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ABSTRACT
We present a comprehensive study about the phenomenological implications of the theory describing Galactic cosmic ray
scattering on to magnetosonic and Alfvénic fluctuations in the GeV−PeV domain. We compute a set of diffusion coefficients
from first principles, for different values of the Alfvénic Mach number and other relevant parameters associated with both the
Galactic halo and the extended disc, taking into account the different damping mechanisms of turbulent fluctuations acting in
these environments. We confirm that the scattering rate associated with Alfvénic turbulence is highly suppressed if the anisotropy
of the cascade is taken into account. On the other hand, we highlight that magnetosonic modes play a dominant role in Galactic
confinement of cosmic rays up to PeV energies. We implement the diffusion coefficients in the numerical framework of the
DRAGON code, and simulate the equilibrium spectrum of different primary and secondary cosmic ray species. We show that, for
reasonable choices of the parameters under consideration, all primary and secondary fluxes at high energy (above a rigidity of
� 200 GV) are correctly reproduced within our framework, in both normalization and slope.
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1 I N T RO D U C T I O N

A diverse set of data, from surveys of the radio and γ -ray sky to
measurements of cosmic ray chemical composition and anisotropy,
has suggested for more than 50 yr the existence of a non-thermal
population of cosmic particles confined in our Galaxy with a
characteristic timescale of ∼107 yr (see Gabici et al. 2019 and
references therein). Such timescale is much larger than the crossing
time of the Galactic halo associated with a free-streaming particle,
thus suggesting a diffusive transport regime rather than ballistic
motion of these cosmic particles.

Resonant interactions between cosmic particles and the Alfvénic
part of the magneto-hydro-dynamic (MHD) turbulent cascade have
been considered as the main origin of this confinement. A pertur-
bative theory able to predict the scattering rate as a function of
the particle rigidity (in the limit of small isotropic perturbations
on top of a regular background magnetic field) was developed
in the 1960s (Jokipii 1966; Kennel & Engelmann 1966; Hall &
Sturrock 1967; Hasselmann & Wibberenz 1970). This quasi-linear
theory (QLT) of CR scattering on Alfvénic turbulence has inspired
most phenomenological characterizations of the cosmic-ray sea
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in terms of a diffusion equation solved by means of numerical
or semi-analytical codes like GALPROP (Strong & Youssefi 1995;
Moskalenko & Strong 1998; Strong & Moskalenko 1998), DRAGON

(Evoli et al. 2008; Gaggero et al. 2013; Evoli et al. 2017, 2018),
PICARD (Kissmann 2014; Werner et al. 2015), and USINE (Maurin
et al. 2001). In most of these studies, a simplified, isotropic,
and homogeneous diffusion equation inspired by QLT is usually
implemented, whereby both the normalization and slope of the
diffusion coefficient are not determined by first principles, but rather
fitted to secondary-to-primary flux ratios [e.g. the boron-to-carbon
(B/C) ratio]. However, something worth pointing out is that QLT
predicts a highly anisotropic diffusion that proceeds predominantly
in the direction of the magnetic-field lines. Its applications to an
isotropic diffusion model is typically justified in terms of large-
amplitude turbulent fluctuations of the magnetic field at the scales
of their injection (Strong, Moskalenko & Ptuskin 2007). However,
a rigorous proof that this allows to treat cosmic ray transport as an
effectively isotropic diffusion does not exist to date.

The DRAGON package, in particular, has provided some very
significant steps forward in this context, i.e., by moving away from
the naive zero-order modelling of isotropic, homogeneous diffusion,
and implementing in some contexts position-dependent diffusion
coefficients. Inhomogeneous diffusion has been a key feature of some
phenomenogical models aimed at reproducing some well-known
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anomalies widely debated in the community: for instance, in Evoli
et al. (2012), a variable normalization of the diffusion coefficient
provided a solution to the CR gradient problem; in Gaggero et al.
(2015a), a position-dependent scaling of the (isotropic) diffusion
coefficient was invoked to explain a spectral trend inferred by Fermi-
LAT data that point towards a progressive hardening of the CR proton
spectrum towards the inner Galaxy, with relevant implications for
TeV γ -ray and neutrino astronomy (Gaggero et al. 2015b, 2017;
Gabici et al. 2008). In Cerri et al. (2017b), this trend was shown to nat-
urally emerge from different scaling relations for the parallel and per-
pendicular diffusion coefficients, in the context of a fully anisotropic
numerical modelling of cosmic ray transport in the three-dimensional
structure of the Galactic magnetic field (Jansson & Farrar 2012). In a
another series of papers (Tomassetti 2012, 2015; Tomassetti & Oliva
2018), different scaling relations of the diffusion coefficient in the
Galactic disc and in the halo were invoked to explain the hardening in
the proton spectrum (first discovered by PAMELA and then charac-
terized by AMS-02 with large accuracy) for a peculiar combination
of parameters in the disc and halo. These studies have provided a
precious insight of the impact of CR trasport properties on both local
and non-local observables (γ -ray, radio, and neutrino fluxes) linked
to the diffuse population of CR that populate the Galaxy.

However, as mentioned above, all these studies do not contain a
description of cosmic ray transport that fully captures the micro-
physics of the interaction between CRs and the magnetized turbulent
plasma. A proper implementation of these microphysical processes
seems compelling in order to usher in a new era of cosmic ray
modelling, thus providing a proper link between theories and the
plethora of increasingly accurate measurements.

From the theoretical point of view, our picture of MHD turbulence
and our understanding of CR interactions with the turbulent plasma
have dramatically improved during the latest decades with respect
to the simple QLT mentioned above. These developments have now
led to a more appropriate description of the turbulent cascade in
the interstellar medium (ISM) and its interactions with the diffuse
CR sea. According to this description, MHD turbulence can be
decomposed into a mixed cascade of (incompressible) Alfvénic
fluctuations, as well as (compressible) slow and fast magnetosonic
fluctuations, as theoretically demonstrated and numerically con-
firmed by simulations (Cho, Lazarian & Vishniac 2002; Cho &
Lazarian 2002). Regarding the Alfvénic component, a reference
scenario is the model put forward by Goldreich and Sridhar (hereafter
GS95 model, presented in Sridhar & Goldreich (1994), Goldreich
& Sridhar (1995); see also Galtier et al. (2000), Bhattacharjee &
Ng (2001), and Cho, Lazarian & Vishniac (2003) for a general
review). The model stems from the observation that mixing field
lines in directions perpendicular to the regular magnetic field on
a hydrodynamical-like timescale is easier than bending the lines
themselves, because of the magnetic tension. This perpendicular
mixing is able to couple wave-like motions that travel along the
regular field, obeying a critical balance condition: k�vA ∼ k⊥uk.
As the turbulent energy cascades down to smaller and smaller
perpendicular scales (larger wavenumbers) with a Kolmogorov-like
spectrum, it becomes progressively more difficult for the (weaker and
smaller) eddies to bend the field lines and develop small-scale parallel
structures. Therefore, most of the power is transferred to scales
perpendicular to a mean-magnetic-field direction, and the model
implies a high degree of anisotropy of the Alfvénic cascade. These
considerations are captured by the scaling relations EA(k⊥) ∝ k

−5/3
⊥

(Kolmogorov-like spectrum in the perpendicular direction), and
k‖ ∝ k

2/3
⊥ . As shown in Cho & Lazarian (2002), the same anisotropic

scaling relations hold for a cascade of slow magnetosonic (or, pseudo-

Alfvén) perturbations, while fast magnetosonic fluctuations were
shown to feature a isotropic cascade, with a different scaling of
the energy spectrum: EM (k) ∝ k−3/2. Moreover, as mentioned in
Ptuskin et al. (2006), all the relevant phases of the ISM can be
approximated as a low-beta plasma (the plasma β parameter is
the ratio between the plasma thermal pressure and the magnetic
pressure) in almost all cases, although some peculiar regions, such
as the interior of super-bubbles for instance, may constitute an
exception. In this regime, fast-magnetosonic modes are less damped
than Alfvénic fluctuations (see Barnes 1966, and references therein);
a result also confirmed by means of (collisionless) kinetic simulations
of plasma turbulence showing that, when injecting random magnetic-
field perturbations at the MHD scales, magnetosonic-like fluctuations
may compete with (and possibly dominate over) the Alfvénic cascade
as the plasma beta decreases below unity (Cerri et al. 2016; Cerri,
Servidio & Califano 2017a).

As a consequence of this paradigm, the picture of the microphysics
of cosmic ray pitch-angle scattering may be deeply revised. As shown
in Chandran (2000), the cosmic ray scattering rates, evaluated for the
GS95 highly anisotropic Alfvénic spectrum, significantly decrease
with respect to the simple assumption of isotropic cascade. On the
other hand, the isotropy of the fast-magnetosonic cascade may allow
these modes to dominate CR scattering for most of the pitch angle
range (Yan & Lazarian 2002).

A (weakly) non-linear modification1 of the QLT theory of CR
scattering in MHD turbulence has been developed e.g. in Völk
(1973), and then further reconsidered in Yan & Lazarian (2008) to
explicitly address the role of fast-magnetosonic modes; a seminal
attempt to implement such treatment in a numerical code, and
compare the predictions with a wide set of data, has been recently
presented in Evoli & Yan (2014). This theory naturally leads to a set
of well-defined predictions for the diffusion tensor, depending on the
local ISM properties.

In fact, the properties of fluctuations’ damping associated with
different regions of the ISM play a crucial role in the possible
suppression of magnetosonic turbulence. For instance, in an
environment such as the magnetized, diffuse halo of our Galaxy,
i.e., characterized by very low density (nH ∼ 10−3 cm−3) and
high temperatures (T ∼ 106 K), the mean-free-path associated
with Coulomb scattering can be as large as ∼107 astronomical
units (Yan & Lazarian 2008). As a result, collisionless (Landau-type)
damping is expected to be the dominant process affecting turbulent
fluctuations. On the other hand, in regions where a significant
amount of warm ionized hydrogen is present (i.e. the extended
Galactic disc, |z| � 1 kpc), the Coulomb collisional mean free path
can be as low as an astronomical unit. Hence, viscous damping
has to be taken into account, to the point that it may dominate over
collisionless damping. This in turn affects the relative effectiveness
of the pitch-angle scattering rate associated with different MHD
modes. Given this picture, the above-mentioned modified-QLT
framework (Völk 1973; Yan & Lazarian 2008) allows to consistently
compute the diffusion coefficients for a wide rigidity range in both
environments, and depending on several parameters, including the
plasma β and the amplitude of the injected turbulent fluctuations.

