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Moments of quadratic twists of
elliptic curve L-functions over function fields

Hung M. Bui, Alexandra Florea, Jonathan P. Keating and Edva Roditty-Gershon

We calculate the first and second moments of L-functions in the family of quadratic twists of a fixed
elliptic curve E over [, [x], asymptotically in the limit as the degree of the twists tends to infinity. We
also compute moments involving derivatives of L-functions over quadratic twists, enabling us to deduce
lower bounds on the correlations between the analytic ranks of the twists of two distinct curves.

1. Introduction and statement of results

The values of L-functions at the central point of the critical strip have been the subject of considerable
interest in recent years. One way to study these central values is by considering moments in families
of L-functions. There are now precise conjectured asymptotic formulas for such moments motivated
by analogies with random matrix theory [Keating and Snaith 2000a; 2000b]. More precise asymptotic
formulas containing lower order terms were conjectured in [Conrey et al. 2003; 2005; Diaconu et al.
2003]. In the case of the Riemann zeta-function, the analogue of these conjectures is now relatively well
understood in terms of correlations of the divisor function [Conrey and Keating 2015a; 2015b; 2015c;
2016; 2019]. The moments of other degree-one L-functions have also been investigated intensively. It
remains a challenge to extend these calculations to L-functions of degree two and higher.

The first moment of the family of derivatives of L-functions of quadratic twists of a fixed modular
form was studied in [Bump et al. 1990b; Iwaniec 1990; Murty and Murty 1991]. Questions related to
the nonvanishing of L-functions in this family were considered in [Bump et al. 1990a; 1990b; Murty
and Murty 1991]. For example, it is shown independently in [Murty and Murty 1991] and [Bump et al.
1990a], using different techniques, that for a fixed elliptic curve with root number equal to 1 there are
infinitely many fundamental discriminants d < O such that its twist by d has analytic rank equal to 1.

The second moment of the family was considered by Soundararajan and Young [2010]. Unconditionally,
they obtained a lower bound for the second moment which matches the asymptotic formula conjectured by
Keating and Snaith [2000b] and assuming the generalized Riemann hypothesis (GRH) they established the
conjectured formula. Using similar ideas, again under GRH, Petrow [2014] obtained several asymptotic
formulas for moments of derivatives of these GL(2) L—functions when the sign of the functional equation
is —1.
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While no asymptotic formulas for moments larger than the second are known for this family, there
are lower and upper bounds of the right order of magnitude. Rudnick and Soundararajan [2005; 2006]
established unconditional lower bounds for all moments larger than the first, and, assuming GRH, the work
of Soundararajan [2009] and its refinement by Harper [2013] produced upper bounds of the conjectured
order of magnitude. Radziwitt and Soundararajan [2015] proved upper bounds for moments below the
first in this family of L-functions. Their techniques also allow them to obtain a one-sided central limit
for the distribution of the logarithm of these central L-values. Their result supports a conjecture by
Keating and Snaith [2000a] which can be viewed as the analogue of Selberg’s central limit theorem for
the distribution of log|¢ (1 +i7)].

In this paper we study several moment problems of comparable difficulty to the moment computation
of Soundararajan and Young in the function field family of quadratic twists of an elliptic curve. Since we
are working over function fields, the results we obtain are unconditional due to the availability of GRH in
this setting.

Recently there has been a good deal of work on computing moments of L-functions in the function
field setting. Andrade and Keating [2012] obtained an asymptotic formula for the first moment in the
symplectic family of quadratic L-functions when the degree of the L-functions (which is a polynomial in
this case) goes to infinity and the size of the finite field is fixed (see also [Hoffstein and Rosen 1992] for a
similar result). A lower order term of size approximately the cube root of the main term was computed in
[Florea 2017¢]. The second, third and fourth moments were computed in [Florea 2017b; 2017a] (see
also [Diaconu 2019]). We note that the asymptotic formula for the fourth moment does not have a power
savings error term, but recovers several of the expected leading order terms in the conjectured formula
[Andrade and Keating 2014]. Obtaining an asymptotic formula with the leading order term for the fourth
moment in the family of quadratic L-functions is comparable in difficulty to establishing an asymptotic
formula for the second moment of L-functions of quadratic twists of an elliptic curve, and is one of the
problems we consider in this paper.

We note that for all of our results, we fix the size g of the finite field we work in and let the degree
of the L-functions go to infinity. If instead one fixes the degree and lets ¢ — oo, then Katz and Sarnak
[1999] showed that the L-functions become equidistributed in the orthogonal group, and hence computing
the various moments reduces to computing several random matrix integrals (see for example [Keating
and Snaith 2000a]). In the case of elliptic curve L-functions, the relevant equidistribution results were
established in [Hall et al. 2017].

To state our results we first need some notation. Fix a prime power g with

(g,6)=1 and ¢ =1 (mod4).
Let K = [, () be the rational function field and O = [F,[7]. Let E/K be an elliptic curve defined by

y2 =x3+4ax+b, with a, b € O and discriminant A = 4a> +27b% such that deg, (A) is minimal among
models of E/K of this form.
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The normalized L-function associated to the elliptic curve E/K has the following Euler product and
Dirichlet series, which converge for N(s) > 1,

L(E,s):=L(E,u)
— Z A(f)udesH)

fem
— l_[ (1 _ )\,(P)Mdeg(P))71 l_[(l —)\.(P)Mdeg(P) +u2deg(P))fl’ (1_1)
P|IA PiA

where we set u := ¢ ~*, and M denotes the set of monic polynomials over [,[]. For a more detailed
discussion of the coefficients A( f) and how to define the L-function, see Section 2.2 in [Baig and Hall
2012]. The L-function is a polynomial in # with integer coefficients of degree

n:=deg(L(E, u)) =deg(M) +2deg(A) — 4, (1-2)

where for simplicity we denote by M the product of the finite primes where E has multiplicative reduction
and by A the product of the finite primes where E has additive reduction. Moreover, the L-function
satisfies a functional equation; namely, there exists € (E) € {£1} such that

L(E,u)= E(E)(ﬁu)“E(E, q%)

For a more precise formula for the sign of the functional equation, see Lemma 2.3 in [Baig and Hall
2012]. Now for D € Ok with D square-free, monic of odd degree and (D, A) = 1, we consider the
twisted elliptic curve E ® xp/K with the affine model y?> = x3 + D?ax + D3b. Then the L-function
corresponding to the twisted elliptic curve has the following Dirichlet series and Euler product

LE®xp.u)= Y _ M f)xp(fHueS

feMm
= [T =2P)xp Py )™ TT (1 = 2(P)xp(P)u®e?) 4 > dee®) =1,
PlA P{AD

The new L-function is a polynomial of degree (n+ 2 deg(D)) and satisfies the functional equation

L(EQ® xp,u) =6(ﬁu)"+2deg(D)£<E®XD, q%) (1-3)
where
€ =€(EQ® xp) = €deg(D)€(E) xp(M).
Here €g4eo(p) € {£1} is an integer which only depends on the degree of D (see Proposition 4.3 in [Baig
and Hall 2012]).

Let 3 ot denote the set of monic, square free polynomials of degree (2g + 1) coprime to A. Our first
two theorems concern the first moments of L(E X AD» %) and L' (E ® XD %)
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Theorem 1.1. Unless €24 11€(E) = —1 and M = 1, we have
1

T L(E® xp, 3) = c1(M) + O (g ~8+<%),
2+ pens,

where the value ci (M) is defined in (5-6) and (5-2). In particular, the constant ci(M) # 0 in this case
and we obtain an asymptotic formula.

Theorem 1.2. Unless exg1€(E) =1 and M = 1, we have

1

x e L'(E®xp, 3) = ca(M)L(Sym® E, 1)g +¢3(M) + Oc (g~ 59,
DEH2g+l

where the values co(M) and c3(M) are defined in (6-2), (6-3) and (5-2). In particular, the constant
c2(M) # 0 in this case and we obtain an asymptotic formula.

Theorem 1.2 above should be compared to the number field analogous result in [Iwaniec 1990]. In
the following theorems we obtain asymptotic formulas for the second moments of L(E ® XD, %) and
L'(E® xp. %)-

Theorem 1.3. Unless €x441€(E) = —1 and M =1, we have
1

2
: L(E®xp, L)’ = cs(MILSym E, 1’g + 0,(g'/*+),
|H2g+l| DGH*
2g+1

where the value c4(M) is defined in (7-2), (3-8) and (3-9). In particular, the constant c4(M) # 0 in this
case and we obtain an asymptotic formula.

Theorem 1.4. Unless €24 11€(E) =1 and M = 1, we have
1

- e L'(E®xp. })’ = es(M)L(Sym® E. 1)’g> + 0.(8>™),
|H2g+1| DeH*

2g+1

where the value cs(M) is defined in (8-2), (3-8) and (3-9). In particular, the constant cs(M) # 0 in this

case and we obtain an asymptotic formula.

Note that Theorem 1.3 is the function field analogue of Theorem 1.2 in [Soundararajan and Young
2010]. Considering the smoothed second moment, Soundararajan and Young obtain an error term of

size (log X)*/4*¢, which would translate to g3/4*¢

in the function field setting. Using slightly different
techniques, Petrow [2014] states that the error term could be improved to (log X)!/?>*¢ which is of the
same quality we obtain in the result above.

