this transient behavior at the starting and 
ending regions of the toolpath, Fig. 11 presents the evolution 
of the melt pool represented by red isotherms of the solidus 
temperature at different times for which the laser traverses 

Fig. 6   Substrate geometries and toolpaths of the six simulations 
(B26, 27, B31, B34, B35, and B38). The start point is marked as a 
green dot and the ending point is marked as a red dot. The arrows 

represent the scan paths of the laser. The color associated with those 
arrows represents the order of the toolpath. The violet arrow is the 
first track and the yellow one is the last track

Table 3   Process parameters 
used for multi-track cases

Case number Laser power 
(W)

Scan speed 
(mm/s)

Hatch spacing 
(mm)

Toolpath plane 
dimensions (mm)

The 
number of 
tracks

B26 300 1230 0.1 3 × 3 30
B27 300 1230 0.1 10 × 3 30
B31 300 1230 0.075 10 × 3 30
B34 300 1230 0.125 10 × 3 30
B35 300 1230 0.1 10 × 3 60
B38 290 953 0.1 15 × 3 30
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the first and second tracks. The peak temperature, depth, and 
width of the melt pool at each time are also marked. At the 
end of the first track as shown in Fig. 11a, the melt pool is 

well developed and reaches a steady state in which the size 
and shape of the melt pool are approximately unchanged 
in time. Since there is a 0.5 ms dwell time between the two 
tracks, the melt pool shrinks quickly while the laser is turned 
off as shown in Fig. 11b. However, the 0.5 ms dwell time is 
not long enough to cool down the whole melt pool. When 
the beam is on at the starting point of the second track, 
the melt pool generated by the first scan still exists, which 
leads to a new melt pool with a higher peak temperature 
generated at the hot substrate as shown in Fig. 11c, d. The 
high peak temperature inside the melt pool could result in 
stronger recoil pressure and form a deeper vapor depression 
that increases the thermal energy input by multiple reflec-
tion of the laser beam [27]. An experimental study captured 
the similar phenomenon using X-ray imaging technique is 
reported in reference [43]. When the laser moves away from 
the starting point, the size and peak temperature gradually 
decrease until the melt pool reaches a steady state (Fig. 11e, 
f).

To consider these transient dynamics and accurately pre-
dict the melt pool dimensions at the transient regions of the 

Fig. 7   Predicted temperature fields at different tracks and correspond-
ing adaptive mesh systems for case B26. a Predicted temperature field 
for the 1st track. b Adaptive mesh system at the 1st track. c Predicted 
temperature field for the 15th track. d Adaptive mesh system at the 

15th track. d Predicted temperature field for the 30th track. f Adap-
tive mesh system at the 30th track. g magnification view of fine mesh 
region at the 15th track

Fig. 8   Melt pool profile and velocity field in the melt pool at the mid-
dle of the 15th track of case B26. A red isotherm at solidus tempera-
ture represents the melt pool boundary. Arrows indicate velocity of 
liquid metal and are colored by velocity magnitude. Temperature is 
also shown as the color legend
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toolpath, we coupled the thermal-fluid model with a resid-
ual heat factor (RHF) model as described in Section 3.1. 
Figure 12 shows quantitative comparisons of melted track 
geometries between experiments and two computational 
models with and without considering the RHF. The defini-
tions of the melted track geometries, i.e., Dtot , Dr , Wd , and 
Wu , are provided in Fig. 13 and the caption of Fig. 12. More 
detailed definitions are provided in reference [22]. For each 
case, tracks are numbered from 1 to N, where 1 is the first 
track deposited, and N is the last. In all cases, measurements 
of the four quantities mentioned above begin on track 4, 
and end on track N-3 (i.e., ignoring the first three and last 

three). The average and standard deviation of each quantity 
for the even- and odd-numbered tracks are plotted in Fig. 12. 
The error bar represents the standard deviation. The model 
predictions with RHF (green bars) match the experiments 
(blue bars) quite well at both the middle ( x′ = 1.5 mm) and 
beginning ( x′ = 0.1 mm) of the toolpath. However, if the 
RHF is ignored in the model (i.e., the model without RHF), 
the melted track size is underestimated for the odd-numbered 
scans at the beginning of the toolpath ( x′ = 0.1 mm). That 
is because, by coupling with the RHF, the thermal-fluid 
model considers adaptive heat source depth and absorptivity, 
which increase when the laser creates a new track. Similar 

Fig. 9   Morphology of the melted tracks described by the solidID. 
a Three-dimensional view of the substrate and melted tracks. Three 
positions of cross sections are also marked. b A–A cross section at 

x
′ = 0.1 mm ( x′ = 0 mm indicates the starting point of the toolpath in 

x-direction). c B–B cross section at x′ = 1.5 mm. d C–C cross section 
at x′ = 2.9 mm

