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Abstract

Quasars have long been known as intrinsically variable sources, but the physical mechanism underlying the
temporal optical/UV variability is still not well understood. We propose a novel nonparametric method for
modeling and forecasting the optical variability of quasars utilizing an AE neural network to gain insight into the
underlying processes. The AE is trained with ∼15,000 decade-long quasar light curves obtained by the Catalina
Real-time Transient Survey selected with negligible flux contamination from the host galaxy. The AE’s
performance in forecasting the temporal flux variation of quasars is superior to that of the damped random walk
process. We find a temporal asymmetry in the optical variability and a novel relation—the amplitude of the
variability asymmetry decreases as luminosity and/or black hole mass increases—is suggested with the help of
autoencoded features. The characteristics of the variability asymmetry are in agreement with those from the self-
organized disk instability model, which predicts that the magnitude of the variability asymmetry decreases as the
ratio of the diffusion mass to inflow mass in the accretion disk increases.

Unified Astronomy Thesaurus concepts: Galaxy accretion disks (562); Active galaxies (17); Astrostatistics (1882);
Neural networks (1933)

1. Introduction

Quasars are a key population for investigating and under-
standing the physics of accretion of matter under extreme
physical conditions. Several hundred thousand quasars have
been spectroscopically confirmed so far and many attempts
have been made to determine the characteristics of their
temporal flux variability. However, the physical mechanisms
underlying the variability remain poorly understood, in part due
to the difficulty in parameterizing its aperiodicity.

In the optical/UV, it is only the variability amplitude and its
correlation with timescale that have so far been suggested to be
related to intrinsic physical parameters. For example, the
amplitude of quasar optical variability increases with decreas-
ing luminosity, rest-frame wavelength, and Eddington ratio
(e.g., Wills et al. 1993; Giveon et al. 1999; Vanden Berk et al.
2004; Wilhite et al. 2008; Ai et al. 2010; MacLeod et al. 2010;
Rumbaugh et al. 2018; Sartori et al. 2019), and the structure
function tends to possess a steeper slope for quasars with a
larger black hole mass (Caplar et al. 2017). The correlation of
variability amplitude with black hole mass is still unclear,
however, with different studies advocating either positive or
negative relationships (e.g., Wold et al. 2007; Kelly et al. 2009;
Zuo et al. 2012), depending on the degree to which
observational biases have been eliminated. Physical mechan-
isms underlying the optical/UV variability have been pro-
posed: the superposition of supernovae (Aretxaga et al. 1997;
Kawaguchi et al. 1998), microlensing (Hawkins 1993, 2010),
thermal fluctuations from magnetic field turbulence (King et al.
2004; Kelly et al. 2009, 2011), and instabilities in the accretion
disk (Takeuchi et al. 1995; Kawaguchi et al. 1998).

Recently great attempts have been made to reveal the latent
physical process underlying extremely large flux variations
(Δm  1 mag) in quasars. Tidal disruption events, large

amplitude microlensing, a large change of obscuration or
accretion rate, and supernovae have been proposed for such
extreme temporal variabilities (e.g., Meusinger et al. 2010;
Drake et al. 2011; Bruce et al. 2016; Lawrence et al. 2016;
Ruan et al. 2016; Graham et al. 2017a; Assef et al. 2018; Ross
et al. 2018; Stern et al. 2018), but it remains unclear whether or
how they relate to the more general optical variability seen in
quasars.
To describe quasar optical variability, Kelly et al. (2009)

proposed a continuous time first-order autoregressive model,
also known as the Ornstein–Uhlenbeck or damped random
walk (DRW) process, which is a particular type of Gaussian
process characterized by two parameters: τ, the relaxation time,
and σ, the variability on timescales much shorter than τ.
Several authors have shown that the DRW process provides a
better statistical model for most quasar variability when
compared to a range of alternative stochastic/deterministic
models (e.g., Andrae et al. 2013). However, Kozłowski (2017),
pointed out that the best-fit DRW processes are biased in τ due
to an insufficient temporal baseline in existing surveys for
probing the white noise portion of the power spectral density
(PSD). This paper shows that a temporal baseline at least 10
times longer than τ is necessary to properly constrain τ. Any
reported correlations between these model parameters and
physical parameters, such as black hole mass or Eddington
ratio, are therefore potentially analysis artifacts. Additionally,
deviations from a DRW process in quasar variability have
begun to be recognized. Kepler light curves with ∼30 minutes
sampling revealed a steeper power-law index of about −3 at
very high frequency (less than a few months; e.g., Mushotzky
et al. 2011; Kasliwal et al. 2015), which is a significant
deviation from the DRW process. On very long timescales (at
lower frequencies than the typical timescale of a quasar light
curve), Guo et al. (2017) found that the observed residual
scatter in σ is too large for uncertainties in the DRW process

The Astrophysical Journal, 903:54 (17pp), 2020 November 1 https://doi.org/10.3847/1538-4357/abb9a9
© 2020. The American Astronomical Society. All rights reserved.

4 These authors contributed equally to this work.

1

https://orcid.org/0000-0001-6584-6945
https://orcid.org/0000-0001-6584-6945
https://orcid.org/0000-0001-6584-6945
https://orcid.org/0000-0002-3168-0139
https://orcid.org/0000-0002-3168-0139
https://orcid.org/0000-0002-3168-0139
https://orcid.org/0000-0001-9656-0261
https://orcid.org/0000-0001-9656-0261
https://orcid.org/0000-0001-9656-0261
https://orcid.org/0000-0002-0603-3087
https://orcid.org/0000-0002-0603-3087
https://orcid.org/0000-0002-0603-3087
https://orcid.org/0000-0003-2242-0244
https://orcid.org/0000-0003-2242-0244
https://orcid.org/0000-0003-2242-0244
https://orcid.org/0000-0003-2686-9241
https://orcid.org/0000-0003-2686-9241
https://orcid.org/0000-0003-2686-9241
mailto:mjg@caltech.edu
http://astrothesaurus.org/uat/562
http://astrothesaurus.org/uat/17
http://astrothesaurus.org/uat/1882
http://astrothesaurus.org/uat/1933
https://doi.org/10.3847/1538-4357/abb9a9
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/abb9a9&domain=pdf&date_stamp=2020-11-02
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/abb9a9&domain=pdf&date_stamp=2020-11-02


parameter derived from 1678 light curves of low redshift
quasars with low black hole mass. They also suggested that the
scatter can be explained if the low frequency PSD slope is
about −1.3. Mushotzky et al. (2011) concluded that individual
quasars exhibit intrinsically different PSD slopes, indicating
that the DRW process is too simplistic to describe optical
quasar variability (e.g., Graham et al. 2014; Kasliwal et al.
2015; Caplar et al. 2017). The situation would likely be even
worse for more complex stochastic models. More phenomen-
ological parameters would be even more difficult to connect
with underlying physical processes.

In this work, we present an initial application of the
autoencoder (AE), which is a type of unsupervised (deep)
machine learning algorithm, to quasar temporal flux behavior
by assuming that quasar temporal variability can be represented
in a low dimensional space. The training and the validation of
the model is performed with quasar light curves obtained by the
Catalina Real-time Transient Survey (CRTS;5 Drake et al.
2009; Mahabal et al. 2011), which is the largest open (publicly
accessible) time domain survey currently available in terms of
temporal baseline, number of sources, and sampling.

The representative expressions or characteristic features of
temporal variability are acquired by the AE itself in an
unsupervised way, and thus modeling and forecasting are
performed without any prior assumptions. We also propose a
methodology for associating the representative expressions
(autoencoded features; AE features) with physical parameters
utilizing a simple multilayer perceptron (MLP) and then show
its validity.

This paper is structured as follows: in Section 2, we describe
the method and data selection and in Section 3, the results of
applying the AE to extract features and to forecast quasar
variability. Section 4 discusses the features and their relation to
physical parameters and models. Section 5 presents our
conclusions. Alongside this paper, the scripts used for the
analysis shown in this work are available online.6

2. Method

In this section, we discuss CRTS, the photometric calibration
method employed by the pipeline of the survey project, the data
selection criteria we employ in this work, and the basic
structure of the AE we use to model and forecast quasar
variability.

