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1. Introduction

In this paper we study the family of L—functions L(s,xp) as P ranges over monic,
irreducible polynomials of degree 2g + 1 over Fy[z] and the family L(F ® xp,s) for
E/F,(t) a fixed elliptic curve, again as P ranges over monic, irreducible polynomials.

Andrade and Keating [3] computed the first moment at the central point 1/2 for the
family L(s, xp), with a power saving error term. They also obtained the leading order
term for the second moment, which has size g3, and bounded the error term by O(g?).
We improve their result and prove the following.

Theorem 1.1. For q an odd number, we have

b S Lxe) = 9’ +gz(§ + i) +0.(g¥2),
Pag+1l p 5 ? 3Gq(2) 2 2
2g+1

where the sum is over monic, irreducible polynomials with coefficients in Fy[z].
We also prove the following.

Theorem 1.2. Let ¢ be a prime power with (q,6) = 1. Let E/F(t) be a fized elliptic curve
with discriminant A and M be the product of the finite primes where E has multiplicative
reduction. Then for g > deg(A)/2 — 1, we have

1
|P29+1‘

e L'(E®xp.3)
PEP2g 41

= 2(log q) (Ap(1;1) — e2g11€(E) Ap(M; 1))L(Sym2E, 1)g + O-(g*/**9),

where €~ is defined in (2.6) and (2.5), and Ag(N;u) is given by (7.4). In particular,
unless eag11€(E) =1 and M =1, we obtain an asymptotic formula.

We remark that Andrade and Keating’s approach would give an error term of size
O(g) for the above mean value, and hence fails to give an asymptotic formula.
Define the analytic rank of the twisted elliptic curve £ ® xp by

TEQxp = Ords=1/2L(E X xp, S)'

Combining Theorem 1.2 with upper bounds for moments of derivatives of L—functions,
we obtain the following corollary.

Corollary 1.3. Unless e2g11€(E) =1 and M =1, we have

€

29
q
#{P S 7)29+1 TE®xp = 1} > ‘92—_,_
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as g — 0o.

For a fixed elliptic curve E/Q, Silverman conjectured that for a positive proportion
of primes p, E® or E(~P) has rank 0 and > 0 respectively, where E®) is the quadratic
twist of £ by Q(,/p). Silverman’s conjecture is open in general, but it is known for some
special elliptic curves (for example, for the congruent number curve y? = 23 — x or for
elliptic curves with E(Q)[2] = 0 or E(Q)[2] = Z/2Z [13], [14]). While in Corollary 1.3
we do not obtain a positive proportion of primes, our result holds for any fixed elliptic
curve.

Computing moments in families of L—functions is a well studied problem, due to its
applications to nonvanishing results, the subconvexity problem etc. Jutila [12] computed
the first moment in the family of quadratic Dirichlet L—functions, obtaining a power
savings error term. Soundararajan [19] obtained asymptotics for the second and third
moments for the family L(s, xsq) for d an odd, square-free, positive number. As a corol-
lary, he showed that more than 87.5% of L(1/2, x4) do not vanish. Chowla [9] conjectured
that L(1/2, x4) is never equal to 0.

Considering the family of quadratic Dirichlet L—functions with prime conductor, Jutila
[12] also showed that

Xlog X
S L) = =B 4 0.(X (log X)),

4
p<X
p=3 (mod 4)

and a similar formula holds for the average over primes p = 1 (mod4). This family is
more difficult to work with due to the fact that the sums are over primes, as opposed to
sums over essentially square-free numbers as in [19]. Conditionally on the Generalized
Riemann Hypothesis (GRH), Baluyot and Pratt [7] obtained the leading order term in
the asymptotic for the second moment. Specifically, they proved that

> L(3,xp)? = eX(log X)* + O(X (log X)'1/4),
p<X
p=1 (mod 8)
for some explicit constant c. Unconditionally, they obtained upper and lower bounds of
the right order of magnitude. Using sieve methods, they also showed that more than 9%
of L(1/2, x,) are non-zero. Under GRH, Andrade and Baluyot [1] computed the 1-level
density in the family and obtained that more than 75% of the L—functions evaluated at
the central point do not vanish.
The corresponding problem of computing moments in the family of quadratic Dirichlet

