
Finite Fields and Their Applications 64 (2020) 101659
Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Moments of Dirichlet L–functions with prime 

conductors over function fields

Hung M. Bui a, Alexandra Florea b,∗

a Department of Mathematics, University of Manchester, Manchester M13 9PL, 
UK
b Department of Mathematics, Columbia University, New York, NY 10027, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 September 2019
Received in revised form 17 January 
2020
Accepted 5 February 2020
Available online 6 March 2020
Communicated by Stephen D. Cohen

MSC:
11M06
11T06

Keywords:
Moments
L–functions
Rank
Elliptic curve
Quadratic character
Irreducible polynomial

We compute the second moment in the family of quadratic 
Dirichlet L–functions with prime conductors over Fq [x] when 
the degree of the discriminant goes to infinity, obtaining 
one of the lower order terms. We also obtain an asymptotic 
formula with the leading order term for the mean value of 
the derivatives of L–functions associated to quadratic twists 
of a fixed elliptic curve over Fq(t) by monic irreducible 
polynomials. As a corollary, we prove that there are infinitely 
many monic irreducible polynomials such that the analytic 
rank of the corresponding twisted elliptic curves is equal to 1.

© 2020 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: hung.bui@manchester.ac.uk (H.M. Bui), aflorea@math.columbia.edu (A. Florea).
https://doi.org/10.1016/j.ffa.2020.101659
1071-5797/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ffa.2020.101659
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ffa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ffa.2020.101659&domain=pdf
mailto:hung.bui@manchester.ac.uk
mailto:aflorea@math.columbia.edu
https://doi.org/10.1016/j.ffa.2020.101659


2 H.M. Bui, A. Florea / Finite Fields and Their Applications 64 (2020) 101659
1. Introduction

In this paper we study the family of L–functions L(s, χP ) as P ranges over monic, 
irreducible polynomials of degree 2g + 1 over Fq[x] and the family L(E ⊗ χP , s) for 
E/Fq(t) a fixed elliptic curve, again as P ranges over monic, irreducible polynomials.

Andrade and Keating [3] computed the first moment at the central point 1/2 for the 
family L(s, χP ), with a power saving error term. They also obtained the leading order 
term for the second moment, which has size g3, and bounded the error term by O(g2). 
We improve their result and prove the following.

Theorem 1.1. For q an odd number, we have

1
|P2g+1|

∑
P∈P2g+1

L
( 1

2 , χP

)2 = g3

3ζq(2) + g2
(3

2 + 1
2q

)
+ Oε(g3/2+ε),

where the sum is over monic, irreducible polynomials with coefficients in Fq[x].

We also prove the following.

Theorem 1.2. Let q be a prime power with (q, 6) = 1. Let E/Fq(t) be a fixed elliptic curve 
with discriminant Δ and M be the product of the finite primes where E has multiplicative 
reduction. Then for g ≥ deg(Δ)/2 − 1, we have

1
|P2g+1|

∑
P∈P2g+1

ε−L′(E ⊗ χP ,
1
2 )

= 2(log q)
(
AE(1; 1) − ε2g+1ε(E)AE(M ; 1)

)
L(Sym2E, 1)g + Oε(g1/4+ε),

where ε− is defined in (2.6) and (2.5), and AE(N ; u) is given by (7.4). In particular, 
unless ε2g+1ε(E) = 1 and M = 1, we obtain an asymptotic formula.

We remark that Andrade and Keating’s approach would give an error term of size 
O(g) for the above mean value, and hence fails to give an asymptotic formula.

Define the analytic rank of the twisted elliptic curve E ⊗ χP by

rE⊗χP
:= ords=1/2L(E ⊗ χP , s).

Combining Theorem 1.2 with upper bounds for moments of derivatives of L–functions, 
we obtain the following corollary.

Corollary 1.3. Unless ε2g+1ε(E) = 1 and M = 1, we have

#
{
P ∈ P2g+1 : rE⊗χD

= 1} �ε
q2g

g2+ε
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as g → ∞.

For a fixed elliptic curve E/Q, Silverman conjectured that for a positive proportion 
of primes p, E(p) or E(−p) has rank 0 and > 0 respectively, where E(p) is the quadratic 
twist of E by Q(√p). Silverman’s conjecture is open in general, but it is known for some 
special elliptic curves (for example, for the congruent number curve y2 = x3 − x or for 
elliptic curves with E(Q)[2] = 0 or E(Q)[2] = Z/2Z [13], [14]). While in Corollary 1.3
we do not obtain a positive proportion of primes, our result holds for any fixed elliptic 
curve.

Computing moments in families of L–functions is a well studied problem, due to its 
applications to nonvanishing results, the subconvexity problem etc. Jutila [12] computed 
the first moment in the family of quadratic Dirichlet L–functions, obtaining a power 
savings error term. Soundararajan [19] obtained asymptotics for the second and third 
moments for the family L(s, χ8d) for d an odd, square-free, positive number. As a corol-
lary, he showed that more than 87.5% of L(1/2, χd) do not vanish. Chowla [9] conjectured 
that L(1/2, χd) is never equal to 0.

