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Abstract

We explore the physics of the gyroresonant cosmic-ray streaming instability (CRSI) including the effects of ion–
neutral (IN) damping. This is the main damping mechanism in (partially ionized) atomic and molecular gas, which
are the primary components of the interstellar medium (ISM) by mass. Limitation of CRSI by IN damping is
important in setting the amplitude of Alfvén waves that scatter cosmic rays (CRs) and control galactic-scale
transport. Our study employs the magnetohydrodynamic (MHD)–particle-in-cell hybrid fluid-kinetic numerical
technique to follow linear growth as well as post-linear and saturation phases. During the linear phase of the
instability—where simulations and analytical theory are in good agreement—IN damping prevents wave growth at
small and large wavelengths, with the unstable bandwidth lower for higher IN collision rates νin. Purely MHD
effects during the post-linear phase extend the wave spectrum toward larger k. In the saturated state, the CR
distribution evolves toward greater isotropy (lower streaming velocity) by scattering off of Alfvén waves excited
by the instability. In the absence of low-k waves, CRs with sufficiently high momentum are not isotropized. The
maximum wave amplitude and rate of isotropization of the distribution function decrease at higher νin. When the
IN damping rate approaches the maximum growth rate of CRSI, wave growth and isotropization are suppressed.
Implications of our results for CR transport in partially ionized ISM phases are discussed.

Unified Astronomy Thesaurus concepts: Cosmic rays (329); Magnetic fields (994); Computational methods (1965)

1. Introduction

Cosmic rays (CRs) are a key component of the interstellar
medium (ISM). They are potentially important to ISM
dynamics, including support against gravity, as their energy
density is typically comparable to that of the magnetic field as
well as the thermal and turbulent energy of the ISM gas (e.g.,
Spitzer 1978; Ferrière 2001; Draine 2011; Grenier et al. 2015).
Perhaps even more important dynamically, given the large
scale height of the CR distribution, is the potential for CRs to
contribute in driving galactic winds (e.g., Ipavich 1975;
Breitschwerdt et al. 1991; Zirakashvili et al. 1996; Everett
et al. 2008; Mao & Ostriker 2018). CRs are also crucial to ISM
microphysics, driving ionization and dissociation as well as
providing the primary heating of gas in regions shielded against
UV (e.g., Draine 2011; Glassgold et al. 2012).
Coupling between CRs and thermal ISM gas occurs through

the scattering of CRs off of magnetic waves, preexisting in the
turbulent ISM or self-generated by streaming CRs (Kulsrud &
Pearce 1969; Wentzel 1969; Skilling 1971; Kulsrud 2005;
Amato & Blasi 2018). Higher-energy CRs may interact
primarily with externally generated waves (Blasi et al.
2012a). However, particles of energy at or below
the gigaelectronvolt level dominate by number and energy the
overall CR content. At microparsec scales comparable to the
gyroradius of gigaelectronvolt protons, the energy density of
ISM turbulence is too low to provide efficient scattering (under
the assumption of a cascade from directly observed turbulence
at larger scales), and these particles are believed to be mainly
scattered by self-excited waves. Alfvén waves generated by
streaming therefore bear the primary responsibility for

scattering the dominant portion of the CR distribution in our
own and other galaxies (e.g., Zweibel 2013).
There is an increasing necessity to provide satisfactory

microphysical understanding of the CR streaming instability
(CRSI) and its implications for CR transport in different phases
of the ISM. The possible dynamical role of CRs in driving
galactic winds has recently led to reconsideration of the
traditional assumption that streaming occurs at the Alfvén
speed in several analytical studies (Wiener et al. 2013; Recchia
et al. 2016; Zweibel 2017). In parallel, a number of groups
have implemented CRs as a fluid in numerical magnetohydro-
dynamic (MHD) codes (e.g., Yang et al. 2012; Dubois &
Commerçon 2016; Pakmor et al. 2016; Pfrommer et al. 2017;
Jiang & Oh 2018; Thomas & Pfrommer 2019; Hopkins et al.
2020) in order to study the effect of CRs on galactic wind
generation (e.g., Hanasz et al. 2013; Girichidis et al.
2016, 2018; Pfrommer et al. 2017; Ruszkowski et al. 2017;
Wiener et al. 2017; Butsky & Quinn 2018; Dashyan &
Dubois 2020), on the global evolution of supernova remnants
(Pais et al. 2018; Dubois et al. 2019), or on the multiphase ISM
structure (Bustard & Zweibel 2020). Global simulations testing
different models of CR transport coefficients were recently
conducted by Hopkins et al. (2021a, 2021b), suggesting that
standard models of CR transport are inconsistent with observed
constraints on large scales. At the same time, observations that
probe ionization and chemistry in ISM clouds at small scales
place constraints on CR transport (see review of Padovani et al.
2020, and references therein), e.g., suggesting diffusive rather
than free-streaming behavior in the outer layers of molecular
clouds (Silsbee & Ivlev 2019).
Fluid implementations of CRs rely on subgrid prescriptions

for diffusion and streaming. To date, these subgrid treatments
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have relied on empirical estimates of diffusivities, idealized
streaming treatments, or simple models based on analytic
predictions for growth and dissipation of waves. Considering
the important role of microphysics in CR transport, it is
valuable to pursue a deeper investigation that addresses the
processes of wave growth, damping, and particle–wave
interactions directly. The most important parameter to be
obtained from microphysical studies of CR–ISM interactions is
the scattering rate of CRs off of Alfvén waves, since this
influences the determination of diffusivity in traditional
treatments (e.g., Skilling 1971; Hanasz & Lesch 2003) or the
rate of change of the CR flux in two-moment methods (e.g.,
Jiang & Oh 2018; Thomas & Pfrommer 2019).

The energy-dependent scattering frequency of CRs, νs, is
proportional to the wave energy density in the resonant range.
The latter quantity depends on the outcome of the CRSI in the
local medium. There are two different classes of the CRSI,
resonant (Lerche 1967; Kulsrud & Pearce 1969; Skil-
ling 1971, 1975; Ginzburg et al. 1973; Wentzel 1974;
Berezinskii et al. 1990) and nonresonant (Bell 2004; Amato
& Blasi 2009; Bykov et al. 2013). The latter is important only
in the near environment around accelerators (such as supernova
remnant shocks), where the electrical current of CRs is large,
i.e., (4π/c)JCRRL,0/B0? 1, where JCR= enCRVD is the
electrical current of CRs streaming at speed VD and with a
typical gyroradius RL,0 (Amato & Blasi 2009). In the general
ISM, the resonant interaction prevails since the density of CRs
is very low (nCR∼ 10−10

–10−8 cm−3). Because we are
interested in ambient ISM conditions, here we focus exclu-
sively on the resonant instability.

Wave growth, triggered by the anisotropy of the distribution
function (DF) or CR density gradient, is generally in
competition with different damping mechanisms depending
on the phase of the ISM. In a partially ionized medium the most
important wave damping mechanism is from collisions
between ions and neutrals. The competition of CRSI with
ion–neutral (IN) damping has been studied in the context of
molecular clouds (e.g., Kulsrud & Cesarsky 1971; Zweibel &
Shull 1982; Everett & Zweibel 2011; Morlino & Gabici 2015;
Ivlev et al. 2018) and in the context of particle acceleration at
shocks (e.g., O’C Drury et al. 1996; Bykov & Toptygin 2005;
Reville et al. 2007; Blasi et al. 2012b; Nava et al. 2016;
Brahimi et al. 2020).

Of course, damping mechanisms other than IN collisions can
be important in hotter and more diffuse phases of the ISM.
Other mechanisms that have been discussed include nonlinear
Landau damping (Lee & Völk 1973; Kulsrud 1978) and
damping by interactions with turbulence (Farmer & Gold-
reich 2004; Yan & Lazarian 2011; Lazarian 2016). We also
note the recently studied damping by charged dust grains that
can be important for CRs with energies <300 GeV (Squire
et al. 2021). As discussed in Nava et al. (2016), Xu et al.
(2016), and Brahimi et al. (2020), in neutral-dominated phases
of the ISM, where the ionization fraction is small, IN damping
is dominant for waves that are resonant with CRs of energies
E< 10 TeV. Here, we consider only these primarily neutral
phases of the ISM; investigation of effects of alternative
damping mechanisms is deferred to future work.