1Although this approach is sometimes referred to as ‘non-linear theory’ of CR
scattering, for the sake of clarity, we stress that this is not a fully non-linear
approach. In fact, the only modification to QLT theory due to non-linear
effects consists of a ‘turbulent broadening’ of the resonance kernel in the
pitch-angle scattering rate (see e.g. Shalchi 2009).
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In this paper, we aim at providing a first phenomenological
analysis based on the non-linear extension of the QLT of cosmic
ray scattering, simultaneously including magnetosonic and Alfvénic
modes. By identifying a set of parameters that characterize the ISM
properties in the two Galactic regions mentioned above (and thus the
relevant damping mechanisms of turbulent fluctuations therein), we
compute the associated diffusion coefficients from first principles,
following the formalism outlined in Yan & Lazarian (2004), Yan
& Lazarian (2008). We then implement these coefficients in the
DRAGON2 numerical package and test the predictions of the theory
against the most recent data provided by the AMS-02 Collaboration.
In particular, we focus on the fluxes of protons and light nuclei, as
well as on the B/C flux ratio.

The paper is organized as follows: in Section 2, we describe
the general physical set-up, leaving the detailed calculations to
Appendix A; in Section 3, we show how the relevant physical
quantities characterizing the diffuse Galactic halo and the extended
Galactic disc shape differently the diffusion coefficients within these
two environments; in Section 4, we show that the computed diffusion
coefficients – implemented in a two-zone model in DRAGON2 –
can reproduce the primaries’ flux spectra, as well as the boron-
over-carbon ratio, above ∼ 200 GeV, for reasonable choices of
the physical parameters. Finally, in Sections 5 and 6, we derive
the conclusions and discuss some physical implications of these
results.

2 SCATTERIN G RATE AND DIFFUSION
C O E F F I C I E N T I N M H D T U R BU L E N C E

Here, we present a summary of the calculation leading to the diffusion
coefficient experienced by a cosmic particle with charge q and mass
m in a turbulent plasma. To address the contributions to the scat-
tering efficiency arising from the different MHD cascades (namely,
Alfvénic and fast/slow magnetosonic), we follow the approach based
on the (weakly) non-linear extension – developed in Völk (1973)
– of the original QLT of pitch-angle scattering on Alfvénic and
magnetosonic turbulence (Jokipii 1966; Kulsrud & Pearce 1969).
We refer to Appendix A for the detailed calculations leading to the
expressions reported in this section.

In this formalism, a particle with velocity v forming an angle θ

with the background magnetic field B0 (i.e. having a pitch angle
μ ≡ v‖/|v| = cos θ ) propagating in a turbulent environment whose
fluctuations’ power spectrum is described by I, exhibits a scattering
rate in pitch-angle space that can be expressed as (Kulsrud & Pearce
1969; Voelk 1975):

Dμμ = �2(1 − μ2)
∫

d3k
+∞∑

n=−∞
Rn(k‖v‖

− ω + n�)

[
n2J 2

n (z)

z2
IA(k) + k2

‖
k2

J ′2
n (z)IM(k)

]
, (1)

where: � = qB0/mγ c is the particle’s Larmor frequency; k is the
wave-vector of the turbulent fluctuations; k‖ ≡ |k| cos αwave is its
field-aligned component (αwave being the angle between the wave
vector and the direction of the background magnetic field); ω = ω(k)
the associated fluctuations’ frequency.

In equation (1), the power spectrum of the fluctuations has
been explicitly split into its Alfvénic (IA) and magnetosonic (IM)
contribution, since sub-gyro-scale fluctuations belonging to these
two components are ‘filtered’ differently by particles’ gyro-motion:
this effect is described by the different coefficients involving the

n-th order Bessel functions Jn(z; with z ≡ k⊥rL, where rL = v⊥/�
is the particle’s Larmor radius2), which (typically) gyro-average out
the fluctuations at scales much smaller than the particle gyro-radius
(viz., z � 1). This, in turn, means also that different fluctuations’
components, Alfvénic and magnetosonic, differently feed back into
particles’ motion itself (through the resulting Dμμ).

Finally, Rn represents a function that ‘resonantly’ selects fluctua-
tions whose frequency, in a reference frame that streams along B0

with the particle (ω′ ≡ ω − k‖v‖), is either zero (n = 0; Landau-like
wave–particle interaction3) or matching a multiple (i.e. harmonic)
of the particle gyro-frequency (n = 1, 2, 3, . . . ; gyro-resonant
wave–particle interaction). In the standard QLT treatment of purely
Alfvénic turbulence, this function is a Dirac δ-function. In the present
treatment, instead, we include the effect of turbulent fluctuations on
the local magnetic-field strength, i.e. the fact that the modulus |B|
may not be spatially homogeneous. This is clearly dependent on the
level of the fluctuations at the injection scale, and is particularly rele-
vant in the presence of magnetosonic (i.e. compressible) turbulence,
whose finite-δB‖ fluctuations provide first-order corrections to the
magnetic-field strength (Völk 1973). As a result, following Yan &
Lazarian (2008), we adopt a broadened resonance function of the
type

Rn(k‖v‖ − ω + n�) =
√

π

|k‖|v⊥M
1/2
A

e
− (k‖vμ−ω+n�)2

k2‖v2(1−μ2)MA , (2)

where the broadening is determined by the level of the fluctuations
through the Alfvénic Mach number at the injection scale L, MA ∼
(δB/B0)L. The resonance function in (2) indeed becomes narrower
and narrower as MA decreases (to the point that reduces to a Dirac
δ-function, Rn → π δ(k‖v‖ − ω + n�), in the limit MA → 0).

For the turbulent power spectra IA, M, we follow the prescription
given in Schlickeiser (2002) and Yan & Lazarian (2002), and consider
the two-point correlation tensors between the fluctuation components
(see Appendix A):

〈δBi(k) δB∗
j (k′)〉/B2

0 = δ3(k − k′)Mij , (3)

where IA,M = ∑3
i=1 Mii and the spectral scalings are resulting from

simulations (Cho et al. 2002; Cho & Lazarian 2002). In particular,
we use

IA,S(k‖, k⊥) = CA,S
a k

−10/3
⊥ exp

(
−L1/3k‖/k

2/3
⊥

)
(4)

for the Alfvén and slow modes, consistent with the usual Goldreich-
Sridhar (GS95) spectrum (Goldreich & Sridhar 1995), while for fast
modes we use the isotropic spectrum

I F(k) = CF
a k−3/2. (5)

As a final comment on the calculation of Dμμ, the integral has to be
performed up to the truncation scale kmax of the turbulence, namely

2In the literature, one typically finds z rewritten in terms of the pitch angle μ

and dimensionless rigidity R = L−1|v|/� (L being the injection scale of the
turbulence), as z = k⊥LR

√
1 − μ2.

3In the case of Alfvénic fluctuations, this is the standard Landau damping
of Aflvén waves, which, however, within this framework does not contribute
to the pitch-angle scattering rate to the first order in fluctuations’ amplitude,
δB⊥/B0. On the other hand, in the case of magnetosonic turbulence, there is a
first-order correction to the magnetic-field strength, due to δB‖ fluctuations.
As a result, there is a non-zero gradient of |B| along the field lines, which
provides a ‘mirroring force’, Fmirr ∝ ∇‖|B| that determines a Landau-like
damping, typically referred to as transit-time damping (TTD). This TTD
provides a non-zero contribution to the pitch-angle scattering rate.
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up to the wave-number at which the cascading timescale equals the
dissipation scale, as discussed in Yan & Lazarian (2004). In general,
the truncation scale for each damping process is a function of the
angle αwave, hence the damping mechanism is in general anisotropic.
We refer to the next section and to the appendix for more details on
this quantity.

Once all the contributions from the three modes are computed, we
can obtain the parallel spatial diffusion coefficient D as a function of
the (dimensionless) particle rigidity R = L−1|v|/�. The expression
of D(R) obtained (Schlickeiser 2002) will be then implemented in
DRAGON to calculate the propagated particle spectra measured at
Earth:

D(R) = 1

4

∫ μ∗

0
dμ

v2 (1 − μ2)2

D
M,T
μμ (R) + D

M,G
μμ (R) + D

A,G
μμ (R)

, (6)

where μ∗ is the the largest μ ∈ [0, 1] for which a particle can
be considered as confined by turbulence (i.e. to be in the diffusion
regime). In particular, this means that a CR with rigidity R and
pitch angle μ should undergo a number of scattering N � 1 while
traveling a distance L′

H,D of the order of a fraction of the scale length
LH, D associated with the Galactic region where it propagates. In this
work, we choose such fraction to be 1/5, defining LH,D/5 ≡ L′

H,D

(LH and LD are the length scales of the diffuse Galactic halo and of
the extended Galactic disc, respectively) and assume that they match
the typical magnetic-field coherence length in those regions. In other
words, if τstream ∼ L′

H,D/v is the streaming timescale of a CR across a
distance L′

H,D, the pitch-angle scattering time of such cosmic particle,
τμμ ∼ (1 − μ2)/Dμμ, (i.e. the typical timescale between two consecu-
tive pitch-angle scattering events) must be much shorter than τ stream:

τμμ

τstream
∼ v

L′
H,D

(1 − μ2)

Dμμ

� 1 . (7)

Based on this criterion, we observe that μ∗ strongly depends on
the strength of the turbulence and on the damping parameters, but
for MA ≥ 0.3 it closely approaches 1 for all the energies of interest
for the present work (10−1 GeV ≤ E ≤ 105 GeV) in the disc and in
the halo, while particles in the disc exit the diffusive regime for MA

= 0.1 even at low energy (E � 1 GeV).

3 DIFFUSION C OEFFICIENTS IN GALACT I C
DISC AND HALO AND ISM PROPERTIES

In this section, we want to analyse how the diffusion coefficient is
shaped by the parameters involved in the calculations. We take into
account two different environments, as sketched in the Introduction:
the ‘extended disc’, characterized by the presence of warm ionized
hydrogen and a low value of the Coulomb collisional mean free path,
and the ‘diffuse halo’, where a low-density plasma characterized by
a negligible Coulomb scattering rate is present.