Our Theorem 1.3 should also be compared to the asymptotic formula for the fourth moment of quadratic
L-functions over function fields in [Florea 2017a]. We remark that for the symplectic family of quadratic
L-functions, one can obtain lower order terms in the asymptotic formula by using an inductive argument
and then obtaining upper bounds for moments of L-functions evaluated at points far from the critical

point. The fact that one can compute a few lower order terms can be explained by the gap between
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powers of g coming from evaluating moments at the critical point versus evaluating moments far from the
critical point. When computing the fourth moment of quadratic L-functions close to the central point, one
expects to obtain a power of g'. As we move away from the central point, the family starts to behave
like a family with unitary symmetry and one expects an upper bound of the magnitude g*. The difference
in powers of g gives one room to use a repetitive argument to rigorously compute lower order terms
down to g*. In the case of the orthogonal family we consider in this paper, note that the main term in
Theorem 1.3 is of size g, and the error term has size g'/? coming from obtaining an upper bound for
the second moment evaluated at a point far from the central point. The small difference between these
powers of g does not give us enough room to compute a lower order term in this case.

We can also study the moment of the product of the quadratic twists of two elliptic curve L-functions.
Let E| and E, be two elliptic curves over K. Let A = A A;, where, for i = 1,2, A; denotes the
discriminant of E;. Let M; denote the product of the finite primes where E; has multiplicative reduction

and
€ = €deg(D)€(E) xp(M;).
Define
el.+:= 1—;€i and ¢ = 1_2€i.

Theorem 1.5. Unless exg1€(E1) = —1 and My =1, or €xg11€(E2) =1 and My =1, or e(Ey) = €(E»)
and My = M», we have
1

Y G L(Ei®xp. 3)L'(E2® xp. )

*
|H28+1 | Det;,

= co(My, Mo)L(Sym® Ey, DL(Sym® Ez, DL(E1 ® Ea, Dg + 0:(8"/*),
where the value co(M, M>) is defined in (9-2), (3-8) and (3-10). In particular, the constant c(My, M2)#0
in this case and we obtain an asymptotic formula.

We are not aware of the analogous number field result in the literature. We also prove the following.

Theorem 1.6. Unless €xg11€(E1) =1 and My =1, or €éxg11€(E2) =1 and My =1, or €(E1) = —€(E»)
and My = M,, we have
1

— > & Ll(Ei®xp. ;)L (E20xp. })
Hgnl plz
2g+1
= c7(My, My)L(Sym? Ey, )L(Sym® Ey, )L(E; ® Ea, 1)g* + O.(g'*®),

where the value c7(M1, M») is defined in (10-2), (3-8) and (3-10). In particular, the constant c7(M1, M) #0

in this case and we obtain an asymptotic formula.

Note that this result is the analogue of Theorem 2.2 in [Petrow 2014]. An interesting problem would be
to compute the average of L(E| ® xp, %)L(Eg XD, %) for distinct elliptic curves E| and E,. This would
have applications to the question of simultaneous nonvanishing of L(E 1® XD, %) and L(E2 ® XD %)
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However our techniques do not allow us to obtain such an asymptotic formula, as the error term (coming
from Proposition 4.7) would dominate the main term which would have constant size.
Define the analytic rank of a quadratic twist of an elliptic curve L-function L(E ® xp, s) by

TE@xp ‘= Ordszl/z L(E® XD> s).

Combining the upper bounds for moments of elliptic curve L-functions (see Section 4) with Theorems 1.5
and 1.6 leads to the following corollary.

Corollary 1.7. Unless €x41€(E1) = —1and M1 =1, or €x441€(Ey) =1and My =1, or e (E1) = €(E»)
and My = M,, we have
. q*
#HDeMyr)  TE @y = 0. TExex, = 1} > F
as g — o0. Also, unless €2 1€(E1) =1 and My =1, or €3¢ 1€(E2) =1 and My =1, or e (E) = —€(E»)
and M| = M, we have

g%

#{D € H§g+1 TE\®@xp =TE,®@xp = 1} > W

as g — oo.

As far as we are aware, Corollary 1.7 is the first result in literature where explicit lower bounds
concerning the correlations between the ranks of two twisted elliptic curves are obtained. Following
Harper’s argument [2013], for the upper bounds for moments of L-functions one may remove the
exponents ¢ in Corollary 1.7. We fail to obtain positive proportions in the above results because we are
not able to use a mollifier. Note that the results of Heath-Brown [2004] adapted to the function field
setting do not lead to positive proportions either.

2. Some useful lemmas

In this section we will gather a few useful lemmas we will need throughout the paper.

Recall that g is a prime power with ¢ = 1 (mod 4) and (g, 6) = 1. Let M denote the set of monic
polynomials over [,[7] and H be the set of monic, square-free polynomials. Let M,, denote the set of
monic polynomials of degree n over F,[7] and M, be the set of monic polynomials of degree less than
or equal to n. Let #,, denote the monic, square-free polynomials of degree n and recall that 7} denotes
the set of monic, square-free polynomials of degree n coprime to A. The norm of a polynomial f is
defined by | f| = g9 Let ¢ denote the Euler totient function and 7 the divisor function.

gq(s) = Z

feM

We define the zeta-function as

1
|fI°
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for 9i(s) > 1. By counting monic polynomials of a given degree, one can easily show that

1
fq(s) = W’

)

and this provides a meromorphic continuation of ¢, with a simple pole at s = 1. As before, we will make
the change of variables u = ¢ ° and so the zeta-function becomes
deg(f) 1
Zu) =gy =) u) =

fem 1—qu

with a simple pole at u = 1/q. Note that Z(u) can also be written as an Euler product

Z(u) = [ Ja —uts)=,
P
where the product is over monic, irreducible polynomials in [, [7].

The quadratic character over [, [¢] is defined as follows. For P a monic, irreducible polynomial let

7 1 if P{f, f is a square modulo P,
<F> ={—1 if P{f, f is not a square modulo P,
0 ifP|f

We extend the definition of the quadratic residue symbol above to any monic D € [, [7] by multiplicativity,

(f)—<2>
XD = 7 .

Since we assumed that ¢ = 1 (mod 4), note that the quadratic reciprocity law takes the following form: if

and define the quadratic character yp by

A and B are two monic coprime polynomials, then

(5)-(3)

Throughout the paper, we will often make use of the Perron formula over function fields. If the series
ZfeM a(f)udeeh) is absolutely convergent for |u| <r < 1 then

> (=5 f:( 3

fEMn fEM

du
deg(f)
a(f)u 8 )un+1a

and

_ deg(f) du
> ath)=5- ylﬁulzr(Za(f)u : )W(l_u).

fEMgn fE./V[
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Recall that the twisted elliptic curve L-function L(E ® xp, u) is a polynomial of degree (n+2 deg(D)),

with n being defined in (1-2). Thus we can write

n+2deg(D)

LEQp.u)y= Y  cuu,
n=0

where ¢, =3~ rep, M) xp ()
Lemma 2.1. The coefficients c,, of L(E ® xp, u) satisfy the following relation

—n/2—deg(D
cn=€q" /2-deg( )Cn+2deg(D)—n,

with € as in (1-3). In particular, if € = —1 and n is even, then ¢34 deg(p) = 0.

Proof. From the functional equation (1-3) we have

n+2deg(D) n+2deg(D)
Z cnun —¢ Z qun/2+deg(D)—nun+2deg(D)—n.

By setting k :=n+2deg(D) —n we get

n+2deg(D) n+2deg(D)
S ew=c Y cnpam rgt O
Comparing the coefficients we obtain the lemma. O

For D € H3,,, we can obtain the following exact formulas for L(E ® xp, %) and L'(E ® xp, %)
These are the analogues of the approximate functional equations in the number field setting.

Lemma 2.2. Let D € ngﬂ. Then

1y _ A xp(f) A xp(f)
L(E®XD, j)— Z W-i_é Z W,
fEM<in/21+deg(p) JFeM<im-1)/21+deg(D)
with € as in (1-3).
Proof. We use Lemma 2.1 to get
n+2deg(D)
LE@pu)= » cu
n=0
[n/2]4+deg(D) n+2deg(D)
S S S
n=0 n=[n/2]4+deg(D)+1
[n/2]+deg(D) n+2deg(D)
— Z Cnun i Z cn+2deg(D)—nqninﬂideg(D)un-

n=0 n=[n/2]4+deg(D)+1



Moments of quadratic twists of elliptic curve L-functions over function fields 1861

Changing the summation variable in the second sum leads to

[n/2]4deg(D) [(n—1)/2]+deg(D)
LEQ xp,u) = Z cou + € Z cn(qu>)"/2FdeeD—nyn,
n=0 n=0
Taking u = ¢~ '/? and recalling that ¢, = ) fem, »(S)xp(f) concludes the proof. O

Lemma 2.3. Let D € ngH. If e = —1, then

3 ([n/2] + deg(D) — deg(f)) A (/) xp(f)
VI ‘

Proof. The above formula follows simply by differentiating the last equation in the proof of Lemma 2.2.

L'(E® xp. 5) =2(logq)

feEM<ny21+deg(D)

Just note that as remarked in Lemma 2.1, if € = —1 and n is even, then cn/24deg(p) = 0. O

We also have the following lemma which expresses a character sum over square-free polynomials in
terms of sums over monics.

Lemma 2.4. We have

Yo xoH =Y uCxe () Y > Xr(f)

DeHs, CilA C2 | (Af)*® REMagi1-deg(Cy)—2deg(Cy)
—q Y wWCoxe(f) Y > Xr(f),
CilA Ca2 | (Af)*® ReEMag—1-deg(C))—2deg(Cy)

where by Cy | (Af)®° we mean that the prime factors of C, divide Af.