Considering the family of quadratic Dirichlet L–functions with prime conductor, Jutila 
[12] also showed that

∑
p≤X

p≡3 (mod 4)

L(1
2 , χp) = X logX

4 + Oε(X(logX)ε),

and a similar formula holds for the average over primes p ≡ 1 (mod 4). This family is 
more difficult to work with due to the fact that the sums are over primes, as opposed to 
sums over essentially square-free numbers as in [19]. Conditionally on the Generalized 
Riemann Hypothesis (GRH), Baluyot and Pratt [7] obtained the leading order term in 
the asymptotic for the second moment. Specifically, they proved that

∑
p≤X

p≡1 (mod 8)

L(1
2 , χp)2 = cX(logX)3 + O(X(logX)11/4),

for some explicit constant c. Unconditionally, they obtained upper and lower bounds of 
the right order of magnitude. Using sieve methods, they also showed that more than 9%
of L(1/2, χp) are non-zero. Under GRH, Andrade and Baluyot [1] computed the 1–level 
density in the family and obtained that more than 75% of the L–functions evaluated at 
the central point do not vanish.

The corresponding problem of computing moments in the family of quadratic Dirichlet 
L–functions with prime conductor over function fields was considered by Andrade and 
Keating [3]. For the second moment, they showed that

1
|P2g+1|

∑
L
( 1

2 , χP

)2 = g3

3ζq(2) + O(g2). (1.1)

P∈P2g+1
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Similar to the recipe developed by Conrey, Farmer, Keating, Rubinstein and Snaith [8], 
Andrade, Jung and Shamesaldeen [2] conjectured asymptotic formulas for the integral 
moments of L(1/2, χP ). Specifically, the conjecture is that

1
|P2g+1|

∑
P∈P2g+1

L
( 1

2 , χP

)k ∼ Pk(2g + 1), (1.2)

where Pk is an explicit polynomial of degree g(g + 1)/2.
To obtain the asymptotic formula (1.1), Andrade and Keating used the approximate 

functional equation and then computed a diagonal contribution from square polynomials, 
which gives the main term of size g3. To bound the contribution from non-squares, they 
used the Weil bound (which follows from GRH over function fields). To explicitly compute 
the term of size g2 in Theorem 1.1, we are more careful in bounding the error term 
coming from non-square polynomials. After using the approximate functional equation, 
we truncate the Dirichlet series close to the endpoint. On the first, longer Dirichlet 
polynomial, we compute the diagonal term and bound the off-diagonal using the Weil 
bound. Since this Dirichlet polynomial is shorter than the one considered by Andrade and 
Keating, we obtain a saving on the error term. For the tail of the Dirichlet polynomial, we 
use the Perron formula and express it in terms of a shifted moment expression integrated 
along a circle around the origin. For the integral on a small arc around the origin, we 
use a recursive formula for the shifted moment and exhibit some explicit cancellation 
between this term and the diagonal. For the integral along the complement of the small 
arc, we use upper bounds for moments. A similar idea was used in the computation of 
lower order terms for the fourth moment of quadratic Dirichlet L–functions over function 
fields in [10]. Note that we expect off-diagonal terms to contribute to the coefficient of g
in the asymptotic formula (1.2). For Theorem 1.1, both the g3 and g2 terms come from 
the diagonal. To explicitly compute off-diagonal terms, one would need to use a more 
refined method rather than relying on the Weil bound.

In the orthogonal family of quadratic twists of a fixed modular form, the first moment 
was computed in [4], [16], [11]. The second moment was considered by Soundararajan and 
Young [21], who obtained an asymptotic formula with the leading order term, condition-
ally on GRH. Unconditionally, they obtained a lower bound which matches the answer 
conjectured by Keating and Snaith in [15]. Some of the work in the present paper is in-
spired by ideas used by Soundararajan and Young in [21]. Using similar ideas, also under 
GRH, Petrow [17] obtained several asymptotic formulas for moments of derivatives in 
this orthogonal family when the sign of the functional equation is equal to −1.

Similar problems over function fields were considered in [5]. The authors computed 
the first and second moments in the family of L–functions associated to quadratic twists 
of a fixed elliptic curve over Fq(t), and various other moments involving derivatives of 
these L–functions. These asymptotic formulas allow them to deduce lower bounds on 
the correlations between the analytic ranks of quadratic twists of two distinct elliptic 
curves. Note that in Theorem 1.2 we compute the first moment for derivatives of the 
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L–functions with root number equal to −1. Our methods do not allow us to obtain the 
mean value for the L–functions themselves, as the error term coming from using upper 
bounds for moments would dominate the diagonal term which has constant size in this 
case.

2. Background

Fix an odd number q. Let M denote the set of monic polynomials with coefficients in 
Fq, and M≤n be the set of monic polynomials with degree less than or equal to n. Let Pn

denote the set of monic, irreducible polynomials over Fq[x]. The norm of a polynomial 
f is defined to be |f | = qdeg(f).