In the present work, we investigate the interplay between
CRSI and IN damping during the linear phase of the CRSI, and
also assess the behavior of the system in post-linear and late-
time saturated stages of evolution. We are motivated to obtain

better insight into CR transport in ISM conditions that are
largely neutral (neutrals make up most of the ISM mass), where
the IN fraction is controlled by photoionization or ionization by
low-energy CRs.
Our study of CRSI relies on the MHD particle-in-cell (PIC)

numerical method described in Bai et al. (2015) (see also
Reville & Bell 2012; Amano 2018; Lebiga et al. 2018;
Mignone et al. 2018; van Marle et al. 2018). This method is
well adapted to capture the resonant nature of the CR–fluid
interaction while allowing for a relatively large space and
timescale evolution of the system and the fact that nCR/ni is
extremely low in the parameter range of interest. The
gyroradius of CRs must be resolved, but smaller scales (such
as the ion skin depth and electron scales) do not need to be
resolved. We note that several recent studies have alternatively
investigated certain aspects of the CRSI with fully kinetic
(Holcomb & Spitkovsky 2019; Shalaby et al. 2021) or hybrid
kinetic approaches (Haggerty et al. 2019; Schroer et al. 2020)
that use PIC methods. These approaches have the advantage of
resolving small-scale phenomena on electron (full PIC) or
proton skin depth (hybrid PIC) scales, but are in practice
limited in the range of nCR/ni and other parameters that can be
studied because the thermal ions are treated via PIC.
In this work, we follow up on Bai et al. (2019, hereafter

Paper I), where the CRSI was studied using the MHD-PIC
approach. There, the main findings include the following: (i)
the linear phase of the instability for both the resonant and
nonresonant branches can be accurately reproduced with our δf
MHD-PIC method; (ii) the quasi-linear diffusion (QLD)
formalism accurately describes temporal changes in the CR
DF, except near a pitch angle of 90° (the “μ= 0 crossing”
problem); (iii) crossing of μ= 0 is mainly due to nonlinear
wave–particle interactions; and (iv) the Alfvén wave amplitude
in saturation reflects the expected transfer of net momentum
from the originally anisotropic CRs to forward-propagating
Alfvén waves. Here, we adopt the same numerical methods and
conduct simulations in a similar parameter regime to Paper I,
but now we additionally consider the effects of IN interactions
that damp waves, competing with CR-induced wave genera-
tion. In a separate work, Bambic et al. (2021) have also used
MHD-PIC to investigate CR propagation through the multi-
phase ISM. That study extends Paper I and the present work by
simulating a drifting CR population across a two-component
ISM (with and without damping, modeling neutral and ionized
regions).
This article is organized as follows. In Section 2, we review

the analytical derivation of the CRSI linear growth rate,
including the contribution from IN damping. In Section 3 we
outline our numerical methods, including the implementation
of IN wave damping. The simulation results are presented in
Section 4. We further discuss our findings and their
astrophysical context in Section 5, and summarize our main
conclusions in Section 6.

2. CRSI Including IN Interaction

In this section, we discuss the linear growth rate of the CRSI
without and with IN damping. While analytic studies of CRSI
commonly adopt a power-law distribution, here we will instead
consider a κ-distribution, as adopted in our simulations. This
choice is motivated by the use of the δf method, in which the
unperturbed part of the CR distribution must be specified for all
p, and should be a smooth function (see Bai et al. 2019).
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Because standard expressions for CRSI with IN collisions are
based on power-law distributions, here we re-derive growth
rates for the case of the κ‐distribution. These analytic results
are useful for comparison with the simulations that follow.

Some discussion of the high-frequency regime is given in the
last part of this section.

2.1. No Damping

2.1.1. Resonant Contribution Only

We consider the instability arising from resonant interaction
in the low-frequency, ω=Ω0, and nonrelativistic drift
(VD= c) limit.5 Here, ω= kVA is the Alfvén wave frequency
and Ω0= eB0/(mpc) is the nonrelativistic proton gyrofre-
quency. We adopt standard notation, where Alfvén velocity

( )V B 4A 0 i
1 2pr= (B0 is the local magnetic field strength and

ρi is the background ion density), e is the proton charge, mp is
the proton mass, and c is the speed of light. We also assume
that the mass and charge of the background fluid ions are
identical to those of CR particles6: mi=mp and qi= e.

We start with the growth rate expression given by Kulsrud
(2005; Equation (69) of Ch. 12) for wavenumber k:
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where VD is the initial drift speed between the background gas
and the frame in which the CRs have an isotropic distribution
(taken along the external magnetic field in the x-direction). The
δ function in the integral accounts for the gyroresonant
interaction at the fundamental harmonic, where resonance
occurs at p m k pp 0 res= W º .

For the (isotropic) distribution F(p) of CRs in the drift frame,
we adopt a κ-distribution:
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where nCR is the number density of CRs, and Γ(x) is the Euler
Γ-function. We generally adopt κ= 1.25, corresponding to
F(p)∝ p−4.5 for p? p0. We note that a κ-distribution reduces
to a Maxwellian in the limit κ→∞.

Equation (1) becomes

⎜ ⎟

⎜ ⎟⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥ ( )

( )

( )

e A
p

V

c

V

V

p

p
kp m p d p

2
1

1

1
1

.

4
I

CR
2 2

0
2

A
2

D

A

0

2 2

p 0
2 3ò

p
k
k

k
d

G =
+

-

´ + - W
k- +

^

  


With d3p= dθdpPp⊥dp⊥, the integral I in the previous equation
becomes
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Noting that p p p2 2
res
2= -^ and that p⊥dp⊥= pdp, we change

the variable of integration from p⊥ to p. This leads to
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Using ρi=mpni, RL,0≡ p0/(mpΩ0), and ( )p p kR1 Lres 0 ,0=
and inserting the expression from Equation (3) the growth rate
can be written as
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The growth rate is maximal at kR 2 1L,0 k= - . For the
adopted value in this study κ= 1.25, it is
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The subscript “max, 0” stands for the maximum growth rate of
the instability without IN damping. The numerical prefactor
varies from 0.25 for κ= 1 to 0.38 for κ→∞. In the long-
wavelength limit (kRL,0= 1) the growth rate varies as∝k2κ−1,
and in the short-wavelength limit (kRL,0? 1) it varies as ∝k−1.

2.1.2. Full Dispersion Relation

In more general cases when CR-induced current can be
large, the contribution from nonresonant instability can be
significant (see, e.g., Bell 2004; Amato & Blasi 2009; Bykov
et al. 2013). The full dispersion relation using the κ-distribution
was derived in Paper I. Here, we reproduce it for completeness:
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i
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here the (1−Q1) and Q2 terms are due to nonresonant and
resonant responses of CRs to waves, respectively (see Equation
(9) in Paper I for the definition of these terms). The resonant
term given in Equation (40) of Paper I is
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5 In this study we adopt the notation Ω0 for the quantity denoted by Ωc in
Paper I, i.e., Ω0 ≡ Ωc.
6 If this condition is not satisfied, one has to replace Ω0 by Ωi = qiB0/(mic) in
the final expression of the growth rate, i.e., in Equations (7), (8), (9), (11), and
(23). We note, however, that if mass densities are used instead of number
densities then the characteristic frequency appearing in the growth rate would
correspond to the gyrofrequency of CRs, owing to the equality
(nCR/ni)Ωi = (ρCR/ρi)Ω0.
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In the case with negligible contribution from the nonresonant
term ((1−Q1)= 0), the imaginary part of ω obtained by
solving Equation (9) is then

⎜ ⎟
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V

V
Q

1

2
1 , 11CR

i
0

D

A
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which is identical to the growth rate given in Equation (7).

2.2. With IN Damping

2.2.1. Damping Term from Fluid Equations

In this section, we discuss the Alfvén wave propagation
properties in the presence of neutrals, temporarily ignoring the
destabilizing contribution from CR streaming. The derived
damping rate is then subtracted from the CRSI growth rate
given above to obtain the net growth rate.7

Consider coupled two-fluid momentum equations for ions
and neutrals, without the contribution of CRs, where ohmic
dissipation and the Hall effect are neglected:
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( ) ( )u
u u

D
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where ρi (ρn), Pi (Pn), and νin (νni) are the ion (neutral) mass
density, the ion (neutral) pressure, and the frequency of
collision of ions with neutrals (neutrals with ions), respectively.
The quantities B and J correspond to the magnetic field and
current carried by the plasma. Ions are subject to both Lorentz
force and friction with neutrals, while neutrals are only subject
to friction with ions.