Proof. Let
Awy =Y xp(fHute?.
DeH
(D,A)=1
Then
Au) = 1_[ (1 + xp(fudee®)
PIASf
= [T A=)t —xp(pruses ™)
PIAS
= (1 — quz)ﬁ(u, Xf) 1_[ (1 _ u2deg(P))—1 1_[ (1 _ XP(f)udeg(P))-
PIAf PlA
Pif
Writing
[Ta-wdee®)y= = 3~ 20 T = xp(Hu ) = 3 u(Croxe, (fHu=C?,
Plaf Cal(Af® ﬁ? Crla

and comparing the coefficients of #?¢*!, the conclusion follows. ([
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As in [Hayes 1966] we define the exponential over function fields as follows. For a € [, ((1/1)) let

2mi Tr[Fq/[Fp(Cl]))
p ’

where a; is the coefficient of 1/¢ in the Laurent expansion of a and g is a power of the prime p. We

eq(a) = exp(

define the generalized quadratic Gauss sum as
uV
GV, /=Y xswe, (7)
u (mod f)

where x r is the quadratic character defined before. We gather here a few useful facts about G(V, f)
whose proofs can be found in [Florea 2017c].

Lemma 2.5. (1) If (f, h) = 1, then G(V, fh) = G(V, £)G(V, h).
(2) Write V.=V P* where PtV,. Then

0 if j<aandjodd,
$(PY) if j <aand j even,

G(V,P/y={—|pl! if j=a+1and j even,
xp(VDIP™V2 if j=a+1and j odd,
0 ifj>2+a.

The following Poisson summation formula in function fields holds.

Lemma 2.6. Let f € M,. If n is even, then

ZxR<f)=ﬂ(G(o,f>+<q—1) S oav.p- Y G(v,f)),

REMI?T |f| VEMfﬂ*)H*Z VEMnfmfl
otherwise L
q"t(q)
> xr(f) = i Y G,
REMm VeMn—m—l
where
q—1 .
2mi TI‘[F F (C)
@)=Y xr(©) exp(%)
c=1

is the usual Gauss sum over [F,.

2A. Outline of the proof. We will use the approximate functional equations for the L-functions involved
in the moment computations and then truncate the Dirichlet series close to the endpoint. For the longer
Dirichlet series, we will use Poisson summation and standard techniques to compute the main terms. For
the tails, we will go back and write the Dirichlet series in terms of expressions involving moments and
then use upper bounds for moments. The key in bounding the tails is the fact that the moments behave
differently depending on the points where we evaluate them (the power of g gets smaller in different
ranges).
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3. Main proposition

For N | A, let
. =y ¥ M (A2 (W) xp(Nfh)
SEI,EZ(N7X9 Y’a713) = |f|l/2+a|h|l/2+ﬁ ) (3_1)
De5, , feM<x
]’leMsy

where A; are the Dirichlet coefficients of L(E;, s) as in (1-1).

Proposition 3.1. Assume X > Y. We have

SE(Na X’ Y)
:=Sg.e(N,X,Y;0,0)

= |Hag+1ICE(N; 1, 1, 1)L(Sym? E, 1)}Y + 0(g%) + 0(q* 7P g% + 0(g8/*E /8430,
and if E| # E», then

Se, . B,(N, X, Y; , B)

= |Mog41IC, £, (N5 1, 1,1, &, B)L(Sym? Ey, 1 +2a) L(Sym? Ea, 1 +28)L(E1 ® Ea, 1 +a + B)
4 O(qu—Y/SgZ) 4 O(qg/2+3(X+Y)/8g30)

uniformly for |a|, |B| < 1/g, where the values Cr(N; 1,1, 1) and Cg, g,(N; 1,1, 1, a, B) are defined in
(3-8), (3-9) and (3-10).

We begin the proof of the proposition by applying Lemma 2.4 and rewriting Sg, g,(N, X, Y; «, B) as

A (f)ra(h)
2 e 2 MEOXaNID 3 2. xeNfw)
JfeM<x CilA Ca | (Afh)*® REMagi1-deg(Cy)-2deg(Cy)
hGng
A (f)ra(h)
~4 Y e 2 MO 3 > wWNf)
{;G'A./\:llgx CilA Cy | (Afh)>® REMZg—]—deg(Cl)—Zdeg(Cz)
S <y

=Se,6(N, X, Y, Z; a, )+ Tg, 5,(N, X, Y, Z; a0, B),  (3-2)

where Sk, g,(N, X,Y, Z; a, B) denotes the contribution of the terms with deg(C2) < Z and where
Te, g,(N,X,Y, Z;a, ) denotes that with deg(Cy;) > Z for some Z < g. We first estimate
T, e,(N, X, Y, Z; a, B), which is easier.

3A. The term Tg, g,(N, X, Y, Z; o, B).

Lemma 3.2. We have
T, 5,(N, X, Y, Z; a, B) K¢ q*8 372 g0%¢

uniformly for |al, |B| < 1/g.
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Proof. 1t suffices to prove the bound for T,;] E,» Which is

A (f)ra(h)
> s 2 MCDxe (Nfh) > > Xr(Nfh).
feM<x CiA C2 [ (Afh)*° REMogi1—deg(C)—2deg(Cy)
heM<y deg(C2)>Z

We use the Perron formula for the sum over f and 2. We write g(C3)/(rad(C,), A) = C = AB, and
replace f, h by Af and Bh, respectively, where g(f) is defined to be g(f) = ]_[P| ¢ P. Then

, w(C1)xc,(NAB)
Toe= D, > [A[/2 | B[1/2TP 2. xw(NAB)
c>Z C]EMCI R€M2g+lfclf2c‘2
at+2eslgtl  CeM,,

X

! % ff Z xc R(FA(Af) Ao (Bh)udes /) ydee®)
)% Jiui=r Jii=r

Py |f|1/2+a|h|1/2+ﬁ

dudv
x uX —deg(A)+19Y —degB)+1( — y)(1 — v)

for any r < 1. The sum over f and 4 may be written as

u v
Di(A,B,CiR; u, v, «a, ,B)E(El & XCiRs m)ﬁ(Ez & XCiR> ql/—2+ﬂ>’

where D (A, B, C1R; u, v, a, B) is some Euler product which is uniformly convergent provided that
lul, [v| < ¢~'/8, and satisfies

Di(A,B,CiR;u,v,a, B) < t(AB)

uniformly in this region. Moving the u and v contours to |u| = |v| = ¢~!/¢ and using the bound

u v
ﬁ(El & XCiR> m)E(Ez & XCiRs ql/—”ﬂ)‘

u
< ‘£<E1 & XCiR> m)

2

2
v
+ C(E2®Xc R —)
‘ 1Ry 17248

we get

/ 7(C)?
Ty 5 <82 il ?g %
E\,E Z Z |C| lul=g=1/8 J|v|=¢~/¢

o>7Z CieM,
c1+2c<2g+1 CreM.,
CilA

u
R

ReMogpi1—c)—2¢y

2
v
le(moren )
1 q1/2+/3

2
)dudv.

Now let D = (Cy, R). Write R = DR, = DE H?, where E is square-free, and let C; = DCs. Then

u
[,(El ®XC3E, m)‘

u
£<E1 Q XCR> m)' < |IDH|*
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Using upper bounds for moments (see Remark 4.2 after Theorem 4.1), we get that

’ ©(C2)° 2¢-37/2 6
T < q2gg3+£ Y« q g / g +s’
el c; 2(CoIc3
Z<deg(Cr)=g
and this finishes the proof of Lemma 3.2. (I

3B. The term Sg,,g,(N, X, Y, Z; a, B). Define S;EI,EZ(N, X,Y,Z;a, B)tobe

A (fHra(h)
> g 2 AN Y ) Xr(NFh),
feM<x Ci A Co | (Afh)*° ReEMagti—deg(Ci)—2deg(Cy)
heMsy deg(C2)<Z

and S;hEz (N, X, Y, Z; o, B) to be the same sum with g being replaced by (g — 1). Then
Se e(N, X, Y, Zya, B) = Sg, . (N, X, Y, Z;a, B) — qSg, 5, (N, X, Y, Z; a, B).

Using Lemma 2.6 on the sum over R, it follows that S;EI’EZ(N, X,Y, Z;a, B) equals

ez Z A (frz(h) Z u(C)xe,(Nfh)
3/2+4a| ) 3/2+8 2
Pavi INIIf1P7=+< A &Ta |C1]]C2
heMcy Cr| (Afh)>®
deg(Nfh) even deg(Cr)<Z
deg(C1)+2deg(Cr)<2g+1
x <G(0, Nfh)+(qg—1) > G(V,Nfh)— > G(V, th))
VEM <deg(N fh)+deg(C))+2 deg(Cy)—2g—3 V EMdeg(Nfh)+deg(C))+2 deg(Cy)—2g—2
— A (fHra(h) u(C1)xc,(Nfh)
i)Y |N||f13/2+ | h 32+ 2 |cl||lcz|2
feMcx Ci A
heMzy Cr | (Afh)™
deg(Nfh) odd deg(Cr)<Z
deg(C)+2deg(Cr)<2g+1
X > G(V,Nfh).

