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ABSTRACT

Context. Magnetic reconnection plays a fundamental role in plasma dynamics under many different conditions, from space and as-
trophysical environments to laboratory devices. High-resolution in situ measurements from space missions allow naturally occurring
reconnection processes to be studied in great detail. Alongside direct measurements, numerical simulations play a key role in the
investigation of the fundamental physics underlying magnetic reconnection, also providing a testing ground for current models and
theory. The choice of an adequate plasma model to be employed in numerical simulations, while also compromising with computa-
tional cost, is crucial for efficiently addressing the problem under study.
Aims. We consider a new plasma model that includes a refined electron response within the “hybrid-kinetic framework” (fully kinetic
protons and fluid electrons). The extent to which this new model can reproduce a full-kinetic description of 2D reconnection, with
particular focus on its robustness during the nonlinear stage, is evaluated.
Methods. We perform 2D simulations of magnetic reconnection with moderate guide field by means of three different plasma models:
(i) a hybrid-Vlasov-Maxwell model with isotropic, isothermal electrons, (ii) a hybrid-Vlasov-Landau-fluid (HVLF) model where an
anisotropic electron fluid is equipped with a Landau-fluid closure, and (iii) a full-kinetic model.
Results. When compared to the full-kinetic case, the HVLF model effectively reproduces the main features of magnetic reconnection,
as well as several aspects of the associated electron microphysics and its feedback onto proton dynamics. This includes the global
evolution of magnetic reconnection and the local physics occurring within the so-called electron-diffusion region, as well as the evolu-
tion of species’ pressure anisotropy. In particular, anisotropy-driven instabilities (such as fire-hose, mirror, and cyclotron instabilities)
play a relevant role in regulating electrons’ anisotropy during the nonlinear stage of magnetic reconnection. As expected, the HVLF
model captures all these features, except for the electron-cyclotron instability.
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1. Introduction

Weakly collisional, magnetized plasma dynamics are character-
ized by a wide range of scales, both in space and time. Moreover,
the nonlinearities unavoidably at play in collisionless plasma
dynamics can simultaneously couple multiple scales within the
system. On top of that, plasma processes taking place at kinetic
scales are able to provide important feedback on the global (i.e.,
fluid-scale) evolution of a system, for example in the context of
magnetic reconnection (MR). Reconnection is probably the best
example of a nonideal, microscale process able to change the
global magnetic-field topology of a system by locally breaking
the magnetic connections ideally preserved at magnetohydrody-
namic (MHD) scales (Biskamp 1994). The change in magnetic-
field connections occurring in relatively short times (to the extent
that it is sometimes defined as “explosive”) in turn triggers
the release of a huge amount of energy stored in the previous

magnetic configuration (e.g., Treumann & Baumjohann 2013,
and references therein). As for MR, several other processes exist
that can lead to the coupling between disparate spatiotemporal
scales, from fluid to kinetic. Amongst others, one of the most
natural examples is plasma turbulence, which could be defined
as a (fascinating) “multi-scale disorder” (Schekochihin et al.
2008). These two processes, turbulence and MR, are indeed inti-
mately related to each other, one process possibly feeding on the
other and vice versa (e.g., Servidio et al. 2011; Zhdankin et al.
2013; Cerri & Califano 2017; Franci et al. 2017; Pucci et al.
2017; Comisso & Sironi 2018; Muñoz & Büchner 2018, and ref-
erences therein). In general, the intrinsically nonlinear, multi-
scale nature of collisionless space plasma dynamics requires a
numerical approach to the solution of these problems. This high-
lights the need for a compromise between the complexity of an
appropriate theoretical framework and the available computa-
tional resources.
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Numerical studies are based first on the choice of the plasma
model used to describe, at best, the plasma dynamics of inter-
est while keeping the computational cost of a simulation under
control. The full-kinetic approach, based on the solution of the
Vlasov equation for all plasma species (viz., ions, and electrons),
represents the best mathematical model for the study of the
dynamics of a collisionless, magnetized plasma at kinetic scale.
However, full-kinetic simulations usually come at a very large
computational cost, too large to afford realistic plasma param-
eters and/or to include a wide enough range of spatiotemporal
scales. On the opposite limit in terms of completeness of the
plasma description and, as a consequence, of the computational
cost of their numerical solution, one has “fluid” models. In this
context, the ideal-MHD theory represents the simplest case of
an infinitely conducting, single-fluid plasma where all kinetic
effects at any characteristic scale are ignored. In between these
two extremes, with respect to the full Vlasov approach, there
is a long list of hybrid models (Tronci & Camporeale 2015).
The first hybrid models were proposed a very long time ago
to address quasi-neutral plasma dynamics, and they rely on a
kinetic description of the ions and a fluid description of the elec-
trons (e.g., Byers et al. 1978; Hewett & Nielson 1978; Winske
1985). The hybrid approach has garnered a great deal of atten-
tion over the past two decades because it represents a very good
compromise between the physics to be described and the com-
putational cost of the numerical simulations. The capability of
hybrid models to catch the correct physics across the ion kinetic
scales and below, approaching the electron scales, depends on
the model adopted for the electron response. The simplest case
of mass-less isothermal electrons may be too simplified when
applied to cases in which the electron response may have impor-
tant feedback on the ion dynamics. In this respect, within the
hybrid approach, it is possible to improve the electron response
by first including finite electron inertia effects in Ohm’s law (e.g.,
Valentini et al. 2007; Muñoz et al. 2018). A step in this direction
was taken in Le et al. (2016), where a hybrid model with a static
and gyrotropic equation of state for a mass-less electron fluid
was considered. However, that equation of state was derived con-
sidering only the adiabatic trapping of electrons as the primary
source of anisotropy. A further step can be taken by introduc-
ing a more general fluid model that includes dynamic electron-
pressure anisotropy (Chew et al. 1956; Hunana et al. 2019b),
electron finite-Larmor-radius (FLR) effects, and/or electron Lan-
dau damping (e.g., Hammett & Perkins 1990; Sulem & Passot
2015; Hunana et al. 2019a).

In general, hybrid-kinetic models have proved to be
capable of satisfactorily catching the main kinetic physics
at play for a large number of problems, ranging from fluid
and kinetic instabilities (Hellinger & Matsumoto 2000;
Matteini et al. 2006; Califano et al. 2008; Henri et al. 2013;
Kunz et al. 2014) to collisionless shocks (Lembège et al.
2009; Caprioli & Spitkovsky 2013; Weidl et al. 2016),
dynamo effects (Rincon et al. 2016; St-Onge & Kunz 2018),
MR (Le et al. 2016; Palmroth et al. 2017; Cerri & Califano
2017; Franci et al. 2017; Wang et al. 2019; Califano et al.
2020), and kinetic-scale turbulence (Servidio et al. 2015;
Grošelj et al. 2017; Cerri et al. 2018, 2019; Hellinger et al.
2019; Wang et al. 2019). The main goal of our project is to
investigate the possibility of improving the electron description
in hybrid-kinetic models. The starting point is the “hybrid
Vlasov–Maxwell” (HVM) code (Mangeney et al. 2002;
Valentini et al. 2007), which is already equipped with a fluid
model in which electrons are described as an isotropic, isother-
mal fluid with finite inertia. The HVM code has recently been

upgraded in order to implement a more sophisticated model
for the electron fluid. This includes evolution equations for
the anisotropic (gyrotropic) electron pressures, p‖,e and p⊥,e
(where ‖ and ⊥ refer to the local magnetic-field direction,
b = B/|B|), and a Landau-fluid (LF) closure for the parallel
transport of the gyrotropic electron thermal energy along field
lines (i.e., parallel heat fluxes, q‖,e and q⊥,e). Hereafter, we refer
to this new model as “hybrid Vlasov–Landau-fluid” (HVLF).
The idea is to include within a hybrid description the relevant
electron pressure-anisotropy effects and a fluid model for the
electron-kinetic response that still holds in a nonlinear regime.
Therefore, the LF model implemented in the HVLF code goes
beyond the early attempts to include these effects in simplified
settings (e.g., Hammett & Perkins 1990; Snyder et al. 1997;
Passot & Sulem 2007) and is based on the approach presented
by Sulem & Passot (2015).

In this work we consider the problem of MR, focusing
on its nonlinear evolution. Since MR is a typical process in
which both ion- and electron-kinetic effects at sub-ion scales
drive an energy conversion that can feedback into the “large”
(fluid) scale of the system, it represents a suitable problem
in which to employ the HVLF model. In fact, as highlighted
by both simulations and observations, the heating associated
with this process is typically anisotropic, exhibiting an enhance-
ment of the parallel heating near the region where electrons are
demagnetized, the so-called electron diffusion region (EDR; see,
e.g., Chen et al. 2008; Daughton & Karimabadi 2007). Mag-
netic reconnection naturally drives pressure anisotropies, which
in turn constitute a free-energy source for secondary instabili-
ties, most notably fire-hose instabilities (FHIs) and mirror insta-
bilities (MIs). Their development bounds the plasma distribu-
tion in parameter space during the nonlinear stage of MR, as
also seems to be the case in the turbulent solar wind (SW;
e.g., Hellinger et al. 2006; Matteini et al. 2007; Bale et al. 2009).
Here an MR simulation performed with the HVLF model is com-
pared with equivalent simulations (i.e., identical initial setups)
performed with (i) the standard HVM code with isothermal elec-
trons and finite electron-inertia effects and (ii) a fully kinetic
model employing the semi-implicit particle-in-cell “iPic3D”
code (Markidis & Lapenta 2010; Lapenta 2012).