From momentum conservation, ρiνin= ρnνni= nnniμ〈σv〉,
where μ=mimn/(mi+mn) is the reduced mass, and 〈σv〉 is the
momentum transfer rate coefficient. Most relevant to wave
damping is the IN collision frequency

( )
m m

v . 14in
n

i n
n

r
s=

+
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Draine (2011; see Table 2.1) provides values of the coefficient
〈σv〉≈ 3.3× 10−9 cm3 s−1 for neutral atomic gas, where the
main collision partner is H with μ≈ 0.5mp for H+ ions, and
〈συ〉≈ 1.9× 10−9 cm3 s−1 in molecular regions, where the
collision partner is H2 with μ≈ 2mp for C

+ ions in diffuse gas
or HCO+ ions in dense gas. The magnetic field in
Equations (12)–(13) evolves subject to the induction equation:

( ) ( )B
u B

t
. 15i¶

¶
= ´ ´

For simplicity, we consider a static, homogeneous, and
incompressible background medium. The mean magnetic field
is oriented along the x-direction, B0= B0ex, and the perturba-
tion components are perpendicular to B0: δB= δByey+ δBzez.
The velocity and magnetic field perturbations are

[ ( )]i kx texp wµ - . Linearizing Equations (12), (13), and (15)
leads ions to

( ) ( )u k V u i u u , 162
i

2
A,i
2

i in i nd d d dw wn= - -

and neutrals to

( ) ( )u i u u . 172
n ni n id d dw wn= - -

Here, the Alfvén velocity includes the ion density only, i.e.,
V B 4A,i 0 ipr= . Combining these two equations gives the
dispersion relation:
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One identifies here the Alfvén wave dispersion relation (in the
ion fluid) modified by the presence of neutrals (second term
inside brackets on the left-hand side). Equation (18) is a cubic
equation for ω. Although available, general solutions are quite
cumbersome; hence we do not provide them here. More
physical insight can be gained by considering different limits,
previously discussed in the literature (e.g., Kulsrud &
Pearce 1969; Zweibel & Shull 1982; Tagger et al. 1995; Nava
et al. 2016; Xu et al. 2016).
Here we reproduce the limits for completeness. We define

Z= ρi/ρn as the ratio of ionized to neutral mass density. It is
related to the ionization fraction as xi≡ ni/nn= Z/q, where
q=mi/mn. Three limiting cases are then well defined:

1. Ion-dominated, Z? 1. Here, the Alfvén wave velocity is
unmodified by neutrals, ω= kVA,i. The damping rate is,
for any k and ω,

( )
k V

k V Z2
. 19d

in
2

A,i
2

2
A,i
2

in
2 2

n
n

G =
+

For ωk= kVA,i? νni= νinZ it is equal to νin/2.
2. Neutral-dominated (Z= 1) and low-frequency

(kV ZA,i inn  ). The fluids are strongly coupled; hence
the Alfvén wave velocity includes the sum of the ion and
neutral densities: ( )kV kB 4A,tot 0 i nw p r r= = + . The
damping rate is

( )
k V

2
. 20d

2
A,i
2

inn
G »

3. Neutral-dominated (Z= 1) and high-frequency
(kVA,i/νin? 1). Ions and neutrals are decoupled. The
Alfvén wave velocity is unmodified by neutrals,
ω= kVA,i. The damping rate is

( )
2

. 21d
inn

G »

In neutral-dominated media there is a range of frequencies
where there is no propagation (the solution of the dispersion
relation is purely imaginary): Z kV2 1 2A,i inn< < .
Figure 1 presents the numerical solutions of Equation (18)

and approximate analytical solutions for the ion-dominated
case (top panel) and neutral-dominated case (bottom panel).
In the present study, we will adopt a one-fluid numerical

approach for the ionized fluid only. In this case, the dispersion
relation (ignoring the dynamics of neutrals) is

( )i k V . 222
in

2
A,i
2w n w+ =

This implicitly means that we will study the regime where
neutrals are fully decoupled from ions, that is, the case in the
high-frequency limit where the Alfvén wave is not modified by

7 Such a procedure is typically adopted in the literature (Kulsrud &
Cesarsky 1971; Ginzburg et al. 1973; Zweibel & Shull 1982; Nava et al. 2016).
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neutrals  kVA,iw = and the damping rate is asymptotic at its
highest value:  2d inw n- = G = (see Figure 1). For realistic
parameters in the neutral ISM, this limit generally applies (see
Section 2.3).

2.2.2. General Dispersion Relation with CR Streaming Contribution

It is straightforward to generalize the dispersion relation of
the CRSI with IN interactions (see, e.g., Reville et al.
2007, 2021). Following the procedure of Paper I but with the
addition of IN momentum exchange terms in fluid equations,
we obtain
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where (1−Q1) and Q2 are from the nonresonant and resonant
responses of CRs to waves as discussed above, and Q2 is given
for a κ-DF in Equation (10).

Comparing this to Equation (9), the supplementary term due
to IN interaction is the second term inside the parentheses on
the left-hand side of Equation (23), while the second term on

the right-hand side is due to CR streaming. For sufficiently low
nCR/ni (as is applicable in general), the solution of this
dispersion relation is the same as if the damping (IN) and
growing (CRSI) imaginary terms were derived separately, with
the two terms added to obtain the net growth rate. The growth
rate from resonant interaction only is presented in Section 2.1.1
and the damping rate in Section 2.2.1. Taking the high-
frequency limit, the net growth rate is

( ) ( ) ( )k k
2

, 24tot CR
inn

G = G -

where ΓCR(k) is given by Equation (7) for a κ-DF. This
equation is valid for any [ ]kV max ,A,i in nin n . Note that in the
low-frequency (long-wavelength) regime, one needs to distin-
guish between high and low ionization fraction cases, which we
do not consider here.

2.3. ISM Parameters and Implications

As discussed in Section 2.2.1, the one-fluid formulation does
not capture all the details of wave damping. For this reason we
discuss here the conditions for which the one-fluid approach is
accurate.
We assume typical ISM values B= 5 μG and nCR= 10−9

cm−3 and a typical energy of CRs around E0∼GeV. The
frequency of the fastest-growing wave mode driven by
gigaelectronvolt protons is defined as V R1.1 Lmax A,i ,0w = ,
since the fastest-growing wavenumber is k R1.1 Lmax ,0

1= - (see
text below Equation (8)). The typical values for the IN
momentum exchange rate νin in different phases of the ISM
were discussed previously in Section 2.2.1. The high-frequency
regime is valid for 1max inw n  . Comparing the two
frequencies in different phases of the ISM (as done in
Table 1, where the values for the different phases are taken
from Draine 2011, Chap. 16) we find that this inequality is
largely satisfied in all neutral-dominated phases.
Another important consideration concerns the possibility of

wave growth in the presence of IN damping. CRSI-driven
waves can only grow if the maximum growth rate of the CRSI
is higher than the IN damping rate: 1max,0 dG G > . Otherwise,
even the fastest-growing mode is damped. For this purpose, we
define a ζ parameter as

( )
V V

1

1
. 25max,0

d D A,i
z =

G
G -

Figure 1. Dispersion relation of Alfvén waves and damping rate in the
presence of neutrals. The two panels present the real and imaginary parts of the
wave frequency (blue and red solid lines, respectively) in the ion-dominated
case (top panel; the analytical and numerical solutions are identical) and in the
neutral-dominated case (bottom panel). The black dotted line in the bottom
panel corresponds to an approximate function that fits the damping rate
reasonably well for any k where a solution exists.

Table 1
List of Typical Parameter Values for Different Phases of the ISM

Phase n mi mn xi νin ζ

(cm−3) (mp) (mp) ( maxw )

WNM 0.3 1 1.4 10−2 1.6 × 10−5 15.5
CNM 30 12 1.4 10−4 1.0 × 10−3 0.07
MG 102 29 2.3 10−6 3.9 × 10−4 0.7
DMG 104 29 2.3 10−7 1.2 × 10−1 6.6 × 10−4

Notes. WNM: warm neutral medium; CNM: cold neutral medium; MG:
molecular gas; DMG: dense molecular gas. The reported quantities are the total
density n, the ion mass mi, the ionization fraction xi, the corresponding ωHF

above which the high-frequency regime is satisfied, and the drift-normalized
instability parameter ζ, which is defined in Equation (25). We adopted B0 = 5
μG, nCR = 10−9 cm−3, and p0 = mpc, corresponding to CR energy E ; GeV,
as the fiducial values.
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Note that by dividing Equation (8) (or more generally
Equation (1)) by the factor VD/VA,i− 1, ζ is independent of
VD. CRSI can be triggered at a range of wavelengths provided
that VD/VA,i− 1> 1/ζ. Thus, if ζ> 1, the CRSI can be
triggered for a super-Alfvénic drift velocity VD/VA,i− 1 that is
order-unity or lower. From Table 1, we see that ζ is typically in
the range of 0.1–20 (except in the DMG).8 Thus in these
environments, and considering only IN damping, the CRSI can
be triggered for a streaming velocity of
0.1 VD/VA,i− 1 10. But by the same token, wave damping
will significantly limit the range over which the instability can
be directly excited if VD/VA,i− 1 is not large compared to 1/ζ.

