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Abstract

We revisit the theory of stochastic heating of ions and investigate its phase-space signatures in kinetic turbulence of
relevance to low-β portions of the solar wind. In particular, we retain a full scale-dependent approach in our
treatment, and we explicitly consider the case in which electric-field fluctuations can be described by a generalized
Ohm’s law that includes Hall and thermoelectric effects. These two electric-field terms provide the dominant
contributions to stochastic ion heating when the ion-Larmor scale is much smaller than the ion skin depth, ρi= di,
which is the case at β= 1. Employing well-known spectral scaling laws for Alfvén-wave and kinetic-Alfvén-wave
turbulent fluctuations, we obtain scaling relations characterizing the field-perpendicular particle-energization rate
and energy diffusion coefficient associated with stochastic heating in these two regimes. Phase-space signatures of
ion heating are then investigated using three-dimensional hybrid-kinetic simulations of continuously driven
Alfvénic turbulence at low β (namely, βi= βe= 0.3 and βi= βe= 1/9). In these simulations, energization of ions
parallel to the magnetic field is subdominant compared to its perpendicular counterpart (QP,i=Q⊥,i), and the
fraction of turbulent energy that goes into ion heating is ≈75% at βi= 0.3 and ≈40% at βi; 0.1. The phase-space
signatures of ion energization are consistent with Landau-resonant collisionless damping and a (β-dependent)
combination of ion-cyclotron and stochastic heating. We demonstrate good agreement between our scale-
dependent theory and various signatures associated with the stochastic portion of the heating. We discuss briefly
the effect of intermittency on stochastic heating and the implications of our work for the interpretation of stochastic
heating in solar-wind spacecraft data.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); Plasma physics (2089); Space plasmas
(1544); Solar wind (1534)

1. Introduction

The solar wind is arguably the most well-diagnosed weakly
collisional magnetized plasma, both in terms of the electro-
magnetic fluctuations it hosts and the thermodynamics of its
constituent particles. It therefore serves as an excellent (and,
with some effort, directly accessible) laboratory with which one
may discriminate between different theories of magnetized
turbulence and the various ways in which such turbulence
energizes plasma particles. Indeed, a persistent puzzle in solar-
wind research is why the temperature of the solar wind evolves
nonadiabatically as it expands, and why this heating occurs
preferentially in the direction perpendicular to the local
magnetic field (e.g., Marsch et al. 1982; Matteini et al. 2007;
Hellinger et al. 2011; Maruca et al. 2011). While the solution to
this puzzle is known to be connected to the pervasive Alfvénic
turbulence that is now routinely measured by in situ spacecraft
(e.g., Goldstein et al. 1995; Alexandrova et al. 2013; Bruno &
Carbone 2013; Chen et al. 2020; Sahraoui et al. 2020), the
relative contributions to this turbulent heating from different
wave–particle interactions are debated.

Much of this debate has been centered on the nature of the
turbulent fluctuations and their relative energetic importance at
various stages during their nonlinear cascade to increasingly
finer scales in both configuration and velocity space (e.g., Leamon
et al. 1999; Howes et al. 2008; Schekochihin et al. 2009; Chandran
et al. 2011; Cranmer 2014). Namely, how spatially anisotropic are
typical fluctuations at a given scale? What fraction of those
fluctuations ultimately attain cyclotron frequencies? Are the
fluctuations at Larmor scales of sufficient amplitude to disrupt
the particles’ otherwise smooth gyromotion and heat the plasma

appreciably? How do the answers to these questions depend on
the plasma properties, such as the ratio of thermal and magnetic
pressures, βB 8πp/B2? This is an indirect way of understanding
particle energization in the solar wind; guided by observational
constraints (e.g., Horbury et al. 2012; Chen 2016), one postulates
the characteristics of the fluctuations in the turbulent cascade,
models the various particle-energization channels available to
those fluctuations, and then infers whether those channels are
thermodynamically important by comparing the implied heating
and any unique features with the data. Such an approach has been
used to find evidence for ion-cyclotron-resonant heating in the
solar wind via measured correlations between plasma heating,
differential flow between ion species, and magnetic-field–biased
temperature anisotropy (Kasper et al. 2013). Similarly, correla-
tions between the amplitudes of ion-Larmor-scale magnetic
fluctuations and enhanced proton and minor-ion temperatures
measured in coronal holes and the bulk solar wind have been
taken as evidence for the stochastic heating of ions by low-
frequency Alfvén-wave (AW) and kinetic-Alfvén-wave (KAW)
fluctuations (Chandran 2010; Bourouaine & Chandran 2013;
Chandran et al. 2013; Vech et al. 2017; Martinović et al.
2019, 2020).
A more direct but more technically challenging way of

distinguishing between different particle-energization mechanisms
is through their imprint on the velocity-space structure of the
plasma (e.g., Klein & Howes 2016; Howes et al. 2017;
Howes 2017; Klein et al. 2017; Adkins & Schekochihin 2018;
Servidio et al. 2017; Cerri et al. 2018; Pezzi et al. 2018; Kawazura
et al. 2019; Li et al. 2019). For example, it is well known that
collisionless Landau damping flattens the particle distribution
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function in the vicinity of “Landau resonances,” at which a
particle’s velocity (in a magnetized plasma, the velocity
component parallel to the local magnetic-field direction) matches
the phase speed of a wave. This flattening is a consequence of the
secular transfer of free energy from the electromagnetic waves to
the particles, whether it be via parallel electric fields (Landau 1946)
or parallel gradients in magnetic-field strength (Barnes 1966).
Recently, a clear signature of this transfer (in this case, to the
electron population) has been found in data taken in the Earth’s
turbulent magnetosheath (Chen et al. 2019). This follows on
pioneering work by Marsch & Tu (2001; see also Heuer &
Marsch 2007 and He et al. 2015) showing plateaus in solar-wind
particle distribution functions near the Alfvén speed, suggesting
velocity-space diffusion due to Alfvén/ion-cyclotron fluctuations
(e.g., Isenberg 2001; Isenberg & Vasquez 2019). Similar velocity-
space signatures of ion-cyclotron damping, revealed by applying
field-particle correlation techniques to hybrid-kinetic simulations,
have been discussed by Klein et al. (2020).

Nonresonant energization mechanisms, such as stochastic
heating, also make an imprint on the velocity space. Adopting
the theory of Chandran et al. (2010), Klein & Chandran (2016)
showed that the stochastic heating of ions by moderate-
amplitude, Larmor-scale, electric-field fluctuations ultimately
flattens the core of their velocity distribution function along the
field-perpendicular direction. Such a flat-top distribution has
been observed recently by Martinović et al. (2020) using data
from the Parker Solar Probe. Formulating and testing such
velocity-space diagnostics is particularly important in the case
of stochastic heating, since it provides an attractive alternative
to other (namely, resonant) mechanisms of particle energization
whose phase-space signatures have long drawn the attention of
the heliophysics community. This becomes particularly true for
situations in which the turbulent cascade exhibits strong spatial
anisotropy that inhibits the production of high-frequency waves
and/or for values of β= 1 at which ions are unable to obtain
the Landau resonance (Quataert 1998; Hollweg 1999).

Accordingly, the purpose of this paper is to further elucidate
the consequences of stochastic ion heating for the organization
of phase space and sharpen certain aspects of how the theory of
stochastic heating can be tested using solar-wind data. The paper
is written in two parts. First, we extend the work of Chandran
et al. (2010) and Klein & Chandran (2016) to make further
predictions for the phase-space signatures of stochastic heating
and their dependence on the properties of the plasma (β, ion-to-
electron temperature ratio) and turbulence (Section 2). Second,
we present results from a new hybrid-kinetic simulation of
driven Alfvénic turbulence, which we use to test these
predictions (Section 3). We also demonstrate that intermittency,
as revealed in the statistics of the electrostatic potential, enhances
stochastic heating, with some particles acquiring large amounts
of energy in spatially and temporally localized events. A
corollary of our analysis is that an oft-employed conversion of
measured ion-Larmor-scale magnetic-field fluctuation ampli-
tudes to bulk ion-velocity fluctuations, which are then used in a
formula to determine the expected amount of stochastic heating,
becomes increasingly inaccurate at low values of β, precisely
where stochastic heating is expected to be most important
(Section 4). For β= 1, noninductive components of the electric
field—namely, the Hall effect and the thermoelectric field—
contribute appreciably to the total electrostatic potential with
which the particles interact.

Our work follows on that of Arzamasskiy et al. (2019). Those
authors presented results from hybrid-kinetic simulations of driven
Alfvénic turbulence and employed several novel diagnostics to
quantify the roles of Landau and Barnes damping, stochastic
heating, and cyclotron heating—all of which appeared to be in
play—in the energization and differential heating of plasma
particles at β 1. Taken together, this set of simulations and their
analyses suggest that stochastic heating plays an important role in
modifying both the velocity distribution function of the ions and
the cascade of turbulent energy to sub-ion-Larmor scales in low-β,
collisionless plasmas.

2. Theory of Stochastic Ion Heating in AW/KAW
Turbulence

Chandran et al. (2010) presented a theory for perpendicular ion
heating in the solar wind caused by finite-amplitude, low-
frequency, AW/KAW fluctuations occurring on scales compar-
able to the ion-Larmor scale (following on work by Chen et al.
2001; Johnson & Cheng 2001; White et al. 2002; Voitenko &
Goossens 2004; Bourouaine et al. 2008). In this theory, the ions
interact stochastically with a time-varying electrostatic potential,
break their magnetic moments, and execute a random walk in
perpendicular energy. Here we generalize this theory to account
for a spectrum of critically balanced fluctuations whose electro-
static potential satisfies a generalized Ohm’s law. We compute the
perpendicular heating rate and energy diffusion coefficient as
functions of the perpendicular plasma beta parameter of the ions,
β⊥iB
8πp⊥i/B

2, which is the ratio of thermal pressure of the ions
perpendicular to the magnetic-field direction, p⊥iB nT⊥i, where n
is the ion number density, and the magnetic pressure, B2/8π; the
electron-to-ion temperature ratio, τ⊥B ZiTe/T⊥i, where Zi is the
ion charge in units of e; and the energy cascade rate, ε. (We take
the electron temperature Te to be isotropic, for reasons that will be
explained in Section 2.2.) Before doing so, we briefly recapitulate
the theory presented in Chandran et al. (2010) in a way that
establishes the notation used in the remainder of the paper.

2.1. Stochastic Heating Revisited

Consider an ion with mass mi and charge qi= Zie that is
interacting with electric-field fluctuations δE⊥,λ having
perpendicular wavelength λ of the order of the ion’s gyroradius
ρiB w⊥/Ωi, i.e., k⊥ρi∼ 1. Here w⊥ is the component of the
ion’s random velocity perpendicular to a background magnetic
field B0, ΩiB qiB0/mic is the ion-cyclotron frequency, and
k⊥= 2π/λ is the field-perpendicular wavenumber associated
with λ. If the amplitude of these fluctuations is sufficiently
large (just how large is quantified in Section 2.1.2), the ion’s
gyromotion about B0 becomes chaotic, its magnetic moment
m ^m w B2i

2 is no longer conserved, and the ion is
stochastically heated in the field-perpendicular direction. Such
stochasticity is the result of a sequence of “random kicks” that
the ion experiences due to the fluctuating field within a
turbulent eddy of size λ∼ ρi.
In what follows, we assume that the main contribution to this

heating is from the potential part of the fluctuating electric field,
so that δE⊥,λ∼ k⊥δΦλ. This is justified (and verified
a posteriori using our simulations) if β⊥i is not much larger
than unity and/or if the fluctuations’ frequency ω remains
smaller than ∼Ωi/β⊥i (Hoppock et al. 2018). Such electrostatic
fluctuations on the scale of an ion’s gyroradius induce a change
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in an ion’s perpendicular kinetic energy, ΔK⊥, that is directly
related to the average change of the potential over the time τλ
that the particle spends within the turbulent eddy of size λ, viz.,

( )d tD ~ ¶ F ¶l l^K q ti . We estimate τλ as the time required for
the ion’s guiding center to drift in the direction perpendicular to
B0 by a distance of order λ. Taking this drift to be of the
B×∇Φ type, so that udr,λ∼ (c/B0)(|δΦλ|/λ), we find that

⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞
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( )t

l
r d

~ W
F

l
l

- m v

q
, 1i

1

th,i

2
i th,i

2

i

where  ^v T m2th,i
2

i i is square of the (perpendicular) ion-
thermal speed and ρth,iB vth,i/Ωi is the thermal ion-Larmor
radius. For the change in perpendicular kinetic energy to be
effective, the turbulent fluctuations must be as coherent as
possible over this timescale. Denoting the typical frequency of
the turbulent fluctuations at scale λ by ωλ, this requirement may
be written as ωλτλ∼ 1. In this case, ΔK⊥∼ qiωλδΦλτλ∼
qiδΦλ. (For a lengthier discussion of these arguments, see
Section 2 and Equations (12)–(16) and (24), in particular, of
Chandran et al. (2010).)