In Sect. 2 we introduce the three different models that have
been used in this work and the initial simulation setup. Numeri-
cal results are then detailed in Sect. 3, starting with an analysis
of the reconnection dynamics in Sect. 3.1 (e.g., reconnected flux
and reconnection rate, as well as the properties of the relevant
fields near the EDR). In Sect. 3.2 we focus on the properties
(and possible role) of the pressure anisotropy that is developed
by protons and electrons during the nonlinear stage of MR. In
Sect. 4 we summarize the results and outline our conclusions.

2. Kinetic plasma models and MR setup

In this section, we present the three different kinetic models that
have been used in this work. These are (i) a hybrid-kinetic model,
where the electrons are approximated either (a) as isotropic and
isothermal fluid or (b) as anisotropic fluid with an LF closure,
and (ii) a full-kinetic model. It should be noted that the hybrid-
kinetic approximation also keeps finite-electron-mass effects in
both cases.

It is important to point out that, while classic hybrid-kinetic
models exclude electron kinetic effects, such as electron Landau
damping (see, e.g., Told et al. 2016; Camporeale & Burgess
2017), this downside is partially cured when an LF type of closure
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is adopted for the electron fluid (e.g., Hammett & Perkins 1990;
Sulem & Passot 2015).

2.1. Hybrid-kinetic models

The hybrid-kinetic approximations consists of a quasi-neutral
plasma, np = ne ≡ n, where fully kinetic ions (protons in this
case) are coupled to a fluid-electron model (Winske 1985). The
evolution of the proton distribution function, fp(x, u, t), follows
the Vlasov equation,

∂ fp
∂t

+ u · ∇ fp +
e

mp

(
E +
u

c
× B

)
·
∂ fp
∂u

= 0, (1)

while the magnetic field, B, evolves following Faraday’s law of
induction,

∂B
∂t

= −c∇× E, (2)

where e and mp are the proton electric charge and mass, respec-
tively, while c is the speed of light. The proton dynamics is cou-
pled to the electron fluid through a generalized Ohm’s law that
provides the electric field, E,(
1− d2

e∇
2)E = −

ue × B
c

+
∇ ·Πe

en
+ d2

e∇ ·
[
n(upup − ueue)

]
, (3)

where de is the electron inertial length, the corresponding terms
in (3) taking into account finite-electron-mass effects, while up
and ue ≡ up − J/en are the proton and the electron fluid veloc-
ities, respectively. The current density J is computed from the
magnetic field via the Ampère’s law, 4πJ/c = ∇× B, where the
displacement current has been neglected in the hybrid approxi-
mation, while n and up are obtained as velocity moments of the
proton distribution function.

The set of Eqs. (1)–(3) needs to be closed by one (or more)
equation(s) for the pressure tensor of the electrons, Πe. Two
different closures for the electron fluid are considered here,
isothermal or LF electrons, and the corresponding equations are
detailed in the following subsections.

For the numerical solution of (1)–(3), we adopt an upgraded
version of the Eulerian HVM code (Valentini et al. 2007), which
now allows different electron closures. When a standard isother-
mal electron fluid is considered, we refer to it simply as HVM
(Sect. 2.1.1), while when the new LF electron model is adopted,
we refer to it as HVLF (Sect. 2.1.2). In the HVM code, an Eule-
rian approach is employed to numerically solve the Vlasov equa-
tion (1) for the proton distribution function (i.e., fp(x, u, t) is
computed at each time step on a fixed, uniform grid sampling
the simulated phase space (x, u)). This approach has the merit
of avoiding any statistical noise that is typical of particle-in-cell
(PIC) methods, but at the price of a large computational cost and
memory requirements (when compared, for instance, to typical
state-of-the-art hybrid-PIC simulations with similar parameters;
e.g., Cerri et al. 2017). To advance in time the proton distribu-
tion function, the HVM code implements an extended version of
Knorr’s splitting scheme that accounts for the electromagnetic
case (Mangeney et al. 2002). Furthermore, to efficiently couple
the Vlasov equation for the proton distribution function with the
Maxwell equations, the HVM code also employs the so-called
current advancement method (CAM) (Matthews 1994). In the
CAM method, in order to advance the distribution function from
t to t + ∆t, electromagnetic fields at the half-step t + ∆t/2 are
needed. These fields depend upon the moments of the distribu-
tion function via the generalized Ohm’s law (3), so that in prin-
ciple fp(t + ∆t/2) would also be needed. However, at this step of

the algorithm, only fp(t) and its “advection-only advancement”1

are known from the splitting scheme. The CAM approach can
use these known states to provide an approximation of the elec-
tromagnetic fields, which is sufficiently good in the sense that it
does not lower the whole algorithm accuracy (which is second-
order in time). Further details about the HVM numerical scheme
can be found in Valentini et al. (2007) and references therein.

2.1.1. HVM: Isothermal electron fluid

The simplest class of closures is represented by a isotropic,
barotropic fluid, that is, where the pressure tensor is isotropic,
Πe = peI (I being the identity tensor), and the scalar pressure is
a function of the density only, pe = pe(ne). The first closure con-
sidered in our hybrid model is represented by isothermal elec-
trons:

Πe = peI, pe = T0,ene, (4)

where T0,e is the constant, homogeneous electron temperature.

2.1.2. HVLF: Landau-fluid electrons

In magnetized, collisionless plasmas, the isotropy condition is
rarely met. Charged particles indeed freely stream along B,
while they gyrate around the field lines. It is therefore natural
to distinguish between the parallel and perpendicular response
of the plasma, especially for what concerns the distribution of
energy between the different degrees of freedom. To the lowest
(zeroth) order in an FLR expansion of the pressure tensor, this
can be taken into account by a “gyrotropic” pressure (Chew et al.
1956),

Πe = p‖,ebb + p⊥,e(I − bb), (5)

where bb is the dyadic tensor of the magnetic-field unit vector,
b = B/B. Then, we explicitly solve the dynamic equations for
the evolution of pe,‖ and pe,⊥. These are obtained via integration
over u of Eq. (1) (but for electrons) multiplied by the dyadic
(u−ue)(u−ue), under the assumption of gyrotropic pressure (see
Hunana et al. 2019b, and references therein), and they read

dp‖,e
dt

= −p‖,e∇ ·ue−2p‖,eb · ∇ue · b−∇ · (q‖,eb)+2q⊥,e∇ · b, (6a)

dp⊥,e
dt

=−2p⊥,e∇ ·ue+p⊥,eb · ∇ue · b−∇ · (q⊥,eb)−q⊥,e∇ · b, (6b)

where q‖,e and q⊥,e are the two scalars determining the paral-
lel component of a gyrotropic heat-flux tensor (i.e., the flux of
parallel and perpendicular thermal energy along the magnetic
lines, respectively). In the hybrid-Vlasov code, these equations
are used to advance in time p‖,e and p⊥,e employing a third-order
Runge-Kutta method. Also, a sub-stepping approach is imple-
mented for these equations (meaning that, while the proton dis-
tribution function is advanced from t to t + ∆t by means of a
single time step of “length” ∆t, the electrons pressure is simul-
taneously advanced with nsub sub-steps, each of length ∆t/nsub).
We remark here that this work is focused on the physics that the
HVLF model can reproduce when compared to a full-kinetic or

1 Meaning that, due to the splitting scheme, fp(t) has been advanced to
t + ∆t/2 using only the spatial-advection part of the Vlasov equation,
∂ fp/∂t + u · ∇ fp = 0, and not yet its electromagnetic part to also advance
fp in velocity space.
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an HVM approach (in the context of standard 2D MR), whereas
a detailed technical paper focusing on the numerical method is
currently in preparation.