The Prime Polynomial Theorem states that

|Pn| = qn

n
+ O

(qn/2
n

)
. (2.1)

The quadratic character over Fq[t] is defined as follows. For P a monic, irreducible 
polynomial and f a monic polynomial, let

χP (f) =
(P
f

)
,

where (Pf ) is the quadratic residue symbol over Fq[x].
The zeta-function is defined as

ζq(s) =
∑
f∈M

1
|f |s ,

for �(s) > 1. Since there are qn monic polynomials of degree n, one can easily show that

ζq(s) = 1
1 − q1−s

,

which provides a meromorphic continuation of ζq with a simple pole at s = 1. We will 
often make the change of variables u = q−s, and then the zeta-function becomes

Z(u) = ζq(s) =
∑
f∈M

udeg(f) = 1
1 − qu

,

with a simple pole at u = 1/q. Note that Z(u) can also be written in terms of an Euler 
product as

Z(u) =
∏(

1 − udeg(Q)
)−1

,

Q
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where the product is over monic, irreducible polynomials in Fq[t].
For P a monic irreducible polynomial, the L–function associated to the quadratic 

character χP is defined by

L(s, χP ) =
∑
f∈M

χP (f)
|f |s =

∏
Q

(
1 − χP (Q)

|Q|s
)−1

.

Similarly as before, with the change of variables u = q−s, one has

L(u, χP ) =
∑
f∈M

χP (f)udeg(f) =
∏
Q

(
1 − χP (Q)udeg(Q)

)−1
.

By orthogonality of characters, it follows that L(u, χP ) is a polynomial of degree at most 
deg(P ) − 1.

For P ∈ P2g+1, the L–function satisfies the following functional equation

L(u, χP ) = (qu2)gL
( 1
qu

, χP

)
. (2.2)

To define elliptic curve L–functions over function fields, we take q to be a prime 
power with (q, 6) = 1. Let E/Fq(t) be an elliptic curve defined by y2 = x3 + Ax + B, 
with A, B ∈ Fq[t] and discriminant Δ = 4A3 + 27B2 such that degt(Δ) is minimal 
among models of E/Fq(t) of this form. The normalized L–function associated to the 
elliptic curve E/Fq(t) has a Dirichlet series and an Euler product which converge for 
�(s) > 1, as follows.

L(E, s) := L(E, u) =
∑
f∈M

λ(f)udeg(f) (2.3)

=
∏
Q|Δ

(
1 − λ(Q)udeg(Q)

)−1 ∏
Q�Δ

(
1 − λ(Q)udeg(Q) + u2 deg(Q)

)−1
.

One can show that the L–function is a polynomial in u with integer coefficients and has 
degree

n := deg
(
L(E, u)

)
= deg(M) + 2 deg(A) − 4, (2.4)

where M denotes the product of the finite primes where E has multiplicative reduction 
and A the product of the finite primes where E has additive reduction (see [6]). The 
L–function satisfies a functional equation; namely, there exists ε(E) ∈ {±1} such that

L(E, u) = ε(E)(√qu)nL
(
E,

1 )
.

qu
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For P ∈ P2g+1 and (P, Δ) = 1, we consider the twisted elliptic curve E ⊗ χP having 
the affine model y2 = x3 + P 2Ax + P 3B. The L–function of the twisted elliptic curve 
has the following Dirichlet series and Euler product

L(E ⊗ χP , u)

=
∑
f∈M

λ(f)χP (f)udeg(f)

=
∏
Q|Δ

(
1 − λ(Q)χP (Q)udeg(Q)

)−1 ∏
Q�ΔP

(
1 − λ(Q)χP (Q)udeg(Q) + u2 deg(Q)

)−1
.

The L–function L(E ⊗ χP , u) is a polynomial of degree n + 2 deg(P ) and moreover it 
satisfies the functional equation

L(E ⊗ χP , u) = ε (√qu)n+2 deg(P )L
(
E ⊗ χP ,

1
qu

)
, (2.5)

where ε is the root number of the twisted elliptic curve and it is equal to

ε = εdeg(P )ε(E)χP (M).

In the above equation, εdeg(P ) ∈ {±1} is an integer which only depends on the degree of 
P (see Proposition 4.3 in [6]). We set

ε− = 1 − ε

2 . (2.6)

3. Preliminary lemmas

Here we will gather a few lemmas we need. We have the following approximate func-
tional equation.

Lemma 3.1. For P ∈ P2g+1, we have

L
( u
√
q
, χP

)2
=

∑
f∈M≤2g

τ(f)χP (f)udeg(f)√
|f |

+ u4g
∑

f∈M≤2g−1

τ(f)χP (f)√
|f |udeg(f)

,

where τ(f) =
∑

f1f2=f 1 is the divisor function.

Proof. See [3], equation (4.4). �
Lemma 3.2. For P ∈ P2g+1 and E/Fq(t) such that ε = −1, we have

L′(E ⊗ χP ,
1
2 ) = 2(log q)

∑ (
[n/2] + 2g + 1 − deg(f)

)
λ(f)χP (f)√

|f |
.

deg(f)≤[n/2]+2g+1
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Proof. See Lemma 2.3 in [5]. �
The following Weil bound holds for character sums over primes.

Lemma 3.3. For f not a square, we have

1
|P2g+1|

∑
P∈P2g+1

χP (f) � q−g deg(f).