Using this information and assuming that the stochastic gain
of the perpendicular kinetic energy of a single ion during the
time τλ can be seen as a random walk in perpendicular-energy
space, we determine the perpendicular-energy diffusion
coefficient and heating rate as follows.

2.1.1. Perpendicular Diffusion Coefficient and Heating Rate

We quantify the stochastic gain in an ion’s perpendicular
kinetic energy using the diffusion coefficient t~ D l^̂ ^D KE 2 .
With ΔK⊥∼ qiδΦλ and τλ being given by Equation (1), we find

⎛
⎝
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⎠
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i
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2

Alternatively, ^̂D
E may be expressed in velocity space by

using the condition k⊥ρi= k⊥w⊥/Ωi∼ 1 to replace λ with
(w⊥/vth,i)ρth,i. Then, denoting the resulting velocity-space poten-
tial ∣dFl l~ W^w i as δΦw, Equation 2(a) may be reinterpreted as

( )
∣ ∣

( )
d

~ W
F

^̂ ^
^

D w
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m w
. 2bE w
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i
3 3

i
2

This equation states that particles drawn from different regions
of the perpendicular distribution function experience different
perpendicular energization, depending on the part of the
spectrum of the fluctuations that they sample during their
orbits and off of which they stochastically diffuse.

To obtain an equation for how this diffusion affects the
evolution of the perpendicular-energy distribution function, f E,
we insert Equation 2(b) into the Fokker–Planck-like equation

⎜ ⎟
⎛
⎝

⎞
⎠

( )¶
¶

=
¶

¶
¶
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^̂
^
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t e
D

f

e
, 3

E
E

E

where ^ ^e w 22 is the ion’s perpendicular kinetic energy per
unit mass. Then, using Equation (3), we may write the total
perpendicular heating as

( )ò= -
¶
¶

^ ^ ^̂
^

Q e D
f

e
d . 4E

E

Alternatively, one may introduce a differential heating rate in
w⊥ via4

( ) ( ) ( )¶
¶

-
¶
¶
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Q
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D w

f w

w
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with ( )^̂ ^D wE given by Equation 2(b). Equation (5) will be
used in Section 3 to compute ( )^̂ ^D wE using the functions
f E(w⊥) and ∂Q⊥/∂w⊥ obtained directly from our numerical
simulations.
It is helpful at this stage to work through a simple estimate

for how ^̂D
E and ∂Q⊥/∂w⊥ would scale with w⊥ for a

particular scaling law of the fluctuating potential. Let us
assume that the dominant contribution to the electric field is
due to δui× B/c induction from a fluctuating ion-velocity
field δui, such that δΦλ∼ λδu⊥i,λ(B0/c). Adopting the
Kolmogorov-like scaling δu⊥i,λ∝ λ1/3 for these fluctuations,
we find that δΦλ∝ λ4/3. Enacting the transformation
to velocity space described above, ( )dF µ ^w vw th,i

4 3.
Equation 2(b) then gives ( )µ^̂ ^D w vE

th,i
2, which is a

scaling that matches the one of Klein & Chandran (2016)
when the induction term, ∼u⊥i,λB0/c, is the dominant
contribution to the electrostatic potential.5 Further assuming
a Maxwellian distribution in w⊥ yields a differential heating
rate, ( ) ( )¶ ¶ µ -^ ^ ^ ^Q w w v w vexpth,i

3 2
th,i
2 . In this case, ion

particles whose perpendicular velocities satisfy ( )=^v v3 22
th,i
2

would experience the largest differential heating rate.

2.1.2. Exponential Suppression of Stochastic Heating

In order to take into account the reduction of stochastic
heating due to the near-conservation of the particles’ magnetic
moments when the fluctuations’ amplitudes at the ρth,i scale are
“sufficiently small,” Chandran et al. (2010) proposed a
multiplicative exponential suppression term of the type

( )x-cexp 2 th in Equation 2(a), where c2 is a (small, scale-
independent) constant. This quasi-conservation condition is
quantified by a so-called stochasticity parameter ξ, which in
our theory would read as a scale-dependent parameter defined
by6

∣ ∣
( )x

dF

^

q

m w
. 6w

wi

i
2

The parameter ξth, which is ξw evaluated at the ion-thermal
speed w⊥∼ vth,i (or, equivalently, at the ion-thermal gyrora-
dius, λ∼ ρth,i), provides an estimate of the amount of energy in

4 This definition is consistent with the diagnostics implemented in our
simulations (see Section 3). Vasquez et al. (2020) argued for an alternative
definition of ∂Q⊥/∂w⊥, which nevertheless results in the same total heating
rate given by Equation (4). Further discussion of this alternative definition and
its use in analyzing our simulation results is provided in Appendix A.
5 Note that Klein & Chandran (2016) adopt δu⊥,λ ∝ λ1/4, consistent with the
dynamic-alignment argument of Boldyrev (2006). Then δΦλ ∝ λδu⊥,λ ∝ λ5/4,
and Equation 2(b) gives µ^̂ ^D wE 7 4, consistent with Equation (17) of Klein &
Chandran (2016).
6 When the induction term provides the dominant contribution to the
electrostatic fluctuations, and using the condition λ ∼ (w⊥/vth,i)ρth,i to obtain
δΦw, our definition of ξ reduces to (a scale-dependent version of) the definition
ξ = δu⊥/w⊥ of Chandran et al. (2010). In that work, this parameter (evaluated
at the ion-thermal Larmor scale) is called ε. However, in order to avoid
confusion with the symbol typically used for the cascade rate, as well as to
differentiate the generalized stochasticity parameter based on potential
fluctuations from that based on ion flow velocity fluctuations, we use ξ
instead. When the need arises to refer specifically to Chandran et al.ʼs
stochasticity parameter (namely, in Section 4), we adopt the notation òi.
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the electrostatic potential fluctuations that goes into stochastic
heating, weighted by the particles’ thermal energy, viz.,

∣ ∣x d~ Fq m vth i th i th,i
2 , where δΦth is the velocity-space potential

δΦw evaluated at w⊥∼ vth,i. An exponential suppression factor
would be justified if ξth= c2. One may then obtain a rough
estimate for when the amplitude of the potential fluctuations
is “sufficiently large” for stochastic heating to be important,
that is, when the (thermal-)Larmor-scale potential satisfies

∣ ∣dF q m v ci th i th,i
2

2. An assortment of test-particle calculations
(Chandran et al. 2010; Xia et al. 2013) has suggested values for
c2 in the range of ≈0.1–0.3. Analyses of solar-wind data in the
context of stochastic heating have adopted similar values of
c2 (Chandran 2010; Bourouaine & Chandran 2013; Martinović
et al. 2019, 2020).7

In our theory, we allow for an analogous, scale-dependent
exponential suppression term, so that Equation 2(b) becomes
(after using Equation (6) to replace qi|δΦw| with x^m w wi

2 )
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v

c
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E

w
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2
th,i
4

th,i

4
3 *

where c* is a constant to be determined. The notation c* differs
from the notation c2 used by Chandran et al. (2010) to
emphasize that the exponential correction is being applied
within the scale-dependent formulation of ( )^̂ ^D wE , rather than
within the scale-independent formulation with w⊥≈ vth,i (or,
equivalently, λ≈ ρth,i; cf. Equations (20)–(25) of Chandran
et al. 2010). For this reason, the value of c* does not
necessarily match that of c2 found in previous work.8 Within
this scale-dependent formulation, a potential fluctuation is
“sufficiently large” to perpendicularly heat an ion with velocity
w⊥ effectively when its amplitude satisfies ( )∣ ∣dFc B w0

W^c w 2
i* . In terms of perpendicular scales λ, this

corresponds to the range for which (c/B0)|δΦλ|/λ
2 c*Ωi.

We further caution that this “constant” may be dependent upon
β and/or the level of intermittency in the ion-Larmor-scale
fluctuations, the two possibly being related to each other as β
decreases (e.g., Cerri et al. 2017b; Grošelj et al. 2017). Such
intermittency could indeed partially compensate for the
simultaneous decrease of ξth that would be associated with
the enhanced separation between injection and ρth,i scales in the
β= 1 regime, which is precisely the regime in which
stochastic heating is likely to be most relevant. This possibility
seems to be supported by our simulation results (see
Section 3.3); future kinetic simulations with yet larger scale
separations, and thus statistically smaller values of ξ, than those
performed here are needed to further investigate the behavior of
this exponential correction.

It is worth noting that, while the exponential suppression
factor was originally introduced to account for the reduction in
perpendicular heating when ion-Larmor-scale fluctuations are
small, this factor also serves to suppress stochastic heating by

larger-scale fluctuations (despite their larger relative ampli-
tudes). Qualitatively, the lower frequencies of these fluctuations
allow the ions to drift smoothly in a quasi-static potential,
precluding chaotic motion and preserving approximate adia-
batic invariance. Quantitatively, we may rewrite the argument
of the exponential term in Equation (7) as −c*Ωiτw, where τw
is given by Equation (1) with λ/ρth,i∼ w⊥/vth,i. Then the
requirement for strong suppression of stochastic heating
becomes ωw/Ωi= c*ωwτw c*, where ωw is the frequency
of gyroscale fluctuations as seen by particles with a gyroradius
ρi= w⊥/Ωi∼ λ. Conversely, fluctuations whose frequencies
satisfy ωw/Ωi c* are the most effective at stochastically
heating the ions.

2.2. Generalized Ohm’s Law and Contributions to Stochastic
Ion Heating

While the example given at the end of Section 2.1.1 is
illustrative, the δui×B/c inductive electric field contributes
just one piece to a more general Ohm’s law. In particular,
because the mechanism of stochastic ion heating occurs
primarily at ion-kinetic scales (which are much smaller than
the injection scales), contributions to the electric field from,
e.g., the Hall effect may be important, particularly at low values
of βi at which the ion skin depth di? ρth,i. To quantify these
contributions, we adopt the following generalized Ohm’s law
for the electric field E in which electron-inertia effects have
been neglected but contributions from the Hall and thermo-
electric fields are retained:

( )


= -
´

+
´

-E
u B J B
c enc

p

en
. 8i e

Here we have used quasi-neutrality to replace the electron
number density ne with the ion number density n. Equation (8)
is valid at scales λ much larger than the electron kinetic scales,
viz., λ? de, ρth,e, where de and ρth,e are the electron skin depth
and thermal Larmor radius, respectively.9 To simplify matters
further, we adopt an isothermal equation of state for the
electrons, so that the electron pressure pe= nTe with

=T conste . This is a good approximation for KAW fluctuations
at perpendicular scales satisfying ρth,e= λ= ρth,i, for which
the electron response is Boltzmann and therefore isothermal
(see, e.g., Section 7.2 of Schekochihin et al. 2009).
To obtain the potential contribution to the electric field

(Equation (8)), we consider AW/KAW turbulence in which the
fluctuations are anisotropic with respect to the magnetic-field
direction, with kP= k⊥. As in Section 2.1, we therefore assume
that the electric field is dominated by its potential contribution
and write |E|≈ |δE⊥,λ|∼ δΦλ/λ. The other terms on the right-
hand side of Equation (8) are then ordered as follows:

∣ ∣ ( )d
´

~ l^
u B

c
u

B

c
, 9i

i,
0

7 In contrast, perpendicular ion heating measured in low-resolution hybrid-
kinetic simulations of decaying Alfvén-wave turbulence by Vasquez (2015)
suggests that c2  0.03, if ξth is calculated using the E × B0 drift evaluated on
scales in the vicinity of ρth,i.
8 Klein & Chandran (2016) also allowed for a velocity-dependent exponential
suppression in their formulation of ( )^̂ ^D wE (see their Equations (8) and (17),
associating c* with c2 = 0.2.