At this point, we still need a closure for q‖,e and q⊥,e. For
instance, in the Chew-Goldberger-Low (CGL, Chew et al. 1956)
double-adiabatic model they are set to zero (hence the name).
Here, we adopt an LF type of closure for the electron heat-flux
coefficients, that is, a closure that provides an approximated lin-
ear response based on kinetic theory. This closure was presented
in Sulem & Passot (2015), and its derivation consists in substi-
tuting the plasma response function by three-pole and one-pole
Padé approximants in the formulas for the heat fluxes and the
temperatures, respectively, which in turn are given by the linear
kinetic theory. The closure is then expressed as closed formulas
for the heat-flux density coefficients, which in the case of the
electrons are

q‖,e = −p‖,evth,‖,e

√
8
π
H

 T‖,e
T ‖,e

 , (7a)

q⊥,e = −
p⊥,e(T⊥,e − T ‖,e)

Ωpmp
b ·

(
∇×

B
B

)

− p⊥,evth,‖,e

√
2
π
H

 T⊥,e
T⊥,e

+

T⊥,e
T ‖,e

− 1
 B

B

 . (7b)

Here T‖e and T⊥e denote the parallel and perpendicular electron
temperatures, vth,‖,e =

√
T‖0,e/me is the electron parallel thermal

velocity of the unperturbed plasma (with me the electron mass),
and Ωp = eB0/mpc is the proton cyclotron frequency (with B0
the intensity of the magnetic field in the unperturbed state). In
Eq. (7) the over-bar, (. . . ), denotes the space average and H is
the operator represented, in Fourier space, by

Ĥ[g](k) =
̂(b · ∇g)(k)√
k · bb · k

, (8)

where the hat, (̂. . . ), denotes Fourier-transformed quantities.
This operator effectively takes into account the distortion of
magnetic-field lines in the nonlinear regime. This operator
should have been the (negative) Hilbert operator along per-
turbed field lines going through each point, as in Eq. (50) of
Snyder et al. (1997). This however involves non-affordable com-
putations in large simulations. Therefore, we adopted the semi-
phenomenological modeling of H , still local in Fourier space,
presented by Passot et al. (2014). In the linear regime, when
b = ez, the Fourier representation of H given by Eq. (8)
reduces to i sgn(kz) = i kz/|kz|, as originally introduced by
Hammett & Perkins (1990). This semi-phenomenological oper-
ator is formally a good approximation only where the magnetic
field is not strongly curved, a condition that could be chal-
lenged by a nonhomogeneous equilibrium (as in the case of this
work). We also stress that the LF closure defined through Eq. (8)
breaks down in the presence of magnetic nulls, since b cannot be
defined where the magnetic field vanishes. In fact, the b · ∇ oper-
ator becomes ill-behaved whenever |B| approaches zero. For this
reason, in this work, we adopt a finite value for the initial guide
field (low enough not to slow down the reconnection dynamics,
but sufficiently large to avoid the emergence of magnetic nulls
throughout the simulation).

Additionally, we mention that a possible approach could
be to add also some artificial constraints to prevent runaway
anomalies. This would be the case when hard-coded “anisotropy

limiters” are employed to bound the values of the pressure
anisotropy within a physically “sensible” range, something usu-
ally adopted when modeling (nearly) collisionless plasmas as
fluids. For example, to mimic microphysical instabilities that
“feed” on the pressure anisotropy, limiters were added to col-
lisionless MHD-like models to perform numerical studies of
magneto-rotational instability (Sharma et al. 2006), to perform
numerical studies of the turbulent dynamo in the intracluster
medium (Santos-Lima et al. 2014; St-Onge et al. 2020), and to
derive a heating mechanism able to stably balance radiative
cooling in the central regions of cold-core clusters of galaxies
(Kunz et al. 2011). In all these examples the inclusion (via the
limiters) of microphysical effects significantly changes the sat-
uration level of macroscopic quantities. However, the current
work seems to suggest that, in the present application, the imple-
mented LF closure alone performs quite adequately to that end
(as long as the conditions for the LF model to be valid are sat-
isfied). From the figures presented in Sect. 3.2, one can see that
the electron anisotropy remains always bounded within a reason-
able range. Nevertheless, we do not exclude that including such
limiters for a certain class of problems could be an interesting
option to be further investigated in the future.

Finally, we note that in this model we do not include elec-
trons’ FLR corrections to the gyrotropic pressure tensor in (5).
Therefore, although retaining a model for the electron Landau
damping, we do not capture other kinetic effects at k⊥ρe ∼ 1,
where ρe is the electron Larmor radius (see, e.g., Sulem & Passot
2015 for a detailed discussion). On the other hand, we stress
that the electron model adopted here includes several additional
effects with respect to the electron response adopted in a similar
study by Le et al. (2016). In fact, while their model only consid-
ers a static, gyrotropic equation of state (viz., p‖,e = p‖,e(n, B)
and p⊥,e = p⊥,e(n, B)), our HVLF model includes dynamic
equations (6a)–(6b) for the gyrotropic electron-pressure com-
ponents, LF closures (7a)–(7b) for the gyrotropic electron heat
fluxes, and finite electron-inertia effect in the generalized Ohm’s
law (3).

2.2. Full-kinetic model: iPIC

Compared to the LF closure implemented in the HVLF run, a
full-kinetic model will provide also the non-gyrotropic effects
of the dynamics of the electrons (i.e., those linked with FLR
physics). Also, the quasi-neutrality ansatz will be removed,
meaning that charge separation is not forced to be zero.

The most widely used method to numerically describe the
kinetic dynamics of a plasma system is the PIC method. The
majority of PIC codes use an explicit method to advance the
electric and magnetic fields in time (Bowers et al. 2008). The
explicitness of the method introduces strong restrictions regard-
ing the length and timescales to resolve in the numerical inte-
gration: (i) the plasma Debye length, the shortest length scale
in the system that represents the characteristic screening scale
length of a single charge by collective plasma motions, must be
resolved by the spatial grid; (ii) the electron plasma frequency
has to be resolved temporally; (iii) a Courant condition on the
speed of light limits even further the grid size. Implicit and semi-
implicit PIC methods have been developed to reduce such con-
straints. They are not subject to the aforementioned restrictions
and allows for the simulation of fully kinetic plasma systems in a
range that goes from fluid scale to a fraction of the electron skin
depth.

Considering the size and the resolution of the system pre-
sented here, we opted for the use of the semi-implicit method
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implemented on the code “iPic3D” (Markidis & Lapenta 2010;
Lapenta 2012). The semi-implicitness of the method arises from
an approximated calculation of the source terms (currents and
density) at the iterative step “n+1,” which are computed by a
Taylor expansion in time of the same quantities at the step “n.”
As explained in Markidis & Lapenta (2010), the semi-implicit
method has a reduced computational cost as compared with the
implicit method and, clearly, with every explicit method. As a
drawback, the semi-implicit method requires the following sta-
bility condition to be satisfied: vth,e∆t/∆x < 1, where vth,e is the
electron thermal speed, ∆t is the time step, and ∆x is the grid
step. The latter is always less restrictive than the Courant con-
dition on the speed of light c for the explicit methods, which
reads c∆t/∆x < 1. The code iPic3D solves the full Vlasov-
Maxwell set of equations for multiple species, in this case,
protons and electrons. The physics resolved in a particular sim-
ulation depends on the system resolution and on the time step.
Contrary to explicit methods where all relevant spatial and tem-
poral scales are resolved, the semi-implicit method can resolve
phenomena that have a spatial scale larger than the grid size and
a frequency higher than the inverse of the time step. Thus, the
presence or absence of phenomena such as quasi-neutrality vio-
lation depends on the numerical resolution. In this study, the
implicit nature of the code is effective in removing any wave
generated by charge separation, so that the quasi-neutrality is
mostly preserved.

2.3. Simulation setup

For each of the plasma models mentioned above, we performed
a numerical integration using the same initial condition on a 2D
spatial domain of size Lx = 24πdp and Ly = 12πdp, discretized
with Nx×Ny = 1024×512 grid points. The velocity space domain
in the HVM and HVLF hybrid simulations is bounded by |v| ≤
6.4vth,p in each velocity direction, where vth,p ≡

√
T0,p/mp is the

proton thermal velocity associated with the initial proton tem-
perature T0,p. The velocity grid has been discretized by 513 grid
points. The iPIC (fully kinetic) run employs 14000 particle per
cell (PPC), 7000 for each species. The hybrid simulations also
include finite electron-inertia effects, and in all three models we
adopted a reduced mass ratio of mp/me = 100.

The initial setup consists of a “double-Harris (DH) sheet”
configuration (Harris 1962) to accommodate for periodic bound-
ary conditions:

Bx = B0

[
tanh

(
y − y1

L1

)
− tanh

(
y − y2

L2

)
− 1

]
,

By = 0, (9)
Bz = B0/4,

where L1 = 0.85dp and L2 = 1.7dp are the two shear widths,
y1 = L1Ly/[2(L1 + L2)] and y2 = Ly − (L2Ly)/[2(L1 + L2)] their
positions, and B0 = 1 is a constant value used for normaliza-
tion. Unlike the original Harris’ equilibrium, we also included
a “weak” guide field in order to have a non-vanishing mag-
netic field to allow for the LF closure. In other words, if the
magnetic field vanishes, equations for parallel and perpendicu-
lar quantities become unjustifiable. We set the guide field value
to a quarter of the (asymptotic) reconnecting field Bx, so as not
to slow down reconnection significantly (see, e.g., Ricci et al.
2004; Daughton & Karimabadi 2005; Shi et al. 2020).