V € Mdeg(Nfh)+deg(Cy)+2 deg(Cy)—2g—2

Let S;E., EZ(V = 0) denote the terms with V =0 above and S;El’ EZ(V # () be the terms with nonzero V.
The terms S;l’ £, (V' =0) and S;l’ g,(V # 0) are similarly defined. Let

Se Es(N, X, Y, Zsa, B; V =0)=Sp, 1 (V=0)—qSg, (V=0
and
Senes(N. X, Y, Zya, B; V #0) = Sp, 5, (V #0) —gSg, 5 (V #0)

so that we have

SEE,(N, X, Y, Z;a, B) =SE, 5, (N. X, Y, Z;, B;V=0)+Sg, 5,(N, X, Y, Z; a, B; V #0). (3-3)
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We shall evaluate Sg, g, (N, X, Y, Z; o, B;V =0) in Section 3C and bound Sg, g,(N, X, Y, Z; a, B;V #0)
in Section 3D.

3C. The V =0 terms.
Lemma 3.3. We have
SE(N,X,Y,Z;V=0):=Sge(N,X,Y,Z;0,0; V=0)
= [Hag41ICE(N5 1, 1, DL(Sym® E, 1Y + 0(¢*) + 0(q**7"P¢?),

and if E| # E3, then

S E,(N, X, Y, Z;a, B; V =0)

= [Hog+11CE, £, (N5 1, 1, 1, a, B)L(Sym?® Ey, 1 +20) L(Sym* Ez, 1 +2B8)L(E| ® Ez, 1 +a + )
+0(q* 7P g% + 0(q*3%/?)

uniformly for |a|, |B| < 1/g, where the values CE(N; 1,1, 1) and Cg, g,(N; 1,1, 1, a, B) are defined in
(3-8), (3-9) and (3-10).

Proof. Note that G (0, N fh) # 0 if and only if N fh is a square polynomial, and in this case G(0, N fh) =
¢ (Nfh). Hence

, a(H)ra (W (NFh) 1 w(Ch)
_ _ 2g+1 _
St 5 (V=00 =" 3 N[ f [/ h] 372+ 2 G 2 e O
feMcx Co | (Afh)>® CilA
heM<y deg(Cr)<Z (C1,Nfh)=1
Nfh= deg(C1)<2g+1-2deg(C2)
We have

mw(Ci) u(Ch) 1(Cr)
2 ICil 2 ICi| 2 ICi|

CilA CilA CilA
(Ci,Nfh)=1 (C1,Nfh)=1 (Ci,Nfh)=1
deg(C1)<2g+1-2deg(C>) deg(C1)>2g+1-2deg(C7)
= J] (1 - —) +0(q *#|Co)
P|A 1P|
PtNfh
INfh| 1—[ ( 1 ) ) 2
l—— |4+ 0(q %|Ca]). (3-5)
¢Nfh) 1o\ P
Note that
> I<eq™ (3-6)
CzEMy,
Gyl (Afm)>

Let N=N 2N2 with N being square-free. The condition N fh = [ is equivalent to fh = N,£> for some
polynomial ¢. Then we can write f = N;A and h = N} B, with N)N5 = N, and AB = ¢2. It follows
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that the contribution of the error term in (3-5) to (3-4) will be

1
L gt D i D M (N3 A (N B)| K¢ g%,

LeM<(x+v))2 AB=¢?

by using the bound |X; (f)| < t(f) <. | f|°. Thus we can rewrite (3-4) as

/ M ()ha(h) 1 1

Sp e, (V=0)=¢g%"" 3" —— (1 ——) > ——+0:.(¢).
) /2+ 1/24+8 2
R e A S T [eX

feMzx Ca [ (Afm)>
heM<y deg(Cr)<Z
Nfh=0

‘We obtain a similar estimate for S;h EZ(V = () with g being replaced by (g — 1), and hence
SE],Ez(Nv Xv Y7 27 o, ﬂ’ V= O)

_ M (f)ra(h) 1 1 - ]
=Haenl |f|1/2+a|h|1/2+ﬁP|Afh(1 |P|) 2. |C2|2+08(q S G

feMxx G| (Af)>
hEMsy deg(C2)§Z
Nfh=0

From the Perron formula for the sum over C»,

Z 1 _ 1 (1 wdeg(P)>1 dw

27 2mi B 2 Z+1(] —
ey 1€ 2 Jwi=r pyag, |P| wZ (1 —w)
deg(Cr)<Z

for any r < 1, it follows that

SeLE,(N, X, Y, Z;a, B; V =0)

Hags1] f 7§ dudvdw
- A Na L) £ ) £ 0 gg ’
ariy Lo b § e m W v B e T 1 —w (= —w) T2

where

Ag, (N u, v, w0, )=y

fiheM
Nfh=0

21 (f) Ao (hyudeet)ydeg) (1 1 )(1 wdeg<P>)—1
1/2+a |} |1/2+8 i -——5 ) -
| f 1172 ] 17 R ASTY P

We can write down an Euler product for Ag, g,(N; u, v, w, a, ) as follows.
Ag (N u, v, w, a, B)
1 deg(P) \ —1 A1 (P (P9 )l 9e(P) yj deg(P)
:l—[ 11— — 1_w— Z 1(P")Aa( )“. U.
|P| |P|? o | P|(1/2+e)i+(1/2+5)]
PtA i+j even>2
1 deg(P)\ ~ A1 (PPYo (Pl dea(P)yj deg(P)
xl_[ 1—— 1—w— Z 1(P)a( )M‘ U. . (3-8)
FR | P| |P|2 |P|(1/2+a)t+(1/2+/3)j

iJ
i+j+ordp(N) even
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Then
Ap(N;u,v,w,0,0)
=Ag e(N;u,v,w,0,0)

=Cg(N;u,v,w)L| Sym“ E, — |L| Sym“ E, — | x L|{ Sym~ E, — | Z| — ), (3-9)
q q q q

and
Ag, e,(N;u,v,w, o, B)

I,t2 v2 uv
=Cr,,5,(N;u, v, w, a, ,3)£<Sym2 E\, m)c(smﬁ Es, m)c(m ® Es, ql+—a+ﬁ>, (3-10)

if Ey # E,, where Cg(N; u,v, w) and Cg, g,(N; u, v, w,a, f) are some Euler products which are
uniformly bounded for example when |u/|, |v| < g\, lw| < ¢>*.

Consider the case £y = E; = E. We have
Se(N,X,Y,Z, V=0

|'H2g+1|?g 7g ?g . E(S E. _)
(27”) lul=r J |v|=r J|w|=r £ o v, 0) ym

dudvdw
LS E,— L[S E, 0:(q®8 3-11
* <ym q) <ym q)uX+1vY+1wZ+1(1—u)<1—v)<1—w)<1—uv)+ @ b

q'/3, encountering two simple poles
2g—X/5g2) .

for any r < 1. We choose r = q_l/g and move the u contour to |u| =
atu =1 and u = 1/v. The new integral is trivially bounded by O (g
Furthermore, the contribution from the residue at u = 1/v is

1
Ce(N;1/v,v,w
(2mi)? 7|§v|=q1/g 7|§w|=q1/ﬂ e/ :

x L Sym? E ! L Sym> E v’ dvdw
m°E, — m°E, — ,
y v2g y g ) v XwZ+1(1 —v)2(1 —w)

which is O(g?#). This can be seen by first moving the v contour to |v| = ¢ ~'/>, creating no poles, and
3/2

—|Hog+1|L(Sym® E, 1)

then moving the w contour to |w| = g°/*, crossing a simple pole at w = 1. Both the new integral and the
residue at w = 1 are O(¢*¢) as X > Y. So

1
SE(N,X,Y,Z;V =0) = [Hag1|L(Sym® E, 1)—— 27§ f CE(N; 1, v, w)
Qi) Jjvi=g-11¢ Jjwi=g-17¢

v? v dvdw
£(Sym?E, — |£(Sym* E, —
* (ym q) (ym q)vY+1wZ+1<1—v)2(1—w)

+0(g*) +0(q* 1 gh.

We now move the v contour to |v| = ¢!/, encountering a double pole at v = 1. The new integral is
bounded by O(g?¢~¥/3g), and an argument similar to the above implies that the residue at v = 1 is

1
[Hag 11| L(Sym® E, 1)’Y Ce(N; 1,1, w)

W o).
2i lwl=q~/8 wZ+1(1_w)+ @)
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Hence
SE(N. X, Y, Z; V = 0) = [Hags1[CE(N: 1, 1, DL(Sym® E, 1)°Y + 0(¢%) + 0(¢*7"P¢?).
For E| # E,, we have that
S E,(N, X, Y, Z;a, B;V =0)

:M% 7§ % Ce,e,(Nsu,v,w, o ,B)E(Syszl u—2>£(Sym2E2 U_Z)
Cri)? Ju=r Jiojr Juwi=r 0T I " g1t2B

v dudvdw
glteth ) y X+ Y+l Z+ (1 — ) (1 — v)(1 — w)

xE<E1®E2, + 0:(q°®)

for any r < 1. We choose r = g~ !/¢ and first shift the u contour to |u| = ¢'/°, encountering a pole at

2¢—X/5

u = 1. The new integral over |u| = ¢'/>, |v| = |w| = ¢~'/¢ is bounded by ¢ g2. To calculate the

1/5

residue at u = 1, we move the v contour to |v| = g'/°, crossing a pole at v = 1. The new integral is

0(q?¢~Y/3g). For the residue at u = v = 1, we move the w contour to |w| = ¢*/?. In doing so we obtain

SenE,(N. X, Y, Ziat, B; V =0) = [Hog11Ce,, £, (N3 1, 1, 1, @, B)L(Sym* Ey, 1 4 2cx)
x L(Sym? E», 14+ 2B)L(E1 @ E», 1 +a + B)

and this concludes the proof of the lemma. U

3D. The V # 0 terms.