9 Here we are considering scales relevant to stochastic ion heating, i.e.,
k⊥ρth,i ∼ 1. In our treatment, electron-inertia terms and electron finite-Larmor
radius corrections can be neglected in Equation (8), if k⊥de = 1 and
k⊥ρth,e = 1 hold at ion scales. This means that we are considering a range of
βi that is still larger than the (small) electron-to-ion mass ratio, i.e.,
me/mi = βi  1, as well as a range of temperature ratio, τ⊥, that is smaller
than the (large) inverse of such a mass ratio, i.e., 0 � τ⊥ = mi/me.
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where  pv B m n4A0 0 i is the Alfvén speed, c T ms e i is
the sound speed, and ρsB cs/Ωi is the sound radius. In the Hall
term (Equation (10)), ℓP,λ is the characteristic length scale along
the magnetic-field direction of a fluctuation with perpendicular
extent λ; the ratio ΘλB λ/ℓP,λ is related to the (possibly scale-
dependent) anisotropy of the turbulent cascade.

Finally, we assume that the sub-ion-scale fluctuations are
composed primarily of KAWs, an assumption supported by
measurements in the solar wind (e.g., Chen 2016, and references
therein). Such a cascade satisfies an approximate perpendicular
pressure balance (Schekochihin et al. 2009; Kunz et al. 2018):
δnλ/n≈− (2/β⊥)δBP,λ/B0, where β⊥B (1+ τ⊥)β⊥i. This allows
one to combine the thermoelectric potential with the δBP,λ term in
the electrostatic piece of the Hall field to obtain
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For a critically balanced Alfvénic cascade with enough
separation between the outer scale L and ρth,i, the spectral
anisotropy Θλ becomes =1 as the ion-kinetic scales are
approached. As a result, the contribution from the ΘλδB⊥,λ

term in Equation (12) at a given perpendicular scale λ= L
may be small enough when compared to that of the field-
parallel fluctuations, δBP,λ, to be neglected. (Note that

d d b» +^ ^B B 1 2 for KAW-like fluctuations, e.g., see
Section 3.6.2 of Kunz et al. 2018.) We make this assumption in
the remainder of the paper and drop the term∝ δB⊥,λ in
Equation (12).10

Converting Equation (12) without the Θλ term into the
velocity-space potential δΦw and inserting it into Equation 2(b)
(i.e., neglecting the multiplicative exponential suppression
factor in Equation (7) for the moment), one obtains an analytic
formula for the perpendicular-energy diffusion coefficient,
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Equation (13) implies that, depending on the spectral slopes of
the fluctuation spectra at the ion gyroradii, ions with different
perpendicular energies will diffuse differently in velocity space.
This dependence is computed in Section 2.3, where we assign
various spectral scaling laws to δu⊥i,λ and δBP,λ that correspond
to different regimes of AW/KAW turbulence. These are then
substituted into Equation (12) with λ∼ (w⊥/vth,i)ρth,i, thereby
yielding the velocity-scale dependence of δΦw and, through

Equations 2(b) and (4), ^̂D
E and Q⊥. In preparation for this

exercise, we first advance arguments for which of the terms in
Equation (12) provides the dominant contribution to the
potential as seen by a particle with Larmor radius ρi (when
compared to the thermal gyroradius, ρth,i, and the ion skin
depth, di, and thus depending upon β⊥ as well).
Stochastic heating of an ion with perpendicular random

velocity w⊥ involves fluctuations that occur on scales
comparable to that ion’s gyroradius, λ∼ ρi= w⊥/Ωi. This
scale must be compared with the ion-kinetic scales of the
background plasma, namely ρth,i and di, which determine the
nature of the turbulent fluctuations at scale λ and thus the
corresponding ordering of the different terms in Equation (12).
These background spatial scales also have a corresponding
scale in perpendicular velocity, namely the ion-thermal and
Alfvén speeds, vth,i=Ωiρth,i and b= W = ^v d vA i i th,i i ,
respectively. Just as the spatial scales determine the type of
fluctuations that are responsible for the stochastic heating, these
background velocity scales—and how they compare with the
ion’s velocity w⊥—determine the corresponding ordering of
the different terms in Equation (13). Moreover, as discussed in
Section 2.1, for a quasi-Maxwellian distribution, we expect that
the largest contribution to the total stochastic heating is
provided by ions with w⊥∼ vth,i. The contribution from those
ions whose perpendicular velocity exceeds a few times the ion-
thermal speed, w⊥? vth,i, is exponentially suppressed. Simi-
larly, the contribution from low-w⊥ ions (i.e., those with
w⊥= vth,i) to the overall heating would be progressively less
important due to the strong dependence of dµ F^̂D

E
w
3 on the

fluctuations’ amplitudes (viz., the lower the w⊥, the smaller the
spatial scale λ∼ ρi∝ w⊥ at which the potential is sampled).
Therefore, based on these arguments and what we know about
the cascade of Alfvénic fluctuations, we may anticipate the
following features of stochastic heating in the different β⊥
regimes.
We first consider Equation (13) at w⊥≈ vth,i. When β⊥i 1,

we have ρth,i di, so the ion-thermal gyroradius is encountered
sooner by the cascading fluctuations than is the ion skin depth.
At such a scale, the incompressive AW-like δu⊥i fluctuations
are still dominant over their compressive KAW-like δBP
counterparts (e.g., Cerri et al. 2017a, 2017b; which are also
suppressed by an additional factor b^

-1 in Equation (13) when
β⊥> 1). As a result, for β⊥i 1, we expect that the main
contribution to the overall stochastic heating of ions is provided
by the potential associated with the inductive term in
Equation (8).
On the other hand, if β⊥i= 1, then the ion-thermal Larmor

radius is much smaller than the ion skin depth, ρth,i= di, and
turbulent fluctuations encounter di as the first ion-kinetic scale
in their cascade. Because the ions decouple from the dynamics
of the magnetic field at sub-di scales, the spectrum of ion flow
velocity fluctuations becomes much steeper than its magnetic
counterpart (an effect captured by the J×B/en Hall term in
Equation (8)). Accordingly, δu⊥i fluctuations are negligibly
small at λ= di relative to magnetic-field fluctuations, a feature
that has been seen in both in situ measurements of solar-wind
turbulence (e.g., Šafránková et al. 2016; Chen &
Boldyrev 2017) and kinetic numerical simulations of Alfvénic
turbulence (e.g., Cerri et al. 2017a; Franci et al. 2018;
Arzamasskiy et al. 2019). Moreover, at β⊥< 1, the compres-
sive KAW-like δBP contribution to Equation (13) is now further
enhanced by the factor b^

-1. As a result, in the low-β regime,

10 In our simulations (see Section 3), Θ ≈ 0.05 at k⊥ρth,i ≈ 1. This corresponds
to an angle between the fluctuations’ wavevector, k, and the local background
magnetic-field direction (i.e., using a scale-dependent definition of the
background magnetic field, Bloc(r, ℓ), computed via 5-point increments; Cerri
et al. 2019) of ( )( )J = Q » -arctan 87k B,

1 . We note that ϑ(k,B) ≈ 80°–90° for
fluctuations measured in the near-Earth solar wind with spacecraft-frame
frequencies fspacecraft ∼ 1 Hz (Sahraoui et al. 2010).
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we anticipate the main contribution to the overall stochastic
heating of ions to be provided by the potential associated with
the nonideal terms in Equation (8).

2.3. Explicit Scalings for Stochastic Ion Heating from a
Critically Balanced Alfvénic Cascade

In this section, we utilize well-known spectral scaling
relations for δu⊥i,λ and δBP,λ in AW and KAW turbulence to
evaluate Equation (13) and the associated perpendicular
heating rate, Equation (4). To keep our expressions compact,
we neglect for the time being the exponential suppression
factor. A brief comment on how this factor modifies the results
is then provided in Section 2.3.3; the full calculation with the
factor included is reported in Appendix B. Strictly speaking,
the contents of this section (Section 2.3) are not fully self-
consistent, in that the transfer of turbulent energy to the thermal
energy of the particles via stochastic heating is not accounted
for in the adopted spectral scalings (which are power-law in
form). However, it does allow us to gain some intuition for how
D⊥⊥ might scale with w⊥ and how the perpendicular heating
rate per unit mass Q⊥ depends on the plasma parameters. In
doing so, we are most closely following Klein & Chandran
(2016), who noted that their approach neglects the back
reaction of the heating process on the turbulent power
spectrum. A self-consistent determination of D⊥⊥ and Q⊥
follows in Section 3, where we obtain spectral scalings for δΦλ,
δu⊥i,λ, and δBP,λ from self-consistent numerical simulations
and use them in Equations (5), (7), and (13) to determine D⊥⊥
and ∂Q⊥/∂w⊥.

Consider an inertial-range cascade of large-scale (MHD)
Alfvénic fluctuations characterized by a constant energy
cascade rate per unit mass εAW and ( )d e l~l^u i, AW

1 3. This
cascade is taken to exhibit a scale-dependent spectral
anisotropy governed by critical balance (Goldreich &
Sridhar 1995; Horbury et al. 2008), such that the characteristic
field-parallel length scale of a fluctuation of perpendicular size
λ satisfies ℓP,λ∼ L1/3λ2/3, where  eL vA

3
AW is the outer

scale. As the ion-kinetic scales are approached, the AWs
mutate into KAWs, with a fraction εKAW/εAW of the inertial
range cascade energy penetrating down into the dispersive
range.11 For the sub-ion-scale KAW cascade, we do not adhere
to any particular prescription for the associated wavevector
anisotropy, using instead a generalized version of Equation
(4.47) of Kunz et al. (2018),
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in which the anisotropy is parameterized by the exponent
α (Cerri et al. 2018). Different values of α may result from
assuming different nonlinear energy transfer timescales that
govern the critically balanced cascade. For example, α= 1
corresponds to a conservative KAW cascade with spectral

slope −7/3, as predicted by the gyrokinetic theory (e.g.,
Schekochihin et al. 2009). Accounting for a scale-dependent
volume-filling factor of the KAW fluctuations instead yields
α= 2, with an associated KAW spectrum having a slope of
−8/3 (Boldyrev & Perez 2012). Finally, α= 3 corresponds to
a scale-independent anisotropy, a feature sometimes seen in
hybrid-kinetic simulations of AW/KAW turbulence (e.g.,
Franci et al. 2018; Arzamasskiy et al. 2019) and predicted by
theories of reconnection-mediated Alfvénic turbulence
(Loureiro & Boldyrev 2017; Mallet et al. 2017).

2.3.1. Stochastic Heating in β 1 AW Turbulence

When β⊥i 1, the nonlinear fluctuations approaching the
ion-Larmor scale are composed primarily of AWs. Therefore,
the main contribution to the electrostatic potential in
Equation (12) is from the δu⊥i fluctuations, and the diffusion
coefficient can be approximated by
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with the Alfvénic fluctuations satisfying
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Substituting this expression into Equation (15) with
λ/ρth,i∼ w⊥/vth,i yields
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By using Equation (4) and adopting for simplicity a Maxwellian
distribution function in w⊥, ( ) ( ) ( )= -^ ^f w w v m vexpE 2

th
2

i th
2 ,

we find that the perpendicular heating rate per unit mass is
given by

( )
( )

e
= L^Q , 18

AW

AW
AW

where ΛAW is a constant independent of β⊥i and τ⊥ that takes into
account the various coefficients neglected in our scaling
arguments. Therefore, at any β⊥ 1, the stochastic-heating rate
(associated with AW-like fluctuations only) obtains an approxi-
mately constant fraction of the energy cascade rate. This result is
consistent with the one in Chandran et al. (2010) for the case in
which the dominant contribution to the electric-field fluctuations is
due to the δui×B0/c induction (and the exponential suppression
factor is neglected; cf. their Equation (31)).