Proof. See [18], equation (2.5). �
4. Upper bounds

In this section we will prove the following upper bounds for moments, whose proofs 
are similar to the proof of the upper bound for moments of the Riemann zeta-function 
in [20]. A similar function field proof can also be found in [10].

Proposition 4.1. Let u = eiθ with θ ∈ [0, 2π). Then for every k > 0 and ε > 0, we have

1
|P2g+1|

∑
P∈P2g+1

∣∣∣L( u
√
q
, χP

)∣∣∣k �ε g
ε exp

(
kM1(u, g) + k2

2 V1(u, g)
)
,

where

M1(u, g) = 1
2 log min

{
g,

1
2θ

}

and

V1(u, g) = M1(u, g) + log g
2 .

Here for θ ∈ [0, 2π) we denote θ = min{θ, 2π − θ}.

Proposition 4.2. Let u = eiθ with θ ∈ [0, 2π) and let m = deg
(
L(E ⊗ χP , v)

)
. Then for 

every k > 0 we have

1
|P2g+1|

∑
P∈P2g+1

∣∣∣L(E ⊗ χP ,
u
√
q

)∣∣∣k �ε g
ε exp

(
kM2(u,m) + k2

2 V2(u,m)
)
,

where

M2(u,m) = −1
2 log min

{
m,

1
2θ

}

and
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V2(u,m) = −M2(u,m) + logm
2 .

Propositions 4.1 and 4.2 immediately lead to the following corollary.

Corollary 4.3. Let u = eiθ with θ ∈ [0, 2π). Then

1
|P2g+1|

∑
P∈P2g+1

∣∣∣L( u
√
q
, χP

)∣∣∣2 �ε g
1+ε min

{
g,

1
2θ

}2

and

1
|P2g+1|

∑
P∈P2g+1

∣∣∣L(E ⊗ χP ,
u
√
q

)∣∣∣ �ε g
1/4+ε min

{
g,

1
2θ

}−1/4
.

Before proving the above propositions, we first need the following lemma.

Lemma 4.4. Let h, l be integers such that hl ≤ g and h > 1. For any complex numbers 
a(Q) we have

1
|P2g+1|

∑
P∈P2g+1

∣∣∣∣
∑

Q∈P≤h

a(Q)χP (Q)√
|Q|

∣∣∣∣
2l

� (2l)!
l!2l

( ∑
Q∈P≤h

|a(Q)|2
|Q|

)l

.

Proof. The proof is similar to the proof of Lemma 6.3 in [21]. Expanding out and using 
Lemma 3.3 we have

1
|P2g+1|

∑
P∈P2g+1

∣∣∣∣
∑

Q∈P≤h

a(Q)χP (Q)√
|Q|

∣∣∣∣
2l

�
∑

Q1,...,Q2l∈P≤h

Q1...Q2l=�

|a(Q1) . . . a(Q2l)|√
|Q1 . . . Q2l|

+ O

(
hlq−g

∑
Q1,...,Q2l∈P≤h

|a(Q1) . . . a(Q2l)√
|Q1 . . . Q2l|

)
.

(4.1)

For the first term, we note that Q1 . . . Q2l = � if and only if there is a way to pair up 
the indices so that the corresponding polynomials are equal. As there are (2l)!/l!2l ways 
to pair up 2l indices, it follows that

∑
Q1,...,Q2l∈P≤h

Q1...Q2l=�

|a(Q1) . . . a(Q2l)|√
|Q1 . . . Q2l|

� (2l)!
l!2l

( ∑
Q∈P≤h

|a(Q)|2
|Q|

)l

.

For the second term in (4.1), we use the Cauchy-Schwarz inequality to see that it is 
bounded by
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� gq−g

( ∑
Q∈P≤h

a(Q)√
|Q|

)2l

� gq−g

( ∑
Q∈P≤h

|a(Q)|2
|Q|

)l( ∑
Q∈P≤h

1
)l

.

Since h > 1 and hl ≤ g, using the Prime Polynomial Theorem, it follows that the above 
is bounded by

�
( ∑

Q∈P≤h

|a(Q)|2
|Q|

)l

,

and the proof is complete. �
We shall only illustrate the proof of Proposition 4.2. The proof of Proposition 4.1

follows along the same lines and it is also similar to the proof of Theorem 2.7 in [10], 
using Lemma 4.4 instead of Lemma 8.4 in [10].

Lemma 4.5. Let

N(V, u) = 1
|P2g+1|

∣∣∣∣
{
P ∈ P2g+1 : log

∣∣∣L(E ⊗ χP ,
u
√
q

)∣∣∣ ≥ V + M2(u,m)
}∣∣∣∣.

If 
√

logm ≤ V ≤ V2(u, m), then

N(V, u) � exp
(
− V 2

2V2(u,m)

(
1 − 8

log logm

))
;

if V2(u, m) < V ≤ log logm
16 V2(u, m), then

N(V, u) � exp
(
− V 2

2V2(u,m)

(
1 − 8V

V2(u,m) log logm

)2
)

;

and if V > log logm
16 V2(u, m), then

N(V, u) � exp
(
− V log V

4500

)
.