The particle distribution function of the species a = p, e is
initialized consistently with the magnetic-field configuration in

Eq. (9):

f DH
a (y, vx, vy, vz) =

1
(2πvth,a)3

n1(y) exp

− v2
x + v2

y + (vz − V1,a)2

2v2
th,a


+ n2(y) exp

− v2
x + v2

y + (vz − V2,a)2

2v2
th,a

 (10)

+ nb exp

− v2
x + v2

y + v2
z

2v2
th,a

 ,
where the density profiles of the “background” and sheets popu-
lations, namely nb, n1, and n2, respectively, are given by

n1(y) =
B2

0

2(T0,p + T0,e) cosh2
(

y−y1
L1

) ,
n2(y) =

B2
0

2(T0,p + T0,e) cosh2
(

y−y2
L2

) , (11)

nb = n0,

and n0 = 1 is a constant value used for normalization (also,
in our units the Boltzmann constant is κB = 1). Here ma and
T0,a are the mass and the initial (uniform) temperature of the
species, vth,a =

√
T0,a/ma its initial thermal velocity and V1,a =

−2T0,a/(B0L1) and V2,a = 2T0,a/(B0L2) the velocities related
to the current sheets. If one considers a single current sheet,
L2 → +∞, then Eqs. (9)–(11) form a consistent kinetic equilib-
rium (see Allanson et al. 2017). Due to the nonlinear nature of
the Vlasov-Maxwell system of equations, the superposition of
two Harris’ sheets is no longer a Vlasov equilibrium. Neverthe-
less, with our choice of parameters the two sheets are well sepa-
rated in space: at the peak of the first current sheet (n1 ' n0), the
second one is negligible (n2 ∼ 10−10n0), and vice versa. More-
over, the choice of L2 = 2L1 makes the second current sheet
quiescent over the entire simulation time (i.e., no reconnection
nor other instabilities develop).

For our simulations, we considered2 βp = 1, T0,e/T0,p =
1/4, and T0,‖,a = T0,⊥,a. The choice of adopting colder elec-
trons follows from the absence of electron-FLR effects in the
HVLF model. At the same time, the hybrid models employed
in this work do include electron-inertia effects associated with
de. Therefore, in order to resolve the electron inertial length de
while keeping the electron Larmor radius below the grid reso-
lution, we adopted βe < 1. The initial equilibrium is perturbed
by long wavelength, random phase magnetic-field fluctuations
with 1 ≤ kdp ≤ 9, where k ≡ (k2

x + k2
y )1/2 (all simulations

employ the same phases for the initial perturbations). By ini-
tializing a superposition of different modes, we do not impose
a single X point to emerge at a given position. Furthermore, in
order to mitigate the effect of PIC noise, the maximum ampli-
tude ε ≡ max(|δB|) of the initial perturbations used in hybrid
simulations, namely εhyb = 0.01, is increased by a factor of three
in the iPIC case, εpic = 0.03. Other characterizing parameters for
the simulations are ∆x = ∆y = 0.074dp = 0.74de, ∆t(HVM) =

0.005Ω−1
p (with 3 electrons sub-steps), ∆t(iPIC) = 0.2ω−1

P,p, and
for the iPIC simulation only, also vA/c = 0.01, ωP,e/Ωe = 10,
λD/de = 0.035. Within our choice of parameters, in the asymp-
totic region of the Harris field the electron gyro-motion is char-
acterized by Ωe = 100Ωp and ρe = 0.035dp (we recall that
mp/me = 100).

2 To be precise, this βp is the in-plane beta given by 8πPp/B2
x = 1.
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Fig. 1. Reconnected flux, F (left), and reconnection rate, R (right), for the main X point in the simulations. Within each panel, an inset shows a
zoom-in on a specific stage of these curves (thickened on the main plot), shifted in time, for the sake of comparison.

Given ∆x and ∆t(iPIC) defined above, the time and spatial
(asymptotic) resolution of the iPIC simulation in terms of elec-
trons’ quantities is thus ∆t(iPIC) = 0.2Ω−1

e and ∆x = 2ρe (corre-
sponding to a frequency and wavenumber resolution of ω/Ωe .
15.7 and k⊥ρe . 1.6, respectively). As a result, the electron gyra-
tion is not exactly resolved in space where the magnetic field
is stronger (asymptotic region), but it is well-resolved in time
everywhere, with at least ≈30 time steps in the worst-case sce-
nario (if τe = 2π/Ωe is the gyro-period, then ∆t(iPIC) = τe/(10π)).
Therefore, phenomena at the electron cyclotron frequency can
be described within the whole simulation domain. On the other
hand, a limitation exists on the range of spatial scales that are
resolved: although finite-k⊥ρe effects can be captured by the iPIC
simulation, to a certain extent, it is true that these effects do not
extend far below the electron-Larmor-radius scale (at least in the
asymptotic region, where the magnetic field is stronger; elec-
trons’ gyration is better resolved within the Harris sheet, where
the magnetic field strength drops by a factor of up to four with
respect to the asymptotic region).

3. Numerical results

In this section, we present an analysis of MR simulations within
the different physical models introduced in Sect. 2 (namely
HVM, HVLF, and iPIC). Our analysis focuses on the following
aspects: (i) the overall reconnection dynamics, (ii) the morphol-
ogy of the EDR and outflows, and (iii) the pressure-anisotropy
production and regulation.

In particular, we highlight the capability of the HVLF simu-
lation of capturing part of the physics3 missing in the HVM one
and playing an important role in the dynamics, in agreement with
the full PIC approach. Of course, the richer electron physics visi-
ble within the full PIC model is missing in the HVLF simulation.
Nevertheless, this does not prevent the hybrid model adopted in

3 Namely, the linear kinetic response (an approximation of it), includ-
ing the linear Landau damping, and also the ability to include “non-
double-adiabatic” anisotropy in the model.

the HVLF run from describing the reconnection dynamics quite
satisfactorily.

3.1. Reconnection dynamics

Reconnection rate. We characterize the global reconnection
dynamics by means of (i) the reconnected flux and the associ-
ated reconnection rate (in other words, the amount of magnetic
flux advected through the X point) and (ii) the physical struc-
tures formed during the reconnection and their nonlinear evolu-
tion. In 2D, the reconnected flux F is obtained by calculating the
difference between the values of the magnetic flux function Ψ
evaluated at the X point and at the adjacent O-point as follows
(see Yeates & Hornig 2011):

F(t) = |Ψ(t,Xpoint) − Ψ(t,O − point)|. (12)

The associated reconnection rate, R, is obtained as the time
derivative of F:

R(t) =
dF
dt
. (13)

Although it can be shown that R is equivalent to the more
commonly used parallel electric field evaluated at the X point,
E‖(XPoint), we point out that in PIC simulations the Ψ func-
tion is less affected by numerical noise than the electric field.
Moreover, it does not require time-averaging to smooth out the
oscillations typically observed as a consequence of a slight read-
justment to the initial setup, rather than to the reconnection pro-
cess itself. In addition, the evolution of the reconnected flux
allows the linear and nonlinear phases of the reconnection pro-
cess among the different runs to be synchronized (and, thus, to
be properly compared).

In Fig. 1 we show the reconnected flux F (left panel) and
the associated reconnection rate R (right panel) obtained from
the different simulations. From these plots we distinguish three
consecutive phases: the linear stage of the instability (up to
t ∼ 150Ω−1

p ), a subsequent nonlinear “super-exponential” phase

A156, page 6 of 16



F. Finelli et al.: Bridging hybrid- and full-kinetic models with Landau-fluid electrons I.

Fig. 2. Heat maps of ∆Bz = Bz − Bz(t = 0) (first row), E‖ (second row), Jz (third row), and J(in−plane)
e (fourth row) for the HVM (left column,

t = 237.5Ω−1
p ), HVLF (central column, t = 232.5Ω−1

p ), and iPIC (right column, t = 235.0Ω−1
p ) simulations. These times are chosen by fixing the

value of the reconnected magnetic flux. This value is in the middle of the super-exponential phase. The plot is zoomed-in around the main X point.
The E‖ is the rms value of E‖ in the shown region.

(up to t ∼ 230Ω−1
p ), and a final quasi-stationary fully nonlinear

regime. The first phase presents the usual exponential growth of
the modes, the second one is characterized by some modes grow-
ing faster than exp(γlin,kt) (hence the name super-exponential
or quasi-explosive, as defined in Ottaviani & Porcelli 1993, and
Aydemir 1992), the third by a quasi-stationary reconnection rate.

A qualitatively good agreement between the different sim-
ulations during the linear phase is observed, as shown in the
left panel of Fig. 1 and its inset. However, a detailed, quanti-
tative comparison of the modes’ growth rates during the linear
phase is limited by the uncertainties associated with finite-PPC
noise. Thus, we tested the convergence of the PIC simulation,
in particular during the nonlinear stage, using different numbers
of macro-particles, ranging from 800 to 7000 PPC per species
(the higher number is the value used for the simulation presented
here). This nonlinear phase of MR is the one of interest here.
We focus on the late-time evolution when the process develops
enough anisotropy to affect the dynamics, and thus the “robust-
ness” of the electrons LF model can also be tested.