Fig. 10   Comparison of melted track geometries between simulation and experimental measurement. a A–A cross section of case B26 b B–B 
cross section of case B26
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Fig. 11   Evolution of melt pool for the first and second scans of case B26. The melt pool dimensions and its peak temperature are also marked.  
a t = 2.26ms . b t = 2.7ms . c t = 2.96ms . d t = 3.1ms e t = 3.3ms f t = 4.06ms

Fig. 12   Quantitative comparisons of four melted track dimensions 
between experimental measurements and model predictions with and 
without residual heat factor (RHF). a Distance D

tot
 measured along 

the vertical direction from lowest to highest points of a melted track. 
b Distance W

d
 measured along the horizontal direction from the low-

est portion of a track in the vertical direction to the lowest value in 
the horizontal coordinate of the track. c Distance D

r
 measured along 

the vertical direction from the lowest point of a track in the vertical 
direction, to the intersection of melted track boundaries for the track 

with the subsequent track. If there is no intersection with an adjacent 
track, set D

r
= D

tot
 for that track. d Distance W

u
 measured along the 

horizontal direction extending from the lowest horizontal coordinate 
for any part of a track to the lowest horizontal value along the inter-
face between the track and the next subsequent track. In case there is 
no overlap with a subsequent track, record the distance from the low-
est to the highest horizontal value for the track. An illustration includ-
ing these distances is provided in Fig. 13
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phenomenon appears for other multi-track cases (i.e., B27, 
B31, B34, B35, and B38). The quantitative comparisons of 
melted track geometries for those cases are provided in Sup-
plementary Figs. 1 to 5.

More interestingly, the developed model can predict lack-
of-fusion patterns in the L-PBF process. Lack of fusion, 
where there is no complete adherence of the current melt 
to the surrounding part, is a type of AM process-induced 
defect that has a negative influence on as-built mechani-
cal properties. It is caused by insufficient energy input that 
cannot create a large enough overlapping region between 
two adjacent tracks [44]. Figure 14a shows the predicted 

lack-of-fusion patterns for case B35. The toolpath of this 
case is provided in Fig. 6. As shown in Fig. 14a, the color 
legend indicates the density field after the L-PBF process. 
The minimum value (illustrated as blue) is the effective pow-
der density ( 4300kg∕m3 ) and the maximum value (illustrated 
as red) is the solid material density ( 8400kg∕m3 ). The top 
layer is originally assigned as the effective powder density. 
During the L-PBF process, if the peak temperature of a spa-
tial point is higher than the solidus temperature, the density 
of this point will be updated that of the liquid. After the 
temperature drops down to solidus temperature, the density 
is converted to that of the bulk solid, which is much higher 
than the effective powder density. The values of those densi-
ties are provided in Table 1.

During this process, a few powders between two laser 
scanned tracks might remain unmelted if the energy input 
from the laser is insufficient to create a large enough melt 
pool. Those small regions become lack of fusion after the 
toolpath is complete. For example, Fig. 14b shows a few 
unmelted powders and open pores between the laser scans 
reported in reference [45]. Our model can predict the lack-
of-fusion regions (small blue dots in Fig. 14a) between laser 

Fig. 13   Schematic of a measurement plane with desired measure-
ments [30]

Fig. 14   Lack-of-fusion pattern for case B35: a predicted density field 
after laser scanning presenting the lack-of-fusion pattern. The color 
legend indicates the density at spatial points. The blue represents the 

effective powder density ( 4300 kg∕m3 ) and the red represents the 
solid material density ( 8400 kg∕m3 ). b Experimentally observed lack 
of fusion from the top view reported in reference [45]
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scanned tracks and toolpath blocks. The pattern of the lack 
of fusion depends on toolpath strategy and process param-
eters. The developed model is a potential effective tool to 
optimize the process parameters for mitigating or eliminat-
ing the lack-of-fusion defect. For example, Fig. 15 shows 
predicted lack-of-fusion patterns for three cases: B27, B31, 
and B34. These cases have the same toolpath pattern and 
process parameters except for the hatch spacing. The hatch 
spacing of the three cases is 0.125 mm, 0.1 mm, and 0.075 
mm, respectively. It can be clearly seen that decreasing hatch 

spacing from 0.125 mm to 0.075 mm mitigates the lack-of-
fusion defect in the L-PBF, which demonstrates the effec-
tiveness of our model as a process optimizer for the L-PBF 
process.

Table 4 lists computational parameters and computational 
time for all six multi-track cases. Two mesh systems, i.e., 
uniform mesh and adaptive mesh systems, are compared for 
each case. It can be seen from the last column of Table 4, the 
adaptive mesh system can significantly reduce the computa-
tional time by decreasing the number of cells required and 

Fig. 15   Lack-of-fusion patterns for three cases. Magnification views are also shown to visualize the local lack-of-fusion patterns. a B34. b B27. 
c B31
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achieve an order of magnitude speedup as compared with 
the uniform mesh system.