2.4. Wave Saturation and Steady-state Streaming Velocity

When CRSI is efficiently triggered, the scattering of CRs off
of self-generated waves gradually reduces the anisotropy of the
CR DF, lowering the drift velocity and the growth rate. The
limitation of CR transport by self-generated Alfvén waves is
commonly referred to as self-confinement of CRs.

In the absence of wave damping, the DF anisotropy (in the
wave frame) is eventually erased and the wave amplitude
saturates. Considering that the momentum lost by CRs is
transferred to waves, the saturation level can be estimated
approximately as (e.g., Kulsrud 2005; Bai et al. 2019; Holcomb
& Spitkovsky 2019)
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The wave intensity at saturation is linearly proportional to the
number density of CRs and to the first-order anisotropy of
the DF.

In the presence of IN damping (or other damping), a
commonly adopted assumption is that the streaming velocity is
such that the linear growth rate of CRSI balances the wave
damping rate (e.g., Kulsrud & Cesarsky 1971; Krumholz et al.
2020; Hopkins et al. 2021a, 2021b). If we consider the fastest-
growing waves and equate to zero the net growth rate with IN
damping, 2max,0 innG - , the corresponding streaming velocity
(for our fiducial κ= 1.25) is
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Here, the use of Ωi instead of Ω0 in Section 2.1.1 is required
because the ionized fluids have mi>mp in many of the relevant
environments (see Table 1).

The value in Equation (27) sets, in principle, a lower limit on
CR streaming velocity when IN damping is present. However,
even if waves near the fastest-growing wavenumber can grow,
waves at much shorter or longer wavelengths would be
damped. As a result, particles with very large (very small)
momentum that are resonant with smaller (larger) k would not
experience much scattering. Thus, the momentum-weighted
value of Vst will always be larger than the one given in
Equation (27).

We note that the conventional approach described above
considers only linear growth and damping of waves. In reality,
both linear growth and pitch angle scattering must be
considered, as opposed to wave damping. For a given
momentum, resonant waves must be excited and survive IN
damping over the timescale required for pitch angle diffusion,
in order for isotropization to occur. Quantifying this requires
comparison of the isotropization time (after the linear phase),
1/νs, with the damping time, 1/νin.
In the absence of damping, the saturation amplitude is given

by Equation (26), and since the scattering rate under QLD is
˜( ) ( )B B8s 0

2n d~ W (Kulsrud 2005), comparison to
Equation (8) shows that s max,0n ~ G . If we were to assume that
full redistribution in μ requires a time ∼ s

1n- , the total time for
isotropization (considering wave growth and scattering) would
be at least 2 ;max,0

1G- in practice the numerical results described
below (see Figure 2) correspond to a prefactor ∼10 for the
isotropization time. With IN damping, the growth rate is
reduced, and (as we shall show) the maximum level of
( )B B0

2d is also reduced, which slows scattering. One might
therefore expect that for isotropization to be successful, the
ratio ( )2max,0 innG must be above some critical value that is
larger (perhaps much larger) than 1, in order to allow for both
wave growth and particle diffusion. We return to this issue in
Section 4.4.

Figure 2. Time evolution of the magnetic wave energy (top panel) and of the
streaming velocity of bulk CRs (bottom panel) for different values of νin
ranging from 0 (blue line) to 1.9 max,0G (black line).

8 For the DMG phase, the required initial drift velocity of CRs is extremely
high, VD > 1.5 × 103VA,i = 0.3c, implying that wave excitation by CRSI is
extremely challenging in this medium unless a powerful accelerator is present
at close distance, increasing locally the CR density well above nCR = 10−9

cm−3.
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3. Numerical Simulations Using MHD-PIC Approach

We use the MHD-PIC method introduced by Bai et al.
(2015) and adopted for the study of CR streaming in Paper I.
The focus of the present study is the inclusion of IN wave
damping. Let us recall key elements of this method:

1. The background thermal plasma dynamics is governed by
the ideal MHD equations without explicit viscosity or
resistivity, adopting an adiabatic equation of state with
γ= 5/3 and initial sound speed cs= VA,i. The momen-
tum update includes an explicit damping term, imple-
mentation of which is described in Section 3.1. The
dynamics of CRs are solved by a PIC method, where CRs
are treated as charged macroparticles. The Lorentz
equation is solved using a relativistic Boris pusher, the
density and electric current are deposited on a grid using
second-order shape factors (TSC scheme), and coupling
between CRs and the background fluid is achieved by
introducing CR source terms into the MHD equations and
modifying Ohm’s law.

2. The δf method is employed to significantly reduce the
Poisson noise of macroparticles.

3. Phase scrambling is applied when particles cross the
system boundary and reenter on the other side of the
periodic box; this effectively mimics a larger numer-
ical box.

4. Seed waves are initialized at t= 0. This provides better
control of the k-by-k growth rate as compared to growth
from numerical noise (typically done in full-PIC
simulations).

3.1. Numerical Treatment of IN Damping

The presence of neutrals introduces momentum exchange
between ions and neutrals through collisions. The corresp-
onding terms in the fluid equations were given previously in
Equations (12) and (13). Instead of solving the coupled system
of two-fluid equations, we only account for the effect of
neutrals on the ions while the dynamical equations for neutrals
are not evolved. This procedure is consistent in the limit where
the two fluids are decoupled (high-frequency regime). The
procedure is as follows. At each time step we reduce transverse
momentum fluctuations according to Equation (12). After each
numerical time step Δt the transverse momentum is updated as

( )p p texp,new inn= - D^ ^ , in order to account for the effect of
damping. While the longitudinal velocity should be subject to
the same “damping,” it is not incorporated as it is decoupled
from the Alfvén waves (which have no longitudinal motion)
and we have verified that it does not affect the overall
simulation results.

3.2. Numerical Setup

In the present work, there are some differences from the
Paper I fiducial setup:

1. We use fewer CR macroparticles per cell, as the δf
method effectively controls the Poissonian noise level.

2. The physical size of the grid is slightly smaller. Yet, the
box size is equal to ;47 times the most unstable
wavelengths.

3. We include the wave damping term in the MHD
momentum equation.

4. The fiducial drift velocity is 10VA,i (instead of 2VA,i used
in Paper I). This choice is motivated by the need to
efficiently reach a fully saturated state when there is no
IN damping. This case will be used as reference when
measuring the effect of different levels of damping.

Table 2 summarizes the numerical parameters and model
values adopted in our simulations. Our fiducial choice is
nCR/ni= 10−4. This is somewhat higher than realistic values in
the neutral ISM (nCR/ni∼ 3× 10−7−10−5; see Table 1), for
numerical expediency; lower values would have very low
CRSI growth rates (requiring very long simulation duration)
and low saturation amplitudes (exacerbating the numerical
issue of crossing μ= 0 for a practical resolution). This choice
does not affect any of our theoretical conclusions. The box
length is chosen to be much larger than the fastest-growing
wavelength of the instability. Lengths are given in units of ion
skin depth d Vi p,i A,i 0wº = W , which is 1 in code units. We
adopt a reduced speed of light V300 A,i= . Seed waves are
initialized with equal amplitudes of right-handed and left-
handed polarization and the same amplitude at all k. The initial
total power in the waves is δB/B0= 10−4. We work in the
frame where CRs are initially at rest, and gas moves in the−ex
direction.
It is convenient to parameterize damping rates νin relative to

the peak growth rate for CRSI; this is what is reported in
Table 2. Using VD= 10VA,i and nCR/ni= 10−4 in Equation (8),
this initial peak growth rate (for νin= 0)
is 2.5 10max,0 0

4G W = ´ - .

4. Simulation Results

In this section we describe the results of the MHD-PIC
simulations. We start with a presentation of the overall time
evolution, then show the linear growth rates of the instability.
We then discuss the transition into the saturated phase and
some aspects of the saturated state of the streaming CR–
background fluid system.

4.1. Overall Evolution

In this section we compare the evolution between no-
damping and damping cases (models Fid and Fid-Damp
reported in Table 2). For the cases with damping we explore
values of νin between 0.03 max,0G and 1.9 ;max,0G the theoretical
critical value for no growth is 2in max,0n = G . In the following,
we use the term “moderate damping” for cases where in max,0n G
is non-negligible but still lower than unity. The representative
case is 0.5in max,0n G = .
Figure 2 presents the time evolution of the magnetic wave

energy (upper panel) and of the relative velocity between the
bulk CRs and the background fluid (bottom panel) for different
values of νin. The undamped case (blue curves) reaches
saturation at tΩ0; 105 with B B 102

0
2 3d - . The CR stream-

ing velocity, initially VD= 10VA,i, begins to decrease when
B B 102

0
2 4d - and reaches vrel; VA,i by the end of the

simulation. Here, the CR bulk velocity is defined (in the
simulation frame) by
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where Vbg is the background gas speed. Unlike the initial
conditions, the CR distribution is not perfectly isotropic in the
frame moving at vrel.