2.1. CRTS

The CRTS archive7 contains the Catalina Sky Survey data
streams from three telescopes—the 0.7 m Catalina Sky Survey
(CSS) Schmidt and 1.5 m Mount Lemmon Survey (MLS)
telescopes in Arizona, and the 0.5 m Siding Springs Survey
(SSS) Schmidt in Australia. These surveys, operated by the
Lunar and Planetary Laboratory at the University of Arizona,
were designed to search for near-Earth objects, but have proven
extremely valuable for astrophysics topics ranging from
Galactic transients (Drake et al. 2014) to distant quasars
(Graham et al. 2014, 2015, 2017a). CRTS covers up to ∼2500
deg2 per night, with four exposures per visit, separated by
10 minutes. The survey observes over 21 nights per lunation.
The data are broadly calibrated to Johnson V (see Drake et al.

2013 for details) and the current CRTS data set contains time
series for approximately 400 million sources to V∼20 above
Dec >−30 from 2003–2016 May (observed with CSS and
MLS) and 100 million sources to V∼19 in the southern sky
(−75 < Dec < 0) from 2005–2013 (from SSS).
There are few data sets with sufficient sky coverage,

temporal coverage, and sampling to enable us to investigate
quasar optical variability systematically. The largest data sets
that can be used for research on the long-term optical
variability of quasars currently are the Sloan Digital Sky
Survey (SDSS) with the Palomar Observatory Sky Survey
(POSS), Panoramic Survey Telescope and Rapid Response
System1 (e.g., MacLeod et al. 2012; Morganson et al. 2014),
and CRTS. Among these, CRTS provides a data set for
effectively investigating the temporal flux variation on time-
scales from weeks to decades due to its large number of objects
and observation cadence.
The error model used for CRTS is incorrect: errors at the

brighter magnitudes are overestimated and those at fainter
magnitudes (V>18) are underestimated (Palaversa et al. 2013;
Drake et al. 2014). In this analysis, we employ the improved
error model derived in Graham et al. (2017a); the actual CRTS
error model will be fixed in a future release. We apply the same
preprocessing steps described in Graham et al. (2015) to all
light curves, which remove outlier photometric points and
combine all exposures for a given night to give a single
weighted value for that night. We also remove sources
associated with nearby bright stars or identifiable as blends
from a combined multimodality in their magnitude and
observation position, i.e., the spatial distribution of the
observations associated with the points in a light curve is best
described by n>1 Gaussians indicating unresolved sources.

2.2. Data Selection

We have crossmatched 555,692 sources classed as “QSO” in
SDSS DR15 (Aguado et al. 2019) against the CRTS data set
with a 3″ matching radius. We selected objects within the
magnitude range 15�V�18 to minimize systematic effects
from error estimation and saturation and excluded known
blazars. 40,736 spectroscopically confirmed quasars lie within
these ranges in CRTS.
To check the characteristics of the quasars, we calculated the

variance of the light curves and the optical luminosities, where
the intrinsic variance is referred to as the variance in this paper,
and is described by
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where N is the number of data points, mag and e are the
observed magnitude and its uncertainty, respectively, and mag
is the weighted average of the magnitudes. The optical
luminosity (Lopt) can be approximately calculated by

p l= ´ - - -L D F4 10 erg s , 2A
opt L

2
0 eff

mag 2.5 1crts ( )( )

where DL is the luminosity distance calculated with
ΩΛ=0.728, ΩM=0.272, and = - -H 70.4 km s Mpc0

1 1 (Jar-
osik et al. 2011), = ´ - - -F 3.968 10 erg cm s0

9 2 1Å−1 is the
zero-point flux density,8 λeff=5237.44 Å is the effective

5 http://crts.caltech.edu
6 https://github.com/yutarotachibana/CatalinaQSO_AutoEncoder
7 http://catalinadata.org

8 http://svo2.cab.inta-csic.es/svo/theory/fps3/index.php?id=Misc/
CRTS.C

2

The Astrophysical Journal, 903:54 (17pp), 2020 November 1 Tachibana et al.

http://crts.caltech.edu
https://github.com/yutarotachibana/CatalinaQSO_AutoEncoder
http://catalinadata.org
http://svo2.cab.inta-csic.es/svo/theory/fps3/index.php?id=Misc/CRTS.C
http://svo2.cab.inta-csic.es/svo/theory/fps3/index.php?id=Misc/CRTS.C


wavelength of the CRTS filter system (see Figure 1), and Acrts

is the Galactic absorption at the effective wavelength along the
line of sight. The CRTS Galactic absorption is estimated based
on the total extinction in the V-band provided by IRSA,9

obtained by using the Python package astroquery.10 The
extinction in the V-band can be translated to that at λeff through
an empirical relation between Å and lA AV given by
O’Donnell (1994), where we adopt RV=3.1. The extinc-
tion package11 is used for converting AV to Acrts. Figure 2
shows the distributions of redshift, mean magnitude, optical
luminosity, and variance for the quasar sample. The histograms
colored by green and red overplotted on the gray histograms
indicate the distribution of sources identified as an extended
source or as a point source in their respective PS1 image
(Tachibana & Miller 2018).12 One can see that there are two
obvious classes of the data set: (1) resolved, nearby,
intrinsically fainter, and lower variable sources, and (2)
unresolved, far away, intrinsically brighter, and higher variable
sources.

The two groups are clearly distinguishable in the Lopt–s mag
2

plane, as shown in Figure 3. This behavior can be interpreted as
the combination of flux coming from the stable host galaxy and
the partially visible variable accretion disk. Significant flux
contamination at the faint end is unavoidable as CRTS
measurements are produced by aperture photometry (see
Section 2.1) and so a part of the resolved host galaxy must
be inside the aperture used. For sources brighter than

~ -L 10 erg sopt
45 1, the variance and luminosity are antic-

orrelated, which is consistent with previous research mentioned
in Section 1. We are therefore able to identify sources showing
variability purely originating from the disk
with > -L 10 erg sopt

45 1.
15,438 quasars were selected, which should contain minimal

flux contamination from the host galaxy.13 This selection is
crucial to investigate quasar variability, namely, disk varia-
bility, because the contamination significantly suppresses the
variation amplitude at its faint state and we cannot subtract the

contamination from the total brightness as we do not know the
true flux level of the host galaxy.

2.3. Simulated Light Curves

Simulated light curves are commonly used to assess
systematic biases because observational biases such as
observation gaps (i.e., the window function of the observation),
which can generate systematic and puzzling results (e.g.,
Suberlak et al. 2017), should show in analysis results for both
the real and the simulated data. Since the expected behavior for
optical quasar variability is that it approximately follows a
DRW process (see Section 1), we generate simulated light
curves using the actual observation times, but replacing the
observed magnitudes with expected values under a DRW
process.
Formally, the temporal behavior of a DRW process X(t) is

given by

t
s= - + +dX t X t dt dt t bdt

1
, 3( ) ( ) ( ) ( )

where τ is a characteristic (decorrelation) timescale, σ2 is the
variance of the process, ò(t) is a white noise process with zero
mean and variance equal to 1, and t=b X t( ) is the mean
value. The corresponding likelihood function involves an
exponential covariance matrix:

ts t= - -S t t
2

exp . 4ij i j

2
( ∣ ∣ ) ( )/

A (zero-centered) data point mi+1 at time ti+1 is given by

t s t= -D + - - D+m m t G texp 1 exp 2 , 5i i1
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where G(s2) is a Gaussian deviate with variance s2 and
D = -+t t ti i1 . In addition, we added a Gaussian deviate
derived from the empirical function

+e a b mag c´= exp 6mag ( ) ( )

fit to the quasar data set, where = -a e5.64 9, b=0.882, and
= -c e7.06 3, and the modeled error is treated as the

measurement uncertainty on the simulated light curves.
The model parameters for the simulated light curves, b, σ,

and τ, are the same as those derived from the DRW process fit
to the associated quasar light curve. The usual method for
doing this represents the light curve as the sum of a variable
signals with covariance S, noisen with covariance N, a matrix
L, and a set of linear coefficients q so = + +y s n qt t L( ) ( )
(see Kozłowski et al. 2010; Zu et al. 2013, for details and
discussion). Model parameters are estimated by optimizing the
likelihood function

= -- - -
-y y

C L C L
C

exp
2

, 7T
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where C is the total covariance matrix of the data, and
= -- - - - - -C C C L L C L L Cp

T T1 1 1 1 1 1( ) . Note that both fitting
and simulation are in the quasar rest frame.
Examples of observed and simulated quasar light curves are

displayed in Figure 4. The interpretation of the results of the
analysis is performed by comparison between the results for the
two data sets.