A qualitative agreement between the three simulations (see
Fig. 1, right panel and its inset) persists during the “super-
exponential” phase, while they begin to differ during the
quasi-stationary regime. This feature is the consequence of the
different response times of the electron dynamics associated
with the three different models. During the quasi-steady stage,
the (stationary) reconnection rate is higher for the HVM sim-
ulation (around a value ∼0.06), while the HVLF one, which
includes electron anisotropy, shows a better agreement with the
fully kinetic case (both reaching a quasi-steady reconnection rate
value around ∼0.04). The same trend for the quasi-stationary
reconnection rates (i.e., higher with isotropic and isothermal
electrons, lower in the full-kinetic case) was also reported in
Le et al. (2016). Although the stationary reconnection rates are
smaller than the “usual” value of about 0.1 (Cassak et al. 2017),

it is worth noticing that this rate can indeed also depend on
the background density (see Wu et al. 2011; Divin et al. 2019)
or, more precisely, on the ratio between the background (i.e.,
asymptotic) and the peak (i.e., in the middle of the Harris
sheet) values of the density. In fact, most simulations adopt a
background-to-peak density ratio of nb/nH,0 = 0.1−0.24, in order
to better compare with early simulations setup (usually GEM-
like configurations, see Birn et al. 2001) and with some magne-
tospheric data. In Cassak et al. (2017) the so-called 0.1 recon-
nection rate problem is addressed showing that indeed not all in
situ observations and/or simulations report exactly that value of
the normalized reconnection rate. In our simulation, for instance,
the background-to-peak density ratio is nb/n1(y1) = 1.25 (cf.
Eq. (11)) and thus a lower stationary reconnection rate is consis-
tent with previous works (Divin et al. 2019).

Morphology. We now discuss the main features of the recon-
nection regions. In Figs. 2 and 3 we show for each simulation
four fields of interest, namely ∆Bz = Bz − Bz(t = 0), E‖, Jz,
and J(in−plane)

e , in the region around the X point during the non-
linear phase. The two figures are taken before and during the
stationary phase, respectively. If not otherwise stated when com-
paring results from different simulations, the time is chosen such
that the corresponding value of the reconnected flux F at that
time is the same for all simulations (cf. Fig. 1). First of all, from
Figs. 2 and 3 one observe that the morphology of the X point, as
well as the symmetry of the various physical quantities around
that region, highlights a significant difference between the three
models, marking the distinction between the dynamics result-
ing from isothermal electrons (HVM) and from the electron’s
models adopted in the HVLF and iPIC simulations. Moreover,

4 Here, nH,0 is the peak density value for the Harris’s sheet. In our
setup, we have nH,0 = n1(y1).
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Fig. 3. Same as Fig. 2, but the common value of reconnected flux is chosen in the nonlinear phase (for HVM at t = 287.5Ω−1
p , for HVLF at

t = 305.0Ω−1
p , and for iPIC at t = 320.0Ω−1

p ).

as seen in the bottom row of these figures, in the HVLF and iPIC
case one observes (more and more) elongated electron jets as
compared to the HVM case. These jets, as well as the out-of-
plane current, are tilted with respect to the direction of the neu-
tral line. Another feature present in the HVLF and iPIC cases
only is an asymmetric pattern in Bz fluctuations within the EDR.
In the E‖ field, more clearly seen in Fig. 3, a similar structure is
present in the three simulations. However, its typical extension is
comparable in the HVLF and iPIC cases only, both quite larger
than in the HVM one, during the quasi-stationary phase. In the
PIC simulation, as compared with the other fields, E‖ is noisier
(the reason why we prefer Ψ to evaluate F) and “fragmented.”
This fragmentation, also visible in other quantities, is due to the
formation ad absorption of a plasmoid in the time range from
t ≈ 260.0Ω−1

p to t ≈ 290.0Ω−1
p (cf. Fig. 1). In this paper, we

highlight other effects of this transient plasmoid; however, we
can state that its formation did not pose a problem to the present
study.

All the above-mentioned features have already been pointed
out by Egedal et al. (2009) as typical signatures for fully kinetic
models in the presence of a guide field. The same authors pro-
posed a fluid closure for electrons (see Le et al. 2009), which
can be interpreted as an “interpolation” between an isothermal
and a double-adiabatic closure, with the addition of kinetic fea-
tures5. This closure has been validated in Le et al. (2009, 2010b)
and Egedal et al. (2013), within a two-fluid framework, and an
analogous configuration for the out-of-plane electrons current
was obtained. However, the current sheet in the simulation with
their model forms a smaller angle with the neutral line, if com-

5 Actually, it is derived from considerations about the distribution
function, discriminating between trapped and passing electrons. Thus,
it is more than a naive interpolation between two preexisting models.
However, in the weak-trapping and strong-trapping limits it approaches
the isothermal and double-adiabatic models, respectively.

pared with an analogous full-kinetic run. In this sense, the HVLF
results are closer to those observed in the full-kinetic iPIC case.

Electron-anisotropy effects on EDR shape. The morphol-
ogy of the region around the X point is a consequence of the
EDR elongation that arises both in the iPIC and HVLF simula-
tions, but not in the HVM case. Although such an elongation is
more pronounced in the iPIC simulation than it is for the HVLF
one, this supports the idea that the elongation of the EDR is phys-
ical and associated with the local electron dynamics, the main
reason being the electron pressure anisotropy. It is remarkable
that a long time ago Vasyliunas (1975) and, twenty years later,
Cai & Lee (1997), pointed out that, during steady-state MR, the
forces associated with the anisotropy in the electron pressure
should play a significant role in balancing the electric field asso-
ciated with reconnection in the neighborhood of the X point.
This idea was investigated more recently by Le et al. (2009,
2010a,b) by means of a self-consistent model involving electron
pressure anisotropies, Hall magnetic field, and the electrons jets.
Inside and near the EDR, as shown in Fig. 3, a parallel elec-
tric field is generated as a consequence of the breakdown of the
frozen-in condition. This electric field enables efficient parallel
electron heating and, together with a simultaneous adiabatic per-
pendicular cooling (due to gradients in the magnetic field), pro-
duces a significant amount of electron anisotropy, p‖,e � p⊥,e,
typically observed in satellite data and confirmed in fully kinetic
simulations. In our simulations, this anisotropy can be seen in the
second row of Fig. 4. Here, we observe a difference between the
iPIC and the HVLF simulations. In particular, in the iPIC sim-
ulation the electron anisotropy affects a larger area. This is con-
sistent with the idea of heating driven by electron trapping (see
Egedal et al. 2013, and references therein). The kinetic trapping
process is obviously completely lost in the electron isothermal
HVM model but also in the extended HVLF description because
of the fluid approach. On the other hand, it is remarkable that the
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Fig. 4. Heat maps of proton anisotropy (first row), electron anisotropy (second row), magnetic curvature (third row), and ∇ ·Πe-drift current (fourth
row) for the HVM (left column, t = 287.5Ω−1

p ), HVLF (center column, t = 305.0Ω−1
p ), and iPIC (right column, t = 320.0Ω−1

p ) simulations. The
three instants are chosen by fixing the value of the reconnected flux. This value is chosen in the quasi-stationary phase. The plot is zoomed-in
around the main X point.

anisotropy level reached in the HVLF simulation is comparable
to that measured in the iPIC simulation. This is in agreement
with the observed larger E‖ structure in the HVLF and iPIC sim-
ulations. It is then the anisotropy of the electrons which in turn
helps to balance the enhanced parallel electric field in the gener-
alized Ohm’s Law.