Proof. Let

A =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

log logm
2 if

√
logm ≤ V ≤ V2(u,m),

log logm
2V V2(u,m) if V2(u,m) < V ≤ log logm

16 V2(u,m),

8 if V > log logm
16 V2(u,m),

and
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m

h
= V

A
.

Proposition 4.3 in [5] yields

log
∣∣∣∣L

(
E ⊗ χP ,

u
√
q

)∣∣∣∣ ≤ m

h
+ 1

h
�
( ∑

j≥1
deg(Qj)≤h

(α(Q)j + β(Q)j)χP (Qj) log qh−j deg(Q)

|Q|(1/2+(1/h−iθ)/ log q)j log qj

)
.

(4.2)

The contribution of the terms with j ≥ 3 is bounded by O(1). The terms with j = 2
will contribute

1
2h

∑
deg(Q)≤h/2

(h− 2 deg(Q))(λ(Q2) − 1) cos(2θ deg(Q))
|Q|e2 deg(Q)/h .

Let

F (h, θ) =
h∑

n=1

cos(2nθ)
nen/h

.

As in Lemma 9.1 in [10], we can show that

F (h, θ) = log min
{
h,

1
2θ

}
+ O(1).

Indeed, writing e−n/h = 1 + O(n/h), we have that

F (h, θ) =
h∑

n=1

cos(2nθ)
n

+ O(1),

and we deal with the sum above in the same way as in Lemma 9.1 in [10], the only 
difference being that rather than using the inequality cos(2nθ) ≤ 1, we use the Taylor 
expansion cos(2nθ) = 1 + O(n2θ2) in order to obtain an asymptotic.

Since

∑
deg(Q)≤h

λ(Q2) cos(2θ deg(Q))
|Q|edeg(Q)/h = O(log log h), (4.3)

it follows that the contribution from j = 2 is

− 1
2h

∑
deg(Q)≤h

2

(h− 2 deg(Q)) cos(2θ deg(Q))
|Q|e2 deg(Q)/h + O(log logm)

= −F (h/2, θ) + O(log logm) ≤ −F (m, θ) + m + O(log logm)
2 2 h
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= M2(u,m) + m

h
+ O(log logm). (4.4)

Note that in the second line of the equation above we used the fact that

F (m, θ) − F
(h

2 , θ
)

=
m∑

n=1

cos(2nθ)
nen/m

−
h/2∑
n=1

cos(2nθ)
ne2n/h ,

and since e−x = 1 + O(x), we have

F (m, θ) − F
(h

2 , θ
)

=
m∑

n=h/2+1

cos(2nθ)
n

+ O(1) ≤ 2m
h

+ O(1).

Applying equation (4.4) to (4.2) hence leads to

log
∣∣∣∣L

(
E ⊗ χP ,

u
√
q

)∣∣∣∣ ≤ M2(u,m) + 3m
h

+ 1
h

∑
deg(Q)≤h

(h− deg(Q))λ(Q)χP (Q) cos(θ deg(Q))√
|Q|edeg(Q)/h

.

Let S1 be the sum above truncated at

deg(Q) ≤ h0 = h

logm

and S2 be the sum over primes with h0 < deg(Q) ≤ h. If P is such that

log
∣∣∣∣L

(
E ⊗ χP ,

u
√
q

)∣∣∣∣ ≥ V + M2(u,m),

then

S1 ≥ V1 := V
(
1 − 4

A

)
or S2 ≥ V

A
.

Let

F1 = {P ∈ P2g+1 : S1 ≥ V1} and F2 = {P ∈ P2g+1 : S2 ≥ V/A}.

If P ∈ F2, then by Markov’s inequality and Lemma 4.4 it follows that

|F2| �
(A
V

)2l ∑
P∈P2g+1

( ∑
h0<deg(Q)≤h

a(Q)χP (Q)√
|Q|

)2l

� |P2g+1|
(A
V

)2l (2l)!
l!2l

( ∑
h0<deg(Q)≤h

|a(Q)|2
|Q|

)l

,
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for any l ≤ g/h where

a(Q) = (h− deg(Q))λ(Q) cos(θ deg(Q))
hedeg(Q)/h .

We pick l = [g/h] and note that a(P ) � 1 and m = 4g +O(1). Using Stirling’s approxi-
mation, we get that

|F2| � |P2g+1|
(A
V

)2l(2l
e

)l

(log logm)l � |P2g+1| exp
(
− V log V

8A

)
. (4.5)

If P ∈ F1 then similarly for any l ≤ g/h0, we have

|F1| � |P2g+1|
1

V 2l
1

(2l)!
l!2l

( ∑
deg(Q)≤h0

|a(Q)|2
|Q|

)l

.

Using the expression for a(Q) and equation (4.3) we obtain

|F1| � |P2g+1|
( 2l
eV 2

1

)l(
V2(u,m) + O(log logm)

)l
.

If V ≤ V2(u, m)2, then we pick l = [V 2
1 /2V2(u, m)], and if V > V2(u, m)2, then we pick 

l = [10V ]. In doing so we get

|F1| � |P2g+1| exp
(
− V 2

1
2V2(u,m)

)
+ |P2g+1| exp(−V log V ). (4.6)

Combining the bounds (4.6) and (4.5) finishes the proof of Lemma 4.5. �
Proof of Proposition 4.2. We have the following.