Figure 1. The transmission curve of the unfiltered system employed by CRTS.
The effective wavelength is represented by the vertical dashed line.

9 https://irsa.ipac.caltech.edu/applications/DUST/
10 https://astroquery.readthedocs.io/en/latest/irsa/irsa_dust.html
11 https://extinction.readthedocs.io/en/latest/#extinction
12 Strictly speaking, a PS1 counterpart within 1 arcsec from a CRTS quasar.
13 In addition to the luminosity threshold, sources with

s< <- -10 mag 10 mag4 2
mag
2 1 2, >T 2500obs days, and >n 50obs are

selected, where Tobs and nobs are the observation length in the observed frame
and the number of observations, respectively.
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2.4. AE Neural Network

An AE is a type of unsupervised neural network that is
trained to reconstruct the original input while compressing the
data in the process so as to discover a more efficient and
reduced representation in an internal (hidden) layer. The main
purpose of this architecture is dimension reduction and as the
number of nodes in the hidden layer is smaller than in the input
and output layers, fundamental information should be con-
densed at the layer with the smallest number of nodes. This

architecture facilitates classification and also optimum model-
ing of the input data.
For sequence-to-sequence data, the AE can be implemented

using a recurrent neural network (RNN; see Lipton et al. 2015,
for a review) architecture. Traditional neural networks assume
that all inputs (and outputs) are independent of each other but
RNNs perform the same task for every element of a sequence
with the output at a particular time-step forming part of the
input to the next time step. This means that information is
retained about what has been calculated so far and this can
affect the current calculation and prediction. RNNs have been
used in astronomy for time series classification (Charnock &
Moss 2017; Naul et al. 2018; Becker et al. 2020). The RNN AE
network is trained with time series as input to reproduce the
same time series as the output. The coded representation in the
hidden layer is thus a time-dependent compression and can be
interpreted as features of the input time series. With these
features, Naul et al. (2018) demonstrated that the accuracy of
supervised variable star classification is superior to or at least
consistent with that of a classifier with expert-chosen hand-
selected features.
The AE neural network that we constructed for modeling

and forecasting quasar light curves is displayed in Figure 5.
This network uses two LSTM14 layers of size 32 for encoding
(reducing the input) and two for decoding (reconstructing the
input), with an AE feature size of 16. We input the
measurement values, the differences between sampling times

Figure 2. The distribution of redshift (upper left), average magnitude (upper right), optical luminosity (lower left), and intrinsic variance (lower right). Green and red
indicate extended sources (resolved on the PS1 image) and point sources (unresolved on the PS1 image), respectively. The sum of them are denoted by the gray
histogram in each panel.

Figure 3. The distribution of our original CRTS quasar catalog sample on the
Lopt-s mag

2 plane. The dashed line indicates the typical uncertainty in flux
measurements. Contour lines indicate the 10th–90th percentiles of the
distribution.

14 Long short time memory (LSTM) is a type of RNN; for detailed information
about LSTMs, see Jain & Medsker (1999).
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Δt (to deal with the irregular time sampling of the data), and
the measurement errors. Since we are also interested in
forecasting, we have excluded the last 500 days of data for

each source. The AE features are constructed by passing the
output of the last recurrent encoding layer into a single fully
connected layer with a linear activation function and the
desired output size. The decoder repeats the AE features NT

times, where NT is the length of the next layer, 32 in this
architecture, and then appends the Δt values to the corresp-
onding elements of the resulting vector sequence. The decoder
network is constructed from another series of LSTM layers,
with a final linear layer to generate the original light curve, i.e.,
the output is 500 days longer than the input data. The model,
therefore, performs modeling and forecasting simultaneously.
The loss (weighted mean squared error) is defined by

å å s
=
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= =N
loss

1 mag mag
, 8
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j
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i

j
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j
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j
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2
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where N is the number of light curves, and magi
j( ), magi

j( ), and

s i
j( ) are the jth measurement, reconstruction value, and

measurement error of the ith light curve, respectively; this
reduces the penalty for reconstruction errors when the
measurement error is large. We also apply a 25% dropout
between LSTM layers to generalize the ability to model and
forecast quasar light curves. We note that the architectural
hyperparameters of the network, i.e., the number of layers,
number of nodes per layer, number of nodes in the hidden
layer, etc. are arbitrarily chosen to provide a network similar to
the one employed by Naul et al. (2018). Bayesian optimization
of these quantities is possible but can be computationally
expensive and by experimentation we found that the results of
the network were robust to changes by factors of 2 in the values
used here.

3. Result

3.1. Training the AE

To train and validate the AE shown in Figure 5, we divided
the quasar data set into a training data set (80%; 12,350
sources) and a validation data set (20%; 3,088 sources). The

Figure 4. Examples of quasar light curves (left) and simulated light curves (right) generated by the DRW process with the same observation cadence and same
parameters b, σ, and τ as the associated quasar light curve. The modeled error is added to the DRW process as the measurement uncertainties.

Figure 5. Diagram of the RNN AE architecture constructed for modeling
quasar light curves in this work. See Section 2.4 for details.
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input (magin) and the target magnitudes (magtar) are normalized
by the average magin and the standard deviation smagin

of the
input magnitude;

s= -mag mag mag 9in in in magin
ˆ ( ) ( )

s= -mag mag mag . 10tar tar in magin
ˆ ( ) ( )

Also for DTin,tar and errin,tar, the normalizations

D = DT T 365in,tar in,tar
ˆ and s=err err xin,tar in,tar in

ˆ are applied.
We note that the inputs do not have any information on the
forecasting part (the last 500 days) as we used only magin and
smagin

for the normalization of both the input and the output.
Figure 6 shows the loss (see Equation (8)) for the training

data set and the validation data set. We used Adam
optimization (Kingma & Ba 2014) with standard parameter
values β1=0.9, β2=0.999, a learning rate of η=1×10−4

and a batch size of 256. All models are implemented with the
Keras package.15 The top panel of Figure 6 shows that both
the validation loss and the training loss decrease as a function
of the training epoch. While the training loss and the validation
loss values cross at the training epoch of∼8000, no obvious
signal of overfitting is seen. The final loss for the validation
data set is∼4.25, which might seem somewhat large for a
reduced chi square c red

2 , but is acceptable as the loss is
calculated for both the modeling part and the forecasting part of
the output.