Cases with nonzero damping reach lower saturation levels,
with the maximum in B B2

0
2d decreasing as νin increases. After

saturation (at late simulation times, tΩ0> 105) the wave
intensity stabilizes at an intensity that decreases with increasing
νin.

9 Streaming velocities (bottom panel) decline at lower rates
for the stronger-damping models, because the lower wave
amplitudes scatter CRs less effectively. The late-time (after
tΩ0∼ 106) evolution is asymptotically slow.

In general, we define three representative phases of the time
evolution of the instability: linear, post-linear, and saturated
(late-time). There is an adjustment phase between the time
when the fastest modes stop growing (end of the linear phase)
and the saturation of the instability when the anisotropy of the
DF is (eventually) erased (start of the saturated phase). We
refer to this transitory phase as the post-linear phase.

In Figure 3 we show the magnetic field profile Bz at four
different simulation times for the cases with no damping (left
column) and moderate damping (right column). For the case
with no damping the wave amplitude grows to δBz/B0; 0.02
at the end of the linear phase (tΩ0= 2× 104) and further
increases to 0.05 during the post-linear evolution (between
tΩ0; 3× 104 and tΩ0= 105), during which amplitudes
increase at k below the peak (see Section 4.3). For the case
with moderate damping, the wave amplitude is reduced, as
expected. During the post-linear phase we observe a decrease
of the wave amplitude from δBz/B0; 0.02 to 4× 10−3, while
there is less contribution from k below the peak.

The effect of CRSI and subsequent QLD on the CR DF is
presented in Figure 4. We show the DF in the wave frame (i.e.,
moving to the right at VA,i with respect to the gas; see Paper I
for its transformation from the simulation frame),

( )f p f, cosw w w 0d q for the cases with no damping (left column)
and with moderate damping (right column), at the same
simulation times as those in Figure 3. By inspecting the left
column, we observe the gradual suppression of the initial
anisotropy with time (evolution from top to bottom). The
anisotropy is globally maintained for the case with damping,
although at moderate pw the distribution becomes relatively flat
on each side of μw= 0. The effect of particle accumulation at

cos 0w wm q= = is also evident in the two bottom panels on
the right.

4.2. Linear Phase

4.2.1. No Damping versus Moderate Damping

Paper I demonstrated that our MHD-PIC numerical approach
accurately reproduces the linear growth rate of the CRSI in the
absence of explicit wave damping. Here, we extend the
previous investigation by including IN damping. In Figure 5,
we show the linear growth rate Γtot as a function of the
wavenumber k for two cases: no damping (top panel) and
moderate damping (bottom panel). There is very good
agreement with theory, despite some stochastic noise. In
particular, the most unstable mode is very well captured
at k m p R2 1 1.1 Lmax i 0 0 ,0

1k= - W - .
Comparing the top and bottom panels of Figure 5, two

immediate effects due to IN damping can be identified. The
first is the decrease of the maximum growth rate near kRL,0= 1.
It is equal to 2.5× 10−4Ω0 without damping, and equal to

Table 2
List of Main Simulation Runs

Run VD/VA,i nCR/ni in max,0n G Domain Size Domain Size Resolution Np Runtime
Lx (di) Lx/λm Δx (di) (per cell) ( 0

1W- )

Fid 10.0 1.0 × 10−4 0 8 × 104 42.4 10 128 106

Fid-Damp 10.0 1.0 × 10−4 ä [0.03, 1.9] 8 × 104 42.4 10 128 106

HiRes 10.0 1.0 × 10−4 {0, 0.1, 0.5} 8 × 104 42.4 2.5 128 <106

Notes. Fixed parameters: V 300A,i = , p0/(mVA,i) = 300, κ = 1.25, and initial wave amplitude A = 10−4. In all models the most unstable wavelength is 0.91λm for
λm = 2πp0/(mΩ0) ≈ 1885di. The ion skin depth d Vi i A,i 0wº = W . The quantity max,0G is defined in Equation (8) as the maximum growth rate of the CRSI without
IN damping (i.e., νin = 0).

Figure 3. Profile of the wave component Bz at different simulation times for the
cases with no damping (left column) and with moderate damping

( )1 2in max,0n = G (right column). Four different times are presented. The top
set corresponds to the early linear phase. The two middle panel sets show the
evolution during the post-linear phase, and the bottom set shows the final
simulation time tΩ0 = 106.

9 We noticed that the level of the wave intensity “plateau” at the late-time
state can evolve somewhat differently depending on the numerical resolution
and the number of particles per cell, but does not affect qualitatively the system
evolution.
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;1.8× 10−4Ω0 when 1.25 10 2in
4

0 max,0n = ´ W = G- . The
second effect is the suppression of wave growth in the low-end
and high-end parts of the spectrum, where Γ0(k)− νin/2< 0. In
other words, the bandwidth of linearly growing waves is
reduced with increasing νin.

4.2.2. Dependence on νin

In Figure 6 we report the dependence of the maximum
growth rate of the instability on νin. Simulation results are
generally in excellent agreement with analytical predictions,
namely, the linear growth rate is only weakly reduced for

0.2in max,0n G < , and rapidly decreases for 0.5in max,0n G > . As
expected from Equation (24), there can be no linear growth for

2in max,0n G > , as even the fastest-growing mode is damped.

4.3. From Linear to Saturated Phase

The instability does not transition directly from linear growth
to a fully saturated state. At some point in time the fastest-
growing modes at kRL,0; 1 cease exponential growth.
However, at that time the other modes with lower growth
rates can continue to grow because the anisotropy in the DF—
which drives all modes—is not erased. At the same time,
wave–wave interaction can redistribute some wave energy
from kRL,0; 1 to other wave modes.

The post-linear phase can be easily identified in Figure 2 for
νin= 0 and νin� 0.1. The initial exponential growth slows
down roughly at tΩ0; 3× 104 but additional wave growth
continues until tΩ0∼ 105. This phase also corresponds to the
fastest rate of decrease in the streaming velocity of CRs, as
seen in the lower panel of Figure 2.

More detailed insight into the post-linear phase can be
gained by considering the wave spectrum. In Figure 7 we
present the evolution of the wave spectrum for the cases with
no damping (top panel) and with 0.5in max,0n G = (bottom
panel). We note that the spectrum is narrow at the end of the
linear phase, as shown by the blue line. It is peaked at
kRL,0; 1, where the growth rate is fastest. During the post-

Figure 4. 2D DF in the wave frame, ( )f p f, cosw w w 0d q , at different simulation
snapshots for the cases with no damping (left column) and with moderate
damping ( )1 2in max,0n = G (right column). The same simulation times in
Figure 3 are presented from top to bottom. Figure 5. Linear growth rate as a function of the wavenumber k for the cases

without damping (top panel) and with moderate damping (bottom panel). Blue
and red lines correspond to the measured growth rate of the right- and left-
handed modes, respectively. Dashed yellow and magenta lines correspond to
the analytical expectation from Equation (24). In the bottom panel the
analytical expectations for zero damping are also plotted (dotted–dashed) for
comparison.

Figure 6. Dependence of the maximum linear growth rate of the instability as a
function of the IN momentum exchange rate νin for nCR/ni = 10−4 and VD/
VA,i = 10.
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linear phase (blue to red line), while the growth at kRL,0; 1
becomes slow, the modes at kRL,0> 1 start growing at rates
comparable to maxG , while the modes with kRL,0� 1 continue to
grow approximately at the rate expected from the linear
calculation. If there is no damping, during the late evolution the
peak in the wave spectrum gradually shifts to larger
wavelengths (smaller k) while the global level of wave
intensity is roughly unchanged. This effect can be clearly seen
by comparing the red, yellow, and purple lines in the top panel:
the low-k cutoff shifts from kRL,0; 0.3 at the end of the linear
phase to kRL,0; 0.02 at the end of the simulation. The growth
of high-k modes (i.e., kRL,0> 5) is observed only during the
post-linear phase, while the increase of spectral energy in
kRL,0= 1 modes continues well beyond, into the saturated
phase.