This set-up is expected to capture the most relevant phenomeno-
logical features of the CR transport problem on Galactic scale.
We notice though that the Galactic disc actually exhibits a more
complicated structure, and other phases occupy an important frac-
tional volume: namely the hot ionized phase – characterized by very
low gas density and T ∼ 106 K – and the (partially ionized) warm
neutral medium. In the latter, ion-neutral collisions may significantly
damp both incompressible and compressible modes, hence affect the
propagation model discussed here (see for instance the discussion
in Xu, Yan & Lazarian (2016)). If this complex structure is taken
into account, the scattering rate may exhibit strong fluctuations,
depending on the ISM phase: This would require another approach
to the problem, possibly based on Monte Carlo simulations that goes

beyond the scope of the present work, which is expected to capture
instead the main phenomenological consequences of the theory in a
large-scale context.

Calculations are carried out using the code in Fornieri (2020).4

Figs 1 and 2 visualize the diffusion coefficient as a function of the
rigidity in the halo and in the disc, respectively, plotted for several
values of the Alfvénic Mach number MA, given a fixed injection scale
Linj and plasma β. We also show a reference diffusion coefficient
taken from Fornieri et al. (2020), designed to correctly reproduce the
AMS-02 data on both primary and secondary species.

First of all, we notice that (i) the high-rigidity slope predicted
by the theory (and fixed by the scaling of the fast magnetosonic
cascade) is perfectly compatible with the high-rigidity slope of the
reference diffusion coefficient fitted on CR data, and (ii) the theory
predicts a clear departure from a simple power law for all values of
the relevant parameters; however, this departure does not describe
the low-energy downturn of the reference coefficient that reflects
the behaviour of AMS-02 data. Hence, we may argue that the
theory may provide a correct description of CR confinement above
�200 GV, while an accurate low-energy treatment may require
additional theoretical arguments. This argument will be further
developed in the next section. The normalization span several orders
of magnitude; it is important to notice that it is mainly governed by
the value of MA, and that reasonable values of this parameter are
associated with the correct normalization.

We will now elaborate more on this aspect and discuss the
following key points: (i) the behaviour with respect to the Alfvénic
Mach number, that reflects the strength of the injected turbulence,
(ii) the features associated with the different damping mechanisms
involved in the process, and (iii) the role of the Alfvén modes. The
effect of variations on the plasma β parameter and the injection scale
Linj will be also briefly addressed.

3.1 D(E) variation with MA

Both figures clearly show that D(E) is a decreasing function of the
Alfvénic Mach number. This is due to the fact that an increased
level of turbulence results in a more effective scattering rate of
cosmic particles. In fact, by definition MA ≡ δu/vA: therefore, larger
values of MA characterize larger-amplitude turbulent fluctuations
that enhance the pitch-angle scattering rate, Dμμ. As a result, CRs
are more efficiently confined at high-MA, which results in a lower
spatial diffusion coefficient, D(E).

3.2 Effect of damping

The most relevant difference between the behaviour of D(E) in the
halo (Fig. 1) and in the extended disc (Fig. 2) is the minimum in the
low-energy domain (ρmin ∼ 50 − 100 GV) in the latter case.

This feature can be explained following this train of thoughts.

(i) As mentioned in the previous section, the expression for Dμμ

involves an integral in the wave vector space d3k up to a truncation
scale kmax. This integral is dominated by the contributions associated
with waves with small angle αwave with respect to the direction of
the regular magnetic field (see Yan & Lazarian 2004).

(ii) The truncation scale as a function of αwave associated with the
collisionless damping (present in both the extended disc and in the
halo), and to the viscous damping (present in the extended disc only)
is shown in Fig. 3. In the critical region associated with small angles,

4https://github.com/ottaviofornieri/Diffusion MHD modes
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CR scattering on pre-existing MHD modes 5825

Figure 1. Diffusion coefficients in the halo. We show the diffusion coefficients associated with the pitch-angle scattering on to MHD (magnetosonic and
Alfvénic) fluctuations as a function of the rigidity in the halo, given a fixed injection scale Linj and plasma β, for several values of MA. Black dashed line:
reference diffusion coefficient taken from Fornieri, Gaggero & Grasso (2020), designed to correctly reproduce the AMS-02 data on both primary and secondary
species.

Figure 2. Diffusion coefficients in the extended disc. As in Fig. 1, we show here the diffusion coefficients associated with the pitch-angle scattering on to MHD
(magnetosonic and Alfvénic) fluctuations as a function of the rigidity in the ‘extended disc’ characterized by effective viscous damping.

the truncation scale associated with collisionless damping is much
larger than the one associated with viscous damping.

(iii) As a consequence, in the extended disc environment, the
truncation of the scattering-rate integral over d3k at relatively small
wavenumbers (kmaxL ∼ 107) implies a lower value of Dμμ for CRs at
the low energies, the ones that would resonate with comparable (or
larger) wavenumbers. This is reflected in the low-rigidity upturn of
the spatial diffusion coefficient shown in Fig. 2. It can also be easily
understood that the position of this upturn shifts in energy depending
on the intersection point of the two truncation-scale curves in Fig. 3.

3.3 Role of the Alfvén modes in the confinement process

Here, we want to comment on the importance of the fast magne-
tosonic modes in confining charged CRs. In Fig. 4, we show the

diffusion coefficient when fast modes are included (lower panel)
compared to the case where only Alfvén modes enter the calculation
(upper panel).

Studying the case with no fast modes, two features are immediately
visible:

(i) The normalization of D(E) spans from just a few up to
∼15 orders of magnitude more than the case where fast modes
are included. Based on the abundances and average lifetimes of
unstable elements, the average residence time of CRs in the Galaxy
is found to be τesc � 15 Myr in the GeV domain (Yanasak et al.
2001). This implies that, in order to be confined in a halo of a
few kpc, CRs should experience a diffusion coefficient that can be

at most 〈D〉 = L2
H

2τesc
∼ 1030 cm2/s. Therefore, if only Alfvén modes

were responsible for confinement, the current data on secondary and
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Figure 3. Effect of damping. We show the truncation scale kmax of the
scattering-rate integral as a function of the pitch angle of the turbulent wave
with respect to B0 for the different damping processes considered in this
work. Viscous damping is effective in the extended disc only. The values of
the corresponding physical quantities are shown in the plot.

unstable species would not be reproduced. Moreover, the scattering
rate would be so low that the diffusion approximation would not be
valid anymore, and the CR ‘sea’ would be highly suppressed due to
ballistic escape from the Galaxy.

(ii) The behaviour of the diffusion coefficient with rigidity shows
a declining trend in the pure Alfvénic case, while the total coefficient
increases with rigidity.

Both features derive from the anisotropic behaviour of the
alfvénic cascade. Indeed, as shown in equation (4), Alfvén modes
cascade anisotropically, evolving on the isosurfaces identified by
k‖ ∝ k

2/3
⊥ (Goldreich & Sridhar 1995). This relation implies that

turbulent eddies are spatially elongated along B, or, equivalently
that in the momentum space they are elongated in the perpendicular
direction. So the majority of the power goes into a k⊥ cascade. This
leaves very little power (i.e. scattering efficiency) to the cascade in
parallel wave numbers k� that, according to the resonance function
(2), is the component involved in the wave–particle interaction.
Since k‖ ∼ 
−1

‖ , particles with small rigidity and small Larmor
radius – interacting with large k� – get weakly confined, while high-
energy CRs scatter more efficiently. As a result, the spatial diffusion
coefficient D(E) is shaped as a decreasing function of the energy, if
only the Alfvénic component is taken into account.

Therefore, an efficient wave-particle scattering with Alfvén modes
can occur only at high energies, which resonate with scales that are
not too far from the injection scale, where the anisotropic nature of the
cascade has not become significant yet. We can have an estimate of
this scale, by computing for instance how many k⊥-orders the cascade
has to evolve in order to change k� of one order of magnitude. Indeed,
as already said k‖ ∝ k

2/3
⊥ , which means that the spectral anisotropy

of the fluctuations increases as

k‖
k⊥

∼
(

k⊥
kinj

)−1/3

,

where we denoted with kinj the (isotropic) wavenumber associated
with the injection scale, Linj.

As a safe estimate, we can consider the cascade anisotropy to be
really important when there is roughly an order of magnitude between
the parallel and perpendicular wave numbers corresponding to the
same level of turbulent energy, i.e., k‖/k⊥ ∼ 1/10. According to the
above relation, this level of cascade anisotropy is reached at k⊥/kinj ∼

103. If we now consider an injection scale Linj ∼ 100 pc, this will hap-
pen at 
an ∼ 10−3Linj � 0.1 pc. The Larmor radius of a charged CR is
rL = 3.37 · 1012 cm (p/GeV) � 1.08 · 10−6 pc (p/GeV). Therefore,
a 
an ∼ 0.1 pc scale roughly corresponds to the Larmor radius of par-
ticles belonging to energies ∼ 105 GeV ∼ 100 TeV. (Note, however,
that considering the anisotropy to be important at k‖/k⊥ ∼ 1/10 is
quite arbitrary, and one may push the above constraint to even larger
energies by considering, e.g., k‖/k⊥ ∼ 1/3 to be already relevant –
this would correspond to CR energies of ∼ 3 PeV). As a consequence,
we would not observe any contribution to D(E) at energy scales that
are currently of interest. If, on the other hand, turbulence is injected
at smaller scales – say Linj = 10 pc for instance – the same effect
comes into play at smaller scales, which therefore contains non-
negligible scattering power even at CR energies that are low enough
to be experimentally explored (E ∼ 104 − 105 GeV). This is indeed
visible in the change of slope in D(E) for the larger Mach numbers of
Figs 1 and 2 (in the right-hand panels, corresponding to L = 10 pc).