The middle panel in Figure 6 shows the forecasting accuracy
evaluated from the difference of the reduced chi square (c ;red

2

see Equation (8)) of the AE model (AE model; c red,AE
2 ) and the

DRW process model (DRW model; c red,DRW
2 , see

Equation (12)) for time ranges D <T0 days 250 dayspred

and D <T250 days 500 dayspred , where DTpred is the time

difference from the beginning of the forecasting part of the
output. D <T0 days 250 dayspred and

D <T250 days 500 dayspred is thus the first half and the
latter half of the forecasting part, respectively. Since the
accuracy of the AE model is defined by c c-red,AE

2
red,DRW
2 , a

smaller value indicates a higher accuracy. As shown in
Figure 6, the forecasting accuracy increases as the training
proceeds.
In addition, we have confirmed that the AE features actually

acquire information on physical parameters as training
proceeds. The bottom panel in Figure 6 shows the correlation
coefficient and the partial correlation coefficient between the
AE features and optical luminosity, where these values are
calculated on the validation data set. For the partial correlation
coefficient, the variance of the light curve, which is known to
be correlated with optical luminosity, is considered to be a
latent variable, and its effect is removed from the correlation
coefficient (see Section 3.4 for the method to calculate the
correlation coefficient between the AE features and a physical
parameter). The partial correlation coefficient can be calculated
by

r
r r r

r r
=

-

- -1 1
, 11L

L L

AE L

AE, Var
AE, AE,Var ,Var

,Var
2

,Var
2opt

opt opt

opt

( )·

where r x y, is the correlation coefficient between x and y, and
AE, Lopt, and Var refers to the AE features, the optical
luminosity, and the variance of the light curve, respectively.
Both the partial correlation coefficient and the correlation

coefficient are not statistically significant (below p=0.01) at
the beginning of the training, while after ∼500 training epochs,
both quantities are significantly above the significance levels.
This result is expected but shows the expediency of the AE in
modeling the quasar light curves. Previous work has shown
that there is information on quasar physical parameters in their

Figure 6. The reconstruction loss for the training data set and for the validation data set (top), the c red
2 value forDTpred = 0–250 days to 250–500 days (middle; for the

definition of ΔT, see text), and the (partial) correlation coefficient with Lopt as a function of training epoch (bottom). The correlation coefficient and the partial
correlation coefficient corresponding to p-value =0.01 is represented by the pink-dashed line and the green dotted–dashed line, respectively.

15 https://keras.io/
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flux variability but extracting it can be involved, e.g., the
quantity of interest is the amplitude of variability at a certain
time lag in the structure function or the index of the power-law
fit to it. This result demonstrates that the AE we constructed
can automatically acquire such information.

3.2. Forecasting the Temporal Variability

Figure 7 shows examples of the output of the AE. We
compare the modeling part and the forecasting part of the AE
and the DRW process for the same objects in the left three
panels and the right three panels, respectively. The most
apparent difference between them is the scatter in short
timescale variability in the modeling part: the output of the
AE is relatively smoother. Short timescale scatter is not
resolvable in our data due to the sampling cadence and
statistical errors. The DRW process, however, includes short
time variability (σ) to express the overall variance of the light
curve (=τσ2/2). In other words, the power-law index of the
PSD of the DRW process must be −2 above the typical
frequency, even if the Fourier power is dominated by noise.
The AE, on the other hand, models the quasar temporal
behavior purely based on the characteristics of the data without
any prior assumptions. The suppression of such short time
variability in the AE’s modeling corresponds to a steeper
spectral index of the PSD than that of the DRW process in the
high-frequency regime.

For the forecasting part, the AE seems to output real
variations, i.e., the output does not fall to the mean value or
diverge upward or downward immediately. The AE also
predicts different behavior to the DRW process. We define the
prediction of the DRW process as the expectation value from
the last data in the modeling part:

t
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t

t

D
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T t
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mag e mag

1 e , 12
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where τin and bin are the DRW process parameters derived
from fitting the process to the modeling part of the light curve,
and the tin,last is the last observation time in the modeling part.
To assess the forecasting accuracy of the AE model, we

calculated the difference between the reduced chi square for the
AE model c red,AE

2 and the DRW model c red,DRW
2 for quasar

light curves. The blue points in Figure 8 show
c c-red,AE

2
red,DRW
2 for quasar light curves as a function of

DTpred, where the error bars show the 68% confidence intervals
evaluated from bootstrap sampling. The improvement in the
forecasting accuracy compared to the DRW model grows
roughly as the time separation from the last observation of the
modeling part (DTpred) increases. Hence, at any time separation
within DT 500pred days, the AE model performs better than
the DRW model in forecasting quasar light curves.
In addition, the AE trained on quasar light curves can capture

the characteristics of the DRW process. The green squares in

Figure 7. Examples of modeling and forecasting the quasar light curves by the AE (left) and the DRW process (right). The light curves are shown in the observed
frame. The yellow-shaded region indicates the range fed to the AE, while gray points are the prediction part (last 500 days), which are not used for the input. In the left
panels, the cyan squares are the output of the AE. The parameters in the DRW process are calculated by the fit to the input data, where the fitted DRW process is
denoted by cyan points in the yellow-shaded region in the right panels, and the expected mean values with the derived parameters from the last point of the modeling
part are also shown subsequent to the fitted curve.

Figure 8. The difference between the reduced chi square of the AE model
c red,AE

2 and the DRW model c red,DRW
2 as a function of DTpred for the quasar

light curves (blue points) and for the mock light curves (green points).
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Figure 8 show the forecasting accuracy of the AE model
compared to the DRW model for the simulated light curves.
The value of c c-red,AE

2
red,DRW
2 for simulated light curves is

close to zero at any ΔTpred. This result should be related to the
fact that the AE can recover the value of τ in the DRW process
from simulated light curves as well as a fitted DRW process.
This is impressive as it means the AE succeeds in capturing the
deterministic term in the DRW process, i.e., the exponential
kernel or, at least, suggests that there is an autoregressive
nature to quasar variability. It is the deviations in the
underlying process(es) from an DRW model that makes the
accuracy of forecasting by the AE model better than that of the
DRW model.

3.3. Visualizing the AE Features

To understand what the AE identifies in the quasar light
curves, we have investigated the characteristics of the AE
features. Using principal component analysis (PCA), the
distribution of the 16 AE features can be projected onto the
plane formed by the first two principal components (Dim1 and
Dim2, respectively) as shown in the left panel in Figure 9.
There are three peaks in this distribution at Dim 1, Dim 2( ) ,
(−0.40, 0.20), (−0.25, −0.10), and (0.75, 0.25), respectively.
To see what these prominent features correspond to, we divide
the distribution into a 5×5 grid labeled A–Y, and generate
“average” light curves at each grid point using the decoder part
of the AE and an input of the averaged 16 AE features at that
point. The resulting light curves are displayed in the right panel
in Figure 9. As expected, the averaged light curves at L, Q, and
O, which roughly correspond to the peaks in the PDF, show the
most global trends of temporal variability, namely, stable,
brightening, and fading, respectively. If one were to consider a
polynomial expansion of the light curve, the three trends would
be distinguishable by their primary factor, and these are the
most apparent and fundamental characteristics of temporal
variability.

On the other hand, the shapes of other light curves,
especially in low density regions (e.g., E, U, and Y), are not
so simple; they do not show a monotonic brightening/fading

and their timescales/amplitudes are not symmetric. We may
thus infer that useful information for deriving physical
parameters is not associated with simple characteristics, such
as the global trend of a light curve, as is the case with high-
order coefficients in a polynomial expansion. However, this
also shows that most quasar light curves, lying in the denser
regions, do not show such prominent variation within the
observation baseline (4000 days). This presents a difficulty
for deriving the variability timescale of quasars, since,
qualitatively, the light curve must show at least a brightening
or fading and subsequently go back to its mean value to
estimate the timescale of the variation.

3.4. Information Content in Physical Parameters

The relationship between the AE features and physical
parameters should be nonlinear. This means that the simple
(partial) correlation coefficient ρ or the coefficient of
determination R2 cannot be used directly to evaluate the
information content between them. However, a multilayer
perceptron (MLP) with hidden layers can transform input in a
nonlinear way, and should exploit any information in the input
associated with the physical parameter in question. We
constructed a simple MLP with one hidden layer, and trained
it to maximize the R2 value between its output and a given
physical parameter. The MLP that we used is shown in
Figure 10. We employed the Adam optimizer with a learning
rate of 1×10−4, and also stopped the training when the
validation loss had increased with = 250patience . The
mean value and the uncertainty (1σ) in the information content
R2 were computed with 10-fold cross-validation.16 In addition,
we determined the relevance of the AE features to a physical
parameter with the following procedure: (1) train the MLP
using all 16 AE features to maximize R2 with the physical
parameter, (2) feed the true values of one AE feature that we

Figure 9. The Gaussian kernel density estimate of the probability density function (PDF) of the 16 AE features projected on a two-dimensional plane by the PCA
method (left). The contour levels extend from 0.9–0.1 in 0.1 intervals. The distribution is divided into 25 pieces on the plane, A–Y, and the average light curves in
each piece are displayed in the right panel.