For the case with moderate damping ( 0.5in max,0n G = ), the
early evolution of the spectrum follows the same trend as in the
case with no damping (blue and red lines in the bottom panel).
Interestingly, there is a similar fast rise of modes at kRL,0� 1 in
the post-linear phase, despite the fact that some of these modes
are not supposed to grow linearly (there would be a cutoff for
kRL,0> 8, marked gray in the figure). The late-time evolution
of the damped case is significantly different from that of the
undamped case. There is a noticeable overall decrease in the
wave intensity at all k (difference between red, yellow, and
purple lines). The peak of the spectrum shifts slightly toward

smaller k at the end of the post-linear phase. Also, a spectral
bump appears at tΩ0= 105 around kRL,0= 0.2, which is due to
driving from the part of the CR DF that remains strongly
anisotropic: f (p> 5p0). By the end of the simulation the
spectrum stabilizes. It is flat and narrow: 0.1< kRL,0< 10 and
kI(k)∼ 2× 10−7. Simulations with different values of νin
follow a similar time evolution.

4.3.1. Growth of High-k (Small-wavelength) Modes: HiRes
Simulations

An important aspect of the post-linear phase is the rapid
growth of modes with kRL,0� 5, even when these modes are
not unstable to CRSI because of IN damping. To better study
these short-wavelength modes we have conducted additional
simulations with higher numerical resolution: Δx= 2.5di in the
HiRes runs instead of Δx= 10di in the Fid simulations. To
understand the mechanism driving this growth, we also
performed a numerical experiment where the CRs were
removed from the system after a given simulation time, at
the end of the linear phase.
In Figure 8 we show the wave spectrum of forward right-

handed modes in the HiRes simulation with no damping. Three
lines are plotted: (i) the spectrum at the end of the linear phase
(blue line), (ii) the spectrum at the end of the post-linear phase
if CRs are switched off at the end of the linear phase (red line),
and (iii) the spectrum at the end of the linear phase in the
standard case with no CRs switched off (yellow line). In the
inset, we see that the wave energy stays constant when the CRs
are switched off, whereas it continues to grow otherwise. The
difference between the blue and red lines illustrates the growth

Figure 7. Spectra of forward right-handed modes at different times for the
cases with no damping (top panel) and moderate damping (bottom panel). The
evolution for forward left-handed modes is identical. In the lower panel, the
gray region marks where the initial linear growth is suppressed by IN damping.

Figure 8. Wave spectrum (forward right-handed mode) for the HiRes
simulation with no damping at different simulation times. Blue and yellow
lines show the standard CR-driven system at tΩ0 = 2 × 104 and
tΩ0 = 8.2 × 104, respectively. The red line shows the case of a model where
CRs are turned off at the end of the linear phase (tΩ0 = 2 × 104) and which
then freely evolves until tΩ0 = 8.2 × 104. The difference between the blue and
red lines illustrates the growth of high-k modes during the post-linear phase
without driving by CRs. The inset in the bottom shows the time evolution of
the magnetic wave energy: the blue line follows the standard evolution until
tΩ0 = 2 × 104, the yellow line continues the evolution with CRs after that time,
and the red line follows the case where CRs are switched off at tΩ0 = 2 × 104.
The green dot marks the time of the CR switch-off.
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of high-k modes during the post-linear phase without driving
by CRs. This difference is only seen in the region kRL,0� 5.
For comparison, the difference between the blue and yellow
lines shows the post-linear evolution when the driving by CRs
is maintained. Here, an overall increase of the wave energy is
observed, together with a shift of the spectrum to lower k.

The same effect is present in simulations with IN damping.
Figure 9 is the same as Figure 8 but with 0.5in max,0n G = . The
additional dotted–dashed black lines analytically compensate
for the effect of IN damping on the wave spectrum. During the
post-linear phase, a decrease of wave energy at any k is
imposed by the IN damping (difference between blue and red
lines). If one compensates for the effect of damping, we
observe the same excess of high-k modes at the end of the post-
linear phase (dotted–dashed black line) as for the
undamped case.

Because these high-k modes can grow even in the absence of
CRSI, we conclude that the driving mechanism is purely an
MHD effect (see further discussion in Section 5).

4.4. Saturated Phase

At the end of the post-linear phase, the exponential growth of
the instability at all wavelengths is completed. By this time the
CRs have also fully experienced the back-reaction from
interacting with the waves they generated. In this section, we
characterize the particle and wave properties based on analysis
of our MHD-PIC simulations at late stages.

4.4.1. Late-stage Wave Amplitudes and Particle Distributions

In Figure 10 we present the maximum wave intensity
(normalized to B0

2) reached in the simulations as a function of
νin (plotted using blue circles and red squares for the Fid and
HiRes simulations, respectively). For undamped or weakly
damped cases we expect the momentum flux associated with
the original anisotropy in the CRs to be transferred to forward-
propagating Alfvén waves (see Kulsrud 2005). As found in

previous simulations (e.g., Bai et al. 2019; Holcomb &
Spitkovsky 2019), this leads to magnetic wave energy at
saturation given by ( )( )B B n n V V1.5 1sat

2
0
2

CR i D A,id » - .
This value is plotted as a horizontal black line in Figure 10.
The gray-shaded region at 2in max,0n > G delimits the region
where the linear instability becomes impossible, according to
Equation (24).10 The simulations show a gradual decrease in
( )B Bmax 0

2d with increasing νin, as might be expected. The
decrease becomes abrupt when approaching 2in max,0n = G ,
resembling an exponential cutoff.
In order to obtain some insight into the dependence of the

saturated wave intensity on νin, we cast our knowledge of
dominant dynamical processes into a simple model. This model
consists of a system of two coupled ODEs. Let  ( )B B0

2d=
be the wave amplitude squared, and Γ be the wave growth rate
(without damping). In our simple model, the evolution of A in
time is determined by

⎛
⎝

⎞
⎠

( ) ( )d

dt

ln
2

2
, 29inn

= G -


( ) ( )d

dt
g

ln

8
, 30sn

pG
= - - W

where g is some factor of order unity. The first equation
describes linear wave growth partially limited by IN damping.
The second equation serves as a proxy for the dynamical
adjustment of the growth rate to the changing CR distribution,
which is becoming more isotropic under the effect of QLD in
the bath of (growing) waves. For initial conditions, we set
( )0 10 10= - and ( )0 max,0G = G . We further parameterize the
IN damping rate as in max,0n a= G . In our simulations, we have

2.5 10max,0
4

0G = ´ W- , and α ranging from 0 to 2. We

Figure 9. Same as Figure 8 but with 0.5in max,0n G = . The additional dotted–
dashed black lines compensate analytically for the effect of IN damping on the
wave spectrum. The gray-shaded areas delimit the regions where wave growth
is not allowed in linear theory (Equation (24)).

Figure 10. Dependence of the maximum value of the magnetic wave energy,
B Bmax

2
0
2d , as a function of νin. Blue circles are from Fid simulations and red

squares from HiRes simulations. The green solid curve corresponds to the
model solving two coupled ordinary differential equations (ODEs) described in
the text. The horizontal black line delimits the maximal allowed value at
νin = 0, based on the measured saturation amplitude. For 2in max,0n G > there
is no linear instability possible; this limit is shown by the gray-shaded region
on the right side of the figure.

10 We verified that there is no wave growth for 2in max,0n > G with a dedicated
simulation, not presented here.
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integrate these equations until 2max,0 aG G < so that 
reaches a maximum. In the case without damping, the wave
amplitude should reach the value measured in the simulations;
from this constraint we find g≈ 1.2.

The solutions for  as a function of νin are plotted with a
green solid line in Figure 10. The model qualitatively agrees
with the simulation results and shows a good match with our
high-resolution simulation results when damping is weak
( 0.1in max,0n G ), but overpredicts Bmaxd in the case of
moderate-to-strong damping (0.2 1in max,0n< G < ).

While a better match can be achieved with additional
parameters and fine-tuning, this does not necessarily add
further insight into the physical processes involved. In
particular, we note that an important effect not captured in
our toy model is the μ= 0 barrier (which is partly physical and
partly numerical). When the isotropization process becomes
stuck as particles accumulate at the barrier, further wave
growth is suppressed, even though the free energy from the CR
anisotropy has not been fully utilized.

Indeed, in Figure 14, it is evident that the HiRes model with
0.1in max,0n G = (which shows good agreement with the toy

model in Figure 10) does not have appreciable particle buildup
at μ= 0, but the 0.5in max,0n G = model (which falls below the
model prediction) does have particles built up at μ= 0.