1
|P2g+1|

∑
P∈P2g+1

∣∣∣L(E ⊗ χP ,
u
√
q

)∣∣∣k = −
∞̂

−∞

exp
(
kV + kM2(u,m)

)
dN(V, u)

= k

∞̂

−∞

exp
(
kV + kM2(u,m)

)
N(V, u)dV.

We apply Lemma 4.5 in the form

N(V, u) �ε

⎧⎨
⎩
mε exp

(
− V 2

2V2(u,m)

)
if V ≤ 8kV2(u,m),

mε exp(−4kV ) if V > 8kV2(u,m)

to the above formula and finish the proof of the theorem. �
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5. Main propositions

Proposition 5.1. For X < g, let

E1(X) = 1
|P2g+1|

∑
P∈P2g+1

∑
2X<deg(f)≤2g

τ(f)χP (f)√
|f |

.

Then

E1(X) = g2(g −X)
2ζq(2) + Oε

(
g3/2+ε(g −X)

)
+ O

(
g1/2(g −X)3

)
.

Proof. Applying the Perron formula we get

E1(X) = 1
2πi

˛

|u|=1

1
|P2g+1|

∑
P∈P2g+1

L
( u
√
q
, χP

)2 (1 − u2g−2X) du
u2g+1(1 − u)

= 1
2πi

ˆ

C1

1
|P2g+1|

∑
P∈P2g+1

L
( u
√
q
, χP

)2 (1 − u2g−2X) du
u2g+1(1 − u)

+ 1
2πi

ˆ

C2

1
|P2g+1|

∑
P∈P2g+1

L
( u
√
q
, χP

)2 (1 − u2g−2X) du
u2g+1(1 − u) ,

where C1 denotes the arc of angle 4πθ1 centered around 1, with 1/g � θ1 = o(1), and 
C2 is its complement. Let E11 denote the integral over C1 and E12 the integral over C2. 
Note that

∣∣∣1 − u2g−2X

1 − u

∣∣∣ ≤ 2(g −X),

so there is no pole at u = 1. On C2 using Corollary 4.3 we obtain

E12 �ε g
1+ε(g −X)θ−1

1 . (5.1)

On C1 we use the approximate functional equation in Lemma 3.1. For f �= � we apply 
Lemma 3.3. In doing so we get

1
|P2g+1|

∑
P∈P2g+1

L
( u
√
q
, χP

)2
=

∑
f∈M≤g

τ(f2)u2 deg(f)

|f | +u4g
∑

f∈M≤g−1

τ(f2)
|f |u2 deg(f) +O(g2),

and hence

E11 =
∑

f∈M≤g

τ(f2)
|f |

1
2πi

ˆ (1 − u2g−2X) du
u2g−2 deg(f)+1(1 − u)
C1
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+
∑

f∈M≤g−1

τ(f2)
|f |

1
2πi

ˆ

C1

(1 − u2g−2X) du
u−2g+2 deg(f)+1(1 − u)

+ O(g2(g −X)θ1).

Now

∑
f∈M

τ(f2)vdeg(f) = Z(v)3

Z(v2) , (5.2)

so using the Perron formula and making a change of variables in the second equation, 
we have

E11 = 1
(2πi)2

˛

|v|=r

ˆ

C1

Z(u2v/q)3(1 − u2g−2X)
Z(u4v2/q2)(1 − u)(1 − v)u2g+1vg+1 du dv

+ 1
(2πi)2

˛

|v|=r

ˆ

C1

Z(v/(u2q))3(1 − u2g−2X)
Z(v2/(u4q2))(1 − u)(1 − v)u−2g+1vg

du dv + O(g2(g −X)θ1)

= 1
(2πi)2

˛

|v|=r

ˆ

C1

(1 − u2g−2X)(1 − v2/q)
uvg+1(1 − u)(1 − v/u2)(1 − v)3 du dv

+ 1
(2πi)2

˛

|v|=r

ˆ

C1

u(1 − u2g−2X)(1 − v2/q)
vg(1 − u)(1 − u2v)(1 − v)3 du dv + O(g2(g −X)θ1),

for r < 1. We have

1
2πi

ˆ

C1

(1 − u2g−2X)du
u(1 − u)(1 − v/u2) =

2g−2X−1∑
j=0

∞∑
n=0

vn
1

2πi

ˆ

C1

uj−2n−1 du

=
2g−2X−1∑

j=0

∞∑
n=0

vn
θ1ˆ

−θ1

e2πiθ(j−2n) dθ = 1
π

2g−2X−1∑
j=0

∞∑
n=0

vn
sin(2π(2n− j)θ1)

2n− j
,

and similarly

1
2πi

ˆ

C1

uv(1 − u2g−2X)du
(1 − u)(1 − u2v) = 1

π

2g−2X−1∑
j=0

∞∑
n=1

vn
sin(2π(2n + j)θ1)

2n + j
.