16 In k-fold CV, 1/k of the training set is withheld during model construction,
and the remaining 1−1/k fraction of the training set is used to predict the R2 of
the withheld data. This procedure is repeated k times, with every training set
source being withheld exactly once, so that predictions are made for each
source in the training set.
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are interested in and zeros to the other nodes, (3) calculate R2,
and (4) repeat this calculation (return to (2)) for each AE
feature. This R2 can be understood as the contribution of each
AE feature to the coefficient of determination for a specific
physical parameter, and thus can be interpreted as the relevance
of it to the physical parameter under consideration.

3.4.1. Redshift

In an observed light curve, the intrinsic (rest frame) variation
timescale is multiplied by (1+z) so we should expect a
correlation between the observed variation timescale and
redshift. Kozłowski (2017) has shown that previous reports
of an anticorrelation between the variation timescale and the
redshift are an artifact of insufficient temporal coverage and
that any true correlation has yet to be verified.

The top panel in Figure 11 shows the importance of the 16
AE features with respect to redshift with Feature 13 (F13)
having the highest importance. To see how this feature affects
the modeled light curve, we select a fiducial object, CRTS
J110718.8+100417, whose F13 value is close to its mean
value,17 and vary this by±0.5. The corresponding changes in
the modeled light curve are shown in the bottom panel in
Figure 11. We see that the most significant change is the
timescale of the variation, which is precisely what we would
expect, but is also the first time that such a direct dependency of
the variability timescale on redshift has been demonstrated in
quasar light curves. We note that although we have used a
single object for illustrative purposes, these trends are seen in
the larger statistical sample.

The variability timescale for this source (at z=0.633) seems
longer than the 245 day limit below which it can be accurately
estimated for a DRW model fit (Kozłowski 2017 has shown
that the maximum timescale than can be accurately estimated is
one-tenth the temporal coverage of the light curve in the rest
frame). Despite a lack of a quantitative measure, though, the
AE feature (F13) controlling the timescale of variability has a
relationship with redshift. The coefficient of determination with
redshift is 0.07±0.01 (corresponding to the correlation

coefficient ρ=0.3) implying that quasar flux variation can
explain 7% of the variance in the redshift, or in other words, the
quasar light curve has 7% of information content on redshift.

3.4.2. Optical Luminosity

Observational biases mean that the optical luminosity, Lopt,
is strongly dependent on redshift and this needs to be accounted
for. Figure 12 shows the scatter matrix between six parameters
for the data set and it can be seen that the correlation between
Lopt and redshift is strongly nonlinear. We cannot, therefore,
disentangle the effect of redshift on the relation between the AE
features and Lopt with either multiple linear regression analysis
or the partial correlation coefficient; instead, we include the
redshift as an additional input to the MLP alongside the AE
features. AE features known to correlate with redshift, such as
F13 or Feature 10 (F10), should lose their importance and other
features containing information on Lopt should emerge as more
relevant.
The top panel in Figure 13 shows the importance, ΔR2, of

the AE features for Lopt. As expected, F13 and F10 have lost
their relevance and, instead, the most important feature for Lopt
is Feature 14 (F14). The dependence of the modeled light curve
on F14 is shown in the bottom panel in Figure 13, where the
feature value is varied by −0.25 to +0.25 around its original
value. The modeled light curve changes in only its brightening
phase as the feature varies which suggests that the brightening
timescale or the asymmetry of the timescale of brightening and
fading relates to the luminosity of a quasar. As shown in
Figure 14, the output value increases as the input value to the
node corresponding to F14 increases. It suggests a longer
brightening timescale, or a higher symmetry, is possibly

Figure 10. Diagram of an MLP for evaluating the information content (R2) on
physical parameters in the AE features. We also apply 50% dropout between
the hidden layer and the output, and normalization layer between each layer,
which we omit from the figure for simplicity. The relu function is used for
activation.

Figure 11. The importance of each AE feature (top panel; see the text for
detail) for the redshift. For illustrative purposes, the effect is shown on a
sampled modeled light curve (bottom panel) when the most important AE
feature (No. 13 for the redshift) is varied by −0.5 to +0.5 in 0.2 intervals from
its original value.

17 We also selected this object as there is clear brightening and fading in it and
therefore the effect of changing AE feature values is more evident.

9

The Astrophysical Journal, 903:54 (17pp), 2020 November 1 Tachibana et al.



associated with a higher optical luminosity and that faint
quasars might tend to exhibit higher variability asymmetry and
vice versa for brighter quasars.

This could indicate different physical mechanisms determin-
ing the timescale of brightening and fading. We note that
standard second-order analysis techniques, such as the power
spectrum density, structure function, or correlation function,
are not sensitive to this and neither is the DRW model. The AE
models the light curve itself without any prior assumptions and
so can capture information on asymmetry if it is present.

The coefficient of determination obtained with the AE
features and redshift as input is R2=0.869±0.002 and with
only the redshift is R2=0.864±0.002, respectively, giving
ΔR2=0.005±0.003. Since the increment of the coefficient
of determination ΔR2 can be understood as the lower limit of
R2 between the AE features and Lopt, the flux variations in
quasars have information on Lopt.

3.4.3. Black Hole Mass

Figure 12 shows that the black hole mass, MBH, correlates
with redshift and Lopt, although the redshift dependency is most
likely due to the strong correlation with Lopt. We therefore
include both Lopt and redshift as MLP inputs to handle these
relationships. The importance of MBH is shown in the top panel
in Figure 15 with Feature 5 (F5) emerging as the most relevant
and its effect on the modeled light curve is presented in the
bottom panel in Figure 15. Asymmetry in the timescale of the
brightening and fading is controlled by this feature but in a
different way to F14 (see above). Since the correlation
coefficient between F5 and MBH is negative (ρ=−0.01), the
asymmetry increases as MBH decreases, and this is consistent
with the relation between the AE features and Lopt where the
asymmetry increases as Lopt decreases.
The coefficient of determination with inputs of AE features,

redshift, and Lopt is R2=0.51±0.01 and with only redshift
and Lopt, is R2=0.47±0.01, respectively, giving

Figure 12. The scatter matrix of four parameters: the redshift, Lopt, MBH, and the ratio of the optical luminosity to the Eddington luminosity (Lopt/ LEdd). Histograms
for each parameter are shown in diagonal components.
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ΔR2=0.04±0.01. Again, the flux variations in quasars have
information on MBH because ΔR2 can be understood as the
lower limit of R2 between the AE features and MBH, as
mentioned in Section 3.4.2. If we regard R2 as the square of the
correlation coefficient, we can derive the partial correlation
coefficient of the AE features with redshift, luminosity, and
black hole mass. The highest partial correlation coefficient is
then with luminosity (∼0.1) suggesting that the AE features
mainly capture characteristic variability related to luminosity
and that correlations with the other parameters might just an
artifact of this relationship.