L—functions with prime conductor over function fields was considered by Andrade and
Keating [3]. For the second moment, they showed that

1 2 9° 2
Lt xp) = + O(g?). 1.1
Pag-+1l PG,Z;;H (2:xr) 3¢4(2) (s”) (1.1)
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Similar to the recipe developed by Conrey, Farmer, Keating, Rubinstein and Snaith [8],
Andrade, Jung and Shamesaldeen [2] conjectured asymptotic formulas for the integral
moments of L(1/2, xp). Specifically, the conjecture is that

1
|Pag+1]

k
L(i,xp)" ~ Pu(29+1), (1.2)
PePagia

where P, is an explicit polynomial of degree g(g + 1)/2.

To obtain the asymptotic formula (1.1), Andrade and Keating used the approximate
functional equation and then computed a diagonal contribution from square polynomials,
which gives the main term of size ¢3. To bound the contribution from non-squares, they
used the Weil bound (which follows from GRH over function fields). To explicitly compute
the term of size g? in Theorem 1.1, we are more careful in bounding the error term
coming from non-square polynomials. After using the approximate functional equation,
we truncate the Dirichlet series close to the endpoint. On the first, longer Dirichlet
polynomial, we compute the diagonal term and bound the off-diagonal using the Weil
bound. Since this Dirichlet polynomial is shorter than the one considered by Andrade and
Keating, we obtain a saving on the error term. For the tail of the Dirichlet polynomial, we
use the Perron formula and express it in terms of a shifted moment expression integrated
along a circle around the origin. For the integral on a small arc around the origin, we
use a recursive formula for the shifted moment and exhibit some explicit cancellation
between this term and the diagonal. For the integral along the complement of the small
arc, we use upper bounds for moments. A similar idea was used in the computation of
lower order terms for the fourth moment of quadratic Dirichlet L—functions over function
fields in [10]. Note that we expect off-diagonal terms to contribute to the coefficient of g
in the asymptotic formula (1.2). For Theorem 1.1, both the g® and g2 terms come from
the diagonal. To explicitly compute off-diagonal terms, one would need to use a more
refined method rather than relying on the Weil bound.

In the orthogonal family of quadratic twists of a fixed modular form, the first moment
was computed in [4], [16], [11]. The second moment was considered by Soundararajan and
Young [21], who obtained an asymptotic formula with the leading order term, condition-
ally on GRH. Unconditionally, they obtained a lower bound which matches the answer
conjectured by Keating and Snaith in [15]. Some of the work in the present paper is in-
spired by ideas used by Soundararajan and Young in [21]. Using similar ideas, also under
GRH, Petrow [17] obtained several asymptotic formulas for moments of derivatives in
this orthogonal family when the sign of the functional equation is equal to —1.

Similar problems over function fields were considered in [5]. The authors computed
the first and second moments in the family of L—functions associated to quadratic twists
of a fixed elliptic curve over F,(¢), and various other moments involving derivatives of
these L—functions. These asymptotic formulas allow them to deduce lower bounds on
the correlations between the analytic ranks of quadratic twists of two distinct elliptic
curves. Note that in Theorem 1.2 we compute the first moment for derivatives of the
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L—functions with root number equal to —1. Our methods do not allow us to obtain the
mean value for the L—functions themselves, as the error term coming from using upper
bounds for moments would dominate the diagonal term which has constant size in this
case.

2. Background

Fix an odd number ¢q. Let M denote the set of monic polynomials with coefficients in
F,, and M<, be the set of monic polynomials with degree less than or equal to n. Let P,
denote the set of monic, irreducible polynomials over F,[z]. The norm of a polynomial
f is defined to be | f| = qie&l/).