Effects of electron anisotropy can be seen also in the
momentum balance. Neglecting electron inertia and assuming a
gyrotropic Πe, electrons momentum balance requires a perpen-
dicular current given by

J⊥,e ≈ −ne
E× B

B2 +
B
B2 ×∇p⊥,e +

B
B2 × (p‖,e − p⊥,e)b · ∇b. (14)

The first term on the right-hand side is the E× B-drift. The
two other drifts are driven by the pressure-gradient term ∇ · Πe
(namely, the diamagnetic and the curvature drifts, respectively).
In the region around the X point where electron jets develop,
the last term of Eq. (14) dominates over the E× B-drift due to
the high anisotropy and strong curvature. In Fig. 4 the curvature
|b · ∇b| is shown in the third row, while the ∇ ·Πe-drift (JΠ,e) is
shown in the fourth one. JΠ,e turns out to be much larger in the
HVLF and iPIC simulations as compared with the HVM one,
and since the curvature does not show significant differences
between the three runs, the difference can be only due to the elec-
tron anisotropy. As shown in the figure, this JΠ,e drift-current has
clearly the greatest influence on J(in-plane)

e (cf. Fig. 3).
This resulting anisotropy-dominated current is thus the main

responsible for the asymmetric Hall magnetic field BH observed
in HVLF and iPIC simulations. Another consequence is that the
J × B force becomes dominant6. In order to understand what

6 Equation (14) implies J⊥,e ∼ n e vth,e ∼ n e
√
βe vA. When comparing

the Hall force associated with such a current, |J × B| ∼ n e
√
βe vA B,

with the force associated with the reconnecting electric field, n e Erec ∼

n e (0.1 vA B), one finds that |J × B| � n e Erec for the typical values of
βe investigated in the present work.

balances this force, the steady-state electron momentum equa-
tion can be cast in the form

∇ ·
[(

B2/2 + p⊥,e
)

I +
(
p‖,e − p⊥,e − B2

)
bb

]
+ F = 0, (15)

with F representing the other contributions (electric field,
inertia, non-gyrotropy). Where the magnetic-field curvature
becomes important (also thanks to BH), the term resulting
from ∇ · (bb) can only be balanced by decreasing the quan-
tity |p‖,e − p⊥,e − B2| (i.e., by increasing p‖,e − p⊥,e). Thus
the electron pressure anisotropy acts as to roughly balance
the magnetic tension, which is the equivalent of saying that
J × B ≈ ∇ · Πe. To summarize, anisotropy and B-curvature
enhance electrons outflow jets, which generate the Hall mag-
netic field, BH. This Hall component simultaneously pro-
vides the major contribution to the magnetic-field curvature,
which in turn requires strong anisotropy to achieve force
balance. This seems to explain why extended narrow elec-
trons jets forms in models that include the electrons pressure
anisotropy.

3.2. Anisotropy

During the evolution of MR, we expect anisotropy to develop
and to play a relevant role not only in the dynamics and mor-
phology of the EDR around the X point (as outlined at the end
of the previous subsection) but also by representing a source of
free energy for possible secondary instabilities.

In Fig. 5 we show an histogram of the plasma distribution
in a parameter space described by pressure anisotropy, Aa =
p⊥,a/p‖,a, versus parallel plasma beta, β‖,a = 8πp‖,a/B2, with
a = p, e. Such a distribution is obtained by considering only
the plasma within a region of the simulation that includes the
active current sheet (roughly one third of the simulation box, in
height). Also, we take the cumulative data over a time interval in
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Fig. 5. Cumulative histogram of the (β‖,a,T⊥,a/T‖,a) occurrences over the quasi-stationary phase, for protons (left) and electrons (right) in the
HVM (top, t ∈ [262.5, 287.5] Ω−1

p ), HVLF (middle, t ∈ [262.5, 305] Ω−1
p ), and iPIC (bottom, t ∈ [275, 320] Ω−1

p ) simulations. The spatial region
considered is defined by y ≤ 12.5dp. Solid curves represent different instability thresholds (the same color is adopted for both the proton and elec-
tron versions): cyclotron instabilities (orange), mirror instabilities (red), parallel fire-hose instabilities (green), and oblique fire-hose instabilities
(violet). The black dash-dotted line is 1/β‖,a.

the quasi-stationary phase7. This is a typical representation of the
plasma distribution used, for instance, by SW turbulence stud-
ies (e.g., Hellinger et al. 2006; Matteini et al. 2007; Bale et al.
2009). In these plots, we also report a set of curves representing

7 Since we “synchronize” the simulations via the reconnected mag-
netic flux, these intervals differ from run to run and are reported in the
description of Fig. 5.

the thresholds for anisotropy-driven instabilities, listed in the top
right box. The upper branches (p⊥,a > p‖,a region) are the MI
(red) and the cyclotron instability (CI; orange); lower branches
are parallel FHI (PFHI; green) and oblique FHI (OFHI; violet).
The same color is used for both the protons and the electrons
versions. These curves, used for reference, are taken from differ-
ent works. For what concerns protons, the CI threshold is from
Lazar & Poedts (2014), while the MI and FHI curves are taken
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from Maruca et al. (2012) and Astfalk & Jenko (2016), respec-
tively. The electron version for these thresholds are instead taken
from Lazar et al. (2013) (CI), Gary & Karimabadi (2006) (MI),
Gary & Nishimura (2003) (PFHI), and Hellinger et al. (2014)
(OFHI). In order to be consistent with the duration of our simu-
lations, all the proton-instability thresholds, as well as the elec-
tron PFHI curve, are computed for the maximum growth rate
γm/Ω

−1
p = 10−2. The remaining electron-instability thresholds

are computed for γm/Ω
−1
c,e = 10−3 (which, in our simulations,

means γm/Ω
−1
p = 10−1).

Proton anisotropy. By comparing the distribution of protons
in HVM, HVLF, and iPIC simulations in Fig. 5, one can see that
they do not behave qualitatively very differently. That is true also
in the spatial domain, as presented in Fig. 4. In all the three cases
(in Fig. 5), a significant fraction of protons are indeed exceeding
the FHI thresholds. However, a difference in proton anisotropy
can be seen in the HVM simulation, where there is a larger frac-
tion of protons that reaches values of pressure anisotropy that
are further below 1, with respect to the HVLF and iPIC cases. In
fact, when electrons are isothermal, the free energy available in
the system can only feed the protons’ anisotropy. On the other
hand, when electron anisotropy is allowed, such free energy is
shared between the two species. This suggests that the electron
model implemented in the HVLF simulation is capable of dis-
tributing free energy among the two species in a way similar to
the full-kinetic case.

The main question remains why a non-negligible fraction
of protons populate a region beyond the FHI marginal stability.
In order to elucidate this point, we consider the spatial region
confined within a magnetic island: analogously to Fig. 5, in
Fig. 6 we show a time-cumulative histogram where now only
the plasma inside the magnetic island is considered (islands
elements are selected using a threshold on the magnetic flux,
namely Ψ/max(Ψ) > 0.9). The full circles reported on top of
the plasma distribution represent a time series of the instanta-
neous values of anisotropy and parallel beta, averaged over the
island domain, viz. (〈p⊥,a/p‖,a〉island, 〈β‖,a〉island) versus time. The
black circles denote the time range over which the cumulative
histogram is computed, while green circles represent earlier sim-
ulation times. From Fig. 6, one clearly appreciates that the inte-
rior of the magnetic island (or, at least, part of it) is where the
proton population that fills the FHI-unstable regions comes from.
On top of that, one clearly appreciates that there is a notice-
ably greater portion of protons that is beyond the FHI thresh-
olds in the HVM simulation if compared with the HVLF and
iPIC cases. In fact, there is a larger fraction of the proton dis-
tribution, especially in its low-β‖,p portion, that is found in the
unstable region for the HVM case. This is highlighted also by
the island-averaged points, which, in the HVM simulation, reach
the lowest values among the three models. These features of the
proton anisotropy-beta distribution within the various models is
(one of) the effect of how adopting a different electron response
feeds back onto the proton dynamics (namely, whether or not
electrons can develop pressure anisotropy, and thus distribute
the initial free energy among more available energy channels;
see, e.g., Cerri & Camporeale 2020).

Complementary to Fig. 6, we also performed an analysis
of the spatial locations of the plasma elements out of thresh-
olds within the simulation domain, using the whole distribution
reported in Fig. 5 (not shown here). We find confirmation that
the islands are the main origin of the proton population that is
found in the parameter region unstable to the OFHI, although
part of the outflows also contributes. At the same time, there are

spatial regions that become unstable for the proton CI and which
are similar in all three simulations: These regions are correlated
with points where By accumulates due to the reconnection pro-
cess. Finally, adjacent to these latter spatial domains, there are
regions where protons are MI-unstable.

The fact that the island is the unstable region is not surpris-
ing since two factors are simultaneously at play: (i) islands are
located in a low magnetic field region, which favors the insta-
bility development (i.e., decreasing T⊥ due to magnetic-moment
conservation), and (ii) outflows and compression enhance paral-
lel heating (i.e., increasing T‖). The question is rather why this
unstable region is not regulated by the instability (i.e., releasing
anisotropy-related free-energy as, for instance, Alfvén waves,
and bringing the distribution back to marginal stability). The FHI
thresholds shown in the figures are computed for a (maximum)
growth rate of 10−2Ωp, so that in about 100Ω−1

p one should see,
at least, a reduction of this unstable region. Our explanation is
that the limited dimension of the islands (length <40dp) prevents
the formation of modes at k ρp < 1, corresponding to the max-
imum growth rate for the FHI (Hellinger & Matsumoto 2000;
Schekochihin et al. 2010). For kmin = 2π/λmax ≈ 2 · 10−1d−1

p and
ρp =

√
βp/2 dp ≈ 5dp (see Fig. 6), one finds that kmin ρp ≈ 1.

We conclude that the fastest-growing modes associated with
these FHI branches cannot emerge due to the spatial constraints
imposed by the islands size.