3.5. Asymmetry in Quasar Light Curves

The above results suggest that the timescales of brightening
and fading in a quasar light curve are determined by different
physical mechanisms, and that the ratio between these two
components, i.e., the temporal asymmetry of the curve, is
related to Lopt. If this is the case then an AE trained on quasar
light curves would work a different way for time-inverted (T-
inverted) and magnitude-inverted (M-inverted) light curves. An
example of the T-inverted and the M-inverted light curve is
shown in Figure 16.
We define the normalized modeling accuracy as:
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This value is related to the coefficient of determination.
Figure 17 shows the normalized modeling accuracy for quasar
light curves and simulated (DRW) light curves, respectively,
and in each panel, the normalized accuracy for the original, the
T-inverted, and theM-inverted curves is displayed as a function
of time in the rest frame.
The normalized modeling accuracies for the simulated light

curves are almost the same among the three data, whereas those
for the quasar light curves show different behavior. The largest
deviation from the accuracy of the original quasar light curve
comes from the T-inverted light curve; the accuracy for the T-
inverted data set is lower than that of the original data set
during the first half (∼0–600 days), and then improves to

Figure 13. The importance of each AE feature (top panel) for Lopt and the
behaviors of modeled light curve when the most important AE feature (No. 14
for the redshift) varies from −0.25 to +0.25 in 0.1 intervals from its original
value.

Figure 14. The correlation between the input value (F14) and the luminosity
normalized by the value at F14=0. The average of the predicted value is
shown by blue line, and the standard deviation of the prediction is shown by
blue-shaded region.

Figure 15. The importance of each AE features (top panel) for MBH and the
behaviors of modeled light curve when the most important AE feature (No. 5
for the black hole mass) varies from −0.25 to +0.25 in 0.1 intervals from its
original value.
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higher than that of the original data set after ∼700 days. On the
other hand, the accuracy of the M-inverted data begins to
slightly lag the original data set at ∼500 days, and never goes
to higher than that of the original data set. The deviation from
the original data set is smaller than for the T-inverted data set.
As this behavior is not seen in the accuracies for the simulated

light curves, it is a characteristic of the quasar light curves and
not any observational bias.
No difference in the accuracies for the three data sets of the

simulated light curves is actually expected, in fact, because the
kernel in the DRW process, tD texp∣ ∣, is time reversible and
also brightness reversible; in other words, both the T-inverted
DRW process and the M-inverted DRW process are still DRW
processes. The difference in the quasar light curves thus
suggests variability asymmetry is present, which is consistent
with the results in Section 3.4.2 and Section 3.4.3, indicating
the existence of the arrow of time in these time series. It is
indicative that the larger discrepancy is in the accuracy for the
T-inverted data set rather than for the M-inverted data set. The
amplitude of the variability asymmetry is possibly small in
terms of magnitude while significant in terms of time.
We note that the modeling accuracy is always larger for the

quasar light curves than for the simulated light curves. This is
probably because the AE is trained only with the quasar light
curves but it also indicates that the quasar flux behavior is
different from the DRW process as the parameter estimation by
the DRW process fit is not precise. Again, the consistency in
the accuracy curves for the three simulated data sets confirms
that the discrepancy among the accuracies for the quasar data
sets is not attributable to systematic effects such as the amount
of data in each bin or seasonal observation gaps.

3.6. Variability Asymmetry Analysis

The results from the AE model suggest the existence of
variability asymmetry in the quasar light curves. Kawaguchi
et al. (1998) introduced a structure function approach to
estimate the variability asymmetry adopting two structure
functions, tSFic( ) and tSFdc( ), which only include pair epochs
with brightening and fading flux, respectively (i.e., increasing
and decreasing flux). The asymmetry can be quantified via an
asymmetry parameter β(τ):

b t t t
t

= -SF SF

SF
, 14ic dc

tot
( ) ( ) ( )

( )
( )

where “tot” refers to the total set of data pairs. β(τ) quantifies
the normalized difference between the brightening and fading:
positive β(τ) indicates that the light curve favors a rapid rise
and gradual decay, and vice versa for a negative β(τ).
Attributing quasar optical variability to instabilities in the
accretion disk (the disk instability model) produces β(τ)<0,
while the starburst model, which associates variability with the
random superposition of supernovae in the starburst region of
the host galaxy, yields β(τ)>0. Hawkins (2002) also
considered gravitational microlensing as a mechanism for
variability and demonstrated β(τ)=0 is expected in this case.
From a sample of 401 quasars, Hawkins (2002) found no

asymmetry signature was detected on timescales of a year or
longer. However, Giveon et al. (1999) calculated the difference
between the medians of brightening phases and fading phases
in the light curves of 42 PG quasars and found a negative
asymmetry in the variations. More recently, significant
negative asymmetry was detected on a rest-frame timescale
longer than 300 days in 7,562 quasars from SDSS Stripe 82
(Voevodkin 2011).
Figure 18 shows the ensemble β(τ) for the quasar light

curves and the simulated light curves. To obtain the ensemble
β, we calculated SF(τ) for all sources in the quasar data set, and

Figure 16. An example of the time-inverted light curve (middle) and the
magnitude-inverted light curve (bottom) compared with the original light curve
(top), respectively.

Figure 17. The ensemble mean normalized modeling accuracy for the QSO
light curves (top) and the simulated light curves (bottom) evaluated within bins
of width = 50 days in the rest frame. Accuracies for the original light curves
(green points), the time-inverted light curves (denoted by T-inverted, orange
squares), and the magnitude-inverted light curves (denoted by M-inverted,
purple diamonds) are shown in each panels. The ensemble standard deviations
are too small to be shown.
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then estimated using the weighted average in 10-day width bins
in the rest frame. Since the DRW process is variability
symmetric the ensemble β(τ) for the simulated light curves
does not show any significant deviation from β(τ)=0.
However, the ensemble β(τ) for the quasar light curves,
presented in the top panel in Figure 18, has positive β(τ) on
short timescales, and then decreases to a statistically significant
negative value for τ  200 days. This behavior indicates that
the brightening power of variability is stronger than the fading
power on a timescale shorter than ∼100 days, while vice versa
on a timescale longer than ∼200 days. The variability
asymmetry, which is suggested by the deep learning modeling,
is confirmed by this time domain analysis.

We note that our quasar sample has been selected to only
consist of spectroscopically confirmed sources and that a
variance-luminosity relation has been employed so that
variability is solely from the accretion disk. Additionally, the
sample size is about double the SDSS Stripe 82-based data set
used by Voevodkin (2011), and the observation cadence is also
much denser. Our result is therefore the most definitive to date.

4. Discussion

4.1. The AE Model and Its Features

The AE model we have trained on quasar light curves
provides a better description of quasar optical variability than
the DRW model commonly used in the literature. In particular,
the forecasting accuracy of the AE model relative to the DRW
model improves as ΔTpred increases suggesting that the AE
model captures characteristics of the long-term behavior in
quasar light curves. Quasar variability on timescales longer
than several hundred days has not been well determined so far,
partly due to insufficient data sets, but also as characteristic
timescales from the DRW model are biased low for time series
with temporal coverage less than 10 times the timescale in
question. Caplar et al. (2017) found that there are clear
variations in the slopes of the quasar structure function (SF) for
individual sources with many quasars having steeper SFs than
expected from the DRW model. Quasars with higher mass and/
or luminosity tend to have steeper PSD slopes and this can be

reproduced in a model where the PSD slope is steeper below a
certain timescale, which is dependent on mass and/or
luminosity. This may be the same behavior that the AE model
is capturing.
The AE model is trained to reproduce all of the light curves

with only 16 parameters for each object. Simple clustering
analysis of the AE features shows three populations: fading,
stable, and brightening, which agrees with the most intuitive
categorization. However, mean light curves across the grid-
separated PCA projection of the features show highly flexible
expressions including global trend, variable amplitude, variable
timescale, etc. This shows that the AE features have most of the
latent content of the variability but this is also tied to physical
parameters since the information content on the luminosity is
seen to increase as training proceeds and the distributions of
some physical parameters on the PCA map show correlations.
This implies that the shapes of stochastic time series contain
information on the physical properties and processes produ-
cing them.
In fact, we have specifically used the AE features in deep

regression models for redshift, black hole mass, and luminos-
ity. If the intrinsic variability is redshift independent, then the
observed frame light curves should show a relation between the
timescale of variability and redshift (or strictly 1+z). We find
that AE F13 which controls the visual timescale of variability is
the most relevant feature in determining redshift which
validates our approach. It is perhaps more surprising, though,
that an AE feature which controls visual asymmetry in the light
curve should also be the most relevant for both luminosity and
black hole mass. This suggests for the first time that the degree
of asymmetry in quasars should be higher for low luminosity
(black hole mass) systems, which are also known to show
higher amplitude variability. Further studies are required to
determine how the degree of asymmetry scales with amplitude
variability.