The Prime Polynomial Theorem states that

\7’n|——+0<qn/2) (2.1)

The quadratic character over F,[t] is defined as follows. For P a monic, irreducible
polynomial and f a monic polynomial, let

xp(f) = (?),

where (?) is the quadratic residue symbol over F[z].
The zeta-function is defined as

T

fem
for R(s) > 1. Since there are ¢" monic polynomials of degree n, one can easily show that

1

Cols) = 1_—(]1,57

which provides a meromorphic continuation of (, with a simple pole at s = 1. We will

—S

often make the change of variables u = ¢~°, and then the zeta-function becomes

1
Z(u) Z udes(f) — R vt
fem

with a simple pole at u = 1/q. Note that Z(u) can also be written in terms of an Euler
product as

:1;[( deg(@) g
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where the product is over monic, irreducible polynomials in Fg/[t].
For P a monic irreducible polynomial, the L—function associated to the quadratic
character x p is defined by

L(s,xp) = =, |f|s IQ—[ ( |Q\3 >1.

Similarly as before, with the change of variables u = ¢~ one has

L(u, xp) Z p(f)udeEl) — H (1 _ XP(Q)udcg(Q)>*

fem Q

By orthogonality of characters, it follows that £(u, xp) is a polynomial of degree at most

deg(P) — 1.
For P € Pyy41, the L-function satisfies the following functional equation

£luxe) = (@)L (o). (2:2)

To define elliptic curve L—functions over function fields, we take ¢ to be a prime
power with (¢,6) = 1. Let E/F,(t) be an elliptic curve defined by y? = z* + Az + B,
with A, B € F,[t] and discriminant A = 443 + 27B? such that deg,(A) is minimal
among models of E/F,(t) of this form. The normalized L-function associated to the
elliptic curve E/F,(t) has a Dirichlet series and an Euler product which converge for
R(s) > 1, as follows.

L(E,s) = L(E,u) = > _ A(f)u'*s) (2.3)
feMm
=1] (1 _ /\(Q)udeg(Q)>_1 II (1 —MQ)udes@ 4 u2deg(Q))_
QlA QA

One can show that the L—function is a polynomial in u with integer coefficients and has
degree

n:=deg (L(E,u)) = deg(M) + 2deg(A) — 4, (2.4)
where M denotes the product of the finite primes where E has multiplicative reduction

and A the product of the finite primes where E has additive reduction (see [6]). The
L—function satisfies a functional equation; namely, there exists e(E) € {£1} such that

£(B,u) = e(B)(yau)"L(E, qiu ).
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For P € Pygy1 and (P,A) = 1, we consider the twisted elliptic curve £ ® xp having
the affine model y? = 2% + P2Ax 4+ P3B. The L-function of the twisted elliptic curve
has the following Dirichlet series and Euler product

»C(E X XP, u)
= > Axp(futes?)
fEM
=TT (1 2@xr(@u@) " T (1= MQup(@uies@ + uw2des@)
QlA QtapP

The L—function L(F ® xp,u) is a polynomial of degree n 4+ 2deg(P) and moreover it
satisfies the functional equation

1
L(E @ xp,u) = € (Vau)™ 2 =P L (B @ xp, ), (2.5)
qu
where € is the root number of the twisted elliptic curve and it is equal to

€= €deg(P)6(E)XP(M)'

In the above equation, €qeg(py € {£1} is an integer which only depends on the degree of
P (see Proposition 4.3 in [6]). We set
1—c¢€

€ = 5 (2.6)

3. Preliminary lemmas

Here we will gather a few lemmas we need. We have the following approximate func-
tional equation.

Lemma 3.1. For P € Pagy1, we have

E( U 2 Z 7(f)xp(fute) 1 oute Z T(Fxr(f)

_7XP> - o )
\/a fEMSZQ |f‘ f€M§2071 V |f‘ud g(f)
where T(f) = ¢ y,—; 1 is the divisor function.
Proof. See [3], equation (4.4). O

Lemma 3.2. For P € Pyg1 and E[Fy(t) such that e = —1, we have

s (A1 de DN

L'(E®xp,3) =2(logq)
deg(f)<[n/2]+2g+1 ‘f|
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Proof. See Lemma 2.3 in [5]. O
The following Weil bound holds for character sums over primes.