This is of course only a rough estimation, since it depends on the
strength of the injection – related to the value of MA – and holds as
soon as the critical balance is reached and the cascade follows the
GS95 spectrum. This would happen at the scale 
tr ∼ LinjM

2
A or at


A ∼ Linj/M
3
A for sub-Aflvénic (MA < 1) or super-Alfvénic (MA >

1) injection, respectively (Lazarian et al. 2020), i.e., at scales smaller
than Linj if MA �= 1. So it is a reasonable estimation for MA ≈ 1 and
this is why there is no imprint of a change of slope in the blue and red
dashed lines in the upper panel of Fig. 4. By increasing the strength
of the injection (i.e. increasing MA), anisotropy becomes significant
at lower and lower energies, as exhibited in the green dashed line of
the figure. However, there are indications that typical values of the
Alfvénic Mach number in the ISM do not significantly exceed MA

≈ 2 (Tofflemire, Burkhart & Lazarian 2011).
In conclusion, for the injection scale Linj and Alfvénic Mach

number we are considering throughout this work, anisotropy of
the Alfvén cascade always plays a key role and therefore cannot
efficiently confine cosmic rays, while the fast magnetosonic cascade
is able to induce a very efficient pitch-angle scattering rate.

Another important parameter to be monitored is the size of the
extended disc and Galactic halo. The Galactic halo size determines
the volume where cosmic rays propagate, thus influencing the nor-
malization of the diffusion coefficient. Variations on these parameters
are important when computing the total diffusion coefficient at a
given position in the Galaxy. In general, what is expected to matter
is the relation between their sizes. While the halo half-size could be
constrained to be between 3 and 12 kpc (Di Bernardo et al. 2013;
Zaharijas et al. 2013; Evoli et al. 2020), the extended disc half-size
could vary from 0.5 to 2 kpc (Feng, Tomassetti & Oliva 2016). Along
the paper, we will refer to the size of these extended zones as their
half-size, i.e. a halo size of LH means that it extends from −LH to
+LH in the vertical (perpendicular to the Galactic plane) coordinate.

Finally, variations of the plasma beta parameter lead to more
efficient confinement of charged particles (i.e. a smaller diffusion
coefficient) as β decreases (due to the fact that the fast-magnetosonic
mode becomes progressively more important in the confinement5).
This will be shown in the next section.

To summarize, these calculations allow us to examine how
plausible plasma properties characterizing the different Galactic

5This is because fast-magnetosonic modes become less and less damped at
lower beta (cf., e.g. Barnes 1966; Cerri et al. 2016). This feature can be
appreciated through the behaviour of their collisionless truncation scale with
β (see Appendix A).
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CR scattering on pre-existing MHD modes 5827

Figure 4. Ineffectiveness of Alfvénic confinement. We show the total diffusion coefficient with fast magnetosonic modes included in the calculation (lower
panel) compared to the case in which only Alfvén fluctuations are taken into account (upper panel). Alfvénic turbulence is not efficient in confining Galactic
CRs, due to the anisotropy of the cascade (see also Chandran (2000), Yan & Lazarian (2004)).

zones can lead to different values of the diffusion coefficient and
therefore to different spectra of Galactic cosmic ray fluxes. Different
combinations of the plasma parameters in the extended disc and
Galactic halo will be explored in the next section in comparison to
experimental data.

4 P H E N O M E N O L O G I C A L I M P L I C AT I O N S O F
T H E T H E O RY

In this section, we compare the propagated CR spectrum, obtained
adopting the diffusion coefficients discussed above, with the most
relevant CR observables.

We implement the coefficients in the DRAGON2 code (Evoli et al.
2008; Evoli et al. 2017, 2018), and solve the diffusion-loss equation
that characterize the propagation of high-energy charged particles in
the Galaxy (Ginzburg & Syrovatskii 1964; Berezinsky et al. 1990):

−∇ · (D∇Ni + vwNi ) + ∂

∂p

[
p2Dpp

∂

∂p

(
Ni

p2

)]

− ∂

∂p

[
ṗNi − p

3
(∇ · vw) Ni

]

= Q +
∑
i<j

(
cβngas σj→i + 1

γ τj→i

)
Nj −

(
cβngas σi + 1

γ τi

)
Ni

(8)

for the most relevant hadronic species characterized by the distri-
bution function Ni, and for different choices of the free plasma
parameters identified in the previous sections. In the above equation,
D is the spatial diffusion coefficient; Dpp the diffusion coefficient
in momentum space, associated with reacceleration; vw the velocity

associated with the advection; (σ j → i, σ i) the spallation cross sections
associated, respectively, to the creation of the species i from parent
nucleus j, and to the destruction of the species i; (τ j → i, τ i) the decay
times for, respectively, the unstable species j, creating i, and for i,
creating smaller nuclei. For a detailed discussion on each term, we
remind to the technical papers cited above.

The aim of this work is to identify and comment on relevant trends,
and discuss whether the current data have some constraining power
on the theory; we postpone a complete and systematic exploration of
the parameter space to a forthcoming publication.

We adopt the following set-up:

(i) Source term: We consider a continuous source distribution
in two dimensions – assuming cylindrical symmetry – taken from
Ferriere (2001). This distribution accounts for the spatial distribution
of both type Ia (traced by old disc stars), and type II (traced by pulsars)
supernovae. The injection spectrum for each species is modelled as
a simple power law in rigidity.

(ii) Gas distribution: We implement a smooth, cylindrically
symmetric gas distribution, taken from Gordon & Burton (1976),
Bronfman et al. (1988) and implemented in the public version of
both GALPROP (Strong & Youssefi 1995; Strong & Moskalenko 1998;
Moskalenko & Strong 1998) and DRAGON.

(iii) Spallation cross sections: We use the cross-section network
presented in Evoli et al. (2018), Evoli, Aloisio & Blasi (2019)
and implemented in the DRAGON2 version available online.6 This
secondary production model is especially designed to compute
the light secondary fluxes above 1 GeV/n, and is based on a

6https://github.com/cosmicrays
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Figure 5. B/C ratio as a function of MA. We plot the theoretical prediction (obtained with an updated version of the DRAGON code) for the B/C within simple
set-up characterized by the same value of MA in both the extended disc and the halo up to TeV energy (left-hand panel), and a more general set-up where
extended disc and halo exhibit different values of this parameter (right-hand panel). We show the most recent data in the energy range of interest from AMS-02,
PAMELA, and ATIC experiments.

state-of-the-art fitting of a semi-empirical formalism to a large sample
of measurements in the energy range 100 MeV/n to 100 GeV/n,
taking into account the contribution of the most relevant decaying
isotopes.

A key observable in the context of CR phenomenology is the B/C
flux ratio. In fact, Boron is entirely secondary and is mostly produced
in spallation reactions involving heavier, and mostly primary, species
(including Carbon): therefore, the ratio between those two nuclei
fluxes has been widely used over the latest years to constrain the
grammage accumulated by CRs while residing in the Galactic disc,
and ultimately the features of the diffusion coefficient.

Given these considerations, we start our analysis by focusing on
this observable, recently measured with high accuracy all the way
up to the TeV scale by the AMS-02 Collaboration (Aguilar et al.
2016). In particular, we pay attention to the dependence of the
computed B/C flux ratio on the Alfvénic Mach number parameter
of pre-existing MHD turbulence, MA, which was shown to play a
key role in the overall normalization of the transport coefficients.
We scan over this parameter, and find that larger values of MA are
likely to be associated with a significant over-production of Boron,
especially at high energies. This is due to the high efficiency of
the confinement mechanism that characterize scenarios featuring
turbulence with large Alfvénic Mach numbers.

(i) In a simple set-up characterized by the same value of MA in
both the extended disc and the halo, we find that values of order MA

∼ 0.4 for the effective Alfvénic Mach number are compatible with
current data in the high-energy range (see Fig. 5, left-hand panel).
We emphasize that this result is achieved with no ad hoc retuning on
the data, and naturally stems from the theoretical expression of the
diffusion coefficient computed in detail in this work.

(ii) In a more general set-up where extended disc and halo exhibit
different values of this parameter, a diverse range of combinations is
allowed by the data (see Fig. 5, right-hand panel).

We also show for illustrative purposes in Fig. 6 the impact of the
extended disc size on the same observable, keeping the Alfvénic
Mach number in the extended disc and halo fixed to one of the
combinations allowed by data.

We remark again that in all cases the high-energy slope is correctly
reproduced, while the low-energy domain suggests an extra gram-
mage possibly associated with a different confinement mechanism

Figure 6. B/C ratio as a function of MA. We plot the theoretical prediction
for the B/C for different values of the extended disc vertical size.

(not captured by the theory presented here) that starts to dominate
below ∼ 200 GeV. This point will be further discussed below.

We now widen our perspective and consider a variety of secondary
and primary species.

The AMS-02 Collaboration has recently measured the spectra of
several CR light nuclei fluxes and ratios (Aguilar et al. 2015, 2016,
2018). These data provided major improvement in the precision
and dynamical range, and have revealed relevant features. The
most relevant is a progressive hardening in primary species, with
the spectral index varying from �2.8 in the 50 – 100 GV rigidity
range to a significantly harder value around �2.7 above 200 GV.
Regarding the primary species, we emphasize that the slopes of
the primary species depend on both the rigidity scaling of the
diffusion coefficients, and on the slope that is injected in the ISM
as a consequence of the acceleration mechanism taking place at
the sources and subsequent escape from the sources themselves.
Hence, they do not offer a direct constraint on the scaling of the
diffusion coefficient with rigidity, which is one of the key predictions
of the theory: only the purely secondary species can be exploited
to this purpose. Regarding secondaries, an indication of an even
more pronounced hardening in secondary species is also present,
suggesting a transport origin for the feature (Génolini et al. 2017).
Such spectral feature may be attributed, for instance, as discussed
in Blasi, Amato & Serpico (2012), Aloisio, Blasi & Serpico (2015;
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Figure 7. Fluxes of H, B, C. We plot the theoretical prediction for the Hydrogen, Carbon, and Boron fluxes (obtained with an updated version of the DRAGON

code) for a few selected combinations of the parameters of interest. The primary injection spectrum is tuned to fit the data above 200 GeV. All high-energy data
can be consistently reproduced within our theoretical framework. An extra confinement mechanism may be required to explain the low-energy excess.

see also Farmer & Goldreich (2004) for a pioneering prediction) to
a transition between two different regimes: (i) the low-energy range
where CR transport is expected to be dominated by self-confinement
due to the generation of Alfvén waves via streaming instability;
(ii) the high-energy range where CR confinement is expected to be
dominated by scattering off pre-existing turbulent fluctuations (i.e.
for which self-generation effects are not expected to play a relevant
role).