2.3.2. Stochastic Heating in low-β KAW Turbulence

When β⊥= 1, the ion-Larmor radius is smaller than the ion
skin depth, ρi∼ ρth,i= di. As a result, the fluctuating potential
(Equation (12)) evaluated at ion-Larmor scales is dominated by
the contribution from the δBP,λ fluctuations, and the diffusion
coefficient can be approximated by
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11 In gyrokinetic turbulence, the AW energy that does not make its way into
the KAW cascade channel while going through the ion-kinetic scales is
transferred into ion-thermal energy through Landau damping and/or a
perpendicular phase-space cascade of ion-entropy fluctuations (Schekochihin
et al. 2009). Here we allow for a portion of the cascading energy to also go into
perpendicular stochastic heating of the ions. According to the discussion that
follows Equation (13) in Section 2.2, when β⊥  1, this heating mechanism
drains a portion of the energy carried by the AW cascade (εAW), while it is a
portion of the KAW cascade (εKAW) that is going into such an ion-energy
channel at β= 1.
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with compressive KAW-like fluctuations satisfying
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Substituting this expression into Equation (19) with
λ/ρth,i∼w⊥/vth,i yields
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For α= 1, ( )
^̂D
KAW is independent of w⊥; for α= 2,

( ) µ^̂ ^D w ;KAW 1 2 and for α= 3, ( ) µ^̂ ^D wKAW . Again adopting
a Maxwellian distribution function in w⊥, we may estimate the
perpendicular heating rate per unit mass in low-β KAW
turbulence as
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where ΛKAW is a constant independent of β⊥i and τ⊥.
If we further make the assumption that the transition from the

AW cascade to the KAW cascade occurs at and is continuous
across k⊥ρth,i∼ 1, then we may estimate /e e ~KAW AW
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If instead the transition were to occur at k⊥di∼ 1 (e.g., Chen
et al. 2014), then
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2.3.3. Exponential Attenuation

As forewarned at the start of Section 2.3, we have been
omitting the exponential suppression factor introduced in
Equation (7) to keep the limiting expressions for ^̂D

E and
Q⊥ in different β regimes compact. When this correction is
included, the diffusion coefficient ( )^̂ ^D wE acquires a peak at a
certain velocity, ( )

^w
peak , corresponding to the “most affected”

(or “quasi-resonant”) ion population. For example, an expo-
nentially corrected diffusion coefficient of the form

( ) ( ) [ ( ) ]µ -^̂ ^ ^ ^D w w v c w vexpE a b
th,i th,i , with constants a,

b, and c� 0, displays a peak at ( )=^w a bc vb1
th,i (except in

the case of standard KAW anisotropy, for which α= 1, a= 0,
and ^̂D

E is just an exponentially decreasing function of w⊥). If
the exponential suppression were important, then the differ-
ential perpendicular-heating rate, ∂Q⊥/∂w⊥, would also peak,
at (( ) )( ) = +^w a bc v1 bpeak 1

th,i. This would result in stochas-
tic heating occurring most strongly on length scales

( )( ) ( )l r» ^w vpeak peak
th,i th,i. On the other hand, if the fluctuations

are in a regime in which the exponential correction is not
important, then, to the lowest order, we recover the cases
discussed in Sections 2.3.1 and 2.3.2, viz., a power-law diffusion
coefficient of the form ( ) ( )µ^̂ ^ ^D w w vE a

th,i and a differential
heating ∂Q⊥/∂w⊥ peaking at ( )( ) = +^w a v1 2peak

th,i

because of the ∂f E/∂w⊥ factor. We refer the reader to
Appendix B for details.

3. Numerical Verification

We test the theory presented in Section 2 using hybrid-
kinetic simulations with the particle-in-cell code PEGASUS++
(Kunz et al. 2014; Arzamasskiy et al. 2021, in preparation).
Our hybrid model consists of fully kinetic ions coupled to a
massless, charge-neutralizing, isothermal electron fluid via the
generalized Ohm’s law (Equation (8); see Arzamasskiy et al.
2019, for the model equations). While hybrid kinetics excludes
electron kinetic effects such as electron Landau damping (e.g.,
TenBarge & Howes 2013; Told et al. 2016; Grošelj et al.
2017), it retains certain ion-energization mechanisms (such as
stochastic heating and ion-cyclotron resonances) that are not
included in other models often used to study turbulent
dissipation in collisionless plasmas (e.g., gyrokinetics; Howes
et al. 2008; Told et al. 2015; Kawazura et al. 2019). We refer
the interested reader to Told et al. (2016) and Camporeale &
Burgess (2017) for a comparison of linear modes in hybrid
kinetics, gyrokinetics, and full kinetics. Similarly, a compara-
tive study of fluctuations’ properties in three-dimensional
hybrid- and full-kinetic turbulence at sub-ion scales can be
found in Cerri et al. (2019).

3.1. Simulation Setup

We consider an initially uniform plasma with ion density n0,
threaded by a uniform background magnetic field B0= B0ez
and placed within a three-dimensional, periodic computational
domain of size ´^L Lz

2 with Lx= LyB L⊥. Turbulence is
driven continuously in this plasma via a random, incompres-
sible external force Fext, which excites ion momentum
fluctuations in the x–y plane perpendicular to B0. The forcing
is time decorrelated over the interval τcorr using an Ornstein–
Uhlenbeck process (see Section 2 of Arzamasskiy et al. 2019).
Only the largest-scale modes with  p=k L2F and

[ ] p= ´^ ^k L1, 2 2F are driven. A critical balance of the
largest-scale fluctuations is assured by choosing a forcing
amplitude such that the rms mean velocity fluctuation, urms,
satisfies urms/vA0≈ L⊥/LP in the quasi-steady turbulent state.
Accordingly, τcorr= L⊥/2πurms≈ LP/2πvA0 is proportional to
the Alfvén crossing time τA= LP/vA0. At the smallest scales,
dissipation of turbulent energy is achieved by means of a
fourth-order hyperresistivity on the magnetic field and low-pass
filters on the first two moments of fi (viz., ni and niui).
In this paper, we combine results from two simulations of

low-β turbulence: a simulation with βi0= 0.3 presented by
Arzamasskiy et al. (2019) and a new simulation with βi0= 1/9.
This new simulation employs an elongated box with
LP= 6L⊥= 48πdi0= 144πρi0, discretized into Nx= Ny= 288
and Nz= 1728 cells, achieving an isotropic resolution
Δx; 0.087di0 (;0.26ρi0). The simulated wavenumber space
is then 0.25� k⊥di0� 36 and 0.04 kPdi0� 36 (corresponding
to 0.083 k⊥ρi0� 12 and 0.014 kPρi0� 12). In each cell, the
initial ion distribution function is represented with 512 particles
(giving ≈73 billion particles in total).12 We run this simulation
for ≈7.6 τA, with the quasi-steady state developing around

12 The βi0 = 0.3 simulation of Arzamasskiy et al. (2019) utilized a δf method
to reduce the impact of particle noise on the fluctuations. This new βi0 = 1/9
simulation adopts a full-f scheme in order to better handle potentially strong
local density variations that arise in this low-beta regime.
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≈4.3 τA. Our results are time-averaged over the remaining
≈3.3 τA (corresponding to ≈ W-500 i0

1). For the βi0= 0.3 run,
we define the quasi-steady state as starting from t/τA≈ 4.4 and
continuing to the end of the simulation at t/τA≈ 19.9
(corresponding to ≈ W-4110 i0

1).

3.2. Fluctuation Spectra for βi0= 1/9

Figure 1 presents energy spectra and scale-dependent
spectral indices (“local slopes”) for the βi0= 1/9 run versus
(a) and (b) the wavenumber k⊥ perpendicular to B0 and (c) and
(d) the frequency ω measured in the plasma frame. These
fluctuations exhibit significantly different spectra than in the
corresponding β∼ 1 case (e.g., see Cerri et al. 2019, and
references therein). First, the MHD-range spectra of electric
and magnetic fluctuations both show a slope shallower than the
usual anisotropic-MHD −5/3 scaling (e.g., Goldreich &
Sridhar 1995) and closer to −3/2. (This may be due to the
limited scale separation between the driving scales and the ion
skin depth.) Second, while the spectral slope of the electric-
field energy in the kinetic range is extremely close to −2/3, the
corresponding magnetic-field spectrum steepens continuously
beyond the −8/3 predicted to accompany the −2/3 electric
spectrum.

We interpret this sub-ion-Larmor steepening as a signature
of energy dissipation due to ion-heating mechanisms. This
interpretation is supported by the frequency spectra in
Figure 1(c), which exhibit slopes close to the −2 corresponding
to a conservative energy cascade at frequencies ω/Ωi0 0.2
but steepen progressively through the sub-ion-Larmor range.

As we will show in Section 3.3, there are two ion-heating
mechanisms operating simultaneously in this range, namely
stochastic and cyclotron heating. The corresponding approx-
imate wavenumber ranges in which one of these mechanisms is
measured to be dominant over the other one are indicated in
Figures 1(a) and 1(b) as light red (light blue) shaded regions for
stochastic (cyclotron) heating. These ranges have been
determined via direct measurement of the ions’ perpendicular
heating versus k⊥, which shows a first peak around k⊥ρi0∼ 1
that we associate with stochastic heating and a second peak
around k⊥ρi0∼ 3 that we associate with cyclotron heating (see
Figure 3 and accompanying discussion in Section 3.3).
Although there would likely be an overlap between the actual
ranges over which these mechanisms operate at sub-ion scales,
for the sake of clarity, the extent of these regions in
Figures 1(a) and 1(b) is taken to be between k e0 and k e0
(k0 being the peak wavenumber of each mechanism), a range
previously used to estimate the total amount of stochastic ion
heating (see, e.g., Xia et al. 2013; Martinović et al. 2020). The
highlighted wavenumber ranges also have corresponding
frequency ranges, highlighted in panels (c) and (d). These
frequency ranges are obtained using an approximate AW/
KAW dispersion relation for the stochastic-heating range13

and, for cyclotron heating associated with the n= 1 resonance,
considering a resonance broadening of roughly Δω/ω0∼

Figure 1. Compensated energy spectra (top panels) and local spectral slopes (bottom panels) for the βi0 = 1/9 simulation. (a) Wavenumber spectra (compensated by
( )r^k i0

3 2) of the magnetic field B (blue solid), the electric field E (red solid), the MHD component of the electric field Emhd = −ui × B/c (green dashed), and the
kinetic component of the electric field Ekin = (J × B/c − Te∇n)/en (purple dashed). (b) Local spectral slopes vs. k⊥ρi0. (c) Frequency spectra (compensated by
( )w Wi0

2) of B and E (blue and red, respectively). (d) Local spectral slopes vs. ω/Ωi0. The light red (light blue) shaded regions highlight the wavenumber/frequency
ranges where stochastic (cyclotron) heating is considered to be important.

13 Namely, [ ( ) ( )]w t r b= + + +^ ^ ^k v k1 1 22 2
A
2 2

i
2 (this formula smoothly

interpolates between the AW and KAW limits; cf. Equations (4)–(5) in Howes
et al. 2008). Different approximations for the KAW limit (see, e.g., Lysak &
Lotko 1996) provide similar qualitative results, viz., that ω ; Ωi at k⊥ρi ≈ 3.
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1/k0ρi0 (light blue region in panels (c) and (d)). We mention
that there are also higher-n resonances (shown as vertical
dotted lines), likely contributing to the overall cyclotron
heating.14 A detailed analysis of the fluctuations’ spectral
features, structure functions, and turbulence-related dynamics
(e.g., magnetic reconnection) will be reported on elsewhere.

Before providing diagnostic evidence supporting this claim
—that the ion- and sub-ion-Larmor-scale spectral steepening
we observe is attributable to particle energization via stochastic
and cyclotron heating—we note that such an association
between changes in spectral slopes and energy dissipation is a
relatively old idea in the solar-wind context (Coleman 1968),
one that continues to be employed today (e.g., Woodham et al.
2018). Indeed, the steepness of the magnetic spectrum has been
shown to correlate with both the energy cascade rate and power
level in the inertial range (Smith et al. 2006; Bruno &
Trenchi 2014) and the thermal proton temperature (Leamon
et al. 1998). A more recent example may be found in Figure 5
of Chen et al. (2019), which shows a gradual steepening of the
magnetic-field power spectrum in the Earth’s magnetosheath
throughout the sub-ion-Larmor range. While this kind of
steepening has been attributed in some theoretical models to
electron Landau damping (Sahraoui et al. 2009; Howes et al.
2011; TenBarge et al. 2013; Passot & Sulem 2015), the
resemblance between our Figure 1(b) and Figure 5(b) of Chen
et al. (2019) is notable given that our simulations do not
include electron kinetics.

3.3. Ion Heating in Low-β Turbulence

In Section 3.2, we attributed the steepening of the magnetic
spectrum in the sub-ion-Larmor range to the energization of ion
particles through stochastic and cyclotron heating. Here we
provide evidence for this interpretation using data taken from
both the βi0= 1/9 and 0.3 simulations. In particular, we
examine the (gyrotropized) ion distribution function f (wP, w⊥)
alongside direct measures of dQ⊥/dw⊥ and ^ ^Q kd dlog from
these simulations, which in turn enable the evaluation of ^̂D

E

via Equation (5). These quantities are then compared to the
theoretical predictions presented in Section 2. Namely, the
actual δΦλ fluctuation spectrum obtained from 80 (50)
snapshots of the βi0= 1/9 (0.3) simulation during its quasi-
steady state is employed in the expression for the diffusion
coefficient (Equation (7)) and the associated differential heating
(Equation (5)), including the exponential correction; these
quantities are then time-averaged. At the same time, we employ
an analogous procedure that considers only the δu⊥,λ or δBP,λ
fluctuations’ spectrum in the approximate expression for ^̂D

E

(Equation (13), including the exponential suppression term);
this allows us to separate out the MHD and kinetic (non-MHD)
contributions to the diffusion coefficient and the associated
differential heating (Equation (5)).