Lemma 3.3. For f not a square, we have

1

m xp(f) < q 9deg(f).

PeP2gi1

Proof. See [18], equation (2.5). O
4. Upper bounds

In this section we will prove the following upper bounds for moments, whose proofs
are similar to the proof of the upper bound for moments of the Riemann zeta-function

in [20]. A similar function field proof can also be found in [10].

Proposition 4.1. Let u = €' with 6 € [0,27). Then for every k > 0 and € > 0, we have

1 U k R k>
W ’»C(_J(P)‘ <Le g exp (/fMl(Uag)'i‘?Vl(Uag))?

2g+1 PEPag 11 \/6

where
1 1
B} = _l i { 7:}
Mi(u, g) = 5 logmin (g 57

and

1
Vl(uag) = M1(U,g) + %

Here for 6 € [0,27) we denote § = min{0,2r — 0}.

Proposition 4.2. Let u = € with § € [0,27) and let m = deg (L(E ® xp,v)). Then for
every k > 0 we have

2
|v>2i+1| 3 (B oxe72) [ o7 e (koo m) 5 Vi,m),
2g+1

where

and
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I
Vo (u,m) = —Ma(u,m) + og;m.

Propositions 4.1 and 4.2 immediately lead to the following corollary.

Corollary 4.3. Let u = e* with 6 € [0,27). Then

i 3 Je( ) o b

‘P2g+1| PEPagin

and

1 ’ u 1y-1/4
—_— E(E@xP,—)‘ <e gl/4+6min {g,:} .
|P2g i1l Pe,%;m Vi 26

Before proving the above propositions, we first need the following lemma.

Lemma 4.4. Let h,l be integers such that hl < g and h > 1. For any complex numbers
a(Q) we have

1
‘,P29+1|

a(Q)xr(Q)
2 va

Proof. The proof is similar to the proof of Lemma 6.3 in [21]. Expanding out and using

21 l
(20)! (@)
< l!2l< 2. 0 )

QeP<n

PeP2gi1

Lemma 3.3 we have

1 21

‘P2g+1|

a(@)xr(Q)
PEP2g41 QGZPS;Z \/@

|a(@1) . .- a(Qa1)| ( - Ia(Ql)---a(sz>>
< +O[ hlg™9 —_— .
QI,_“7%673<}L |Q1~-~Q2l| ! Ql,_“’%ep<h \V4 ‘Ql ---QQZ‘

Q1...Q2=0
(4.1)

For the first term, we note that @1 ...Q9 = O if and only if there is a way to pair up
the indices so that the corresponding polynomials are equal. As there are (21)!/1!2! ways
to pair up 2! indices, it follows that

a(Q1) ... a(Qu)| _ (2])! ( a(@)?)l
< .
Qa’%e_%h |Q1Q2[| l'Ql Q;:Sh |Q‘

For the second term in (4.1), we use the Cauchy-Schwarz inequality to see that it is
bounded by
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(2 ) (5 ()

QEP< QEP<n QEP<n

Since h > 1 and hl < g, using the Prime Polynomial Theorem, it follows that the above
is bounded by

(2.5

QeP<p

and the proof is complete. 0O

We shall only illustrate the proof of Proposition 4.2. The proof of Proposition 4.1
follows along the same lines and it is also similar to the proof of Theorem 2.7 in [10],
using Lemma 4.4 instead of Lemma 8.4 in [10].

Lemma 4.5. Let

N(V, e
( ,U) |P29+1‘

{P € Pagt1: log’L'(E@Xp, %)‘ > V—|—./\/l2(u,m)}‘.