Motivated by these considerations, and given the aspects high-
lighted in the study of B/C, we aim at providing a comprehensive
picture of the high-energy portion of the spectrum, above the
aforementioned break, where the confinement due to scattering on
to isotropic fast-magnetosonic turbulence should be the dominant
physical mechanism (i.e. given on the one hand the lower impact of
self-confinement and, on the other hand, the negligible role played by
scattering on the pre-existing anisotropic Alfvénic cascade). In the
case of primary species, we aim at identifying a reasonable choice
of the injection spectrum that correctly reproduce the data, given the
degeneracy mentioned above.

In Fig. 7, we show a particular realization that satisfies all the
experimental constraints in the high-energy regime. We show that we
can consistently reproduce all the observed data above the 200 GV
spectral feature, by assuming a reasonable injection slope (γ = 2.3)
and propagating the particles within the set-up described above. The
‘excess’ at low energy cannot be reproduced within the framework
discussed in the present work, and, given the considerations above, it
strongly suggests the presence of another confinement mechanism,
possibly associated with the self-generation of Alfvénic turbulence
via streaming instability.

5 D ISC U SSION AND FUTURE PROSPECTS

This paper is aimed at presenting the first comprehensive study on the
phenomenological implications of the theory describing cosmic ray

scattering on to magnetosonic fluctuations. In this section, we discuss
potential caveats and future developments of the current work.

As a first discussion point, we want to argue on the potential
impact of the anisotropic nature of cosmic ray transport. In this paper,
following the line of thought outlined for instance in Strong et al.
(2007) and adopted in most papers featuring a numerical description
of cosmic ray transport, we worked under the hypothesis of isotropic
diffusion, assuming that the same scaling relations apply to parallel
and perpendicular transport (see also Evoli & Yan 2014). Within
the current theoretical framework, this is formally correct only for
values of MA � 1. In fact, in Yan & Lazarian (2008), the authors
demonstrated that the perpendicular coefficients in this (weakly)
non-linear extension of the QLT of scattering on to fast magnetosonic
modes depend very strongly on the Alfvénic Mach number of the
turbulence, exhibiting a ∝ M4

A scaling. However, many different
mechanisms may lead to an effective isotropization of the diffusion
tensor7 and a commonly adopted assumption that has allowed to
successfully reproduce all local observables is that CR transport is
well described by an effective scalar coefficient. We also remark that
the interaction of CRs with Alfvénic turbulence, which was shown to
have a negligible impact on pitch-angle scattering, may play a role in
this particular context. It can therefore in principle contribute to the
perpendicular transport, and eventually to the isotropization of the
diffusion tensor. A careful assessment of this aspect is clearly well
beyond the scope of the present work. In fact, it would require a full
three-dimensional anisotropic treatment of CR diffusion and a careful

7For instance, the role of compound diffusion, resulting from the convolution
of diffusion in the parallel and perpendicular directions with respect to the
magnetic field line, has been studied in a series of papers, where, in particular,
the role of field line random walk (FLRW) is found to be very important,
especially for small turbulence perturbations (Jokipii 1966; Jokipii & Parker
1969a, b; Kóta & Jokipii 2000; Shalchi & Schlickeiser 2004; Webb et al.
2006).
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modelling of the topology of the Galactic regular magnetic field.
However, in future studies, we will address in more detail the intrinsic
anisotropic nature of CR transport within the theory presented here.
We expect that the impact of a different scaling for the perpendicular
transport may potentially be of some relevance as far as non-local
observables – γ -rays and radio waves for instance – are concerned,
especially in regions that feature values of MA significantly smaller
than 1 (see Cerri et al. (2017b) for a pioneering study on the impact
of anisotropic transport on non-local CR observables).

Another important aspect that potentially requires a dedicated
study is the interplay with self-confinement due to Alfvénic tur-
bulence originated by CR-streaming instability. As pointed out in
Farmer & Goldreich (2004) and Blasi et al. (2012), this effect may
dominate the low-energy confinement. As a consequence, the transi-
tion between a confinement regime dominated by scattering off self-
generated turbulence and a regime dominated by scattering on to pre-
exisiting MHD turbulence may be the origin of the spectral feature at
� 200 GV outlined in detail by the AMS-02 Collaboration in all the
CR species. On the other hand, we have shown that the relative impor-
tance of Alfvénic confinement progressively increases at high energy
(Fig. 4, upper panel). This is due to the lower degree of anisotropy
of the Alfvénic cascade at scales closer to the injection scale.
Consequently, a spectral feature may be present in the high-energy
spectrum, close to the PeV domain. A careful assessment of such
a feature, its dependence on the environmental properties, and the
potential of future experiments (such as LHAASO) to detect it, may
constitute another very interesting future avenue in this research field.

As a final discussion point, we mention the necessity to perform
complementary observations and analyses aimed at highlighting
the actual presence of magnetosonic fluctuations in the interstellar
plasma. In this context, the statistical study of the Stokes parameters
of the synchrotron-radiation polarization is a very promising tech-
nique. As recently demonstrated in Zhang et al. (2020), polarization
analyses provide a unique opportunity to shed light on the plasma
modes composition of the Galactic turbulence, and have led to a
discovery of magnetosonic modes in the Cygnus X superbubble.

As a take-home message for this discussion, we want to emphasize
the complementarity between different approaches. On the one hand,
the arguments above outline the need of a dedicated effort from the
experimental side, regarding direct measurements of local CR fluxes,
aimed at detecting and characterizing spectral features over a wide
energy range and with particular focus on the TeV−PeV domain. On
the modelling side, we have emphasized the potential for a significant
advance, aimed at analysing the prediction of the theories in a realistic
framework that takes into account the three-dimensional structure of
the Galaxy, the topology of its magnetic field, and the properties of the
ISM. Both efforts are complemented by a research program directed
towards analysing the properties of interstellar turbulence. Thanks to
the interplay among these developments, we may finally shed light
on the long-standing puzzle of cosmic ray confinement in the Galaxy.

6 SU M M A RY

In this paper, we have presented for the first time a comprehensive
phenomenological study adopting a (weakly) non-linear extension
of the QLT of cosmic ray scattering on to MHD fluctuations.

We have considered a state-of-the-art description of pitch-angle
scattering associated with the various MHD cascades, i.e., decom-
posed into a (anisotropic) cascade of Alfvénic fluctuations, and slow
and fast (isotropic) magnetosonic turbulence. We have studied the
physical problem of the interaction of a charged, relativistic particle
with such modes and, adopting the formalism developed in Yan &

Lazarian (2004), Yan & Lazarian (2008), we have computed the
associated transport coefficients from first principles.

We identified a set of parameters that characterize the ISM and
have significant impact on our result (i.e. the Alfvénic Mach number,
the plasma β, and some parameters that describe the damping
processes in different environments), and presented a complete phe-
nomenological study of the dependence of the diffusion coefficients
with respect to those parameters.

Then, we implemented the coefficients in the numerical framework
of the DRAGON2 code, and tested the theory against current experi-
mental data, with particular focus on the extremely accurate AMS-02
data set. We found that the high-energy behaviour of the transport
coefficients nicely matches the secondary-over-primary slope in that
regime, and a reasonable range of the aforementioned parameters
allowed us to reproduce the correct normalization as well, without
invoking any ad hoc tuning. Overall, we found a natural and reason-
able agreement with all CR channels within a reasonable choice of
both the ISM parameters governing the transport process, and other
parameters (e.g. injection slope) that characterize our set-up.

The theory is therefore adequate to describe the microphysics of
Galactic CR confinement in the high-energy domain, in particular
above the 200 GeV feature highlighted in all primary and secondary
species by the AMS-02 Collaboration. On the other hand, we confirm
that the pitch-angle scattering on pre-existing Alfvénic turbulence
can not provide a satisfactory description of CR confinement:
in fact, the highly anisotropic Alfvénic cascade turns out to be
extremely inefficient in scattering CRs of energies � 100 TeV. Our
work strongly suggests that the interpretation of AMS-02 data in
terms of pitch-angle scattering on to turbulent fluctuations naively
described in terms of a Kolmogorov-like isotropic spectrum cannot
be considered satisfactory, and a more accurate description of
interstellar turbulence has to be considered.

The behaviour of CR observables below 200 GV cannot be
reproduced within our framework. The steeper spectrum observed
by AMS-02 below that energy seems to require additional phys-
ical effects. The self-confinement due to self-generated Alfvénic
fluctuations via CR-streaming instability seems a good candidate in
this context. We postpone to a forthcoming study a full combined
treatment of this process within our formalism and our set-up.
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A new scientific code to compute the diffusion coefficients is
available in a repository and can be accessed via the DOI link https:
//doi.org/10.5281/zenodo.4250807.
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A P P E N D I X : P I T C H - A N G L E D I F F U S I O N C O E F F I C I E N T F O R M H D T U R BU L E N C E

In this appendix, we briefly review the calculations carried out in Yan & Lazarian (2008) to compute the relative contributions from each of the
MHD modes to the spatial diffusion coefficient. In particular, in Yan & Lazarian (2008), the authors mostly implement the case of trans-alfvénic
turbulence (MA � 1), whereas here we consider a broader range of Alfvénic Mach number, pertaining also to sub- and super-Alfvénic regimes
(i.e. roughly within the range 0.1 � MA � 2).
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The starting point is equation (1) for the pitch-angle scattering rate of a charged particle in turbulent fluctuations that we report here for
convenience:

Dμμ = �2(1 − μ2)
∫

d3k
+∞∑

n=−∞
Rn(k‖v‖ − ω + n�)

[
n2J 2

n (z)

z2
IA(k) + k2

‖
k2

J ′2
n (z)IM(k)

]
, (A1)

where we remind the reader that � = qB0/mγ c is the particle’s gyro-frequency, μ = v‖/|v| = cos θ its pitch angle (θ being the angle between
the particle’s velocity v and the background magnetic field B0), k and ω are the fluctuations’ wave-vector and frequency, respectively, and
I (k) their turbulent power spectrum at scales ∼k−1 (which is modified by a combination of the Bessel’s functions Jn(k⊥rL), as effectively seen
through a particle’s gyro-motion whose Larmor radius is rL, and that scatters via a resonance-like function Rn).