3.3.1. Ion-heating Diagnostics

To obtain the differential heating rate in the simulations, the
following procedures have been implemented in the PEGASUS+
+ code (see also Arzamasskiy et al. 2019). At a given time, the
differential rate of perpendicular heating in velocity space is
computed as the sum of the instantaneous rate of work done by

the electric field on each particle p. Namely, we compute

· ( )


å=
¶
¶ ¶

~
^

^

^
^ ^E wQ

Q

w w
25

p
p p

2

and

( )



 å=

¶

¶ ¶
~

^
Q

Q

w w
E w , 26

p
p p

2

where EpBE(xp) is the electric field at the position xp of the
particle p with peculiar velocity wpB vp− up, where upB u(xp)
is the mean-flow velocity at the particle’s position. Here ⊥ and
P are defined with respect to the actual magnetic-field direction
at location xp: wp=wPpbp+w⊥p and Ep= EPpbp+E⊥p, with
bpBB(xp)/|B(xp)| being the local magnetic-field unit vector.
Each of the above quantities are then binned in a two-
dimensional (wP, w⊥) space so that they are a function of the
gyrotropic (peculiar) velocity space: ( )

~
^ ^Q w w, and

( ) 
~

^Q w w, .The total perpendicular or parallel heating rate is
obtained as their integrals over the whole (wP,w⊥) space. (Thus,
for instance, the one-dimensional wP integral of ∂

2Q⊥/∂wP∂w⊥

provides dQ⊥/dw⊥.) To obtain the differential rate of heating in
wavenumber space, e.g., ^ ^Q kd dlog , the electric field is
Fourier-transformed and then evaluated in different log-spaced

( ) +^k k kx y
2 2 1 2 bins, E⊥(k⊥,bin), which are then used to

compute the associated rate of work on all of the simulation
particles. (In this case, the rate of work is integrated over the
whole w space during runtime, so that the simulation output is a
function of the k⊥ bins only; an updated version of this
diagnostic that outputs the heating rate in the whole three-
dimensional (wP, w⊥, k⊥) space is currently under develop-
ment.) In the following analysis, all of the above quantities are
time-averaged over the quasi-steady state (hereafter denoted
by 〈 · 〉).

3.3.2. Free Parameters in Theoretical Predictions

When the theoretical predictions presented in Section 2 are
computed from the actual fluctuation spectra obtained from the
simulations, the theory has essentially three free parameters: (i)
a normalization constant in Equation (7), (ii) an order-unity
constant κ0 that specifies the “resonance-like condition”
k⊥w⊥/Ωi0= κ0 that is used to transform the fluctuations’
spectra from wavenumber to perpendicular-velocity space,
viz. ( )⟷ ( )∣d dF F k^ ^ = W^ ^w k k w0 i0 , and (iii) the constant c* in
the exponential suppression factor. The constant in the first
item is determined by normalizing the perpendicular-energy
diffusion coefficient obtained from the δΦtot fluctuations’
spectra (Equation (7)) to the ^̂D

E directly obtained from the
simulation at a single velocity point in the w⊥� vth,i0 range (the
exact point used in the following being w⊥/vth,i0= 0.8, but we
verified that using any value in the range 0.5 w⊥/vth,i0 1
did not qualitatively change the results). This very same
normalization constant is then used consistently for all of the
theoretical curves, i.e., dQ⊥/dw⊥ and ^ ^Q kd dlog , as well as
for the theoretical predictions obtained via the different
contributions to the total potential (viz., δΦmhd and δΦkin).
Concerning the value of κ0 and c*, we show the plots when
(κ0, c*)= (1.1, 0.09) are adopted for the βi0= 0.3 simulation,
and (κ0, c*)= (1.25, 0.05) are used in the βi0= 1/9 case.

14 The n > 1 resonances are not formally associated with KAW-like
fluctuations but rather with other types of fluctuations being relevant at low
β (see, e.g., Cerri et al. 2016, 2017b; Grošelj et al. 2017).
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These values seem to best fit the simulations’ results. The
difference in the two values of κ0 accounts somewhat for the
different duration of the quasi-steady turbulent stage in the two
simulations and thus of the consequent total absolute heating of
the ions during the runs (i.e., how ρth,i changes in the longer
βi0= 0.3 simulation). Nevertheless, we have verified that as
long as it is in the range 0.9 κ0 1.4, the results do not
change qualitatively. For what concerns the difference in the
two values of c*, we interpret it as the result of a different level
of intermittency within the two runs (being larger at lower β).
We have verified that, when varying κ0, c* can also be slightly
adjusted without qualitatively changing the results; values in
the range 0.045 c* 0.055 are allowed at βi0= 1/9, while
the same holds for a range of values 0.08 c* 0.11 at
βi0= 0.3 (this case being less well constrained due to the

higher errors associated with the ^ ^Q kd dlog diagnostics
around k⊥ρth,i 1; see Figure 3 and footnote 18).

3.3.3. Velocity-space Dependence of Ion Heating

We begin by examining how the ion perpendicular distribu-
tion function 〈f (w⊥)〉, the perpendicular-energy diffusion
coefficient á ñ^̂D

E , and the associated differential perpendicular
heating 〈dQ⊥/dw⊥〉 behave in w⊥ space. These quantities are
traced by the solid black lines in Figure 2; the results from
βi0= 1/9 (0.3) are in the left (right) column. These are to be
compared with the theoretical predictions derived in Section 2
for the diffusion and heating coefficients obtained using the
spectra of the total electrostatic potential (solid orange line), the

Figure 2. Left column: comparison between the stochastic-heating theory presented in Section 2 and βi0 = 1/9 simulation results vs. w⊥/vth,i0. (a) Perpendicular
distribution function averaged over the quasi-steady turbulent state, 〈f (w⊥)〉 (solid line; the dotted line shows the initial Maxwellian distribution for reference). (b)
Averaged perpendicular-energy diffusion coefficient, á ñ^̂D

E , from simulation (solid black line) and theory (using Equation (13) with the exponential suppression
factor) when the full potential (δΦtot; solid orange line) or only its ideal (δΦmhd; dashed–dotted green line) or nonideal (δΦkin; dashed purple line) contribution is used.
(c) Averaged differential perpendicular heating, 〈dQ⊥/dw⊥〉. Right column: same as left column but using results from the βi0 = 0.3 simulation.
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MHD part of the potential (dashed–dotted green line), and the
kinetic (i.e., non-MHD) part of the potential (dashed purple line).

In both simulations, we observe an evolution of the
perpendicular distribution function, f (w⊥), from its initial
Maxwellian (dotted black lines) toward a broader shape with a
flat-top core (solid black lines). This evolution is the
consequence of the heating mechanisms operating in the
turbulence. In particular, we attribute the development of a
flattened core to stochastic heating, following Klein &
Chandran (2016). This interpretation is supported by the two
lower panels of this figure, in which both the diffusion
coefficient ^̂D

E and the differential heating dQ⊥/dw⊥ are fit
reasonably well by the theoretical curve for w⊥ vth,i0, i.e.,
where the flat-top core develops.15 From these curves, it is also
evident how the relative importance of the contribution to the
total stochastic ion heating from different fluctuations changes
with the plasma beta; as βi0 decreases, the nonideal contrib-
ution to the electrostatic potential responsible for the stochastic
heating of the ions, ( ) d t dF µ +l l^

- B1,kin
1

, , becomes
progressively more important than its ideal counterpart,
δΦλ,mhd∝ λ δu⊥,λ (cf. Equations (12) and (13) and the
accompanying discussion). This is highlighted by explicitly
plotting the theoretical perpendicular diffusion coefficient (and
the associated differential perpendicular heating) when only the
ideal (δΦmhd; dashed–dotted green line) or nonideal (δΦkin;
dashed purple line) contributions to the total electrostatic
potential (δΦtot; solid orange line) are used.16 However,
Figure 2 also shows that theoretical curves fit neither the
diffusion coefficient ^̂D

E nor the differential heating dQ⊥/dw⊥
over the full range of w⊥. This can be understood by
considering the fact that (i) stochastic heating is not the only
mechanism involved in the heating of ions in our simulation,
and (ii) the differential heating in Figure 2 is the result of an
integration over wP of a more structured ( )

~
^ ^Q w w, . A

discussion of heating signatures within the two-dimensional
(wP, w⊥) space is provided in Section 3.5.

3.3.4. Fourier-space Dependence of Ion Heating

Figure 3 displays the complementary diagnostic, the (aver-
aged) differential heating in wavenumber space á ñ^ ^Q kd dlog ,
measured in the βi0= 1/9 (top panel; black solid line) and the
βi0= 0.3 (bottom panel; black solid line) runs. Overlaid are the
theoretical curves corresponding to Equation (5) using the total
fluctuating potential (orange solid line), the MHD part of the

potential (green dotted–dashed line), and the kinetic part of the
potential (purple dashed line).17

At βi0= 1/9, the differential heating clearly exhibits two
distinct peaks in the perpendicular-wavenumber space: one at
k⊥ρi0≈ 1 and a second at k⊥ρi0≈ 3. We interpret the first peak
as the result of stochastic ion heating, consistent with the
theoretical curves obtained when the actual fluctuations’
spectra are employed in the expressions derived in Section 2.
The second peak at k⊥ρi0≈ 3 is interpreted as being due to ion-
cyclotron heating associated with the n= 1 cyclotron reso-
nance, consistent with the fact that the frequency of the
fluctuations reaches ω≈Ωi0 at such a value of k⊥ρi0 (see
Figure 1 and accompanying discussion). An additional (minor)
contribution to the total ion heating can be seen at k⊥ρi0 6,
likely associated with the n> 1 cyclotron resonances discussed
in Section 3.2. These two mechanisms, stochastic and ion-

Figure 3. Top panel: differential perpendicular energization averaged over the
quasi-steady turbulent state, á ñ^ ^Q kd dlog , vs. k⊥ρi0 in the βi0 = 1/9 simulation.
The numerical result (black solid line) is compared with the theoretical prediction
using the spectrum of the total electrostatic potential fluctuations in Equation (12),
δΦλ,tot (orange solid line), and the approximations considering only the δΦλ,mhd

(green dotted–dashed line) or δΦλ,kin (purple dashed line) spectrum; the
exponential correction is included, with c* = 0.05. The plots are obtained using
the relation k⊥w⊥/Ωi0 = κ0 with κ0 = 1.25 to best fit the simulation’s results in
both the velocity and wavenumber spaces. The light red (light blue) shaded regions
show the k⊥ range where stochastic (ion-cyclotron) heating is considered to be
important. Bottom panel: same as the top panel but for the βi0 = 0.3 simulation.
Here c* = 0.09 and κ0 = 1.1 have been adopted.

15 The differential perpendicular energization dQ⊥/dw⊥, as measured in our
simulations, exhibits some (subdominant) cooling effects at w⊥/vth,i0  2.
Because these cooling features are also present at very early times (including
the initial time, t = 0), they are likely due to errors associated with numerical
noise and interpolation of the fields to the particle positions. We have modeled
this cooling feature using the first few snapshots of a simulation and removed it
from 〈dQ⊥/dw⊥〉 in the quasi-steady state. While we have verified that this
cooling correction behaves sensibly when applied at late times (see Figure 9 in
Appendix A), one should consider the simulation curves in Figure 2 to be most
reliable for w⊥/vth,i0  2.
16 Note that, while δΦtot,λ is obtained as the potential part of the actual δE⊥,λ
fluctuations, the two components δΦMHD,λ and δΦkin,λ are obtained via the
approximate formulas using δu⊥i,λ and δBP,λ, respectively (i.e., where an
approximate perpendicular pressure balance has been used to rewrite δnλ
fluctuations in terms of δBP,λ and neglecting the anisotropy correction
ΘλδB⊥,λ; see Equation (12)). For this reason, the curves obtained via the
approximate formulae do not exactly overlap with the one obtained using the
actual δΦtot, especially at small w⊥ (corresponding to small-scale wavelengths
λ) where different fields (namely, δn and δBP) are affected differently by
numerical filters in the code.