If Vlogm <V < Vs(u,m), then

V2 8
N(Viu) < exp ( 2y (u,m) (1 a loglogm))7

if Va(u,m) <V < logll%l/g(mm), then

V2 8V 2
N - 1- -
(Vu) < exp ( 2Vs (u, m) ( Va(u, m) log logm) )’

and if V> logll%l@(u,m), then

ViegV
N — .
(V,u) <<eXp( 4500 )
Proof. Let
log1
w if logm <V < Vs(u, m),
— J logl
A= ngi(‘)/{ynVQ(u,m) if Vo(u,m) <V < logi%]b(u,m),
8 if V> RE0EMY, (4, m),

and
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[ =<

m
h

Proposition 4.3 in [5] yields

v m 1 (O‘(Q)J + 5(@)]))(13(@3) log thj deg(Q)
log £<E ® xp, %)' st E%< ; |Q|(1/2+(1/h=i0)/Tog 0)i log ¢ .
deg(Q”)<h

(4.2)

The contribution of the terms with j > 3 is bounded by O(1). The terms with j = 2
will contribute

1 3 (h —2deg(Q))(N(Q?) — 1) cos(26 deg(Q))
Q|2 dee(@/h :
deg(Q)<h/2

Let
i cos(2nb)
nen/h :

As in Lemma 9.1 in [10], we can show that
. 1
F(h,0) = logmin {h7 %} + O(1).

Indeed, writing e=™/" = 1 + O(n/h), we have that

h

and we deal with the sum above in the same way as in Lemma 9.1 in [10], the only
difference being that rather than using the inequality cos(2nf) < 1, we use the Taylor
expansion cos(2nf) = 1 + O(n?6?) in order to obtain an asymptotic.

Since

MQ?) cos(20 de
> (Q7) cos(20 deg(Q))

[Qlcder(@)/h = O(loglogh), (4.3)

deg(Q)<h

it follows that the contribution from j = 2 is

1 h —2de cos(20 de
Loy ( 8(Q)) cos(20 deg(Q))

2h e2deg(Q)/h
deg(Q)<% |Q‘

= —w + O(loglogm) < —

+ O(loglogm)

F(T;% %) + % + O(loglogm)
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= Ms(u,m) + % + O(loglogm). (4.4)

Note that in the second line of the equation above we used the fact that

m h/2
o (o) 50tz

and since e™* = 1+ O(x), we have

F(m, 0) — F(g 0) = n_%;ﬂ cosnf) | (1) < %m + o).

Applying equation (4.4) to (4.2) hence leads to

u

Va

|

log E(E@Xp,

)‘ < Ma(u,m) +

(h — deg(Q))MQ)xp(Q) cos(f deg(Q)) .
deg(Q)<h V]Qledes(@)/h

Let S; be the sum above truncated at

1
h

h
logm

deg(Q) < ho =

and Sy be the sum over primes with hg < deg(Q) < h. If P is such that

u
— )| >
10g [’(E®XP7 \/5>‘ _V—|—M2(U/,m),
then
4
Sl>V1:V(1_Z) or 522%
Let

Fi= {P S P29+1 251 > Vl} and Fo = {P S ng+1 : Sy > V/A}
If P € F,, then by Markov’s inequality and Lemma 4.4 it follows that

AN a(Q)xp(Q)\”
me(p) £ (¥ 4

PEP2g+1 ~ho<deg(Q)<h

O TED V-

ho<deg(Q)<h
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for any | < g/h where

(h — deg(Q))A(Q) cos(6 deg(Q))
a(@) = . hedea(@)/h S

We pick | = [g/h] and note that a(P) < 1 and m = 4g + O(1). Using Stirling’s approxi-
mation, we get that

1l < Pl () (2

! ViegV
) (loglogm)' < [Pagi1]|exp ( -2 ) (4.5)

If P € F; then similarly for any [ < g/hg, we have

1 @) [a(@)1\!
\F1l < | Pagt1l o1 Z .
VIR o an, 1@ )

Using the expression for a(Q) and equation (4.3) we obtain

20 \! 1
| Fi| < [Pag+1] (m) (V2(u,m) + O(loglogm)) .
i

If V< Va(u,m)?, then we pick | = [V;2/2V2(u,m)], and if V > Va(u, m)?, then we pick
[ = [10V]. In doing so we get
2

V
1 )) + |Pagt1]exp(—V1og V).

|F1] < [Pagy1]exp ( T Wa(um) (4.6)

Combining the bounds (4.6) and (4.5) finishes the proof of Lemma 4.5. O

Proof of Proposition 4.2. We have the following.