Figure 11 presents the final state (at tΩ0= 106) of three
representative simulations with different values of νin: the
columns from left to right show models using 0.1in max,0n G = ,

0.5, and 1.5, respectively. The gray-shaded regions in the top
panels mark the regions where waves cannot grow during the
linear phase, according to Equation (24).
Some interesting features of the saturated phase are apparent

in Figure 11. First, there is a reduction in the global wave
intensity with an increasing IN damping rate (compare from
left to right the top panels). Second, the saturated wave
spectrum width exceeds the range imposed by the linear
growth, with significant wave amplitude in the gray-shaded
regions (best evidenced in the top right panel). Also, the
forward-propagating waves (blue and red lines in the top
panels) are at a similar level to the backward-propagating
waves (yellow and purple lines in the top panels), and a marked
reduction from the peak values reached during the post-linear
phase brings all modes to comparable intensity levels. High-
momentum particles (regions with p> 10p0 in the middle and
bottom panels) clearly isotropize less efficiently with increasing
νin: from left to right in the bottom panels, there is an increasing
area that is unaffected by the instability. This corresponds to
the lack of waves in the kRL,0= 1 region that becomes more
and more prominent when νin approaches the critical value
2 max,0G . Finally, we observe an accumulation of particles near
μ= 0 in all cases with IN damping (“hot spots” in the regions
close to cos 0q = in the middle panels and close to cos 0wq =
in the bottom panels). The issue of crossing the cos 0m q= =
barrier becomes crucial when non-negligible damping is
present. Not only is the global level of waves reduced, but

Figure 11. Final spectrum (top panels), DF in the simulation frame ( )f p f, cos 0d q (middle panels), and DF in the wave frame ( )f p f, cosw w w 0d q (bottom panels) in
three simulations with different νin. The left, middle, and right columns have 0.1in max,0n G = , 0.5, and 1.5, respectively. The gray-shaded regions in the upper panels
delimit the regions where waves cannot grow during the linear phase, according to Equation (24). Thick dashed lines in the middle and bottom panels are the contours
in momentum space resonant with the limiting k (i.e., the inner border of the gray-shaded areas in the upper panels). The gray dotted–dashed lines illustrate resonant
contours for a few different wavenumbers.
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also the whole spectrum becomes narrower when νin
approaches 2 max,0G . Both effects contribute in making it
difficult for particles to scatter across μ= 0.

4.5. Dependence on Spatial Resolution

By testing different grid resolutions we confirm that there is
no noticeable effect on the linear phase of the instability: no
difference in the growth rate, wave energy, streaming velocity,
or spectrum during this phase. However, the resolution can
have an important impact on the post-linear phase. Specifically,
resolving a larger dynamic range of wave modes with
kRL,0? 1 allows us to better capture the fast post-linear
growth of these modes. This can be seen by comparing the
high-k part of the power spectra at tΩ0= 105 in Figure 7 for the
fiducial resolution to those at similar times (tΩ0= 8.2× 104,
with CRs kept on) in Figures 8 and 9 at high resolution.

In Figure 12 we compare the Fid and HiRes simulations for
the time evolution of the magnetic wave energy (top panel) and
of the CR streaming velocity (bottom panel). Two representa-
tive cases are shown: no damping (blue lines) and moderate
damping 0.5in max,0n G = (red lines). There is no difference in
early evolution, until the post-linear phase, starting at
tΩ0∼ (3–4)× 104. From the solid (Fid) and dashed (HiRes)
blue lines, increased resolution has only a minor effect on the

case with no damping. More noticeable differences appear for
the case with moderate damping. During the post-linear phase,
the magnetic energy decreases more slowly in the HiRes
simulation and the streaming velocity decreases at a faster rate.
This effect is due to the higher level of wave intensity stored in
high-k modes during the post-linear phase.
As found for the post-linear stage, the numerical resolution

also has an effect on the saturated state of the simulations. We
expect, and indeed find, that higher-resolution simulations
achieve a higher level of small-scale waves. In Figure 13 we
present a comparison of the wave spectrum at tΩ0= 3× 105

between the Fid and HiRes simulations for two values of
νin= 0.1 (top) and 0.5 (bottom). For both values of νin there are
some differences around kRL,0= 1. But more importantly, the
HiRes simulations exhibit higher levels of wave intensity at
kRL,0? 1, without regard to the limit of linear growth (which is
equal to 0 in gray-shaded areas).
The differences in the wave spectrum between the Fid and

HiRes simulations also lead to differences in the final state of
the CR DF. In particular, higher amplitudes at large k increase
the scattering rate at resonances close to μ= 0, considering the
resonance condition k= (1/μ)mpΩ/p. Figure 14 presents the
DF at tΩ0= 3× 105 of the simulations for the Fid runs (upper
panels) and HiRes runs (lower panels). We show cases with
both weak (left) and moderate (right) damping, as in Figure 13.
For both, the HiRes simulations show a better level of
isotropization of δfw at p/p0ä [0.5, 10], corresponding to the
higher level of high-k modes in the HiRes simulations. No

Figure 12. Effect of numerical grid resolution on the time evolution of the
magnetic wave intensity (top panel) and of the CR streaming velocity (bottom
panel). Blue lines show the case with no damping, and red lines show the case
with 0.5in max,0n G = . Solid lines correspond to the fiducial resolution and
dashed lines correspond to the high-resolution simulations (see Table 2).

Figure 13. Dependence on spatial resolution of the saturated wave spectrum
(forward right-handed modes) for models with 0.1in max,0n G = (top panel) and

0.5in max,0n G = (bottom panel). Blue lines correspond to Fid simulations and
red lines correspond to HiRes simulations.
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noticeable difference is observed at p> 10p0, corresponding to
quite similar spectra at kRL,0< 0.1 (see Figure 13).

4.6. Streaming Velocity

We now consider the evolution of the CR bulk or streaming
velocity, a key parameter since this characterizes the net CR
flux. As mentioned in Section 2.4, in the astrophysical literature
the most commonly adopted assumption is that the wave
amplitude and streaming velocity are consistent with a state in
which the linear growth rate balances the damping rate
(Kulsrud & Cesarsky 1971). From Equations (8) and (24), this
would imply that if the CRs remain isotropic in a frame moving
at Vst relative to the gas, this velocity will decline until
Equation (27) is satisfied.

Conceptually, the asymptotic streaming velocity obtained
through balancing damping and growth relates to the situation
where the instability is driven, i.e., through a CR pressure
gradient. In contrast, our numerical setup with periodic
boundary conditions corresponds more to a transient situation
in which instability dies out. This affects the astrophysical
relevance of the streaming speed derived in our simulations.
Nevertheless, it is interesting to follow the measured time
evolution of CR streaming from the simulations.

In the bottom panel of Figure 15 we show the evolution of
the measured CR streaming velocity vrel (defined in
Equation (28)), including its dependence on the numerical
resolution, for the weak damping case 0.1in max,0n G = . In the
Fid simulation (blue line) the final streaming velocity of CRs is
3.3VA,i. The HiRes simulation isotropizes more efficiently,
showing a decrease of the streaming velocity to vrel= 1.18VA,i

(but still above full isotropization vrel= VA,i). We attribute this
difference to better capturing of high-k modes in the HiRes
simulations.

If we were to apply Equation (27) to the case with
0.1in max,0n = G , the predicted asymptotic streaming velocity

would be Vst/VA,i= 1.45. This level is marked by the
horizontal dashed line in Figure 15. Interestingly, for the
HiRes simulation the measured final time vrel is below this.
This can be understood from Figure 13: as long as a sufficient

level of waves is present the distribution will continue to
isotropize and vrel will continue to decline. In contrast, for the
HiRes model with 0.5in max,0n = G (see Figure 12, red lines), the
late-time vrel remains well above the value 3.25VA,i that would
be predicted by Equation (27), presumably due to the lower
wave amplitudes that reduce the scattering rate (compare upper
and lower panels of Figure 13, and note also the buildup of
particles to the right of μ= 0 in the lower-right corner of
Figure 14). Taken together, these results make clear that the
simple approach of setting 2max,0 innG = and solving for
streaming velocity is not necessarily applicable. The evolution
and final value of vrel instead depends on the evolution of
( )B B0

2d . This is illustrated for different values of νin in
Figure 12, with more complete isotropization in cases of lower
νin. In the real astrophysical case, an additional factor affecting
evolution would be the history of (anisotropic) energy sources.
Finally, we recall (as pointed out in Section 2.4) that

balancing the linear growth time and damping time of waves
does not quantitatively take into account the additional time
required for QLD to isotropize the distribution, suggesting that
the criterion 2max,0 innG > is necessary but not sufficient.
Because the pitch angle diffusion timescale near saturation is
approximately proportional to the linear growth timescale,
there may still be some critical ratio of growth to damping that
allows the distribution to isotropize. This question could be
addressed in future work that allows for more realistic driving.

Figure 14. Dependence on spatial resolution of the DF ( )f p f, cosw w w 0d q , at
tΩ0 = 3 × 105. The top panel corresponds to Fid simulations and the bottom
panel corresponds to HiRes simulations. Left and right show weak and
moderate damping cases.