To model the turbulent fluctuations of the magnetic field and of the fluid velocity at MHD scales, δB and δu, respectively, we follow the
prescription given in Yan & Lazarian (2002) for their correlation functions:

〈δBi(k) · δB∗
j (k′)〉/B2

0 = δ3(k − k′)Mij (k) (A2a)

〈δui(k) · δB∗
j (k′)〉/vAB0 = δ3(k − k′) Cij (k) (A2b)

〈δui(k) · δu∗
j (k′)〉/v2

A = δ3(k − k′)Kij (k), (A2c)

where the indices i, j = 1, 2, 3 represent the different components of the fluctuation vector, and the 〈 〉 operator indicates the average over a
phase-space ensemble (Kubo 1957). These correlation functions are related to the energy density of the fluctuations, e.g., 〈δB(x)δB∗(x)〉 for
magnetic-field fluctuations. In fact, in terms of their Fourier components, δB(x) = ∫

d3k e−ik·x δB(k) and δB∗(x) = ∫
d3k eik·x δB∗(k), the

fluctuations’ energy density can be written as

〈δB(x)2〉 =
∑
i,j

∫
d3k

∫
d3k′ e−i(k−k′)·x 〈δBi(k) · δB∗

j (k′)〉 (A3)

= B2
0 ·

∑
i,j

∫
d3k Mij (k), (A4)

such that the integral of the normalized fluctuation spectrum over wave-numbers gives the spatial energy density. This is in agreement
with Voelk (1975; their equation (32)). The spectrum of a given turbulent field is then obtained as the trace of the correlation tensor of its
fluctuations. For instance, the trace of Mij provides the magnetic-field turbulent spectrum:

∑
i=j Mij = IA,S,F, where A labels the Alfvén

mode, and S, F the slow and fast magnetosonic modes, respectively. In what follows, only the magnetic-field fluctuations and their correlation
tensor in (A2a) will enter the calculations.

For what concerns the explicit form of the magnetic-field fluctuations’ correlation tensor Mij , we will make use of the expressions outlined
in Cho et al. (2002), which were obtained via numerical simulations in the trans-Alfvénic regime MA � 1. However, as mentioned above, in
this work, we consider turbulent regimes that span from the sub-Alfvénic (MA < 1) to the super-Alfvénic (MA > 1) case. Therefore, the general
correlation tensor (and the corresponding turbulent spectrum) of the Alfvénic and slow cascades that will be considered here must include an
extra scaling with the Alfvénic Mach number MA (a scaling that also depends whether we are in the sub-Alfvénic or in the super-Alfvénic case, as
outlined in Lazarian et al. (2020), and from which the usual GS95 scaling (Goldreich & Sridhar 1995) is anyway recovered in the trans-Alfvénic
limit, MA ∼ 1). By taking into account these generalizations, the correlation tensors pertaining to the three MHD modes scale as follows:

MA(S),sub
ij = CA(S),sub

a Iij k
−10/3
⊥ · exp

(
− L1/3|k‖|

M
4/3
A k

2/3
⊥

)
(MA ≤ 1) (A5)

MA(S),super
ij = CA(S),super

a Iij k
−10/3
⊥ · exp

(
−L1/3|k‖|

MA k
2/3
⊥

)
(MA > 1) (A6)

MF
ij = CF

a Jij k
−7/2, (A7)

where Ca are normalization constants, and parallel (�) and perpendicular (⊥) here are defined with respect to the background magnetic field,
B0. The tensors Iij = δij − kikj /k

2
⊥ and Jij = kikj /k

2
⊥ are 2D tensors defined in the sub-space perpendicular to the background magnetic

field8 (e.g. if B0 is along z, then Iij and Jij above are defined in the xy-plane, and are zero if i, j = z). Within the plane perpendicular to
B0, Iij and Jij are indeed projecting operators working as expected for the polarization of the Alfvén, slow and fast modes: Iij projects on to
the direction perpendicular to k⊥, whereas Jij projects on to the direction parallel to it. As an additional remark, we point out that the above
scalings are the 3D extensions of the 1D spectra found in Cho & Lazarian (2002).

Finally, in order to determine the normalization constants Ca, we require that the energy of the turbulent fluctuations obtained by their
correlation tensor (i.e. 〈δB(x)2〉 from equation (A3)) matches the root-mean-square value of the fluctuations at the injection scale L (i.e.
δB2

rms ≡ 〈δB2〉L):

〈δB(x)2〉 ≡ B2
0

∑
i,j

∫
d3kMij (k)

!= δB2
rms ≡ 〈δB2〉L , (A8)

8If Iij = δij − kikj /k
2
⊥ and Jij = kikj /k

2
⊥ are the 3D version of Iij and Jij defined for any i, j = 1, 2, 3 index, then the 2D version can be generally written as

Iij = TikIklTlj and Jij = TikJklTlj , with Tij = δij − B0,iB0,j /B
2
0 being the projecting operator on to the plane perpendicular to B0.
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where 〈δB2〉L is related to the (outer-scale) Alfvénic Mach number MA by 〈δB2〉L/B2
0 ≈ M2

A.

A1 Dμμ from Alfvén modes

In this section, we specialize to the case of a cascade of Alfvénic fluctuations, explicitly providing the steps of the calculation leading to the
associated pitch-angle scattering rate, DA

μμ, in the relevant regimes.

A1.1 Normalization coefficient

To get the normalization coefficient CA
a for the Alfvénic cases, we make use of equation (A8) with the spectrum (A5) or (A6) for the sub- or

super-Alfvénic regime, respectively, where
∑

i = jIij = 1. Moreover, since Alfvénic fluctuations are anisotropic, it is convenient to write the

integral decomposing it as
∫

d3k = ∫ +∞
L−1 k⊥dk⊥

∫ +∞
−∞ dk‖

∫ 2π

0 dφ.

A1.2 Sub- and trans-Alfvénic regime (MA ≤ 1).

When dealing with sub-Alfvénic turbulence, the cascade of fluctuations at scales immediately below the injection scale belongs to the weak-
turbulence regime. This means that, initially, fluctuations develop a E(k⊥) ∼ k−2

⊥ spectrum in the direction perpendicular to B0, while there is no
turbulent cascade along the magnetic-field lines, E(k‖) = E(kL) = cst. However, this weak-turbulence regime can be sustained only for a limited
range of (perpendicular) scales, [L−1, 
−1

tr ], as the critical-balance condition will be anyway achieved at a scale 
tr ∼ LM2
A that determines

the transition to the strong-turbulence regime (Goldreich & Sridhar 1995). At perpendicular scales λ⊥ ≤ 
tr, the cascade follows the modified
GS95 spectrum in (A5). Therefore, to obtain the normalization constant CA,sub

a , we now use the fact that the integral of the magnetic-field
fluctuations’ correlation tensor should match the energy of the fluctuations at the transition scale 
tr, i.e.,

∫
d3kMA,sub

ij (k) = 〈δB2〉
tr/B
2
0 . Also,

since the parallel scale does not evolve in the weak-turbulence regime, we remind the reader that the parallel wavelength λ‖, tr corresponding
to a turbulent eddy of perpendicular size λ⊥ = 
tr is still the injection scale, i.e. λ‖, tr = L. As a result, the exponential function that describes
surfaces of constant energy in (k⊥, k‖) space still contains the outer-scale factor, L1/3, as for the trans-Alfvénic limit, MA = 1. The equation that
determines CA,sub

a is therefore:

CA,sub
a · 2π

∫ k⊥,max


−1
tr

k⊥dk⊥

∫
[−k‖,max,−L−1]∪[L−1 ,k‖,max]

dk‖ k
−10/3
⊥ · exp

(
− L1/3|k‖|

M
4/3
A k

2/3
⊥

)

≈ CA,sub
a · 2π

∫ +∞


−1
tr

k⊥dk⊥

∫ +∞

−∞
dk‖ k

−10/3
⊥ · exp

(
− L1/3|k‖|

M
4/3
A k

2/3
⊥

)
!= 〈δB2〉
tr

B2
0

.

The above approximations in the limits of integration involve both the cutoff and the injection wave-number scales: (i) the former corresponds
to the cascade cut-off scales (k⊥, max, k�, max), and letting them approach infinity does not lead to any appreciable modification. Indeed, the
perpendicular spectrum is soft enough (E(k⊥) ∼ k

−10/3
⊥ ) that the large wave-numbers carry very little turbulent power. In particular, this is

true for the parallel spectrum, since the GS95 critical-balance relation implies an even softer spectrum versus k�. (ii) As far as the low-k�
limit of integration is concerned, considering the proper injection scale (k�, min ∼ L−1) introduces a correction factor 1/e in the normalization
constant. This correction only affects Alfvén and slow modes, which will be found to be anyway strongly subdominant in shaping the cosmic
ray diffusion coefficient therefore for the sake of simplicity, we neglect it. Notice, however, that we will use this approximation only for the
normalization constant, while the correct wave-number range is considered when calculating Dμμ, thus not affecting the resulting slopes of
the diffusion coefficient.

Solving the integrals, the left-hand side of the above equation yields CA,sub
a 4π · 3M

4/3
A 


2/3
tr

2L1/3 . Then, taking into account the scaling 
tr ∼ LM2
A

for the transition scale, we can obtain the normalization in terms of the injection scale L:

CA,sub
a 4π · 3

2
L1/3 M

8/3
A

!= 〈δB2〉
tr

〈δB2〉L · 〈δB2〉L
B2

0

≈ M2
A · M2

A = M4
A,

where we have used the scaling of weak turbulence for the fluctuations, δBλ ∼ λ
1/2
⊥ , to substitute 〈δB2〉
tr/〈δB2〉L = 
tr/L ≈ M2

A and
〈δB2〉L/B0 ≡ M2

A.
In conclusion, CA,sub

a = M
4/3
A L−1/3/6π and the correlation tensor of the magnetic-field fluctuations for the Alfvén mode in the sub-Alfvénic

(or trans-Alfvénic) regime is:

MA,sub
ij = M

4/3
A L−1/3

6π
Iij k

−10/3
⊥ · exp

(
− L1/3k‖

M
4/3
A k

2/3
⊥

)
. (A9)

A1.3 Super-alfvénic case: MA > 1

Conversely to what happens in the sub-Alfvénic case, when the injected fluctuations are super-Alfvénic, the corresponding turbulent cascade at
scales immediately below the injection scale L is ‘hydro-dynamical’ in nature, i.e., isotropic with a spectrum E(k) ∼ k−5/3. This hydrodynamic-
like behaviour is, again, sustained only within a limited range of scales, [L−1, 
−1

A ], as the critical-balance condition will be eventually met
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at the Alfvén scale 
A ∼ LM−3
A (Lazarian et al. 2020). At scales λ ≤ 
A, the turbulent cascade thus becomes anisotropic with respect to

the magnetic-field direction, and follows the modified GS95 spectrum in (A6). Following the same reasoning of the sub-Alfvénic case, the
equation for CA,super

a reads as

CA,super
a · 2π

∫ +∞


−1
A

k⊥dk⊥

∫ +∞

−∞
dk‖ k

−10/3
⊥ · exp

(
−L1/3|k‖|

MA k
2/3
⊥

)
!= 〈δB2〉
A

B2
0

.