! > ‘ﬁ(E@XP,%)‘k— /ooexp (kV + EMo(u, m))dN (V, u)

|P2g+1| PEPagin

— 00
o

=k / exp (kV + kMa(u,m))N(V,u)dV.

—00

We apply Lemma 4.5 in the form

N(V u) - me exp ( — m) ifvV< 8k:V2(u7 m)7
me exp(—4kV) it V> 8kVs(u, m)

to the above formula and finish the proof of the theorem. O



14 H.M. Bui, A. Florea / Finite Fields and Their Applications 64 (2020) 101659

5. Main propositions

Proposition 5.1. For X < g, let

B (X) = 1 Z Z T(f)XP(f)_

|P29+1| PePagi1 2X <deg(f)<2g |f]

Then

B0 = L) 1 0,(¢9274 (g - X)) + 0(g (s - X))

Proof. Applying the Perron formula we get

BX) =g f i 3 £ ) O )

2m| 7 [Pag+1l PP Va u29t1(1 — u)

u (1 —u?972X) du

= E(—,XP) eI o
27” |7’2g+1| Va w9t (1 — u)

PEPay

/ 5(1 XP)2 (1 —u2972%) du
|P29+1| PP \/q’ u29+1(1 — u) ’

where C) denotes the arc of angle 4w, centered around 1, with 1/g < 6; = o(1), and
(s is its complement. Let E7; denote the integral over C'y and F15 the integral over Cs.
Note that

so there is no pole at w = 1. On Cy using Corollary 4.3 we obtain
By < 9" (g — X)o7 " (5.1)

On C; we use the approximate functional equation in Lemma 3.1. For f # [0 we apply
Lemma 3.3. In doing so we get

S () y

|P2g+1‘ PeP2g+1 feEM<,

(f2) 2deg(f)

|f‘ +u4g Z T(f ) _1_0(92)7

2deg(f)
eAz, | flu

and hence

By = Z T(fz) L / (1- u2972X) du
- ; 2g—2deg(f)+1(1 —
feMqy I 2mi 1 v * (1 U)
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T7(f%) 1 (1 —u?972X) du
+f€g: 7 %/u—wﬂdeg(ﬁﬂ(l—u) +0(g*(g — X)1).
Now
T 2Udeg(f):ﬂ 592
) o (52)

so using the Perron formula and making a change of variables in the second equation,
we have

Z(uv/q)*(1 — u®—2%)

ﬁ 55 / Z(u*v2/¢?)(1 — u)(1 — v)u29tiygtl

|v|=r C1

du dv

Ell =

u29-2X)

v/ u®q))*(1 —

N —w)(1 —v)u—29t+1lyg

dudv + O(g*(g — X)b1)

Z(?/(u
|v =rCi
u?2%)(1 - v*/q)

uvgﬂ 1—w)(1—v/u?)(1—v)3 dudv

|v_rC1
u(l —u?"2¥) (1 —v®/q)
vI(1 —u)(1 —u?v)(1 —v)3

dudv + O(gg(g —X)6y),

|v|=r C1
for r < 1. We have

=/
271

Cy

(1 —u?972X)dy,
u(l —u)(1 —v/u?)