In Fig. 6, dash-dotted black lines are ∝ 1/β‖,a curves, pre-
sented here to show how both electrons and protons populating
the island seem to follow, on average, a double-adiabatic evo-
lution (i.e., close to a CGL model with zero heat fluxes; see
Matteini et al. 2012; Hunana et al. 2019b), until t ≈ 270Ω−1

p . Of
course, since proton FHI is geometrically suppressed, nothing
confines them during this expansion, which continues until the
quasi-stationary phase (i.e., the black circles). Nevertheless, in
all three simulations, the protons average point seems unable to
go back to marginal stability at later times.

Electron anisotropy. We now discuss the effectiveness of the
HVLF model in capturing (as possible) the electrons dynamics
in the (p⊥,e/p‖,e, β‖,e) plane, when compared to the full-kinetic
case. In both HVLF and iPIC simulations, the electron distribu-
tion at p⊥/p‖ < 1 is indeed well bounded by the FHI marginal
stability thresholds (see Fig. 5). In particular, one can see that
the distribution lower boundaries are slightly better in agreement
with the OFHI than with the PFHI (besides, we remind the reader
that the threshold for the parallel branch is computed for a max-
imum growth rate that is ten times smaller than its oblique coun-
terpart). In Fig. 6, on the side of the electrons (right column),
we can appreciate the confinement action of the electron OFHI
within the island. Indeed, during its time evolution, the island-
averaged point roughly follows a double-adiabatic trajectory,
approaching the electrons FHI thresholds, and then it bounces
back within the stable region. After that, from both the average
points and the histograms, we see a tendency toward the elec-
trons MI marginal stability threshold. A full (nonlinear) devel-
opment of mirror modes should be associated with the formation
of magnetic holes (or magnetic peaks, see Hellinger & Štverák
2018, and references therein). However, in our simulations, the
presence of the MR process (and the associated magnetic struc-
tures) does not allow us to clearly identify the above-mentioned
mirror-related magnetic structures.

A similar degree of confinement is observed at high p⊥,e/p‖,e
and high β‖,e values, where the system is well restrained by
the electrons MI for β‖,e > 1. On the other hand, at lower β‖,e
values, where the electrons CI should be responsible for the
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Fig. 6. Cumulative histogram of the (β‖,a,T⊥,a/T‖,a) occurrences over the quasi-stationary phase for protons (left) and electrons (right) in the
HVM (top, t ∈ [262.5, 287.5] Ω−1

p ), HVLF (middle, t ∈ [262.5, 305] Ω−1
p ), and iPIC (bottom, t ∈ [275, 320] Ω−1

p ) simulations. The spatial region
considered is the island interior, here defined by Ψ/max(Ψ) > 0.9. The full circles on top of the histogram represent the time evolution of the
island-averaged anisotropy and parallel beta: black circles denote times over which the cumulative histogram is computed, while green circles
represent earlier times. Curves are the same as in Fig. 5.

confinement, the HVLF models (obviously) fails. This confine-
ment is instead present in the fully kinetic model. Indeed, even if
in Fig. 5 a small portion of the electrons are unstable also in the
iPIC run, we clarify that this is due to a transient (namely, a plas-
moid) observed in this simulation. This structure lasted for about
30Ω−1

p , with a dynamics ten times faster than the one associated
with the X-point reconnection. At this timescale (given the mass
ratio implemented in our simulations), even the electrons “lag

behind” the produced anisotropy. This anisotropy is quickly reg-
ulated after the plasmoid is “absorbed” within the main island.
As a check for a link between this anisotropy and the plasmoid,
we can show that it is absent in the island, as seen in Fig. 6. We
also checked that the portion of electrons that are unstable to CI
in the iPIC case is, indeed, spatially located within the plasmoid.

This result can be considered as a physiological difference
between the electron models implemented in the HVLF and
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iPIC simulations (i.e., due to the lack of electron-FLR effects
in the HVLF model). On top of that, we note that the portion
of electron distribution populating the CI-unstable region in the
HVLF simulation follows the 1/β‖,e double-adiabatic evolution
(see Matteini et al. 2012; Hunana et al. 2019b). Moreover, we
checked that this unstable portion of the electrons in the HVLF
case is, again, inside the island. This can be viewed as one more
signature that processes occurring within a magnetic island, such
as island contraction, contribute significantly to the anisotropy
generation in both directions (i.e., not only pushing the plasma
toward FHI regimes). Overall, this corroborates the hypothesis
that the differences in electrons CI confinement between HVLF
and iPIC simulations are physical rather than numerical. We
also mention that indeed the iPIC simulation presents a small
amount of electron cooling due to the implicit algorithm: so, one
may think that this cooling partially dissipates the free-energy
that would later lead to high-p⊥,e/p‖,e anisotropies. Being aware
of this numerical effect, we checked the behavior of internal,
kinetic, and total energies (i) of the single species and (ii) of
the whole plasma, during the iPIC simulation (not shown). Even
if a certain amount of numerical cooling is occurring (mostly
noticeable at early times, and at the expense of electrons internal
energy), that amount is not enough to explain the differences just
discussed between the iPIC and the HVLF runs, especially in the
quasi-steady stage. Therefore, we confirm that the lack of plasma
population above the electrons CI threshold in the iPIC simula-
tion is the result of a physical, rather than numerical, effect.

The iPIC and the HVLF models, as expected, support in
some cases different dynamics, in particular for low β‖,e (∼1) and
high electron anisotropy (>1). This discrepancy is due to the pos-
sibility of the iPIC model capturing electron anisotropy-limiting
processes that the HVLF cannot. Such kinds of processes can be
reproduced only if the electron relevant scales (i.e., the electron
Larmor radius in space and the electron gyration in time) are
resolved in the model. In our iPIC simulation, we duly resolve
electron gyration in time but not in space at the initial time (as
discussed in Sect. 2.3). However, due to the system evolution,
the electron gyroradius increases locally, becoming larger than
the grid spacing in a few extended regions. Figure 7 shows a 2D
map of the ratio between ρe and ∆x, in which green and blue
denote regions where this ratio is grater than one. Those regions
present a higher perpendicular temperature that corresponds to
a larger value of the local Larmor radius. It is in those regions
that electron FLR effects are captured by the iPIC model. The
consequence of these effects is to limit the further development
of p⊥,e > p‖,e anisotropy, which, to the contrary, is not limited
by these effects in the HVLF case. In conclusion, electron gyra-
tion scale effects are at play in the iPIC run and not in the HVLF
one, resulting in different electron anisotropy dynamics in the
two cases.

Character of magnetic fluctuations. In order to further
investigate the role of these instabilities in the regulation of the
electrons’ anisotropy distribution, we also analyze the proper-
ties of magnetic fluctuations in the quasi-stationary phase, in a
similar way to what is done in Bale et al. (2009) for SW turbu-
lent fluctuations. Such an analysis is reported in Fig. 8, where
the properties of magnetic-field fluctuations are reported in a
(β‖,e, p⊥,e/p‖,e) plane: this is done relating the fluctuations’ val-
ues at any spatial point to the anisotropy and parallel beta values
of the plasma at that same position. (The curves and time inter-
vals considered here are the same for Fig. 5, although a slightly
more coarse-grained binning is employed for these plots.) The
color-map refers to the bin-averaged value of δB/B (top row),

Fig. 7. Heat map of the local electron Larmor radius (normalized to the
grid spacing) from the iPIC run, at t = 320Ω−1

p . The color map is suited
for a qualitative analysis: gray for ρe/∆x ≈ 1, red for ρe/∆x < 1, blue
for 1 < ρe/∆x < 2, and green for ρe/∆x > 2.

δB⊥/B (middle row), or δB‖/δB⊥ (bottom row), measured in the
HVLF (left column) and iPIC (right column) simulations. Here,
δB = |δB| ≡ |B − 〈B〉t | and B = |〈B〉t |, where 〈. . . 〉t repre-
sents time average over the range that is being considered. If
just the magnitude of magnetic-field fluctuations are considered
(i.e., δB/B; Fig. 8, top row), one finds that the larger fluctua-
tions are mainly located in the regions nearby marginal-stability
thresholds, for both p⊥,e/p‖,e > 1 and p⊥,e/p‖,e < 1 values
of anisotropy. Such a fluctuation enhancement is interpreted as
a signature of the growth of these anisotropy-driven instabil-
ities in their attempt to regulate electron-pressure anisotropy:
larger fluctuations tend to scatter electrons more efficiently, so to
isotropize their pressure and bring the plasma back to marginal
stability. Considering now the magnetic fluctuations transverse
to the mean field, δB⊥/B (Fig. 8, middle row), one finds that
these type of fluctuations are strongly enhanced across the FHI
marginal stability (at p⊥,e/p‖,e < 1), and nearby the MI and CI
thresholds (at p⊥,e/p‖,e < 1), but only for those regions where
β‖,e & 10). These features are slightly clearer in the iPIC sim-
ulation than they are in the HVLF case. Indeed, in the HVLF
simulation, the electrons do not clearly reach and/or overcome
the FHI thresholds at (β‖,e < 10). As mentioned above, this dif-
ference is due to the presence of a transient plasmoid structure
in the iPIC simulation (cf. Figs. 5 and 6).