Lemma 3.4. We have
Sene,(N. X, Y, Zia, B; V #0) & g X TV T2/230

uniformly for ||, |B] < 1/g.

Proof. We will prove the bound for the term

— M (f)r2(h) u(C1)xc, (Nfh)
_ 2g+1 1 1
S(V #O)—q ‘C(Q) fg/[: |N||f|3/2+a|h|3/2+ﬂ CX|:A |C1||C2|2
heny Co 1 (AfIY®
deg(Nfh) odd deg(Cr)<Z

deg(Cy)+2deg(C2)<2g+1
X > G(V,Nfh), (3-12)

V EMadeg(Nfh)+deg(C))+2 deg(Cy)—2g—2

the treatment of the other terms being similar. We also assume for simplicity that deg(N), X and Y are
all odd. The other cases can be done similarly.
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‘We use the Perron formula in the forms

_1 deg(f)) du
Y. alh=o— f:( > a(fiu ey

fEng fG./\/l
deg(f) odd

and

_ de (f)) du
Y a=5- fuzr(z T P

feMcx fem
deg(f) even

for the sums over f and h. We write V = V| V22 with V| being a square-free polynomial and V, € M,
g(Cy)/(rad(C3), A) = C = AB, and replace f, h by Af and Bh, respectively. We then see that

N w(Ci)xc,(NAB)
S(V#£0)=¢*1(q) D > 3
/2+ 3/2+8 2
<z CreM,, [NIIA]>/=T]B] |C1]1Ca

c1+2c2<2g+1 CreM,,
Ci|A,C=AB

: 7§ % %
X - B(N,A,B,Cy, Vi;u/w,v/w, w,a, B)
(2”1)3 lul=r J|v|=r J|w|=r ‘/1;{

(1 +uv)dudvdw
X uX—deg(A)+1yY —deg(B)+1y,deg(NAB)—deg(Vi)+c1+2c2—2g—1 (1 _ MZ)(I _ vl)

(3-13)

for any r < 1, where B(N, A, B, Cy, Vi; u, v, w, o, 8) equals

2

fih,Voem

X (FAM (Af) Ao (Bhyudee)ydeet 2deeVIG (v, V2 NABfh)
|f|3/2+a|h|3/2+ﬂ :

To proceed we need to study the function B(N, A, B, Cy, Vi; u, v, w, a, B).

Lemma 3.5. The function B(N, A, B, Cy, Vi; u, v, w, a, B) defined above may be written as

u v
DZ(N9 Av Bv C]a V]a u,v,w,dc, ,8)£<E1 ®XC|V|7 W)E(E2®XCIV]’ ql__,’_ﬁ)a

where Dy(N, A, B, C1, Vi, u, v, w, o, B) is some Euler product which is uniformly convergent provided
that |u|, |v| < q'/?72/8, \w| < ¢~'/%¢, and satisfies

Dy(N, A, B, Cy, Visu, v, w,a, B) < g'%t10(AB)VAB

uniformly in this region.

&

Proof. 1t is easy to see that B(N, A, B, Cy, Vi; u, v, w, o, B) converges absolutely if |u|, |v]| < ¢~° and

|w| < ¢~'/>7%. We claim that the sum over f, 4 and V5 is triply multiplicative. Indeed, one can easily see
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that the double sum over f, & is multiplicative, so

xc, (fFA (Af) A (Bhyute N ydem G(vi v NABfh)
Z |f|3/2+a|h|3/2+,3

f.heM

xc, (Pi+j))n] (Pi+ap))L2(Pj+bP)Mideg(P)Uj deg(P)(;(V1 V22, Pi+j+ap+bp+np)
- H(Z | P|G/240)i+3/2+p)] )

where ap, bp and np denote the orders of A, B and N with respect to P respectively. Let A p(V>) denote
the Euler product above. Note that when P{V,, we have Ap(V,) = Ap(1). Then we rewrite the double

sum over f, h as
Ap(V2)
]_[Apa) I Swis

PV

We introduce the sum over V, and use the observation that for (V,, V3) = 1 and P{V3 we have
AP(V2V3) = AP(VQ). Then

l_[AP(l) 3 w2t I IZPP((‘IZ))

VoeM PV,

= l_[ AP(I) H(l + A—(l) Z A (P )kadeg(P))
P P

xc, (Pi+j))L1 (Pl+ap))\'2(Pj+bP)ul deg(P)vj deg(P)ka deg(P)G(V1 P2k, Pi+j+ap+bp+np)
- H<Z | P|G/24@)i+G/2+B) ] )

i,j.k
and hence the generating series for f, 4, V, is indeed triply multiplicative.
Now we rewrite B(N, A, B, Cy, Vi;u, v, w, «, B) as

xc, (Pi+j))\,1(Pi+ap))\.2(P‘j+bP)Mideg(P)U‘j deg(P)kadcg(P)G(V1 P2k, Pi+j+ap+bp+np)
1_[ (Z |P|(3/2+a)i+(3/2+ﬁ)j >

P1Cy i j.k

% 1_[ (Z)\-1(Pap))VZ(PbP)U)deCg(P)G(VI P2k, Ptlp-‘rbp-‘rnp)).

P|Ci &k

We next compute the Euler factors at an irreducible P in the region |u|, |v| < q'?728 \w| < g1/,

Note that in this region, w2 9" « |P|71=¢ if k > 1.
Consider first the case when P{N ABC) V). The contribution of such an Euler factor is

xc, (PH_j))\l(P ))\Z(Pj)uldeg(P)U]deg(P)lUdeeg(P)G(VIPZk PH—])
Z | P|G/2+@)i+G/2+B)j

i)k
In view of Lemma 2.5, this is equal to

1+X01V1(P))»1(P)Mdeg(m+XCIVI(P)A2(P)vd°g(P) 0( 1 )

|p|1+a |p|1+ﬂ |P|1+£

which justifies the two L-functions.



1872 Hung M. Bui, Alexandra Florea, Jonathan P. Keating and Edva Roditty-Gershon

In the case P |V} but PtN ABC|, the Euler factor equals

X, (PHOM (P (Pu Ce Py de P G vy, PIH) 1
Z |P|(3/2+a)i+(3/2+beta)j 0 |P|1+a

i,j

=1

A (PPu?9EP) 3 (P)Aa(P) ()P (P2 dee®) 1
- | P|2+2a - | P|2+oth - | P|2+28 + |P|1+e

1
~ 14 0( itz )

Similarly, the corresponding Euler factor is

O(|P|'7?) if P|AB and P{NC, Vi,
o(l) if P|AB, P|V;and P{NCy,
={14+0(/|P|'**) if P|C,and P{NAB,
O(|P|'7?) if P|Cy, P|AB and PNV,
0 if P|Cy, P|AB, P|V;and P{N,
and is
Lo Y |P|TUIERSEDE | P,
i+j<2k
if P|N.
The lemma easily follows by combining these estimates. O

—1/2—¢

We now return to (3-13). In view of Lemma 3.5, we take r < g and move the u# and v contours

to |u| = |v| = rq'/?>~2/8. This creates no poles. Then, by the above result,
B(N,A,B,Cy, Vi;u/w,v/w, w, o, B)

—— u/w v/w
< glO‘L']O(AB) AB'E(EI ® XC1V1$ ql/m>£<E2 ® XC]Vl, ql/__,’_ﬂ)‘

2
uw/w v/w
e |e(56 . 22 + o520 xc 22

q1+a

)

So

S(V #0)

2¢—(X+Y)/2 10 7(C)110(C)T(CY)
<Lq g Z Z :
b2z ciem,, VICHCHIG]

c14+2c,<2g+1 CreM,,
CilA

u
X L E1® xcv;» )
,?gu:ql/zug y|§v|:ql/21/gﬁ Z ( H gt

wl:r VieH

2 dudvdw
| w |X+Y+deg(N)—deg(V1 )t+c1+2c—2g+1"

If deg(V)) < X +Y 4c¢1 +2¢, —2g, then we move the w contour to |w| = q*3/4, otherwise we move the

—5/4

w contour to |w| =g . Using the upper bounds for moments as in Theorem 4.1 (see Remark 4.2) we
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find that
7(C)110(C)
S(V # 0) < q(X+Y)/2gll Z Z
c<Z CieM, v |C|
c1+202=2¢+1 CyeM,,
CilA
& gXHN2 gl Z 7(C2)110(C2) « X+ /230
Cenrey 1g(C2)l
which finishes the proof of Lemma 3.4. O

Proposition 3.1 follows upon combining the estimates and choosing Z =g — (X +Y)/4.

4. Upper bounds for moments

The aim of this section is to bound the tails of the Dirichlet series in the approximate functional equations
in Lemmas 2.2 and 2.3. We start with the following upper bounds for moments.

Theorem 4.1. Letk > 0, u =¢'?, v ="¢!" with 6,y € [0, 2] and let m = deg(L(E ® xp, w)). Then

u v
Z ‘ﬁ(E ® XD, ql/—2+a>£(E ® XD, ql/—2+5)
1

k 2
k
<L qugs exp(k/\/t(u, v, m)+ TV(M’ v, m))
DeHs, .

uniformly for |«|, |B] < 1/g, where M(u, v, m) and V(u, v, m) are given by (4-9) and (4-11) respectively.