4.2. Variability Asymmetry in Quasar Light Curves

Variability asymmetry is confirmed to be more than just a
visual effect by the AE modeling and forecasting accuracies for
T-inverted and M-inverted light curves, i.e., the AE performs
differently for the original, the M-inverted, and the T-inverted
data sets. Interestingly, accuracies for the T-inverted curves are
higher than those for the original curves in some temporal
regions, while those for the M-inverted curves are always lower
than those of the original data set. However, as expected, these
asymmetries are not seen in simulated light curves generated by
the (time reversible) DRW process.
A more traditional time domain analysis based on the

structure function also finds variability asymmetry, demonstrat-
ing that it is not an artifact of the deep learning approach. The
SF asymmetry parameter β(τ) indicates that on shorter
timescales (τ  100 days) there is a shorter brightening phase
with a longer fade while the reverse is seen on longer
timescales (τ  200 days). This trend is also consistent with the
result obtained from MLP regression between the AE features
and physical parameters where the variability asymmetry
emerges in the form of a shorter brightening phase with a
longer fading phase.
We have seen as well that the variability asymmetry is

connected to the intrinsic luminosity of quasars. Theoretical
predictions for this behavior are scant in the literature but the
most plausible physical model matching our results is the disk

Figure 18. Ensemble β(τ) of the QSO light curves (top) and of the simulated
light curves (bottom). The 1σ, 2σ, and 3σ uncertainty ranges of β(τ) are shown
by the orange-shaded region, gray-shaded region, and dashed lines,
respectively, where these uncertainties are derived from the boot strapping
resampling method.
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instability model (Takeuchi et al. 1995; DI model hereafter)
based on the concept of self-organized criticality (Bak et al.
1988). In this model, mass accretion takes place in the form of
avalanches which occur only when the local mass density
exceeds a critical value, and, simultaneously, a gradual viscous
diffusion occurs regardless of the critical condition. The DI
model has so far been mainly applied to X-ray variability in
stellar mass black holes but it seems applicable to quasars with
black holes a factor of 105–108 larger. Simulated light curves
generated by this process, e.g., Takeuchi et al. (1995);
Kawaguchi et al. (1998), show variability asymmetry of β
(τ)<0 or β(τ)>0, depending on the avalanche rate, the ratio
of the diffusion mass, m′, to the accretion mass, m, and the
range of the radius of the accretion disk that we are interested
in. Kawaguchi et al. (1998) demonstrated that simulated optical
light curves of quasars exhibit a negative asymmetry on
timescales of several hundred days in the rest frame which is
consistent with our results. Specifically they found that β
(τ)∼−0.1 is obtained with the ratio of the diffusion mass to
inflow mass of 0.1–0.5.

We can also consider the relation between variability
asymmetry and luminosity within the context of this model.
The ratio of the diffusion mass to the accretion mass controls
the variability asymmetry and so at a lower value, m′∼0.01m,
the variability asymmetry is relatively large, β(τ)∼0.1 at τ 
100 days, but at a higher value, m′∼0.1m, the asymmetry is
effectively suppressed. So luminous quasars should intrinsi-
cally have a high ratio of m′ to m while less luminous quasars
should have a relatively smaller value. The amplitude of
variability is also suppressed by a high diffusion mass ratio in
the DI model because large amplitude variability comes from
large-scale avalanches and these hardly occur when mass
diffusion is efficient. Thus a natural consequence of this is that
the amplitude of variability is anticorrelated with luminosity as
has been found in several analyses.

The diffusion (or viscous) timescale for an accretion disk,
tvisc, gives the characteristic timescale of mass flow and can be
parameterized for a black hole of mass MBH at ~R r150 g
(Stern et al. 2018) as
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where α is the disk viscosity parameter, h/R is the disk aspect
ratio, R is the disk radius, and =r GM cg BH

2 is the
gravitational radius. tvisc should be inversely proportional to
the amount of diffusion mass, m′, per unit time and so

a¢ µdm dt h R 2( ) , which should be higher for luminous
quasars. As both the amount of diffusion mass and the inflow
mass per unit time should increase simultaneously as α

increases, the ratio ¢m m should be fairly independent of α.
The scale height, h/R, would thus be the most plausible
physical parameter responsible for differences in the variability
asymmetry in the standard disk regime.

One possible explanation is that quasars with higher
metallicity (based on the measured metallicity of the broad
line regions) appear to have systematically smaller continuum
reverberation lags, i.e., smaller disk sizes. Jiang et al. (2017)
found that high-luminosity quasars seem to follow a disk
temperature profile, µ b-T R R 1( ) , with β<4/3, which is
also confirmed by microlensing (Blackburne et al. 2011; Hall
et al. 2014). If high-luminosity quasars have a high volume of

metallicity resulting in a small emission region for the optical
band, then a larger scale height, h/R, can be expected for a
fixed height disk at radius R. In fact, a relation between black
hole mass and quasar metallicity has already been suggested,
e.g., Warner et al. (2003); Kisaka et al. (2008). The relationship
between disk size and metallicity may result in large changes in
disk opacity as a function of the gas metallicity, which can
significantly alter the thermal properties and structure of the
accretion disk. This might then explain the connection between
variability asymmetry and luminosity. Alternatively, a large
mass accretion rate can also be responsible for a large scale
height as it should lead to a large amount of photon emission
from the disk and also a large surface density. The gas pressure
at the radius exhibiting a fixed temperature should thus be
relatively larger for luminous quasars, and, as the gas pressure
contributes to the scale height. luminous quasars should have
accretion disks with a relatively larger scale height.
However, our variability asymmetry is positive, β(τ)>0, on

a short timescale (t < 100 days) and the opposite on longer
timescales (τ>200 days). A single physical mechanism may
be responsible for variability asymmetry on all timescales or
different mechanisms may produce it on the short and longer
timescales respectively. Takeuchi et al. (1995) showed that
simulated and observed X-ray fluctuations at a radius of
∼3000rg exhibit positive variability asymmetry, which sup-
ports a single mechanism, but the simulations of Kawaguchi
et al. (1998) consider a different radius range. As the disk
temperature decreases proportional to ∼R−3/4, the radius range
emitting higher energy photons should be smaller relative to
that producing lower energy photons which might mean that
short timescale fluctuations from the smaller region show the
positive variability asymmetry and vice versa for the longer
timescale fluctuations. The starburst model, which attributes
aperiodic luminosity variations to the random superposition of
supernovae in the nuclear region, would be consistent with this
and Kawaguchi et al. (1998) demonstrated that it produces
significant positive asymmetry on a timescale of 1–100 days in
agreement with our results. Additionally, a high supernova rate
implies larger luminosity quasars and lower variability
amplitude. This model cannot, however, explain the negative
asymmetry seen and so another process must be responsible for
the transition seen from positive to negative asymmetry as the
variation timescale increases. Our model for quasar variability
also suggests different variation characteristics in different
energy bands. The DI model predicts that bluer color on a short
timescale variability changes to redder color on longer
timescales and the negative variability asymmetry on longer
timescales should be smaller in higher energy bands.
It is possible that the variability seen is not the direct product

of a single intrinsic process but a convolution of several. The
optical flux of quasars must contain broad line emissions which
are thought to be produced ∼10–100 light days from the central
region (e.g., Peterson 1997). Although the contribution to the
total flux is only of order a few percent, it is detectable in
statistical measures of variability, such as the autocorrelation
function. 1—50 day continuum reverberation lags in the UV-
optical bands have also been measured in several local active
galactic nuclei, e.g., NGC 4395, NGC 4593, NGC 5548, and
NGC 4151 (see McHardy et al. 2018 and references therein).
Light curves with contributions from both phenomena can be
produced by convolving the underlying process with an
appropriate kernel and Figure 19 shows three example kernel
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functions and their PSDs. In principle, any kernel will reduce
high-frequency power, resulting in a steeper PSD spectral index
than the original.18