By explicitly solving the integral and taking into account the scaling 
A ∼ LM−3
A , one obtains:

4πCA,super
a · 3

2
L1/3 M−1

A
!= 〈δB2〉
A

〈δB2〉L · 〈δB2〉L
B2

0

≈ M−2
A · M2

A,

where we have used the Kolmogorov-like scaling for the turbulent fluctuations, δBλ ∼ λ1/3, to substitute 〈δB2〉
A/〈δB2〉L = (
A/L)2/3 ≈ M−2
A ,

and, again, 〈δB2〉L/B2
0 = M2

A by definition.
In conclusion, CA

a = MA L−1/3/6π , and the correlation tensor of the magnetic-field fluctuations for the Alfvén mode in the super-Alfvénic
regime is:

MA,super
ij = MA L−1/3

6π
Iij k

−10/3
⊥ · exp

(
− L1/3k‖

MA k
2/3
⊥

)
. (A10)

A1.4 Resonance function

In this work, we are adopting the resonance function, Rn, described in Yan & Lazarian (2008). Such function includes the broadening of the
resonant scattering wave-number due finite-amplitude corrections in the magnetic-field strength9:

Rn(k‖v‖ − ω + n�) =
√

π

|k‖|v⊥M
1/2
A

· exp

(
− (k‖vμ − ω + n�)2

k2
‖v2(1 − μ2)MA

)
,

where we recall the reader that the above expression reduces to the usual Dirac δ-function in the limit of vanishing fluctuations amplitude,
MA → 0.

Within the present approximations, Alfvén modes can scatter CRs only via n �= 0 gyro-resonance interactions, while the n = 0
Landau-damping interaction is neglected. Also, we consider low-frequency, non-relativistic MHD turbulence, i.e., turbulent fluctuations
within a range of frequencies ω and wave-numbers k such that their frequency is much smaller than the particles’ gyro-frequency, ω

� �, and their phase velocity is much smaller than the speed of light, vph ∼ ω/k � c. In this limit, since cosmic particles’ are
relativistic (i.e. their velocity is typically v ≈ c), one can neglect the fluctuation frequency ω in the argument of the resonance function:
k�vμ − ω + n� � k�vμ + n�.

Taking these considerations into account and rearranging the argument of the exponential, the resonance function that will be adopted for
scattering on Alfvénic fluctuations reads

Rn(k‖v‖ − ω + n�) =
√

π

|k‖|v⊥M
1/2
A

· exp

⎛
⎜⎝−

(
μ + n

x‖R

)2

(1 − μ2)MA

⎞
⎟⎠ ≡

√
π

|k‖|v⊥M
1/2
A

· En

=
√

π �−1

|x‖|R M
1/2
A

· En , (A11)

where we have defined R ≡ v/(�L) = (1 − μ2)−1/2rL/L, with rL = v⊥/� the cosmic particle’s Larmor radius, and x‖, ⊥ ≡ k‖, ⊥L.

A1.5 Pitch-angle coefficient

To finally calculate the contribution from the Alfvén modes to the pitch-angle diffusion coefficient, we now make use of the spectra in equations
(A9) and (A10) in the following expression:

DA
μμ = �2(1 − μ2)

∫
d3k

+∞∑
n=−∞

√
π

|k‖|v⊥M
1/2
A

· En

[
IA(k)

n2J 2
n (z)

z2

]
. (A12)

9An effect that is consistent with the inclusion in this scattering theory of the Landau-type wave-particle interaction usually referred to as TTD.
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A1.6 MA ≤ 1

Using the dimensionless quantities described above, the expression for the pitch-angle scattering rate on Alfvénic fluctuations in the MA ≤ 1
regime reads:

DA
μμ =

√
πv

√
1 − μ2 M

5/6
A

3R2L

∫
dx⊥

∫
dx‖

+∞∑
n=−∞

n2J 2
n (z)

z2
· x

−7/3
⊥
|x‖| · exp

(
− x‖

M
4/3
A x

2/3
⊥

)
En

=
√

π �M
5/6
A

3R

∫
dx⊥

∫
dx‖

+∞∑
n=−∞

n2J 2
n (z)

z2
· x

−7/3
⊥
|x‖| · exp

(
− x‖

M
4/3
A x

2/3
⊥

)
En, (A13)

where now z ≡ x⊥R(1 − μ2)1/2. For Alfvén modes, n �= 0, and we verified that the n = ±1 functions give the dominant contribution, so that
DA

μμ ≈ DA,n=1
μμ + DA,n=−1

μμ . Using the property J−n(z) = (− 1)nJn(z), from which it follows J 2
−n(z) = J 2

n (z), we finally get:

DA,sub
μμ = 2

√
π �M

5/6
A

3R

∫
dx⊥

∫
dx‖

J 2
1 (z)

z2
· x

−7/3
⊥
x‖

· exp

(
− x‖

M
4/3
A x

2/3
⊥

)
(E+ + E−) (A14)

where E+ ≡ E+
n=1 = exp

⎛
⎝−

(
μ+ 1

x‖R

)2

(1−μ2)MA

⎞
⎠, E− ≡ E−

n=−1 = exp

⎛
⎝−

(
μ− 1

x‖R

)2

(1−μ2)MA

⎞
⎠ and the factor 2 comes from taking the integral only on x� >

0.
The lower boundary of integration can be found reminding that we integrate the GS95 spectrum from the scale where the critical balance

is reached. For this MA ≤ 1 case, we have seen that, up to the transition scale, the cascade evolves only in the direction perpendicular to the
magnetic field. Therefore, we can write:

k⊥,min
tr = k⊥,min ·
(


tr

L

)
L

!= 1 ⇒ x⊥,min = 1(

tr
L

) ≈ M−2
A

x‖,min = 1,

where we denoted with 
tr the scale where the turbulence becomes of GS95 type.

A1.7 MA > 1.

Following the same steps as for the MA ≤ 1 case, we eventually obtain the following expression:

DA,super
μμ = 2

√
π �M

1/2
A

3R

∫
dx⊥

∫
dx‖

J 2
1 (z)

z2
· x

−7/3
⊥
x‖

· exp

(
− x‖

MA x
2/3
⊥

)
(E+ + E−) . (A15)

In this case, the lower boundary for the integration can be obtained considering that the cascade evolves isotropically until the transition
scale 
A is reached. Hence, we obtain:

k⊥,min
A = k⊥,min ·
(


A

L

)
L

!= 1 ⇒ x⊥,min = 1(

A
L

) ≈ M3
A

x‖,min ≈ M3
A.

To evaluate the upper boundary of the integrals, we do not treat the two regimes separately and assume that Alfvén modes do not undergo
significant damping and therefore the cascade proceeds up to the dissipation scale. Equivalently, we will truncate the integrals at a wave-
number much larger than the inverse of the Larmor radius of the less energetic particle, k⊥ � r−1

L

∣∣
Emin

. In practice, we will consider two

order of magnitudes larger than that quantity. Since we are considering particles with energy as low as 10−2 GeV, with a Larmor radius

of rL � 3.37 · 1012 cm
(

p=10−2GeV
GeV

)(
10−6 G

B

)
= 3.37 · 1010 cm, this corresponds to k⊥,max = 102 · (3.37 · 1010 cm)−1 = 3 · 10−9 cm−1. Also,

according to the findings of the GS95 theory, k‖ ∝ k
2/3
⊥ .

In conclusion, the upper bounds for the integrals are:

x⊥,max = 3 · 10−9 · L[cm], x‖,max = x
2/3
⊥,max. (A16)

A2 Dμμ from fast modes

In this section, we instead consider the case of a cascade of fast-magnetosonic fluctuations. Analogously to the Alfvénic case, the details of
the calculation leading to the associated pitch-angle scattering rate, DF

μμ, are outlined.
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A2.1 Normalization coefficient

Again, to normalize the spectrum resulting from the simulations, we use equation (A8) for the corresponding spectrum of fast-magnetosonic
turbulence obtained from the trace of the correlation tensor in (A7; we remind the reader that

∑
i=j Jij = ki ki+kj kj

k2
⊥

= 1). Since fast modes are

found to be isotropic, we can rearrange the integral over the intertial range as
∫

d3k = ∫ +∞
L−1 k2 dk

∫ π

0 sin α dα
∫ 2π

0 dφ.
The equation to solve to get the normalization is therefore:

CF
a · 2π

∫ +∞

L−1
k2 dk

∫ π

0
sin α dα k−7/2 = 〈δB2〉rms,L

B2
0

= M2
A

From this, we get that CF
a = M2

A L−1/2

8π
and finally:

MF
ij = M2

A L1/2

8π
Jij k

−7/2. (A17)

A2.2 Resonance function

The resonance function is the same presented in equation (A1.4), but split in two forms, as for scattering on fast modes contributions from
both TTD and gyro-resonant interaction have to be taken into account.

Gyroresonance corresponds to the case n �= 0, and the resulting function is the same described for the Alfvén modes:

Rn(k‖v‖ − ω + n�) =
√

π

|kξ |v⊥M
1/2
A

· exp

(
−

(μ + n
xξR

)2

(1 − μ2)MA

)
≡

√
π

|kξ |v⊥M
1/2
A

· EG
n (n �= 0)

where ξ ≡ cos α is the ‘pitch-angle’ of the wave vector associated with the turbulent fluctuations (i.e. α is the angle between k and B0).