Remark 4.2. Note that the same upper bound as above holds if we replace L(E ® xp,w) with
L(E ® xpe, w) for a fixed polynomial ¢ with (£, A) = 1. Since the proof of the upper bound for
this twisted moment is the same as the proof of Theorem 4.1, we only focus on £ = 1.

We first need the following proposition, whose proof is similar to the proof of Theorem 3.3 in [Altug
and Tsimerman 2014].

Proposition 4.3. Let D € ’H;HI and let m = deg(L(E ® xp, w)). Then for h < m and z with R(z) > 0
we have

1 m_ 1o
0g|L(E® xp.5+2)| < —+ N

( )3 xD(Pf><a<P>f+5<P>f)1ogqh—jdeg<p>>
h h .

e~ | P /242 +1/(10g ) 1og g
deg(P/)<h

Proof. We write

m
L(E® xp.s) = [ [(1 —e;qg'*™).
j=1

where ;| =1 (see [Hall et al. 2017]). Then

L’ m " 1 1
—(E ,8) =1 - — — — ). 4-1
—(EQ1p.9) ogq( 7Y (l_aqu/z_s 2)) (4-1)

j=l1
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We put s = 0 + z and integrate (4-1) with respect to o from % to og, where o > % Taking real parts

gives

log|L(E ® xp, 3 +2)| = og|L(E ® xp, 00 + 2|
= ( 1) 3 ilo g™ 1/2 =27 cos(6; — log g3 (2)) + 4>~ @

2 \7°"2) 210gq 1 +¢ 20 — 249 cos(9; — log g3(2))

j=1
where o = e'%. We use the inequality log(1 +x) > x/(1 4 x) for x > 0 and get that

log|L(E ® xp, 5 +2)| —10g|L(E ® xp, 00+ 2)|

mloggq 1 1 m (1 — g/2=00=2%@)) (] — 41/2=00)
< (00 - —> - Z 1/2—00—9(2) X e

mlogq 1 G, (00)(1 — g!/2=00=29@)y (] — g1/2-00)
) v & ’ (4-2)

2 2 (1 — g'=200-2%@) Jog g
where
1— ql—zfr—zm(z) m |
G = | s
Z(G) 2 = 1— 2q1/2—0—m(2) COS(@j — log q%(z)) + ql—ZU—Zfﬂ(z) ( )

Now similarly as in [Altug and Tsimerman 2014] we compute the integral

1 2+2mi/logq L qhwq—w

— S (E® 0. B A
2mi ) g (E®xp ot atw)y g S dw

in two different ways. First we write

L )»D(I’l)
~—(E®xp.5)=) s
n>0

and integrate term by term. Secondly we continue analytically to the left and pick up the residues. We

integrate with respect to o from oy to oo and take real parts, which gives
1 A logg"—"
_ 9N Z p(n)logg
(log g)? o g"@0+2) Jog g"

h 1 L'
= log|L(E ® xp, 00+ 2)| — 7—5N| —(E® xp, 00 +2)
loggq (logg)> \ L

1/2_UO_Z)hOl~_1qU+Z_1/2
J

+i%</w (@4 do) (4-4)
= o0 a _O[j—lqa+zfl/2)2
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Now we have

® (a; q1/2 00— z)h —1 a+z 1/2
E)‘t(f — dcr)
eyl

IA

/oo q(1/2—c—m(z))hqa+m(z)—1/2
o0

|1_af1qa+z—l/2|2
J

do.

00 q(1/2—o—ﬂi(z))hq1/2—0—%(2)
/UO 1_2q1/2—a—9t(z) COS(@j—IOg qg(z))_‘_ql—zU—mi(z)

By taking the derivative of

—X

q
1— 2q1/2—x—5h‘(z) cos(9j _ log qg(z)) + q1—2x—2§ﬁ(z)

fx) =

we can see that f is decreasing on [o0p, 00). Hence

/OO (a.ql/l—ﬂo—Z)ho{ lgote= l/zd )
o
o

0 (1 _ a+z 1/2)2

1/2—00—R(2)

m o0
q (12— =R (2)h
<
- ]Zl 1 _ 2q1/270'0*5ﬁ(2) COS(GJ' — log qs(z)) + q1—200—2§)t(z) /O' q dU

2G . (00)q1/F—o0= @k 4 1/2=00=0i(2)
N (1 — g!—200-2%()) Jog g"
2G,(0g)q /20— R@)h
~ (00 +N(z) — 1/2) logqlogg"’

with G, (09) as in (4-3). Now from (4-1) note that

L m
W T (E®Xp.o0+2) | =logg| —5 +G:(o0) ).
Combining the equations above and (4-4) gives

log|L(E ® xp, 00+ 2)]

< 1 %N ZM _|_l ﬂ_G (00) ) + 2Gz(go)q(1/2—oo—.‘)i(z))h
Tlogg" \ & q"tloggn ) T N2 T ) T k(oo +9i(2) — 1/2)log g™

This and (4-2) lead to

log|L(E ® xp. 5 +7)|

1 1 1 Ap(n)logg"™"
Sﬁ-i-m ogq oo— 1)+ % Z p(n)logg
2h 2 2 log g" q"(@0+2) log g"

n<h
2q(1/2 oo—NR(2))h (1 _ql/Z—(To—Zm(z))(l _q1/2—(ro)
+G.(o0)( - o
h(ffo-i-‘ﬁ(z) —1/2)logg" (1 —gq!7200=20@)) log q
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Choosing og = % +1/log g" ensures that the coefficient of G (0y) is negative. Since
ap(m)=loggy Y  deg(P)xp(P) (a(P)) + B(P))),
Jjln deg(Pi)=n
the conclusion follows. ]
Before proving Theorem 4.1, we also need the following lemma (see Lemma 8.4 in [Florea 2017a]).
Lemma 4.4. Let h, [ be integers such that 2hl < 2g + 1. For any complex numbers a(P) we have

21 2N\ [
2n! la(P)]
Z < ngﬁ( Z P ) .

DeH;, deg(P)<h

5 2Pt
P72

deg(P)<h

Let

N(V,u,v)=

u v
E(E@)XD, m)E(E@)XD, ql/—z“‘ﬂ)‘ >V 4+ M(u, v,m)”.

We will prove the following lemma.

Lemma 4.5. If \/logm <V <V(u, v, m), then

N(V,u,v) < ¢*exp| — v 1— 8 ;
o 2V(u, v, m) loglogm } )’

{D € Hjgyy tlog

ifVu,v,m)y<V < % loglogmV(u, v, m), then

N(V,u,v) < qg*exp( — ve 1— il ).
T K P 2V(u, v, m) V(u, v, m)loglogm ’

if V> 11—3 loglogmV(u, v, m), then

ViogV
N(V,u,v)<<q2g+1exp(— o2 )

4500

Using Lemma 4.5 above we can prove Theorem 4.1 as follows.

Proof of Theorem 4.1. We have the following.

u v
5 (e )i o)

*
DEH2g+l

k

= —/ exp(kV +kM(u,v,m))dN(V, u, v)

—00

o
=k/ expkV +kM@u,v,m))N(V,u,v)dV.

o0

In the equation above we use Lemma 4.5 in the form

g*2H moW exp(=V?2/2V(u, v, m)) if V <8kV(u, v, m),
q? meM exp(—4kV) if V> 8kV(u, v, m),

which finishes the proof of Theorem 4.1. U

NV, ,u,v) K {
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Proof of Lemma 4.5. We assume without loss of generality that «, 8 are positive and real. Indeed, notice
that if o« € C, since |o| < 1/g, we have [N(«)| < 1/g and |J(«)| < 1/g. The proof that follows goes
through in exactly the same way, with « replaced by 9i(«) and 6 replaced by 6 — J(«) log g. Once we
assume « is real, we can also assume that « is positive, since by the functional equation we have

u 1
[: E ® L — —a(n+2deg(D)) £ E ® ,— .
‘ ( XD q1/2+a>‘ q XD ql/l—au

Let
1% h
m_x and hg= ,
h A logm
where
%loglogm if V<V, v, m),

A= %(loglogm)])(u, v,m) ifVu,v,m)<V < %loglong(u, v, m),
8 if V> %loglong(u, v, m).