17 To obtain the theoretical predictions plotted in Figure 3, the theoretical lines
of dQ⊥/dw⊥ corresponding to Equation (5), which are plotted in Figure 2, have
been interpolated into ^klog space. This procedure also takes into account the
logarithmic spacing of the volume in passing from dw⊥ to ^kdlog , i.e.,
that ( )[ ]k= W k^ ^ ^ ^ ^ = W^ ^Q k k Q wd dlog d d w k0 i0 0 i0 .
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cyclotron heating, contribute roughly equally to the overall
perpendicular heating of the ions at βi0= 1/9: ^ ^Q Qstoch tot ≈

»^ ^Q Q 50cycl tot %.
The overall perpendicular ion heating at βi0= 0.3 (Figure 3,

bottom) is dominated by scales at which we expect ion-
cyclotron heating to be important; stochastic heating accounts
for at most a quarter of the total heating: ^ ^ Q Q 75cycl tot %
and ^ ^ Q Q 25stoch tot %.18

An important trend that arises from the above analysis is that
(i) stochastic ion heating should become progressively more
important than ion-cyclotron heating as the plasma β decreases,
and (ii) this result is mainly due to contributions from the
nonideal electric field (and associated potential, δΦkin) arising
from the Hall and thermoelectric effects in Equation (8). In fact,
while the ideal contribution to the stochastic heating from
δΦmhd is nearly constant when passing from βi0= 0.3 to 1/9,
the heating associated with δΦkin nearly doubles in its
contribution. This in turn lowers the amount of the fluctuations’
energy that is available when the ion-cyclotron frequency is
reached in the cascade, consequently diminishing the contrib-
ution of the ion-cyclotron mechanism to the overall ions’
perpendicular heating.

3.4. Intermittency Contributions to Stochastic Heating

To explore the degree of intermittency of the potential
fluctuations (and its effect on the stochastic heating) in the
βi0= 1/9 simulation, in Figure 4, we report the probability
density function (PDF) of the normalized total potential
fluctuations, dFq m vi tot i th,i0

2 (orange solid line), and its ideal
and nonideal parts, dFq m vi mhd i th,i0

2 (green dotted–dashed line)
and dFq m vi kin i th,i0

2 (purple dashed line), respectively. Equivalent
Gaussian distributions are also drawn as gray lines (with the same
line style as the potential contribution to which they correspond).
These PDFs are computed on two different ranges of scales: (i)

r^ k1 e ei0 (upper panel), corresponding to the range
where stochastic heating is considered to be the dominant ion-
heating mechanism, and (ii) k⊥ρi0� 1 (lower panel), corresp-
onding to the entire sub-ion-gyroradius (“kinetic”) range.

From a statistical point of view, Figure 4 clearly shows that,
while the width of the overall fluctuation-amplitude distribution
decreases toward smaller scales, the degree of intermittency of
these fluctuations simultaneously increases. Both aspects are
relevant for the enhancement of stochastic ion heating. Let us
consider the range of scales reported in the upper panel of
Figure 4 (viz. r^ k1 e ei0 ). In this range around
k⊥ρi0∼ 1, the quantity dFq m vi tot i th,i0

2 corresponds to (a
generalized version of) the stochasticity parameter that has
been previously used to estimate the efficiency of stochastic
heating (e.g., Xia et al. 2013; Vasquez 2015; Martinović et al.
2020). First, one notices that the distribution of fluctuations’
amplitudes is relatively broad in this simulation, even for an
equivalent Gaussian distribution; this implies that, even without
taking into account intermittency, gyroscale fluctuations are not
negligibly small. This is further quantified by computing both
the rms stochastic-heating parameter, ξ(rms), and an effective

value, ξ(eff), that takes into account the non-Gaussian nature of
the actual fluctuations’ PDFs.19 These values are reported in
each panel for the different scale ranges considered. Even in its
rms version, within both scale ranges, the stochasticity
parameter is large enough (ξ 0.1) that the overall effect of
an exponential suppression term in Equation (7) should be
small if c*≈ 0.01–0.1. Second, intermittency does enhance the
effective stochasticity parameter (and the associated heating).
In fact, in the range of scales around k⊥ρi0∼ 1 (upper panel of
Figure 4), intermittency increases ξ(rms) by ≈19%. This effect is
more important when the whole sub-ion range of scales is
considered, k⊥ρi0� 1 (lower panel of Figure 4); over this range
of scales, ξ(eff) is increased beyond its equivalent-rms value
ξ(rms) by ≈22% (although the absolute values of ξ in this range
are indeed smaller than the corresponding values in the range
around k⊥ρi0∼ 1).
The degree of intermittency also appears to depend on βi. In

the top panel of Figure 5, we report a comparison between the

Figure 4. The PDF of (normalized) potential fluctuations, dFq m vi i th,i0
2 , from

our βi0 = 1/9 simulation in the range of scales in which stochastic heating is
considered to be the dominant ion-heating mechanism, r^ k1 e ei0
(upper panel), and at all sub-ion-gyroradius scales, k⊥ρi0 � 1 (lower panel).
Statistics of both the total potential, δΦtot (orange solid), and its ideal and
nonideal parts, δΦmhd (green dotted–dashed) and δΦkin (purple dashed),
respectively, are reported. Equivalent Gaussian statistics are also drawn as gray
lines (with corresponding line styles). Both the “effective” and rms value of the
stochasticity parameter (computed using the actual PDF of the fluctuations) is
reported in each plot as ξ(eff) and ξ(rms), respectively. In the range

r^ k1 e ei0 (upper panel), dFq m vi i th,i0
2 corresponds roughly to the

thermal stochasticity parameter, ξth, which estimates the overall efficiency of
stochastic heating (see Section 2.1).

18 The older βi0 = 0.3 simulation employed a heating diagnostic that used the
total particle velocity vp in Equations (25) and (26) rather than its peculiar
velocity wp (as in the version of the diagnostic employed in the new βi0 = 1/9
run). Also, the k⊥ resolution used to compute this diagnostic was lower in the
βi0 = 0.3 run (12 bins) than for βi0 = 1/9 (40 bins). As a result, the error bars
on the heating at k⊥ρi0  1 are much larger in the βi0 = 0.3 run.

19 Because the heating is proportional to ∣ ∣ ∣ ∣d xF »q m vi i th,i0
2 3 3, we define this

effective parameter by ⎡⎣ ⎤⎦∣ ∣ ( )( ) òx x x x= deff 3 1 3
, where  is the actual PDF

of dFq m vi i th,i0
2 .
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PDFs of the normalized total potential fluctuations, x
dFq m vi tot i th,i0

2 , around k⊥ρth,i∼ 1 in the βi0= 1/9 (orange
solid line) and 0.3 (purple dashed line) simulations. It is evident
that the fluctuations’ distribution broadens significantly at
lower βi0, passing from ( )x » 0.1tot

eff at βi0= 0.3 to ( )x » 0.17tot
eff

at βi0= 1/9. This demonstrates that stochastic heating is
enhanced as the plasma β decreases, as expected. But we also
find that the level of intermittency increases at lower β. In the
bottom panel of Figure 5, we report the ratio between the actual
PDF of ξ and an equivalent-width Gaussian distribution
characterized by the same standard deviation σ of the actual
PDF (because σ depends on βi0, the ratio is plotted versus ξ/σ
for the comparison to be meaningful). This PDF-to-Gaussian
ratio exhibits larger deviations from unity at βi0= 1/9 (orange
solid line) than at βi0= 0.3, a feature we further quantify by
calculating the so-called “excess kurtosis,” K− 3 (with the
kurtosis defined by KB 〈ξ4〉/〈ξ2〉2; K= 3 for a Gaussian
distribution with zero mean). This quantity doubles passing
from βi0= 0.3 (for which K− 3≈ 0.28) to βi0= 1/9 (being

K− 3≈ 0.56). We interpret this enhanced intermittency as
being responsible for decreasing the effective value of c*
needed to fit our simulation results at different βi0. Further
numerical and observational studies are needed to determine
the exact dependence of c* on the plasma parameters.
To further illustrate the partially intermittent nature of the

stochastic ion heating in the βi0= 1/9 run, we show the
evolution of one of the simulation particles in Figure 6. This
particle was specifically chosen because it increased its energy
significantly over a short period of time by interacting with an
intense spatially and temporally localized potential fluctuation.
Figure 6(a) shows the perpendicular ion energization

〈qiE⊥ · w⊥〉 in the perpendicular (to the guide field) plane
through which the tracked particle passed at that moment. The
energization is averaged over multiple cells in the simulation (a
volume of 183 cells) to reduce the noise; it is normalized to
du trms

2
cross, which serves as a proxy for the cascade rate. It is

clear that the majority of the perpendicular energization
happens in a spatially localized region. In Figure 6(b), we
show the (normalized) potential fluctuations, dFq m vi i th,i

2 , in
the same plane represented in panel (a); in this case, δΦ has
been filtered to select only those modes satisfying k⊥ρi0> 1.
Comparing this contour plot with the one in panel (a), one can
see a clear correlation between the region in which the
amplitude of the potential fluctuations is larger and where most
of the ion energization occurs. The majority of the energization
happens in the region in which the Larmor-scale potential
fluctuations are comparable to the thermal kinetic energy of a
typical particle, dF ~q m vi i th,i0

2 (i.e., ξ∼ 1). As discussed
earlier, the reason why such potential fluctuations can be so
large, even though ∣dF ~r >^q m v0.1ki rms 1 i th,i0

2
i0

, is because the
turbulence is intermittent (cf. the bottom panel of Figure 4).
This picture is supported by solar-wind measurements, which
show a clear correlation between coherent magnetic structures
generated intermittently by strong turbulence and plasma
(anisotropic) heating (e.g., Osman et al. 2012; Greco et al.
2018; Qudsi et al. 2020).20

Panels (c) and (d) of this figure show this tracked particle’s
magnetic moment μ (green line), normalized to its initial value

m m v B2th,i0 i th,i0
2

0, and the particle’s parallel and perpend-
icular thermal energies (blue and red lines, respectively),
normalized to vth,i0

2 , versus time. All of these quantities are
approximately constant during particle gyration.21 However,
once the particle enters the region with strong potential
fluctuations (the gray shaded region in these panels), its
perpendicular energy and magnetic moment oscillate with large
amplitude. After ≈6 gyrations, the particle’s perpendicular
energy and magnetic moment change by a factor of ≈4.2.
Figures 4–6 further highlight the importance of intermittency

in reducing the effectiveness of the exponential suppression
factor introduced by Chandran et al. (2010), at least under the
conditions realized in our simulations (see Section 2). This is

Figure 5. Top: comparison between the PDF of (normalized) total potential
fluctuations, x dFq m vi tot i th,i0

2 , from the βi0 = 1/9 (orange solid line) and
0.3 (purple dashed line) simulations in the range of scales

r^ k1 e ei0 . (The corresponding value of ( )x tot
eff is also reported

below each simulation label). Gray lines (with corresponding line styles)
represent the equivalent Gaussian distribution characterized by the same
standard deviation σ as the actual PDF. Bottom: comparison of the deviation
from Gaussian statistics for the potential fluctuations (still in the range

r^ k1 e ei0 ) in the βi0 = 1/9 (orange solid) and 0.3 (purple dashed)
simulations. This deviation is quantified both by the ratio of the actual PDF and
the equivalent Gaussian vs. ξ/σ (colored lines) and by the “excess kurtosis,”
K − 3 (reported in the plot below each simulation label; K B 〈ξ4〉/〈ξ2〉2 = 3 for
a zero-mean Gaussian distribution).

20 From Chandran et al. (2010): “...in strong AW/KAW turbulence (as
opposed to randomly phased waves), a significant fraction of the cascade power
may be dissipated in coherent structures in which the fluctuating fields are
larger than their rms values. Proton orbits in the vicinity of such structures are
more stochastic than in average regions, and thus c2 may be smaller in AW/
KAW turbulence than in our test-particle simulations, indicating stronger
heating.”
21 These quantities (μ, wP, w⊥) are calculated using the magnetic field
interpolated to the particle position, rather than to the particle’s guiding center.
The difference is responsible for the small periodic variations seen in these
quantities on timescales of ∼2π/Ωi0.
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because of the relatively large rms amplitude of gyroscale
potential fluctuations (x d= F ~rq m v 0.1th i i th,i0

2
i

) and the
intermittent nature of those fluctuations, the latter of which
causes a nonnegligible fraction of heating to occur in localized
regions exhibiting large potential fluctuations. As a result, a
particle’s energy often changes considerably during just a few
gyrations, and their orbits become stochastic, so that exponen-
tial conservation of the magnetic moment no longer holds.