Considering now the so-called magnetic compressibility of
the fluctuations, δB‖/δB⊥ (Fig. 8, bottom row), both simulations
exhibit an enhancements of this fluctuations’ property near the
MI (and/or CI) thresholds, when 1 . β‖,e . 10. Magnetic-
fluctuations compressibility is also found to be enhanced near the
FHI thresholds, and in particular around the oblique branch, for
those regions where 5 . β‖,e . 100. What is often called OFHI
should be better called non-propagating FHI, since at oblique
propagation the fire-hose splits into a propagating, ωr , 0, and
a non-propagating, ωr = 0, branches (here, ωr is the real-part of
the complex frequency of the mode, ω = ωr + iγ). The ωr , 0
branch is a continuation (at nonzero propagation angles) of the
parallel case, it is a transverse (non-compressional) mode, and it
resonates with protons, not with electrons. The non-propagating
branch instead is (at least partially) compressive and dominates
over the propagating one. Focusing on the ωr = 0 branch,
when the compressive component is small (i.e., δB‖/δB⊥ <
1), the instability is cyclotron resonant with electrons, and
for this reason is able to control the electron anisotropy.
When δB‖/δB⊥ > 1, this mode becomes an analogous to the
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Fig. 8. Cumulative, bin-averaged histogram of δB/B (top row), δB⊥/B (middle row), and δB‖/δB⊥ (bottom row) in the (β‖,e,T⊥,e/T‖,e) plane.
Histograms are cumulated over the quasi-stationary phase (t ∈ [262.5, 305] Ω−1

p for HVLF, left column; t ∈ [275, 320] Ω−1
p for iPIC, right column).

Here, δB = |δB| ≡ |B − 〈B〉t | and B = |〈B〉t |, where 〈. . . 〉t denotes the time average over the interval used for the histogram. The spatial region
considered and the curves are the same as in Fig. 5.
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electron-mirror mode, just on the other “side” of the anisotropy
spectrum (see Lazar et al. 2014, and references therein).

Of course, it is important to stress also the limits of the HVLF
model. We already mentioned the inability of the LF closure to
reproduce the electrons CI. In the bottom row of Fig. 8, from
the iPIC simulation we observe a very small magnetic com-
pressibility for β‖,e < 1, especially near the instability thresh-
olds at p⊥,e/p‖,e > 1. This is likely due to the fact that elec-
trons anisotropy is efficiently confined by their CI in the iPIC
simulation. On the other hand, it is clear that the HVLF model
cannot account for the electron CI process: the high magnetic-
compressibility values in this region thus suggest that is the MI
that tries to make up for the absence of the CI in regulating the
electron-pressure anisotropy (with little success).

4. Discussion and conclusions

In this study we performed 2D numerical simulations of MR
within a typical Harris’s sheet configuration. The same initial
configuration is evolved by means of three different plasma mod-
els: (i) an HVM model with (isotropic) isothermal electrons
with mass, (ii) an HVLF model, where an anisotropic electron
fluid is equipped with an LF closure, and (iii) a full-kinetic
model employing an iPIC algorithm. The goal of this work is
to investigate to which extent different reduced electron mod-
els are able to capture the physics of MR, with the focus on its
nonlinear stage. In particular, we are interested in elucidating
the advances represented by the HVLF model, with respect to a
standard HVM approach, in the capability of capturing several
aspects of the electron dynamics and its feedback onto the pro-
tons. These aspects include the development of electron-pressure
anisotropy and anisotropy-driven (electron) instabilities, as well
as the electron-kinetic response, such as Landau damping. Lim-
itations that still hold within an HVLF approach with respect to
a full-kinetic model are also highlighted.

As far as the global reconnection dynamics, expressed by the
reconnected flux and its reconnection rate, is concerned, all three
simulations show results that are qualitatively in agreement with
one another. In particular, after an initial linear stage exhibiting
minor differences between the HVM model and the other two
models, the three simulations achieve a very good agreement
in the so-called super-exponential phase. In the quasi-stationary
stage, on the other hand, there is a quantitative difference in the
quasi-steady reconnection rate between HVM and the other two
models that is worth mentioning: The reconnection rate in the
quasi-steady regime is noticeably higher in the HVM model,
about ≈0.06, than in the HVLF and iPIC simulations, where
it sets around ≈0.04. This reconnection rate value differs from
the one considered to be a “typical” value for fast collisionless
reconnection, ≈0.1. Such a difference in the quasi-steady recon-
nection rate is due to a background-to-peak density ratio that in
our configuration is higher than the one that is “typically” imple-
mented (see, e.g., Cassak et al. 2017, and references therein). As
for the local features of the dynamics, the absence of electron
anisotropy in the HVM simulation results in a different shape of
the region around the X point of the reconnecting current sheet
and, in particular, of the EDR. From the X point, in a region sur-
rounding the EDR, elongated and “tilted” electron jets develop
as a consequence of the electron-pressure anisotropy that affects
the momentum balance in the HVLF and iPIC simulations. For
the same reason, the current structure and the EDR are also
elongated (and the former is also tilted), a feature that is not
observed with isotropic isothermal electrons.

Then, we focused on the production and regulation of
species’ pressure anisotropy during the nonlinear stage of recon-
nection. The processes mainly involved in the confinement of the
plasma distribution in a anisotropy-versus-beta parameter space
are the OFHI (for p⊥,a < p‖,a), the MI (for p⊥,a > p‖,a and
β‖,a & 2), and the CI (for p⊥,a > p‖,a and β‖,a . 2). As far as
the dynamics of the protons is concerned, all three simulations
are qualitatively similar. A significant portion of protons that are
inside a magnetic island continuously populate the parameter-
space region that is beyond the OFHI marginal-stability thresh-
old. This is due to the size of the island not being long enough
for the fastest growing mode of the instability to develop and
to efficiently regulate their anisotropy (while island contraction
simultaneously keeps generating more pressure anisotropy). Fur-
thermore, when compared to the HVLF and iPIC simulations,
protons in the HVM simulation show a tendency to develop
larger values of pressure anisotropy (toward p⊥,i < p‖,i). This
is the consequence in the HVM model of adopting an isotropic
pressure for the electrons, which excludes a priori the possibility
of feeding electron anisotropy using part of the energy released
by the reconnection process. However, we defer a detailed study
of this aspect to future works.

As far as electron dynamics is concerned, we have shown
that the HVLF and iPIC simulations lead to very similar results,
although some differences between the two are still present.
A key finding is that, when compared to the full-kinetic case,
the anisotropic electron-fluid model with an LF closure effi-
ciently regulates the distribution of electrons in an anisotropy-
versus-beta plane. In fact, the OFHI and the MI are effective
at controlling the electron anisotropy in both simulations. The
main difference between HVLF and iPIC arises due to the
intrinsic limitation of the electron-LF model, which cannot cap-
ture the electron CI. The CI threshold is indeed effective at
limiting the electron-pressure anisotropy (at p⊥,e > p‖,e and
β‖,e . 2) in the iPIC simulation, while in the HVLF case such
anisotropy can only be regulated by the MI (which in our setting
is less effective than CI, and thus a larger electron anisotropy is
achieved). This means that, when electron-gyration effects are
taken into account, such large anisotropy is not observed. In this
context, electron FLR effects could also play a relevant role in
limiting the anisotropy.

In conclusion, we have employed three different models to
describe the same process, focusing on the effectiveness of how
the electron physics can be modeled within a hybrid-kinetic
framework (namely, including electron-pressure anisotropy and
a fluid model of their linear kinetic response). When compared
to the full-kinetic case, the electron response implemented in
the HVLF model effectively reproduces the main features of
MR in 2D, as well as several aspects of the associated elec-
tron microphysics and its feedback onto protons dynamics. This
includes the global evolution of MR and the local physics occur-
ring within the EDR, as well as the evolution of species’ pressure
anisotropy. In particular, OFHI, MI, and CI play a relevant role
in regulating electrons’ anisotropy during the nonlinear stage of
MR. As expected, the HVLF model captures all these features,
except for the electron CI. The HVLF model represents a good
approximation of the full-kinetic case that compromises between
the richness of the physics that is described and its computational
cost.

Future works will extend this study to MR in 3D, as well as to
plasma turbulence across the so-called transition range between
MHD and sub-ion scales (where reconnection plays a crucial
role; see, e.g., Cerri & Califano 2017, and references therein).
Regarding additional model development, one can further refine
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the electron-fluid model by including (large-scale) electron FLR
effects and/or moving the LF closure to higher moments (see,
e.g., Sulem & Passot 2015). This would make the electron model
even closer to a full-kinetic response, although at a somewhat
higher computational cost, and is currently considered to be a
possible future direction.
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