Using Proposition 4.3 gives

u v
£<E®XD, m)ﬁ(E@)XD, 611/—2+/3)

T < S AP PP log g I

=< 7+}—l% | P|(1/2+1/hlogq)j log g/

log

(|p|—(a—i9/10gt1)j+|P|—(l3—i)//10ch)jb' (4-5)
j=1
deg(P/)<h
Note that the contribution of the terms with j > 3 is bounded by O(1).
The terms with j = 2 in (4-5) will contribute, up to a term of size O (loglogm) coming from those P
with P | D,

Z (h —2deg(P))(A(P?) — 1) (cos(20 deg(P)) + cos(2y deg(P)))

1
2 h|P|]+2/hlogq |P|2a |P|2'B

deg(P)<h/2
Let

h
Fu(h. 0) = Z cos(2nd)

1 nq2na+n/hlogq :
n=

Similarly as in [Florea 2017a, Lemma 9.1], we can show that
) 1
Fy(h,0) =10gm1n{h, %}+0(1), (4-6)

where for 6 € [0, 27r] we denote 6 = min{6, 2 — 6}. Now using the fact that

Z AL(P?) cos(260 deg(P))

[T 1/hTogq = O(loglogh), 4-7)

deg(P)<h
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it follows that the contribution from j = 2 will be equal to

1 Z h —2deg(P) (cos(29deg(P)) cos(2y deg(P))

) h| P|+2/hlogq |P|2 | P 2P
deg(P)<4

1 h h
=——| Fyl =, Fg| =, log1
2( (2 9>+ ,3(2 y))+0(og ogm)

1 2 2
< —E(Fa(m, 0)+ Fg(m, y)) + Tm + O(loglogm) = M(u, v, m) + 7’” + O(loglogm), (4-8)

) + O(loglogm)

where

1 1 1
M(u, v, =——|logminim, —  +logminym, — 4-9
(v m) 2( s {m 29} s {m 2y }> “9)

by formula (4-6). Note that in the second line of the equation above we used the fact that

h " cos(2nf) YA cos(2n6)
Fo(m, 0) — Fq (5’ 9) = Z annaen/m o Z annann/h ’

n=1 n=1

and since e =1 + O(x), it follows that

h ", cos(2nb) 2m
Fy(m,0)—Fy| =,0) = ——Zro<=—+400).
(m, 0) (2) > g HOM=TE+00)

n=h/2+1

Hence, using (4-8) in (4-5) we get

u v
E<E®XD, m)£<E®XD, c}l/—z“‘ﬁ)‘

(h —deg(P)) xp(P)A(P) (cos(f deg(P))  cos(y deg(P))
h|P|1/2+1/(hlogq) |P|oz |P|ﬂ '

log

Sm

< M(u, v, _
<M(u,v,m)+ h + Z
deg(P)<h

Let S} be the sum above truncated at deg(P) < hg and S be the sum over primes with ~g < deg(P) <h.
If D is such that

u v
IOg ﬁ(E@XD, ql/—l-i-a)['(E@XD’ L]l/—2+/3)‘ > M@,v,m)+V,
then
S1 =V Vil 6 S, > 4
= _— — or —.
1=Vl A 2 = A
Let

%
f]I{DEH;g_i_IZS]ZV]} and fzI{DEH;g_HISzzZ}.

If D € F,, then by Markov’s inequality and Lemma 4.4 it follows that

20/ A\ la(P)2\!

T 2g(_ -

el 1!21<V)< 2 “im )
ho<deg(P)<h
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for any / < g/h where

P)— (h —deg(P))L(P) (cos(6 deg(P)) cos(y deg(P))
L e

Picking / = [g/h] and noting that a(P) < 1 and m =4g + O(1), we get that

2\ 7 A\? Viog V
|F2|<<q2g<;) (V) (loglogm)' <<q2gexp<— Sf ) (4-10)

If D € 7 then for any I < g/hg, we have

IFil < qu@L< 3 la(P)lz)l.

RTZ.
12t v, deg Py <ho |P|

Using the expression for a(P) and (4-7) we get that

@n!
1A

|F1| < q¢*¢ (V(u, v, m) + O(loglogm))’,

where
V(u, v, m)
i 0+y O—y
=logm+5(Fo(m,0)+Fg(m, y))+Fu+ip)2 (m T>+F(a+/3)/2 (m T)
= logm—l—%(logmin{m, é}—i—logmin{m, ;})—Hogmin{m, ;}—Hogmin{m, ;}, 4-11)
20 2y 0+y 00—y

and the last line of the equation above follows from (4-6). Then

21 !
|F1] < g% (W(V(u, v, m)+ O(log logm))) )
1

If V < V(u, v, m)?, then we pick [ = [V}/2V(u, v, m)], and if V > V(u, v, m)?, then we pick [ = [10V].
In doing so we get

V2
|F1] < g exp[ ———— ) + ¢* exp(—V log V). (4-12)
2V(u, v, m)
Combining the bounds (4-12) and (4-10) finishes the proof of Lemma 4.5. O

The following is an immediate corollary of Theorem 4.1.

Corollary 4.6. Let u = e'? and v = €'Y with 6,y € [0, 2r]. Then
> |e(zom )e(eon )
D, —— D, ——
NZ] N

DeHZ,H
114 1 -4 1 1/2 1 1/2
K q8glrte min{g, :} min{g, :} min{g, } min{g, } .
260 2y ©—=v) ©+vy)
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For N | A% and fixed n € N, we define the truncated sums

g]’E(N, X,I’l) = Z L\/D_(A’f) (4_13)
X <deg(f)<n+deg(D) |f|
and
& &(N, X, n) = Z (n+deg(D) — dj‘ﬁf))k(f)XD(Nf)_ (4-14)
X <deg(f)<n+deg(D) |f|

We are now ready to prove the following upper bounds for & (N, X, n).

Proposition 4.7. Fori = 1,2 and any fixed n € N we have

D 1EEWN, X, n) e g7 g7 (2 — X)P.
DEH;g+1

Proof. Using the Perron formula for the sum over f in (4-13), we get that

€ p(N. X.n) xp(N (e u 1 1 du
,X,n) = — | —
LE 2mi - Jiu=1 xb Vq ) \urtdee® oy X ]y (1 —u)

Note that there is no pole at u = 1. So we need to bound the following expression

! f f 3 £<E® L)£<E® i)
Qi) Jiu=1 Jiw=1 XD’«/E XD’«/?

De,H;ngl
1 1 1 1 dudv 4-15
X untdeg(D) X |\ yntdeg(D) X uv(l —u)(1 —v)’ 1)

We use Corollary 4.6 to bound the integral above and consider € and y on different arcs on the unit circle.

We bound the integral on these arcs and notice that we obtain the biggest upper bound when 6, y are not
close to 0 (i.e., u and v are not close to 1) and when 6 is not close to y or to 2w — y (by close we mean
on an arc of length on the scale of 1/g).

For example, if 8 and y are both on an arc C; of length on the scale of 1/g around 0, then the double
integral in (4-15) over the arcs Cy is O, (ng g~ 1) (since from the corollary we get a power of g which
gets multiplied by g2, the product of the sizes of the arcs.)

If 6, y are both on the complement of Cy, but close to each other (i.e., 6 is within 1/g of y), we get
that the corresponding integral over the two arcs is O,(g*¢g®). We get a similar bound if 6 is close to
2w — y, under the same conditions.

We are left with the case when 6, y are on the complement of C; and 8 is far from y and from 27 — y.
In this case the corresponding integral will be O,(g%¢g!/?>*#). This finishes the proof of the upper bound
wheni =1.

When i =2, using the Perron formula for the sum over f in (4-14), we have

xp(N) u 1 (n+deg(D)—X)(1 —u)+u du
& N’ X’ = Ll E y T — - :
2,E( n) 271 s < ®Xxp ﬂ) (un+deg(D) uX+1 (1 —u)?
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1 u v
E E® [ — £ E® [ —
(2mi)? ﬁ¢|=1 fv=l ( D ﬂ) ( o ﬁ)

< 1 (n—l—deg(D)—X)(l—u)—i—u)

Hence

&.6(N, X, n)? =

yn+deg(D) uX+1
1 (n+deg(D)—X)(1—-v)+v dudv
pn+deg(D) pX+1 (1 —u)2(1 —v)?

We proceed as before and keeping in mind that |u| = |v| = 1, it follows that

Y &N, X, ) < g% g 2g — X)*,
De?’-qg+l

as required. ([l

5. Proof of Theorem 1.1

For N | A . let

DeMs,,, feMcx
We will prove the following lemma.
Lemma 5.1. We have
RE(N, X) = [Hag41|CE(N: DLSym® E, 1) + O0c(¢*/27) 4+ 0, (q™/#4¢%),
where the value Cgp(N; 1) is defined in (5-2).

Proof. Note that
Rg(N, X) =Sg,e(N, X,0;0,0),

where Sg, g, (N, X, Y; a, B) is defined as in (3-1). We proceed as in Section 3, see (3-2), (3-3) and (3-7),
and write

RE(N,X)=SgEe(N,X,0,8;0,0)=Rpg(N,X;V=0)+Rg(N, X;V #0),
where RE(N, X;V #0)=Sg (N, X,0,g;0,0; V #0) and

RE(N,X;V=0=Sgr(N,X,0,g;,0,0; V=0)

_ +( b b e
=IHagsil 2 mn(l |P|> 2 g o™

feM<x P|Af Cr| (A
Nf=0O deg(C2)<g
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We first evaluate Rg(N, X; V =0). From (3-6) we have

1 1\ !
S =1 (1-—5) +0.q7%),
P ( |P|2> O
Cr| (Af)™® P|Af

deg(C2)<g

The contribution of the error term to Rg(N, X; V =0) is

A(NI?
< ng Z |(l—)| < qu.
leM<xp 7]

Hence

A(f) 1\
RE(N, X;V=0)=Hpeet] Y. = [] (1+—> + 0.(¢%).
# (S NI Ay |P|

Nf=0

Applying the Perron formula to the sum over f yields

H
[l Be(N: u)

Re(N,X;V =0)= _auw
£( )= o s u X1 —u)

+ 0:(q"%) (5-1)

for any r < 1, where

A(f)udee) 1 \!
srvin= 3 S0 T (1477

feM P|Af
Nf=0O

We can write Bg(N; u) in terms of its Euler product,
1 -1 )L(PZZ')MZZ' deg(P) 1 -1 )\‘(Pi)uideg(P)
Be(N;u) = I+{ 1+— _— 1+— _
EVi l—[(+( +|P|) 2=y )H<( +|P|). I )
PtA i>1 PlA i+ordp(N) even
u>
=Cr(N; u)ﬁ(Sym2 E, —), (5-2)
q
where Cx(N; u) is some Euler product which is uniformly bounded for |u| < ¢'/>~¢. We shift the contour
in (5-1) to |u| = ql/ 2-e encountering a simple pole at u = 1. Then