As a final remark, we speculate that intermittency may allow
stochastic heating to remain an important energization mech-
anism for low-β turbulent systems even at scale separations
much larger than what was achieved in our simulations (see,
e.g., Mallet et al. 2019). As the scale separation increases,

∣dF r ~^krms 1i0
decreases, but δΦ becomes localized within a

smaller volume, creating larger potential drops within this
volume. In other words, the trend outlined in Figure 4 for our
βi0= 1/9 run suggests that, while the PDF of the fluctuations’
amplitude at ion/sub-ion scales may become progressively
narrower as the scale separation L/ρi0 increases, the

intermittency effects will become simultaneously more and
more important in enhancing ξ(eff) with respect to ξ(rms).

3.5. Other Signatures of Wave–Particle Interaction

The parallel and perpendicular ion-energization rates in the two-
dimensional velocity space, ( ) 

~
^Q w w, and ( )

~
^ ^Q w w, , respec-

tively (see Equations (25) and (26)), can also be used to uncover
the phase-space signatures of different wave–particle interactions.
Their time-averaged values in the quasi-steady state, ( ) á ñ

~
^Q w w,

and ( )á ñ
~
^ ^Q w w, , are reported in Figure 7 for both the βi0= 1/9

(left column) and βi0= 0.3 (right column) simulations. Figure 8
additionally provides this information for βi0= 0.3 during its
“early phase,”which refers to times t/τA≈ 3.8–4.4 before the core
of the perpendicular distribution function becomes appreciably
flattened and stochastic heating is consequently reduced (see
Figure 8 of Arzamasskiy et al. 2019).
The velocity-space patterns of ( ) á ñ

~
^Q w w, seen in the

quasi-steady state of both simulations (Figures 7(c) and (d))

Figure 6. Example of a simulation particle undergoing stochastic heating in the βi0 = 1/9 simulation. (Top) Snapshots of ion energization averaged over 183 cells
(left) and small-scale (k⊥ρi0 > 1) potential fluctuations (right) in a plane perpendicular to the guide field. The black line shows a trajectory of the particle located in this
plane. This particle starts in a region with small potential fluctuations and moves through a localized region with large δΦ. (Bottom) Evolution of the particle’s
magnetic moment (left), along with parallel and perpendicular energies (right). The time over which the particle trajectory is plotted in the top panels is indicated by
the gray shaded region. As the particle moves through strong potential fluctuations, it undergoes nonadiabatic perpendicular heating, which changes the particle’s
energy by a factor of a few over a timescale of several orbits.
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display the signature of collisionless damping at the Landau
resonances, wP≈± vth,i0 (cf. Howes et al. 2017). We interpret
this structure as being due to the collisionless damping of slow-
mode fluctuations. In the βi0= 1/9 simulation, the amount of
parallel energization associated with this Landau-resonant
damping is extremely subdominant, contributing only 2%
of the total ion-heating rate. In the βi0= 0.3 simulation, this
percentage is 10%. During the early phase of the βi0= 0.3
run (Figure 8(b)), there is an additional signature of wave–
particle interaction in the vicinity of wP≈±vA0. We instead
attribute the majority of the measured increase in parallel
temperature to a combination of transit-time damping, which is
driven by Q⊥ (note the vertical resonant-like red and blue
“stripes” in Figures 7(a) and (b) and 8(a)), and pitch-angle
scattering of perpendicularly energized particles (as in
Arzamasskiy et al. 2019, Section 3.2).22

In contrast with the βi0= 0.3 case, the parallel ion
distribution, f (wP), does not develop significant nonthermal
tails at βi0= 1/9 (not shown). This can be explained by the
inefficient Landau damping of Alfvénic fluctuations at very low
values of β; at β= 1, the Alfvén speed is much larger than the
ion-thermal velocity, vA? vth,i, and only the very tail of the ion
distribution can effectively resonate with the phase velocity
vph∼ vA of Alfvénic fluctuations. Since this population is
energetically unimportant for the overall thermal budget of the
plasma, we do not expect to find significant (parallel) heating
from this process at very low β.23

Finally, both runs display signatures that may be interpreted
as the superposition of (i) stochastic heating and (ii) ion-
cyclotron heating. Stochastic heating presents in both runs as a
horizontal feature close to w⊥ ∼ vth,i0. For βi0= 0.3, this
signature is much more pronounced during its “early phase”
(Figure 8(a)) than in its quasi-steady state, in which the core of
the perpendicular distribution function is substantially flattened
and stochastic heating is reduced. Ion-cyclotron heating, on the
other hand, presents as a (fuzzy) circular halo centered around
wP∼ 0 and w⊥ vth,i0 (cf. Klein et al. 2020). However, the

Figure 7. Ion-energization rate as a function of parallel (wP) and perpendicular (w⊥) velocities. Panels (a) and (c) show parallel and perpendicular energization in the
βi0 = 1/9 simulation. Panels (b) and (d) show the same quantities for the βi0 = 0.3 simulation from Arzamasskiy et al. (2019). The ion-thermal speed is marked by
dashed lines; the Alfvén speed in the βi0 = 0.3 run is marked by dotted lines.

22 Isenberg et al. (2019) suggested that the perpendicularly heated ion
distribution functions with T⊥ > TP that are naturally generated by ion
stochastic heating would be unstable to the ion-cyclotron anisotropy instability,
which would then generate quasi-parallel-propagating ion-cyclotron waves and
thereby scatter ions in the parallel direction. The connection between this
suggestion and the pitch-angle scattering of perpendicularly energized particles
measured by Arzamasskiy et al. (2019) and also seen here is not clear for two
main reasons. First, the temperature anisotropies measured in our simulations
never become as large as those found in the model devised by Isenberg et al.
(2019); for example, T⊥/TP  1.12 in our βi0 = 1/9 simulation. Second, our
steady-state perpendicular distribution functions retain flattened cores similar to
those predicted by Klein & Chandran (2016); Isenberg et al. (2019) predicted
that pitch-angle scattering from unstable ion-cyclotron waves would erase this
distinctive feature.

23 The same argument can also explain why, within gyrokinetic theory and
simulations, the ion-to-electron heating dramatically drops at low β (e.g.,
Howes 2010; Kawazura et al. 2019): because species’ heating in gyrokinetics
relies only on the Landau damping of the fluctuations (which can thus provide
only parallel heating), Alfvénic turbulence will be damped inefficiently by ions
as the plasma β decreases. (The large-scale injection of compressive
fluctuations, which may be collisionlessly damped even at low β, at energy
levels comparable to those of the Alfvénic fluctuations modifies this
expectation; Kawazura et al. 2020.)
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position and extension of this halo in w⊥ seem to vary between
βi0= 0.3 and 1/9; this feature is not well understood and
should be investigated in future work.

4. A Comment on the Interpretation of Stochastic Heating
in Spacecraft Data

Before summarizing our main findings, we pause here to
offer a comment on how spacecraft data might be best
interpreted when looking for evidence of stochastic ion heating
in the low-β solar wind. We begin by summarizing the method
adopted by Bourouaine & Chandran (2013), Vech et al. (2017),
and Martinović et al. (2019, 2020). Those authors used
spacecraft-measured amplitudes of magnetic-field fluctuations
near the proton gyroscale, d rB i

, as a proxy for the gyroscale
velocity fluctuations, d rui, i

. The latter was then divided by the
field-perpendicular proton thermal speed,  ^v T m2th,i ,i i , to
obtain estimates for the stochasticity parameter òi originally
introduced by Chandran et al. (2010; recall footnote 6).
Specifically, they set

( )d s
d

p
=r

r
u

B

m n4
, 27i,

i
i

i

where σ is an order-unity constant (typically 1.19), so that

( )sb
d

=
r

^
-

B

B
, 28i ,i

1 2

0

i

where B0 is the mean magnetic-field strength. The amplitudes
of the gyroscale magnetic-field fluctuations were defined using
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where EB(k⊥) is the (appropriately normalized) one-dimen-
sional magnetic energy spectrum in the plasma rest frame
(obtained by applying Taylor’s hypothesis to the frequency
spectrum measured by the spacecraft). The amount of
stochastic heating associated with these fluctuations was then
inferred using
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3
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with c1∼ 1 (typically 0.75) and c2≈ 0.1–0.3 (typically 0.34 or
;0.2). (Recall that the value of c* that best fits our simulation
results is ≈0.05–0.1.) Average values of òi inferred between
∼0.3 and ∼1 au from the Sun were in the range of ≈0.03–0.05.
The results of our paper suggest that the following

refinements to this procedure may improve its accuracy. First,
it is not necessarily the case that the fluctuations on ion
gyroscales are accurately described by the Alfvénic relation
(Equation (27)). Indeed, the argument in Section 2.2 is that
the gyroscale potential fluctuations may be better inferred at
low beta using ( )d b dF ~r r^

-q m v B Bi i th,i
2 1

0i i
, rather than

∼ ( )d sb d=r r^ ^
-u v B Bi, th ,i i
1 2

0i i
. (Recall the definition β⊥=

(1+ τ⊥)β⊥i.) While it is true that there are combinations of τ⊥
and β⊥i for which these two formulae return comparable
inferred potential fluctuations, the interpretative difference is
notable; at very low values of β⊥, the electrostatic potential
with which particles interact on their gyroscale has little to do
with fluctuations in the ion flow velocity. When in doubt, a
generalized Ohm’s law that accounts for sub-di contributions to
the electrostatic potential, such as Equation (8), should be used.
To give concrete numbers, the rms fluctuation levels

centered about the ion-thermal Larmor scale in our βi0= 1/9
simulation (calculated as in Equation (29)) are d rB B0i

0.042 and d ru v 0.024;i, A0i
in our βi0= 0.3 simulation, they

are d rB B 0.0430i
and d ru v 0.021i, A0i

. Neither of these
sets of values satisfy Equation (27) when σ= 1.19, and both
suggest σ< 1. In this context, it is worth noting that these ion-
Larmor-scale magnetic-field fluctuation amplitudes are typical
of (if just slightly larger than) those in the low-beta solar wind;
Bourouaine & Chandran (2013) used Helios data to report
d »rB B 0.030i

at ≈0.3 au, while Martinović et al. (2020) used
Parker Solar Probe data to find strong evidence in the ion
distribution function for stochastic heating at ≈0.2 au when

d rB B 0.0490i
(see their Figure 5(a)). Both authors used

Equation (28) with σ= 1.19 to compute òi, reporting values in
the range ≈0.04–0.08 when βi≈ 0.3–0.5. The stochasticity
parameter in our βi0= 1/9 run, based on rms potential
fluctuations centered about ρi, is notably larger at ξ(rms);
0.146; accounting for intermittency raises its value to ξ(eff);
0.173. In our βi0= 0.3 run, we measured ξ(rms); 0.085 and
ξ(eff); 0.10. Whether the difference between the observation-
ally inferred òi and the values of ξ we obtained from the
potential fluctuations in our simulations is primarily because
Equation (27) is an inaccurate proxy for electrostatic potential
fluctuations at low β, because intermittency effects must be

Figure 8. Parallel and perpendicular energization at early times in the βi0 = 0.3
simulation from Arzamasskiy et al. (2019), before flattening of the
perpendicular-velocity core of the distribution function suppresses stochastic
heating. The ion-thermal (Alfvén) speed is marked by the dashed (dotted) lines.
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taken into account, or perhaps because our simulations could
benefit from slightly larger scale separation awaits more data
(both actual and numerical) and further scrutiny. Given the
exponential sensitivity of Q⊥ in Equation (30) to òi, obtaining
an accurate value of c2 relies on an accurate definition of the
stochasticity parameter.

5. Conclusions

We have derived a generalization of the theory of stochastic
ion heating originally presented in Chandran et al. (2010),
adapted to the case in which electric-field fluctuations can be
described by a generalized Ohm’s law that includes Hall and
thermoelectric effects. We argued that these nonideal terms
provide the dominant contribution to the stochastic heating of
ions at sub-di scales, which are the relevant scales at which
stochastic heating operates in low-β turbulence (i.e., when
ρi= di). By keeping a fully scale-dependent approach, both in
configuration space and in velocity space, we have derived the
perpendicular-heating rate Q⊥ and perpendicular-energy diffu-
sion coefficient ^̂D

E as functions of the perpendicular ion
velocity w⊥ and the perpendicular plasma beta β⊥, adopting
certain well-established properties of inertial- and dispersion-
range turbulent fluctuations.