29—-2X-1 oo

Z Z / 270 (j—2n)

—6;

and similarly

29—2X-1 oo

:an

L SIn(27(2n — 5)61)

/ u]—2n—1 du

Ch

292Xloo

n8in( 27r 2n —3)91)
e

292Xloo

Y s

nSin(2m( 2n+])91)
2n+j

sin(27(2n 4 5)01)
2n+j

g
+Zv”

n=1

2n —j
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Enlarging the contour and evaluating the residue at v = 1 we get that

2g—2X-—1 g g
1 sin(27(2n — j) 91 sin(2m(2n + j)61)
En=o S ) +3 P
" & (n_o Mm—j 2 M+ (n)

+0(g%(g — X)b1),
where

P(z) = (1—3)(gfx)2+(3+é)(gfx)+2

= (1—3)1’27 (2(1;)g+3+(1])x+(1;)g2+(3+;)g+2.

Using Lemma 9.4 in [10] we then obtain

g°(g — X)
2¢4(2)
Combining equations (5.1), (5.3) and choosing 6; = 1/,/g we obtain the proposi-

tion. O

By = +0(g°(g — X)01) + O(g(g — X)*01) + O(9(9 — X)071).  (5.3)

Proposition 5.2. For N a fized square-free monic polynomial, n € N fixed and X < 2g,
let

1 3 (29 +n — deg())AMF)xr (V)

E2(NaXan) = |P2 +1|
g

(5.4)
PEP2y11 X<deg(f)<2g+n |f|

Then
Ey(N,X,n) <. g*/* (29 — X)2.

Proof. Using the Perron formula for the sum over f in (5.4) we have

1 1 U
Ey(N, X = — _ N)L|E —
2( ) an) o % |7)29+1‘ PGPZ2+1 XP( ) ( @ Xxp, \/§>

|lul=1
(1—u29+"’x (29—|—n—X)(1—u)) du

u29+n - uX+1 (1—u)?
Note that
1—u29tn=X 29+ n— X)(1—u) 1 9
( w29+n - uX+1 ) 1—u)? < (29 -X)7,

and so, in particular, there is no pole at v = 1. The proposition hence follows after
applying Corollary 4.3. O
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6. Proof of Theorem 1.1

We first use the approximate functional equation in Lemma 3.1 to write

1 2
T Z L(%7XP) :Sl +527
|P2g+1| PEPag i1
where
1 T
29+l PEP2gi1 fEM<ay |l

and Sy has a similar expression with M<y, being replaced by M<a,_1. From Proposi-
tion 5.1 we obtain

51 =

Z Z + 92(9 - X)
|,P29+1| PePogi1 fEM<ax 2Cq(2)

+ 0 (g% (g — X)) + 0(91/2(9 - X)%).

For f # O we apply Lemma 3.3. In doing so we get

_ (f2)  ¢(g—X) - » s
Si= & T T O X) 10 X)) O

In view of (5.2) and the Perron formula, the above sum over f is

Z(u/q)? du _ 1 (1 —u?/q)du

27rz Z(u?/q?) uX+1(1 —u)  2mi uX+1(1 — )’

|ul=r |u|=r

for r < 1. By enlarging the contour of integration, passing the pole at u = 1, we see that
this is equal to

3
+ X? 4+ O(X).
6,(2) )
Since
X3 9*(g— X) g9
+X°+ = +9%+O0(g(g — X)?),
6, (2) 26,3 6@ ¢ oWl X
we get that
3
S, = g +92 +OE(93/2+E(9_X)) +O(gl/2(g—X)3) _’_O(q—g-&-XgQ).

6¢4(2)
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A similar computation leads to

3

__9 2(1 1 3/2+4e(, 20 w3 ik
AR <2+2q)+05(g (g - X)) +0(g"*(g— X)*) + O(q7 7 g?).

To obtain Theorem 1.1, we choose X = g — [1001og g].
7. Proof of Theorem 1.2 and Corollary 1.3

For N a fixed square-free monic polynomial, let T (N, X) = T (N, X;0), where

Te(N,X;a) =

1/24a
|P2g+1| PeP2g+1 fEM<x |f|

and |a| <« 1/g. From Lemma 3.2 we have
e L'(E®xp,3) = (logq)(1 — ezgs16(E)xp(M))

3 (In/2] 429 +1 —deg(f))/\(f)xP(f).