Hence

E11 = 1
π

1
2πi

˛

|v|=r

2g−2X−1∑
j=0

( g∑
n=0

vn
sin(2π(2n− j)θ1)

2n− j
+

g∑
n=1

vn
sin(2π(2n + j)θ1)

2n + j

)

× (1 − v2/q) dv
vg+1(1 − v)3 + O(g2(g −X)θ1).
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Enlarging the contour and evaluating the residue at v = 1 we get that

E11 = 1
2π

2g−2X−1∑
j=0

( g∑
n=0

sin(2π(2n− j)θ1)
2n− j

P (n) +
g∑

n=1

sin(2π(2n + j)θ1)
2n + j

P (n)
)

+ O(g2(g −X)θ1),

where

P (x) =
(
1 − 1

q

)
(g − x)2 +

(
3 + 1

q

)
(g − x) + 2

=
(
1 − 1

q

)
x2 −

(
2
(
1 − 1

q

)
g + 3 + 1

q

)
x +

(
1 − 1

q

)
g2 +

(
3 + 1

q

)
g + 2.

Using Lemma 9.4 in [10] we then obtain

E11 = g2(g −X)
2ζq(2) + O

(
g2(g −X)θ1

)
+ O

(
g(g −X)3θ1

)
+ O

(
g(g −X)θ−1

1
)
. (5.3)

Combining equations (5.1), (5.3) and choosing θ1 = 1/√g we obtain the proposi-
tion. �
Proposition 5.2. For N a fixed square-free monic polynomial, n ∈ N fixed and X < 2g, 
let

E2(N,X, n) = 1
|P2g+1|

∑
P∈P2g+1

∑
X<deg(f)≤2g+n

(
2g + n− deg(f)

)
λ(f)χP (Nf)√

|f |
. (5.4)

Then

E2(N,X, n) �ε g
1/4+ε(2g −X)2.

Proof. Using the Perron formula for the sum over f in (5.4) we have

E2(N,X, n) = 1
2πi

˛

|u|=1

1
|P2g+1|

∑
P∈P2g+1

χP (N)L
(
E ⊗ χP ,

u
√
q

)

×
(1 − u2g+n−X

u2g+n
− (2g + n−X)(1 − u)

uX+1

) du

(1 − u)2 .

Note that
(1 − u2g+n−X

u2g+n
− (2g + n−X)(1 − u)

uX+1

) 1
(1 − u)2 � (2g −X)2,

and so, in particular, there is no pole at u = 1. The proposition hence follows after 
applying Corollary 4.3. �
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6. Proof of Theorem 1.1

We first use the approximate functional equation in Lemma 3.1 to write

1
|P2g+1|

∑
P∈P2g+1

L
( 1

2 , χP

)2 = S1 + S2,

where

S1 = 1
|P2g+1|

∑
P∈P2g+1

∑
f∈M≤2g

τ(f)χP (f)√
|f |

and S2 has a similar expression with M≤2g being replaced by M≤2g−1. From Proposi-
tion 5.1 we obtain

S1 = 1
|P2g+1|

∑
P∈P2g+1

∑
f∈M≤2X

τ(f)χP (f)√
|f |

+ g2(g −X)
2ζq(2)

+ Oε

(
g3/2+ε(g −X)

)
+ O

(
g1/2(g −X)3

)
.

For f �= � we apply Lemma 3.3. In doing so we get

S1 =
∑

f∈M≤X

τ(f2)
|f | + g2(g −X)

2ζq(2) +Oε

(
g3/2+ε(g−X)

)
+O

(
g1/2(g−X)3

)
+O

(
q−g+Xg2).

In view of (5.2) and the Perron formula, the above sum over f is

1
2πi

˛

|u|=r

Z(u/q)3

Z(u2/q2)
du

uX+1(1 − u) = 1
2πi

˛

|u|=r

(1 − u2/q)du
uX+1(1 − u)4 ,

for r < 1. By enlarging the contour of integration, passing the pole at u = 1, we see that 
this is equal to

X3

6ζq(2) + X2 + O(X).

Since

X3

6ζq(2) + X2 + g2(g −X)
2ζq(2) = g3

6ζq(2) + g2 + O(g(g −X)2),

we get that

S1 = g3
+ g2 + Oε

(
g3/2+ε(g −X)

)
+ O

(
g1/2(g −X)3

)
+ O

(
q−g+Xg2).
6ζq(2)
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A similar computation leads to

S2 = g3

6ζq(2) + g2
(1

2 + 1
2q

)
+ Oε

(
g3/2+ε(g −X)

)
+ O

(
g1/2(g −X)3

)
+ O

(
q−g+Xg2).

To obtain Theorem 1.1, we choose X = g − [100 log g].

7. Proof of Theorem 1.2 and Corollary 1.3

For N a fixed square-free monic polynomial, let TE(N, X) = TE(N, X; 0), where

TE(N,X;α) = 1
|P2g+1|

∑
P∈P2g+1

∑
f∈M≤X

λ(f)χP (Nf)
|f |1/2+α

(7.1)

and |α| � 1/g. From Lemma 3.2 we have

ε−L′(E ⊗ χP ,
1
2 ) = (log q)

(
1 − ε2g+1ε(E)χP (M)

)

×
∑

deg(f)≤[n/2]+2g+1

(
[n/2] + 2g + 1 − deg(f)

)
λ(f)χP (f)√

|f |
.