Figure 20 shows an example of the PSD of the DRW process
convolved with a kernel. At frequencies above the typical
timescale of the kernel function, the PSD shows a steeper
spectral index (a = - 4 with this kernel) than that of the
original PSD (α=−2 for the DRW process). We can thus
expect at least two breaks in the PSD when convolved with a
kernel function with steepened spectral indices as the frequency
increases. We note that the same shape is given by a CARMA
(2,1) model, which is the next higher order autoregressive
model to the DRW (Kasliwal et al. 2017; Moreno et al. 2019).
The light curve from the convolved process should also show a
higher correlation coefficient than that of the original temporal
flux variation and the correlation should have a duration
roughly corresponding to the typical timescale of the kernel.
The observed quasar PSD slope is significantly steeper than
α=−2 on timescales shorter than ∼1 month Mushotzky et al.
(2011). Kernel convolution naturally generates the steeper PSD
slope above the typical timescale of the kernel, which should
itself correlate with black hole mass and/or quasar luminosity,
resulting from the scaling law with MBH. This suggests that
assuming that quasar flux variation contains some amount of
reverberated flux can explain the complex behavior of the time
variation and also the PSD characteristics revealed so far. The
existence of a kernel function, which manifests as the timescale
with a high correlation coefficient in the quasar variation, also
possibly explains the higher modeling/forecasting accuracy of
the AE model for the T-inverted data set than that for the
original data set.

5. Summary and Conclusions

We have constructed a nonparametric model to describe the
optical variability of quasars with a small number of

representative features using a recurrent AE, a type of deep
neural network suited for time series (sequential) data. The AE
has been trained to both model (predict) and forecast quasar
behavior by using truncated time series (by 500 days) as input
and minimizing the reduced chi squared between the output of
the network and the original full light curve. With real data, it
provides a more accurate forecast than the corresponding DRW
model fit to the input and the AE performance improves
relative to the DRW model with increasing forecasting time.
With simulated light curves from a DRW process, however,
both models show comparable accuracy and this demonstrates
that the trained AE can capture properties in the DRW process,
and indeed, recover DRW process parameters. It also shows
that quasar variability differs from a DRW model.
The AE also provides a compact learned representation of

the input data set (and thus quasar variability) via the encoded
features from the most compressed hidden layer. These enable

Figure 19. Examples of simple kernel functions (top three panels) and their PSDs (bottom three panels). Ten typical timescales are shown for each kernel function and
the dashed line in the bottom panels shows the typical frequency corresponding to the typical timescale.

Figure 20. The PSD of the DRW process convolved by the half circle kernel.
The original (the DRW process) PSD is shown by the black solid line, while
the convolved PSD is shown by the red solid line. The power-law function with
the index α=−4 is also represented by the dotted–dashed line as a reference.

18 The PSD of convolved time series can be calculated by FP f f´( ) ( ),
where P( f ) is the original PSD and Φ( f ) is the PSD of the kernel function.
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investigations of the relations between the temporal flux
variation of quasars and their physical parameters, specifically
redshift, luminosity, and black hole mass. To simplify this, we
trained an MLP model on the AE features to maximize the
coefficient of determination (R2) between the respective
physical parameter and the output of the MLP. The importance
of each AE feature was also evaluated based on its effect in
improving R2. The feature responsible for the timescale of
variability was found to be the most relevant for redshift, as
expected; however, we also identified the feature controlling
variability asymmetry as the most important for predicting
luminosity and black hole mass.

The existence of variability asymmetry is shown by different
model/forecasting accuracies for T-inverted and M-inverted
versions of the input data set. This is not seen when dealing
with simulated time series from a DRW process that is
naturally time symmetric. The AE fit to the T-inverted data set
shows a higher forecasting accuracy than the original data set
over a limited time range and this implies that the T-inverted
light curves have information on future variability which
equates to past variability in the original data set. Independent
analysis of the same data sets using the structure function
confirms a variability asymmetry connected with optical
luminosity and black hole mass and that the hysteresis in the
variability differs from a DRW process. A positive variability
asymmetry is present on short timescales (100 days) and a
negative asymmetry on longer timescales (200 days).

The observed asymmetry is consistent with the DI model
where variability from the accretion disk is ascribed to
instabilities in the disk as matter flows and the asymmetry to
large-scale avalanches. Light curves generated from Monte
Carlo simulations of this behavior show a positive asymmetry
in variability from a compact inner region close to the central
black hole while a negative asymmetry in the variability
emerges from a wide outer region (Takeuchi et al. 1995;
Kawaguchi et al. 1998). CRTS is an unfiltered survey and
therefore sensitive from ∼NIR to UV wavelengths so the
observed temporal flux variations should contain those
originating over a wide range of the accretion disk. Given the
disk temperature profile as a function of radius, T∝R−3/4, fast
variability should come from the inner compact region,
possibly generating the positive asymmetry, and vice versa
for longer timescale variability.

The magnitude of the variability asymmetry is controlled by
the ratio of the diffusion mass to the inflow mass with the
asymmetry diminishing as the ratio increases. We found that
the asymmetry decreases as the luminosity increases, which
requires efficient mass diffusion in the accretion disks of
luminous quasars. This can be interpreted in light of prior
observational results that quasars with higher metallicity have
smaller disk sizes at a fixed wavelength and also that black hole
mass seems to correlate with metallicity. If we can assume that
the height of the disk is determined by the mass accretion rate
at a radius and that the dispersion of the mass accretion rate is
small among quasars, then luminous quasars should have a
relatively smaller disk and larger scale height (h/R) at a portion
of the accretion disk with fixed disk temperature. Alternatively,
the high accretion mass rate could be responsible for a higher
accretion disk scale height in luminous quasars. As the scale
height is proportional to the diffusion mass rate, luminous
quasars should have lower variability asymmetry with lower
variability amplitude as the efficient mass diffusion results in

fewer large avalanches. This is consistent with previous results
in the literature that luminous quasars exhibit lower amplitude
variability.
The AE fit to the T-inverted data set shows a lower

modeling/forecasting accuracy over particular timescales. A
natural interpretation is that quasar variability retains informa-
tion from prior activity over certain time frames. This can be
represented mathematically by treating an observed time series
as the convolution of an intrinsic time series and a kernel
function. Contributions from reverberation at the broad line
region and/or from the accretion disk itself must be present in
the quasar flux variation and these typically show ∼10—
100 day time lags relative to the intrinsic flux variability and so
are a predictable component with such timescales. The kernel
function can also address the discrepancy from the DRW
process in the quasar PSD: the slope of the PSD gets steeper on
shorter timescales and the slope seems to correlate with
luminosity and/or black hole mass. The kernel convolution
significantly reduces variability on a timescale shorter than that
of the kernel function, and the typical timescale should scale
with black hole mass.
Finally, the next generation time domain surveys, such as the

Zwicky Transient Facility (Bellm et al. 2019; Graham et al.
2019) and the Vera Rubin Observatory (LSST Science
Collaboration et al. 2009), will provide multicolor observations
with a cadence of only a few nights over several years for
millions of quasars. This will greatly improve our ability to test
and assess explanations of quasar physics; for example,
wavelength dependent variation characteristics in the variabi-
lilty. It is also interesting to consider what an AE trained on
multicolor higher cadence photometric observations might
show. Physical labels from spectra, such as the equivalent
width of an emission line or the strength ratio of certain
emission lines, can be mapped to the projected distribution of
AE features provided by PCA or other dimensional reduction
techniques, such as T-SNE or UMAP. This would provide a
novel picture clearly relating spectroscopic properties to
variability characteristics.
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