deg(f)<[n/2]+2g+1 /1

X

Truncating the above sum at deg(f) < X and applying Proposition 5.2 we get

1

—_— e L'(E®xp,3)
|P2g+1‘ 2

PeP2gi1

= (10g g) (In/2] + 29 + 1) (Ti(1, X) = 2y 1€(E)Ti(M, X)) (7.2)

+ 2 (TE(l,X; Q) — eag416(E)Tp(M, X a))

1/4+e€ _ 2
e + O:(g (29 — X)?).

a=0

Thus we are left to evaluate Tg(N, X; ).
For Nf # O in (7.1), we apply Lemma 3.3, and the contribution of these terms is
O(q~9%%/24?). So, by the Perron formula,

Te(N,X;a) = Z M—FO(q_gJ’_X/ZgQ)

1/24a
N /]
Yudes(f) du
—g+X/2 2
2m yé Z |f|1/2+a uX+1(1 — u)+0(q g g), (7.3)
. Nf=0O

for r < 1. We can write the sum in the integrand in terms of its Euler product as
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(D>

Q j+ordg(N) even

Q7 )u? dee(@Q)

2
u
|Q(1/—2+0‘)]> = Ag(N;u) L(SmeE, ql+—2a)’ (7.4)

where A (N;u) is some Euler product which is uniformly bounded for |u| < ¢*/2~¢. We
shift the contour in (7.3) to |u| = ¢*/?~¢, encountering a simple pole at u = 1. Thus

Te(N, X;a) = Ap(N; 1) L(Sym®E, 1+ 2a) + O(q~ 9" */2¢?) + O (¢~ */*T%).  (7.5)

From (7.2), (7.5) and Cauchy’s residue theorem we obtain

1

— cL(E®xp.3)
|7)2g+1| 2

PEP2g i1
=2(log q) (Ap(1;1) — ezg41€(E)Ag(M;1)) L(Sym®E, 1)g
+ Oa (gl/4+s(29 _ X)2) + O(q_g+X/292) + Og((]_X/2+6X)-

Choosing X = 2g — [1001og ¢] the theorem follows.
To prove Corollary 1.3, we proceed as in section 11 in [5] and using Corollary 4.3, we
get that

1

k _
m Z |L(l)(E®XP7%)‘ <. (l!)kglk:-‘rk(k 1)/2-‘1—5.
g

PEP2g+1
Choosing | = 1 and k£ = 2, we have

1
|P2g+1|

Z LI(E®XD72) << q2gg3+5
PePagi1

Using Cauchy-Schwartz, the inequality above and Theorem 1.2, the conclusion follows.
8. Checking the coefficients

Here we check that the asymptotic formula we obtain in Theorem 1.1 agrees with the
conjecture in [2]. From [2] we have that the term involving g2 in the asymptotic formula
should be equal to

2 2
SO0 30,00+ S22 A0,0) 4 220 (410,00 + Aa(1:0.0), (81
where
1 1
Lizoz) = [ (1- W)(I*WX“W) (8.2)

Q

- ;<(1|Q|1}2+21>_1(1 @p}zm)_l+ <1+@1}2M>_1(HQP}2+22)_1)7
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and

0

A1(3:0,0) = 9o

A(;sz;ZQ)

)
Z1=22 =0

and a similar expression holds for A3(1/2;0,0). Since A;(1/2;0,0) = A2(1/2;0,0), it
follows that the coefficient of g2 in (8.1) is equal to

A(1/2:0.0) | 41(1/2:0.0)

8.3
2 log q (8.3)
Using equation (8.2), we have
1
A(35;0,0) :
? q(2)

and

Ai(1/2;0,0) 3deg(Q (3|Q| + 1) deg(Q 2deg(Q _ 2
(logq)A(1/2;0,0) Z Q- 1 %: QP —1 Z QP -1 ¢-1

where the last identity follows from the logarithmic expression of (4(s). Then equation
(8.3) simplifies to

3 n 2 _
2Cq(2) Cq(2>(q - 1) B

which matches the coefficient in Theorem 1.1.

N W
|
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