Truncating the above sum at deg(f) ≤ X and applying Proposition 5.2 we get

1
|P2g+1|

∑
P∈P2g+1

ε−L′(E ⊗ χP ,
1
2 )

= (log q)
(
[n/2] + 2g + 1

)(
TE(1, X) − ε2g+1ε(E)TE(M,X)

)
(7.2)

+ ∂

∂α

(
TE(1, X;α) − ε2g+1ε(E)TE(M,X;α)

)∣∣∣∣
α=0

+ Oε

(
g1/4+ε(2g −X)2

)
.

Thus we are left to evaluate TE(N, X; α).
For Nf �= � in (7.1), we apply Lemma 3.3, and the contribution of these terms is 

O(q−g+X/2g2). So, by the Perron formula,

TE(N,X;α) =
∑

f∈M≤X

Nf=�

λ(f)
|f |1/2+α

+ O(q−g+X/2g2)

= 1
2πi

˛

|u|=r

∑
Nf=�

λ(f)udeg(f)

|f |1/2+α

du

uX+1(1 − u) + O(q−g+X/2g2), (7.3)

for r < 1. We can write the sum in the integrand in terms of its Euler product as
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∏
Q

( ∑
j+ordQ(N) even

λ(Qj)uj deg(Q)

|Q|(1/2+α)j

)
= AE(N ;u)L

(
Sym2E,

u2

q1+2α

)
, (7.4)

where AE(N ; u) is some Euler product which is uniformly bounded for |u| ≤ q1/2−ε. We 
shift the contour in (7.3) to |u| = q1/2−ε, encountering a simple pole at u = 1. Thus

TE(N,X;α) = AE(N ; 1)L(Sym2E, 1 + 2α) + O(q−g+X/2g2) + Oε(q−X/2+εX). (7.5)

From (7.2), (7.5) and Cauchy’s residue theorem we obtain

1
|P2g+1|

∑
P∈P2g+1

ε−L′(E ⊗ χP ,
1
2 )

= 2(log q)
(
AE(1; 1) − ε2g+1ε(E)AE(M ; 1)

)
L(Sym2E, 1)g

+ Oε

(
g1/4+ε(2g −X)2

)
+ O(q−g+X/2g2) + Oε(q−X/2+εX).

Choosing X = 2g − [100 log g] the theorem follows.
To prove Corollary 1.3, we proceed as in section 11 in [5] and using Corollary 4.3, we 

get that

1
|P2g+1|

∑
P∈P2g+1

∣∣L(l)(E ⊗ χP ,
1
2 )
∣∣k �ε (l!)kglk+k(k−1)/2+ε.

Choosing l = 1 and k = 2, we have

1
|P2g+1|

∑
P∈P2g+1

L′(E ⊗ χD, 1
2 )2 �ε q

2gg3+ε.

Using Cauchy-Schwartz, the inequality above and Theorem 1.2, the conclusion follows.

8. Checking the coefficients

Here we check that the asymptotic formula we obtain in Theorem 1.1 agrees with the 
conjecture in [2]. From [2] we have that the term involving g2 in the asymptotic formula 
should be equal to

3(2g)2

24 A(1
2 ; 0, 0) + 6(2g)2

24 A(1
2 ; 0, 0) + 3(2g)2

24 log q
(
A1(1

2 ; 0, 0) + A2(1
2 ; 0, 0)

)
, (8.1)

where

A(1
2 ; z1, z2) =

∏
Q

(
1 − 1

|Q|1+z1+z2

)(
1 − 1

|Q|1+2z1

)(
1 − 1

|Q|1+2z2

)
(8.2)

× 1
2

((
1 − 1

|Q|1/2+z1

)−1(
1 − 1

|Q|1/2+z2

)−1
+
(
1 + 1

|Q|1/2+z1

)−1(
1 + 1

|Q|1/2+z2

)−1
)
,
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and

A1(1
2 ; 0, 0) = ∂

∂z1
A(1

2 ; z1, z2)
∣∣∣
z1=z2=0

,

and a similar expression holds for A2(1/2; 0, 0). Since A1(1/2; 0, 0) = A2(1/2; 0, 0), it 
follows that the coefficient of g2 in (8.1) is equal to

3A(1/2; 0, 0)
2 + A1(1/2; 0, 0)

log q . (8.3)

Using equation (8.2), we have

A(1
2 ; 0, 0) = 1

ζq(2) ,

and

A1(1/2; 0, 0)
(log q)A(1/2; 0, 0) =

∑
Q

3 deg(Q)
|Q| − 1 −

∑
Q

(3|Q| + 1) deg(Q)
|Q|2 − 1 =

∑
Q

2 deg(Q)
|Q|2 − 1 = 2

q − 1 ,

where the last identity follows from the logarithmic expression of ζq(s). Then equation 
(8.3) simplifies to

3
2ζq(2) + 2

ζq(2)(q − 1) = 3
2 + 1

2q ,

which matches the coefficient in Theorem 1.1.
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