Figure 15. Dependence on spatial resolution of the time-evolving wave energy
(panel a) and streaming velocity (panel b), for 1 10in max,0n G = . The blue and
red lines correspond to the Fid and HiRes simulations, respectively. The
horizontal dashed line delimits the final streaming velocity as expected by
balancing the fastest growth rate with the damping rate: 2max,0 innG = .
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5. Discussion

Perhaps one of the most intriguing results of the present
work is the evidence of high-k growth during the post-linear
phase, presented in Section 4.3. In Figures 8 and 9 we have
shown that these modes do not require driving by CRs to be
amplified. At present, we do not have a satisfactory explanation
for this effect, but hypothesize that it is due to some form of
mode coupling or wave steepening into rotational disconti-
nuities (e.g., Cohen & Kulsrud 1974). One could argue that this
effect is due to our choice of parameters, which leads to
relatively high wave amplitude at saturation, up to
δB/B0; 0.05. This is likely considerably larger than what is
present in the general ISM. However, we also performed
simulations with nCR/ni as low as 5× 10−5 and VD/VA,i= 2,
observing the same effect of fast high-k mode growth during
the post-linear phase. Potentially, the nonlinearity or three-
wave interactions could be diagnosed by bispectrum and
bicoherence analysis, but we defer this exploration to
future work.

We also found that large-wavelength modes with kRL,0= 1
are not amplified if CR driving is switched off at the end of the
linear phase of the instability. This shows that these modes are
mainly amplified by resonant interaction with CRs, with
growth rate Γ(k)∝ k2κ−1, and that IN damping removes the
low-k end of the wave spectrum with k kmin< , where

( )k k 2min innG < < . This can be seen in Figures 7, 9, and
11. This implies, assuming only resonant wave–particle
interaction, that high-momentum CRs with p pmax> are not
isotropized and continue to freely stream. Here, pmax is
deduced by using Equation (24) with Equation (7) using the
resonance condition kRL,0= p0/(pμ):
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where we fix κ= 1.25.
Like Kulsrud & Cesarsky (1971) we estimate the maximum

momentum of CRs that could potentially be isotropized (i.e.,
self-confined) in different phases of the ISM. Using the typical
values given in Table 1 and Equation (31), the derived values
of ( )p maxm are given in Table 3, adopting VD/VA,i= 2 and
VD= 0.1c as two extreme cases. Assuming p0=mpc for CRs
with energy E;GeV, we draw some general conclusions:

1. DMG: Strongly suppressed CRSI; no CR isotropization
at energies higher than the gigaelectronvolt level.
Streaming could become extremely large.

2. MG: Marginal instability and isotropy at the gigaelectron-
volt level but not beyond 100 GeV. The surface layers of

molecular clouds may therefore be subject to CRSI if the
initial anisotropy of CRs is not too small.

3. CNM: The conditions for triggering the CRSI are only
satisfied for highly super-Alfvénic streaming. The CR
distribution could become quite anisotropic in this phase.

4. WNM: Most favorable environment for CRSI. Even with
tiny anisotropy (VD/VA,i of order unity) the instability is
possible for gigaelectronvolt CRs. CRs with E?GeV
could also be isotropized if the initial drift velocity is
much higher than VA,i.

In the Milky Way and similar galaxies, the WNM is the
dominant component of the ISM by mass; the above estimate
affirms that CRSI is astrophysically quite important. We note,
however, that in the WNM other wave damping mechanisms
can compete with IN damping that could prevent isotropization
of CRs with energies� TeV (see, e.g., Figure 1 and
corresponding text in Brahimi et al. 2020), but our values of
Emax are in good agreement with similar calculations by Xu
et al. (2016, their Section 6.4 and Figure 15).
The estimates above are in broad agreement with those of

Kulsrud & Cesarsky (1971)—being based on the same
argument—but are updated here with representative parameters
for different neutral-dominated media.
The high-frequency limit is adopted in the present study, i.e.,

[ ]kV max ,A A,i in niw n n=  . In this regime, the neutral fluid
and ionized fluid are decoupled, and the IN wave damping rate
does not depend on the wavelength, Γd= νin/2. We expect this
approximation to hold for any kRL,0� 0.1−1, in general, and to
be satisfied for CRs at gigaelectronvolt energies and below,
which make up most of the CR energy density and are
responsible for most of the ionization. This justifies the one-
fluid approach adopted in the present study. However, in reality
very high energy CRs with low resonant frequencies are
present in the ISM as well. If the whole CR energy spectrum
were fully represented, the low-k part of the wave spectrum
(modes with [ ]kR max ,L,0 in nin n ) would be damped at a
slower rate than νin/2. This could have an interesting effect on
the amplification and survival of long-wavelength modes.
However, we defer investigation of k-dependent damping to
future studies.
Similar to Paper I, many of our simulations show particle

accumulation at μ= 0. Naively, this would be expected if
waves were only present where CRSI is undamped (at
intermediate k near k R2 1 Lmax ,0

1k= - - ), since there would
be no large-k waves that are able to scatter small-μ particles
subject to the resonance condition kμ=Ωm/p. However, in
practice nonlinear MHD effects populate the large-k region
regardless of whether CRSI is damped or active, and therefore
μ= 0 crossing is possible. Nevertheless, in simulations the
high-k regime is subject to numerical dissipation, and we find
that higher than standard resolution is required to limit particle
buildup. At higher values of νin, particles still build up near
μ= 0 even with higher resolution (see Figure 14).
As we have previously emphasized, the problem of relating

the streaming rate and wave amplitude to macroscopic ambient
properties clearly merits further study. The traditional “detailed
balance” approach of equating the CRSI growth rate to the
damping rate has recently been adopted in galaxy formation
simulations and other studies as a procedure for setting the
scattering rate coefficient, leading to a diffusion coefficient that
varies proportionally to νin (see, e.g., Hopkins et al. 2021b). To
assess and quantitatively improve this kind of prescription,

Table 3
Maximum Momentum of CRs Able to Self-confine for Different Phases of

the ISM

Phase ( )p

p
max

0

m , VD = 2VA,i
( )p

p
max

0

m , VD = 0.1c

WNM 12.2 345
CNM 0.34 22.1
MG 1.5 41.7
DMG =1 <1

Note. Other parameter values are as in Table 1.
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however, studies similar to the present one but allowing for
macroscopic driving (via an imposed CR flux or energy
gradient) will be needed.

6. Conclusion

Motivated by the recent progress in coupled fluid-kinetic
(MHD-PIC) numerical techniques in Paper I, in this work we
studied the influence of ambipolar diffusion (IN damping of
Alfvén waves) on the CRSI. We adopted parameters for a
reference model that in the absence of IN damping leads to full
isotropization of the CR DF in the wave frame after the
instability saturates. This state corresponds to an asymptotic
state in which the CRs stream at Alfvén speed relative to the
background fluid. We then explored different values of IN
damping rate to study the influence on the outcome of
the CRSI.

Our main conclusions are summarized below:

1. The predicted exponential growth rate of the instability
including IN damping, Γ(k), is well reproduced by the
MHD-PIC technique. Thus the linear theory is in good
agreement with analytical expectations.

2. Evolution in a post-linear phase is crucial for isotropiza-
tion of low- and moderate-energy CRs. During this phase,
growth of high-k (wavelength λ= RL,0) modes occurs.
This growth is not driven by CR anisotropy (the waves
are outside of the unstable range) but rather appears to be
a result of an MHD wave cascade or wave steepening into
rotational discontinuities. The high-k waves are important
for scattering when μ is close to 0. The development of
the high-k spectrum is best captured in high-resolution
simulations.

3. Systematic comparison between the reference case (no
damping) and simulations with IN damping reveals that
the width of the wave spectrum decreases with increasing
νin. The absence of low-k (compared to RL,0

1- ) waves
prevents isotropization of high-energy CRs. There is no
wave growth at all if 2in max,0n > G , consistent with
analytic theory.

4. With stronger IN damping, the maximum amplitude of
waves systematically decreases. When 0.5in max,0n = G ,
the peak wave amplitude is an order of magnitude below
the no-damping case. Lower wave amplitudes reduce the
rate of QLD and hence slow isotropization.

This work is the second study in a series exploring the physics
of CRSI by means of MHD-PIC simulations. This numerical
technique has proved to be valuable because it captures the
relevant microphysical CR gyroscales and allows long-term
simulations at low CR density more affordably than full kinetic
simulations. We envision that further improvements of the
method and inclusion of additional physics will lead to greater
understanding of the microphysics of CR–ISM interactions in
different phases, also enabling numerical calibrations of
transport coefficients required for large-scale ISM/galactic
studies.
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