Prediction and Validation of Multi‑Layer Scans

Lastly, we simulated two thin-wall specimens, B21 and 
B25, consisting of 10 consecutive 40 μ m thick layers each 
with a track length of 5 mm. Similar to the experiments, 
the laser moves in the same direction for each layer dur-
ing the processes. Each case used a different laser power 
and scan speed as shown in Table 5. Figure 16a shows 
the simulated result for case B21. The as-built material 
is represented in red, while the substrate is colored blue. 
For a quantitative comparison, we divided the wall into 
three measurement zones shown in Fig. 16a, i.e., Zone 
1: x′ = 0 mm to x′ = 0.5 mm, Zone 2: x′ = 0.5 mm to x′ = 
4.5 mm, and Zone 3: x′ = 4.5 mm to x′ = 5 mm. The aver-
age and standard deviation of the height above the sub-
strate pad datum and the total cross-sectional area for the 
entire portion of the wall above the substrate pad datum 
were measured for each measurement zone as shown in 
Fig. 16b. It should be noted that the cross-sectional area 
and the height were measured from cross sections col-
lected approximately every 200 μ m in each zone. There 
is a minimum of 3 cross sections collected within Zones 
1 and 3, and approximately 20 cross sections in Zone 2. 
Figure 17 shows the comparisons of the height and cross-
sectional area for the three different zones between the 
experimentally measured and computationally predicted 

results. The simulated height and area agree well with the 
measurements at Zone 2 and Zone 3, which indicates the 
developed model can predict the steady-state melt pool 
geometry well. However, at Zone 1, i.e., the beginning 
region of each layer, the model underestimates the results. 
This implies that some transient behaviors occurring at the 
beginning of each layer are being neglected by the model. 
More detailed analysis of the multi-layer experiments can 
be found in reference [22].

Conclusions

In this work, we proposed an integrated computational 
framework including physics-based modeling, data-driven 
calibration, and experimental validation. This framework 
was demonstrated for a systematic benchmark study of the 
L-PBF AM process for Inconel 625 material. Predicted 
results from the model were compared against experimen-
tal measurements from the AFRL AM Challenge Series of 

Table 4   Computational parameters, mesh systems, and computational 
time for multi-track cases. All the simulations were conducted at 
Northwestern computer cluster “Ares.” The in-house code (AM-CFD) 

was paralleled using OpenMP. Each simulation case ran on one clus-
ter node that consists of two, 12-core Xeon E5-2680v3 2.5 GHz pro-
cessors with 64 GB of memory

Table 5   Process parameters used for multi-layer cases

Case num-
ber

Laser 
power 
(W)

Scan 
speed 
(mm/s)

Layer 
thickness 
( μm)

Track 
length 
(mm)

The 
number of 
layers

B21 300 1230 40 5 10
B25 241 1529 40 5 10
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melted track geometries for both single-layer single-track, 
single-layer multi-track, and multi-layer thin-wall builds. 
From these studies, we conclude: 

1.	 With an appropriate calibration procedure using a small 
amount of experimental data, the proposed thermal-fluid 
model can quantitatively predict melted track geome-
tries in multi-track and multi-layer L-PBF processes of 
Inconel 625 material.

2.	 The PGD-based calibration approach is robust and effi-
cient even when using noisy AM experimental data.

3.	 The developed toolpath-based adaptive mesh strategy 
is effective for L-PBF computations, and can achieve a 
speedup of more than 10 times compared to a uniform mesh 
approach.

4.	 The residual heat factor (RHF) model can capture 
transient dynamics of the melt pool at the ends of the 
toolpath for multi-track AM process. The thermal-fluid 
model coupled with the RHF model has greater accuracy 
in predicting melted track geometries and patterns espe-

cially at the regions near the starting and ending points 
of the toolpath.

5.	 Dwell time between adjacent scan tracks is an important 
parameter that affects the uniformity of the melted track 
geometries. The simulation provides a way to analyze 
this phenomenon and reduce variability of the melt pool 
during the process.

6.	 The developed model has the capability to capture lack-
of-fusion defect during the L-PBF process. It can poten-
tially be used as an effective tool for mitigating lack-of-
fusion porosity by optimizing the process parameters, 
although more validation studies are needed for testing 
the lack-of-fusion predictions in the future.

7.	 The developed model can predict the steady-state melt 
pool geometry well. However, the model underesti-
mates the height and cross-sectional area at the begin-
ning region of each layer for multi-layer AM process 
because some transient behaviors are not captured at the 
beginning of each layer by the model. Further enhanced 
transient modeling will be pursued in the future.

Fig. 16   As-built multi-layer structure and its measurements for case B21. a As-built material in red and substrate in blue. b A schematic of the 
height and cross-sectional area measurements for three Zones, i.e., Zone 1: x′ = 0–0.5 mm, Zone 2: x′ = 0.5–4.5 mm, and Zone 3: x′ = 4.5–5 mm
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