The predictions of this theory were then tested using three-
dimensional hybrid-kinetic particle-in-cell simulations of con-
tinuously driven Alfvénic turbulence at low β, namely, the
βi0= 0.3 simulation presented by Arzamasskiy et al. (2019)
and a newly performed βi0= 1/9 simulation. In these
simulations, parallel heating of ions is primarily associated
with Landau/Barnes damping of turbulent fluctuations and is
always subdominant with respect to its perpendicular counter-
part, QP,i=Q⊥,i. Two perpendicular-heating mechanisms are
shown to operate simultaneously on ions and provide most of
their heating: ion-cyclotron and stochastic heating. While ion-
cyclotron dominates over stochastic heating at βi0= 0.3
( ^ ^ Q Q 75,i

cycl
,i

tot % and ^ ^ Q Q 25,i
stoch

,i
tot %), in the βi0=1/9

simulation, these two mechanisms contribute roughly equally
to the perpendicular heating of ions ( »^ ^ ^Q Q Q,i

stoch
,i

tot
,i

cycl

»^Q 50,i
tot %). As far as stochastic ion heating is concerned, the

theoretical predictions derived in this work describe reasonably
well the associated features emerging from the simulations and
characterized by various heating diagnostics, both in perpend-
icular-velocity and in perpendicular-wavevector spaces. These
diagnostics also emphasize the important role of non-MHD
contributions to the electrostatic potential in stochastically
heating the ions at low β and demonstrate that intermittency in
the turbulence enhances this heating. Finally, the fraction of
injected energy that is channeled into total ion heating strongly
depends on the plasma β, passing from e »Q 75i

tot
AW % at

βi= 0.3 to e »Q 40i
tot

AW % at βi≈ 0.1.
Our work has three main implications for the interpretation

of spacecraft data in the context of stochastic heating. First, we
have provided a number of phase-space diagnostics that one
may use to supplement the presently employed technique of
inferring stochastic heating in the solar wind via correlations
between the amplitudes of ion-Larmor-scale magnetic fluctua-
tions and plasma heating. These diagnostics supplement
concurrent work on field-particle correlations by Klein &
Howes (2016), Howes et al. (2017), and others, which show
great promise in their ability to distinguish between various
particle-energization mechanisms and their contributions to the
heating of the solar wind. Second, the precise way in which

spacecraft-measured, ion-Larmor-scale magnetic-field fluctua-
tions are translated into electric potential fluctuations to
calculate stochastic heating deserves careful reexamination,
especially at β values small enough that di? ρth,i. In
particular, we advocate for the use of a generalized Ohm’s
law that accounts for the (sometimes dominant) contributions
from the Hall and thermoelectric effects to the electric
potential. We find that the implied stochasticity parameter
x d= Frq m vth i i th,i

2
i

obtained from the full potential fluctua-
tions is generally larger than that implied by Equation (28),
particularly when intermittency effects are taken into account.
Third, our simulation results suggest a link between
preferential perpendicular heating, magnetic spectra that
exhibit sub-ion-Larmor steepening, and perpendicular dis-
tribution functions with flattened cores—a link that, if due to
stochastic heating, should be pronounced when the amplitude
of ion-Larmor-scale magnetic fluctuations is relatively large
(viz., ξ 0.1).
With the gradual decrease in the perihelion of the Parker

Solar Probe (Fox et al. 2016) and the increasing level of
turbulent activity toward the Alfvén point (Tu & Marsch 1995;
Chandran et al. 2011; Bruno & Carbone 2013; Chen et al.
2020), the importance of understanding the phase-space
signatures of stochastic heating will only become greater. It
is our hope that the predictions and diagnostics presented here
will help to sharpen this understanding and facilitate a more
robust analysis of current and future spacecraft data.
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Appendix A
A. Alternative Heating Diagnostics

In this Appendix, we summarize the implementation of the
heating diagnostic in PEGASUS++ and discuss its limitations.
We begin by reviewing our definition of the perpendicular-
energy diffusion coefficient. If the particle heating occurs
through a diffusion-like process, the distribution function
evolves according to

⎜ ⎟
⎛
⎝

⎞
⎠

( )¶
¶

=
¶

¶
¶
¶^

^̂
^

f

t e
D

f

e
, A1

E
E

E

where f E is the perpendicular-energy distribution function.
Here we assume that energization is only perpendicular to the
magnetic field, ^ ^e w 22 . The total energy of the distribution
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is EB ∫de⊥ e⊥f
E. The total energization rate is thus
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In a collisionless plasma, this energization is provided by the
work performed by the electric fields on the particle distribution,

( ) · ( )^ ^ ^ ^v Eq e q . A3i

The perpendicular-energy distribution function of ions evolves
according to a Vlasov equation of the form
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this equation neglects terms related to advection and exchange
between parallel and perpendicular energies (e.g., pitch-angle
scattering) but retains some basic properties of the kinetic
equation, such as the conservation of the particle number. The
equation for the diffusion coefficient is then simply
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which could also be written as
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where we define the differential heating rate as
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We use the definition (Equation (A6)) of the energy diffusion
coefficient throughout this paper (as well as in Arzamasskiy
et al. 2019) to describe the velocity-space dependence of ion
heating. At large scales, energization (Equation (A7)) is

dominated by the conversion between bulk-kinetic and magnetic
energies related to Alfvénic motions. In order to remove this
nondissipative process, we use w= v− u instead of v for the
heating diagnostics and perform a long-time average.
Recently, Vasquez et al. (2020) argued that the energy

diffusion coefficient should be defined differently. They argued
that differential energization should be equal to
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Using this definition, they arrived at a more complicated
equation for the diffusion coefficient,
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which has an additional term relative to Equation (A6). The
difference comes from the definition of ∂Q⊥/∂e⊥. This
quantity is not well defined; if one adds any derivative of the
form ∂F/∂e⊥ to ∂Q⊥/∂e⊥ with ∣ =¥F 00 , the total heating rate
Q⊥ remains unchanged. Indeed, Equation (A9) differs from
Equation (A6) by such a term. If one were to use the definition
(Equation (A7)), then the appropriate definition of the diffusion
coefficient is Equation (A6).
These two methods for calculating ^̂D

E require very different
numerical implementations. In order to use the method of Vasquez
et al. (2020), one only needs to measure the distribution function at
different moments in time and then solve Equation (A8). In
contrast, to use Equation (A6), one needs both ∂Q⊥/∂e⊥ and f E,
but the equation for ^̂D

E becomes much easier to solve.
Figure 9 shows the comparison of energy diffusion

coefficients (left) and energization (right) as functions of
velocity space computed using the evolution of the energy
distribution function (blue) and our E · v diagnostic (black).
The blue curve is normalized to the total heating rate, while the
black curve has slightly different normalization so that the
diffusion coefficient has the same magnitude in the w⊥= vth,i0
part of the plot. We conclude that both methods produce very
similar results in the w⊥ vth,i0 part of velocity space, where
our stochastic-heating theory is expected to work best.

Figure 9. Comparison between two methods for computing the perpendicular-energy diffusion coefficient. The blue line is obtained from the evolution of the energy
distribution function following the method of Vasquez et al. (2020). The black line is computed using the E · w diagnostic used throughout this paper and in
Arzamasskiy et al. (2019). The orange line represents the theoretical prediction for stochastic heating based on the electrostatic potential fluctuations (Equation (2b)).
(Left) Energy diffusion coefficient. (Right) Velocity-space dependence of ion energization. The shaded regions represent the time variability of plotted quantities
(computed as a standard deviation).
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Appendix B
B. Exact Calculation of Q⊥ with Exponential Correction and Its Limits

In this Appendix, we use Equation (7) for the diffusion coefficient including the exponential correction to derive formulae for the
implied perpendicular heating. We begin with Equation (7) written in terms of the potential fluctuations,
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which is then substituted into the perpendicular-heating integral,
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We then evaluate the result in the two limits considered in Section 2.3, namely, β⊥ 1, for which the inductive electric field
dominates the ion-gyroscale electrostatic potential, and β⊥= 1, for which the ion-gyroscale fluctuations are predominantly sub-di
KAWs.

B.1. Stochastic Heating with Exponential Correction in β 1 AW Turbulence

In this limit, the electrostatic potential evaluated at perpendicular velocity w⊥∼ vth,i(λ/ρth,i) is given by
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where we have used Equation (16) to rewrite δΦλ→ δΦw. The corresponding diffusion coefficient is then
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In the final step above, we have used e = v LAW A
3 to relate μ* to the separation of scales in the system. Using
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using the definitions of the exponential and gamma

functions, viz., ( ) != å =
¥x x nexp n

n
0 and n!= Γ(n+ 1), respectively, we can perform the integral in Equation (B2) to determine the

heating rate per unit mass of stochastic heating off of AW fluctuations, ( )
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As in Equation (18), ΛAW is a constant independent of β⊥i and τ⊥ that takes into account the various coefficients neglected in our
scaling arguments. Note that Γ(2+ n/3)/Γ(n+ 1) is a function that quickly decreases for n> 2; for n= 0, 1, and 2, its values are 1,
;1.19, and ;0.75. Although the result of the integral in Equation (B6) is exact, it is worth specifying its approximations in two
regimes, ( )m  1AW

*
and ( ) m 1AW

*
.

( )m  1AW

*
regime.—This is the regime in which stochastic heating is most efficient. The condition ( )m  1AW
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Therefore, if the system is such that the energy injected in the Alfvénic cascade exceeds a certain critical value ( )ecrit

AW (or,
equivalently, if the scale separation ρth,i/L remains above a critical value ( )ccrit

AW ), then the dominant contributions to Equation (B6)

are the n= 0, 1 terms. As a result,
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The second term in brackets is a small correction to the expression (Equation (18)) obtained by neglecting the exponential
suppression.

( ) m 1AW

*
regime.—This is the regime in which stochastic heating is strongly suppressed for most of the ion population by the

quasi-conservation of their magnetic moment. This regime holds, for instance, when the separation between the injection scale and
the ion-Larmor scale in a system is significantly larger than the critical value derived above, i.e., when
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To obtain ( )
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AW in this limit, it is easier to make some approximations before performing the integral. Namely, when the exponential

suppression factor is important, we may safely neglect the ( )- ^w vexp 2
th,i
2 term in the integral (Equation (B6)). In this case, the

resulting heating is
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B.2. Stochastic Heating with Exponential Correction in Low-β KAW Turbulence

In this limit, the electrostatic potential fluctuations may be approximated by
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where the parameter μ* is now defined by
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We remind the reader that 1� α� 3 is the parameter taking into account different models for the spectral anisotropy of the cascading
KAW fluctuations (see Equation (14) in Section 2.3). Performing the w⊥ integral of ( )( )- ¶ ¶^̂ ^D f wEKAW and proceeding as in the

AW case, we find that the heating rate per unit mass of stochastic heating off of KAW fluctuations satisfies
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As in Equation (22), ΛKAW is a constant independent of β⊥i and τ⊥ that takes into account the various coefficients neglected in our

scaling arguments (note that a factor ( )G a+3
4

has been introduced in the denominator within the sum, so that the n= 0 term exactly

matches the expression in Equation (22); this is also absorbed within the constant ΛKAW). Once again, Equation (B14) is exact, but it
is instructive to derive explicit analytical expressions for ( )

^Q
KAW in the two interesting limits, ( )m  1KAW

*
and ( ) m 1KAW

*
.

( )m  1AW

*
regime.—This is the case for which the quasi-conservation of the magnetic moment does not effectively hold, making

the stochastic heating of ions more effective. Such a regime occurs if the energy cascading as KAW fluctuations exceeds a critical
energy cascade rate ( )ecrit

KAW given by
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Retaining only the n= 0, 1 terms in Equation (B14), we may approximate the heating in this limit as
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The second term in brackets is a small correction to the expression (Equation (22)) obtained by neglecting the exponential
suppression.

( ) m 1AW

*
regime.—Here we consider once more the regime in which the ions’ magnetic moments are quasi-conserved, i.e., the

regime of asymptotically weak stochastic heating from KAW fluctuations. Proceeding as in the AW case, we neglect the
( )- ^w vexp 2
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2 term with respect to the suppression [ ( ) ]( ) ( )m- a

^
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*
in the integral leading to Equation (B14) and

obtain the following approximate expression:
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