TTD corresponds to n = 0, in which case we can rearrange the argument of the exponential as ��k
2
‖v2

(
μ− ω

k‖v

)2

��k
2
‖v2(1−μ2)MA

=
(

μ− vA
ξv

)2

(1−μ2)MA
, where the

last step holds because the phase velocity of the fast waves is the same order of magnitude as the Alfvén speed, ω ≈ kvA, in the low-β
limit.

In this case, the resulting function is:

Rn(k‖v‖ − ω + n�) =
√

π

|kξ |v⊥M
1/2
A

· exp

⎛
⎜⎝−

(
μ − vA

ξv

)2

(1 − μ2)MA

⎞
⎟⎠ ≡

√
π

|kξ |v⊥M
1/2
A

· ET
n (n = 0).

A2.3 Truncation scale

The integral over the inertial range is truncated as soon as the fastest damping mechanism for the turbulent spectra comes into play. This
eventually depends on the environment that we are considering.

As discussed in Yan & Lazarian (2008), in the warm ionized medium (WIM; |d| � 1 kpc), the gas is denser and colder with respect
to the extended halo region (d > 1 kpc). Therefore, in the WIM, besides the standard collisionless damping, the collisional damping
is also present. Since viscous forces involve small-size eddies, only particles with small Larmor radii can experience them. This will
eventually affect the low-energy range of the resulting spatial diffusion coefficient in the WIM. In the extended halo region, on the
other hand, only the collisionless damping is present, and this is why we expect D(R) to be a monotonic function of R in such
environment.

To estimate the truncation scale in the two different environments, we look for the wavenumber at which the energy cascading rate of the
turbulence equals the dissipation rate associated with that wave-number (Lazarian et al. 2020).

Following Yan & Lazarian (2008), the collisionless truncation scale results:

kmaxL = 4 M4
A γ ξ 2

π β (1 − ξ 2)2
· exp

(
2

β γ ξ 2

)
, (A18)

where γ = mp

me
and β = Pg

PB
is the ratio between the gas pressure and the magnetic pressure.

On the other hand, the collisional truncation scale is:

kmaxL =
⎧⎨
⎩

xc (1 − ξ 2)−2/3 β � 1

xc (1 − 3 ξ 2)−4/3 β � 1,
(A19)

where xc =
(

6 ρ δV 2 L

η0 vA

)2/3
∼ 106 contains the ambient variables, with η0 being a longitudinal viscosity (Yan & Lazarian 2008).
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A2.4 Pitch-angle coefficient

To calculate the contribution of the fast-magnetosonic modes to the pitch-angle diffusion coefficient, we plug in the spectrum (A17) in the
following equation:

DF
μμ = �2(1 − μ2)

∫
d3k

+∞∑
n=−∞

√
π

|k‖|v⊥M
1/2
A

· EG,T
n

[
k2

‖
k2

J ′2
n (z) I F(k)

]
, (A20)

where now z = k⊥LR(1 − μ2)1/2 = k(1 − ξ 2)1/2LR(1 − μ2)1/2 ≡ xR(1 − ξ 2)1/2(1 − μ2)1/2.
With the usual notation R ≡ v/(�L) = (1 − μ2)−1/2rL/L and kL ≡ x, and using that ξ 2/|ξ | is an even function, so that

∫ +1
−1 dξ ξ 2/|ξ | =

2
∫ +1

0 dξ ξ , the general expression that computes the contributions from the fast modes to Dμμ is:

DF
μμ = M

3/2
A v

√
π

2R2L
(1 − μ2)1/2

∫ kmaxL(ξ )

1
dx

∫ +1

0
dξ ξ

+∞∑
n=−∞

x−5/2J ′2
n (z) · EG,T

n (A21)

where:

EG,T
n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ET
n = exp

(
−

(
μ− vA

ξv

)2

(1−μ2)MA

)
(n = 0)

EG
n = exp

(
− (μ+ n

xξR
)2

(1−μ2)MA

)
(n �= 0).

So, in the case of TTD interaction (n = 0), we have:

DF,n=0
μμ = M

3/2
A v

√
π

2R2L
(1 − μ2)1/2

∫ kmaxL(ξ )

1
dx

∫ +1

0
dξ ξ x−5/2J 2

1 (z) · exp

⎛
⎜⎝−

(
μ − vA

ξv

)2

(1 − μ2)MA

⎞
⎟⎠ (A22)

where we used the property J ′
n(z) = 1

2 (Jn−1(z) − Jn+1(z)) to get J ′
0(z) = −J1(z).

In the case of gyro-resonant interaction (n �= 0), we have:

DF,n=1
μμ + DF,n=−1

μμ = M
3/2
A v

√
π

2R2L
(1 − μ2)1/2

∫ kmaxL(ξ )

1
dx

∫ +1

0
dξ ξ x−5/2

(
J0(z) − J2(z)

2

)2

(EG,+ + EG,−), (A23)

where EG,+ ≡ E
G,+
n=1 = exp

(
− (μ+ n

xξR
)2

(1−μ2)MA

)
, EG,− ≡ E

G,−
n=−1 = exp

(
−

(
μ− n

xξR

)2

(1−μ2)MA

)
and we used that J ′2

n (z) = J ′2
−n(z).

A3 Dμμ from slow modes

For completeness, we also report the calculations of the pitch-angle coefficient of the magnetosonic slow modes, namely the following
expression:

DS
μμ = �2(1 − μ2)

∫
d3k

+∞∑
n=−∞

√
π

|k‖|v⊥M
1/2
A

· EG,T
n

[
k2

‖
k2

J ′2
n (z) I S(k)

]
, (A24)

where we want to adopt the same notation used for the Alfvén modes, separating the parallel and perpendicular wave-number components, as
with respect to the regular magnetic field, z = k⊥LR(1 − μ2)1/2 ≡ x⊥R(1 − μ2)1/2.

The statistics of the slow modes is similar to that of the Alfvén modes, as indicated in equations (A5–A6), while, on the other hand, they
can interact with cosmic ray particles by means of both TTD and gyro-resonance. Therefore their treatment involves parts of the calculations
already detailed for the other two MHD modes. In particular:

(i) The normalized correlation tensors MS
ij for both the sub-alfvénic and super-alfvénic cases are the same calculated for the Alfvén modes,

reported in equations (A9 and A10), respectively;
(ii) The resonance function is the same as for the fast modes, discussed in Section A2.2, conveniently rewritten as follows to account for

the present notation:

RG,T
n =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

RT
n ≡

√
π

|k‖|v⊥M
1/2
A

· ET
n =

√
π

|k‖|v⊥M
1/2
A

· exp

⎛
⎝−

(
μ− ω

k‖v

)2

(1−μ2)MA

⎞
⎠ (n = 0)

RG
n ≡

√
π

|k‖|v⊥M
1/2
A

· EG
n =

√
π

|k‖|v⊥M
1/2
A

· exp

⎛
⎝−

(
μ+ n

k‖RL

)2

(1−μ2)MA

⎞
⎠ (n �= 0);

(iii) The truncation scale is also the same as that discussed for the fast modes, in Section A2.3.
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A3.1 Pitch-angle coefficient

To calculate the Dμμ caused by the slow modes, we account for the sub- and super-alfvénic nature of the injected cascade, separately.

A3.2 Sub-alfvénic case: MA ≤ 1

The general expression that calculates the contribution from the slow modes to the pitch-angle coefficient is then written as follows:

DS
μμ = 2

√
πv

√
1 − μ2 M

5/6
A

3R2L

∫
R+

dx⊥

∫
dx‖

+∞∑
n=−∞

x
−7/3
⊥(

x2
‖ + x2

⊥
) · exp

(
− x‖

M
4/3
A x

2/3
⊥

)
EG,T

n , (A25)

where we used the even parity of the integrating function to restrict only to the positive axis and the integral boundaries are the ones discussed
in Section A1.5.

In the case of TTD interaction (n = 0), the expression above reads:

DS,sub,n=0
μμ = 2

√
πv

√
1 − μ2 M

5/6
A

3R2L

∫
R+

dx⊥

∫
dx‖

x
−7/3
⊥(

x2
‖ + x2

⊥
)J 2

1 (z) · exp

⎛
⎜⎝− x‖

M
4/3
A x

2/3
⊥

−
(
μ − ω

x‖R�

)2

(1 − μ2)MA

⎞
⎟⎠ . (A26)

In the case of gyro-resonant scattering (n �= 0), on the other hand, equation (A25) is written as follows:

DS,sub,n=1
μμ + DS,sub,n=−1

μμ = 2
√

πv
√

1 − μ2 M
5/6
A

3R2L

∫
R+

dx⊥

∫
dx‖

x
−7/3
⊥(

x2
‖ + x2

⊥
) (

J0(z) − J2(z)

2

)2

· exp

(
− x‖

M
4/3
A x

2/3
⊥

)
· (EG,+ + EG,−)

(A27)

with obvious meaning of the terms EG, + and EG, −.

A3.3 Super-alfvénic case: MA > 1

In the case of super-alfvénic turbulence injected, the general expression for the pitch-angle coefficient is the following:

DS
μμ = 2

√
πv

√
1 − μ2 M

1/2
A

3R2L

∫
R+

dx⊥

∫
dx‖

+∞∑
n=−∞

x
−7/3
⊥(

x2
‖ + x2

⊥
) · exp

(
− x‖

MA x
2/3
⊥

)
EG,T

n . (A28)

In the case of TTD particle–wave interaction (n = 0), this becomes:

DS,sub,n=0
μμ = 2

√
πv

√
1 − μ2 M

1/2
A

3R2L

∫
R+

dx⊥

∫
dx‖

x
−7/3
⊥(

x2
‖ + x2

⊥
)J 2

1 (z) · exp

⎛
⎜⎝− x‖

MA x
2/3
⊥

−
(
μ − ω

x‖R�

)2

(1 − μ2)MA

⎞
⎟⎠ . (A29)

In the case of gyro-resonant interaction (n �= 0), instead, equation (A28) becomes:

DS,sub,n=1
μμ + DS,sub,n=−1

μμ = 2
√

πv
√

1 − μ2 M
1/2
A

3R2L

∫
R+

dx⊥

∫
dx‖

x
−7/3
⊥(

x2
‖ + x2

⊥
) (

J0(z) − J2(z)

2

)2

· exp

(
− x‖

MA x
2/3
⊥

)
· (EG,+ + EG,−) .

(A30)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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