Re(N, X; V =0) = [Hag1|Ce(N; DL(Sym?* E, 1) + O, (g*8X/>F¢8), (5-3)

Now we will bound Rg (N, X; V #0). As in Section 3D, see (3-12), it suffices to bound the term

— A(f) u(Cp)xe, (Nf)
_ 2g+1 § : } : 1 2 :
feMc<x CilA V € Meg(N f)+deg(C))+2 deg(Cy)—2g—2
deg(Nf) odd C2 [ (Af)>

deg(C1)+2deg(Cr)<2g+1
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Using the fact that

1 q*2"2 . dw
)3 g, TTa-wsrn 2

G2 2mi _
CreM,, €2l wI=r piaf

Cr(Af)

for r < 1, and writing V = V] V22 with V| a square-free polynomial, we have

28+1200 C N
q-""1(q) Z g2 Z u(Ci)xc,(N)

R(V #£0) =
V0 ="4 Cil
c1+2c,<2g+1 CieMc,
Ci A
x 2 > > >
n<X J=<n+deg(N)+ci+2c,—-2g—2 VieH j VaEM (npdeg(N)+c| —j)/24+cp—g—1
n+deg(N) odd j4ci odd
1 AMf)G(VIVE N dw
- xc, (HHA(S) 3(21 5 Nf) 1—[ (1 — wiee(P)y—1 N
2mi Jjwi=r |f13/ wet
feMm, PIAf
Now

xo, (HAMFIGCVIVE NS) l—[ (1 — wiee(P)y =1, deg(F)

2 1177

feMm P|Af
=HVi; u, wI(V1 V3, Ny u, w)T(ViVss u, w),
where
P)L(P)udee®)
H(Vizu, w) = 1‘[<1+XC1V‘( )}f Ju (1—wdeg<”>)—‘),
PJ(VI | I
X (POAPHG (Vi VG, PItnryyd deetP) de(P) -1

Z(ViVE, N:iu, w) = < : (1 — wdeeP)y

and

POHMPIHG(V V2, Pyt deeP)
TV V3 u, w) = 1_[ (1+ZXC1( i )|p(|3]1'/22 s (1—wdeg(P))_l)

PIViV, Jj=1
PtA

P)A(P)udee® !

x 1_[ (1+XC1V1< )|P(| ) (l_wdeg(P))l> ]
PJ[Vl
P|AV,
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We use the Perron formula for the sum over f and obtain

2g+1
g 1(q) 2 u(Ci)xc, (N)
RV £0)=1_ T4 & pooxe ™
VAO="g 2 a7 Y T
c1+2c<2g+1 CieM,
CilA
x ) ) ) )
n<X j<n+deg(N)+ci1+2c2—2g—2 Vi€H j V2EM (ntdeg(N)+cf —j)/24+cp —g—1
n+deg(N) odd Jj+c1 odd
! HOVs w, )TV VA, N 1 ) TV w) 2 Y (s.a
X—. 1,u,w 1 ) su,w 1 s U, W) —————+- -
(27'[1)2 lul=r J|w|=r 2 2 unt+1 e+l
Let r = ¢q'/>7¢, ro = ¢~¢, and let ko be minimal such that |r1r§°| < 1. Then we can write

u uw uwko—1
HVisu,w)y=L E®XC1V175 L E®XC1V1,7 L E®XC1VI,T K(Vi;u, w), (5-5)

where

K(Visu, w) <L |Cif
uniformly for |u| <r; and |w| < r,. We also have
IViVE, Niu,w) L [ViVal® and - T(Vi V3w, w) L [Val*

in this region. We now move the contours in (5-4) to |#| = r; and |w| = r,. We then use the Lindel6f
bound for each L-function and trivially bound the rest of the expression to obtain that

R(V #0) <, ¥/,
Combining this with (5-3) finishes the proof of Lemma 5.1. ([l
To prove Theorem 1.1, note that from Lemma 2.2 we have

> L(E®xp. 1) = Re(l,[0/21 428 + 1) + eags1€(E)Rp (M. [(n+1)/2] +2¢).
DEH;ngl

Using Lemma 5.1 and choosing X = g we have that

1
> L(E ® XD, %) =c;(M)L(Sym? E, 1) + 0,(q 8+,
Hog] pers, .,
where
|[P|+1
c1(M) = C(1; 1) +exgieE)Ce(M; D) [ ] Pl (5-6)

PlA

This finishes the proof of the theorem.
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6. Proof of Theorem 1.2

For N | A®, let
Rp(N, X;a) := Z Z )‘(f)XD(Nf)‘

DeMs, | feM<=x |11z
Note that Rg (N, X;0) = Rg(N, X) with Rg(N, X) as in Section 5. Similarly as in Section 5 and for
la| < 1/g we get that
RE(N, X; @) = [Hag+1[CE(N; ¢ ") L(Sym® E, 14 2a) + 0:(¢*~*/**4) + 0:(¢***%).  (6-1)
Using Lemma 2.3 we obtain

Z e L'(E®xp, 1)

D€H>2kg+1
= (logg)([n/2]+2¢ + D(Re(1, [n/2] +2g + 1) — €211 (E)Re (M, [n/2] +2g + 1))
0
+ o~ (Re(1, /2] +2g + 1 @) — €251 €(E)RE (M, [n/2]+ 28 + 1; ),y
From Lemma 5.1 and (6-1) it follows that
1

x e L'(E®xp, 1) =ca(M)L(Sym® E, 1)g +c3(M) + 0,(g~¢7<%),
DeHyes

where
|P|+1
2 (M) =2(log ) (C(1; 1) — 20 11€(EYCE(M; 1) | | 7 (6-2)
PlA
and
c3(M) = (((log ¢)([n/2]+ 1)L(Sym* E, 1) +2L'(Sym* E, 1))(Ce(1; 1) — €2411€(E)CE(M; 1))
2 / ) |Pl+1
+L(Sym” E, D(Cp(1; 1) — €2411€(E)Cp(M; 1)) 1_[ Pl (6-3)
PlA
7. Proof of Theorem 1.3
Following Lemma 2.2, for X < 2g, we define
A()xp(f)
M (X)) =1+ —_—,
LE(X) = (1+€) f%‘ N
so that
L(E® xp. %) =My e(X)+ & e, X, [n/2]) + €2g11€(E)E1 g (M, X, [(n—1)/2]), (7-1)

where recall expression (4-13) for £; (N, X, n). Hence

L(E® xp. })’
=2L(E ® xp, HM1,e(X) — M1 p(X)* + (€11, X, [n/2]) + €2g11€(E)E1 g (M, X, [(n— 1)/2])).
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By Cauchy’s inequality and Proposition 4.7 we get

> LE®. )’ =2 Y LE®wm HOMeO— Y M)
D€H§g+1 DGH;ngl DeH;ngl

+0:(q*8' 7 2g — X)?).
Now using Lemma 2.2 again and expanding M g (X)?, the first line of the equation above is

2051, [n/2]4+2g + 1, X) + Se(1, [(n+1)/2] +2¢, X) — Se(1, X, X))
+2€2041€(E)(Sg(M, [n/2]4+2g+ 1, X) + SE(M, [(n+ 1)/2] 4+ 2g, X) — Sg(M, X, X)),

where recall the definition of Sg(M, X, Y) in Section 3. Using Proposition 3.1, this is equal to

[H3 1 1lc2(M)L(Sym® E, 1’ X + 0(g%) + 0(q* ¥5g%) + 0(g/*13%/3 %),

where
|P|+1
| P|

(M) =2(Ce(1;1,1, 1) + €2011€(E)CE(M; 1, 1, 1)) 1_[
PlA

; (7-2)

and Cg(N; 1,1, 1) is defined in (3-9). Thus

Y L(E®xn. 1)

*
EfHZngl

= cy(M)L(Sym® E, 1)*X + 0(q~*g*) + 0(g#/*3 %) 1+ 0, (g"** (2g — X)?).

1

*
|H2g+1 | D

Choosing X =2g — 100 log g we obtain the theorem.

8. Proof of Theorem 1.4
Following Lemma 2.3, for X < 2g and fixed n € N, we define

(n 4-deg(D) — deg(f)A(H)xp(f)
Mrp(X,n):=(1- E )
Z,E( n) ( E) fEMSX m

so that
e L'(E® xp. 1)
= (logg) Mz (X, [n/2]) + (log q) (&2, (1, X, [n/2]) — €2g11€(E)E2 e (M, X, [n/2])), (8-1)

where recall that & (M, X, n) is given in (4-14). Then we get that

e L'(E® xp, 1)’ =2(logq)e L'(E ® xp, 1) My, £ (X, [n/2]) — (log 9)* M3 5 (X, [n/2])
+ (log ¢)*(&2.£(1, X, [1/2]) — €2g11€(E)E2 E(M, X, [n/2]))*.
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By Cauchy’s inequality and Proposition 4.7 we get that

Y e L(E®xp. 1) =200gq) Y € L'(E®xp. )Mo p(X, [n/2])
DeH5, ., DeH5, .,
—(logq)* Y My p(X.[n/2D)*+ 0.(g%g' > (2g — X)*).
DEH;g+1

Now by Lemma 2.3 we have
> e L(E®xp. 3)Mar(X, [n/2])
De’y’-l;g+1
=2(log ¢)([n/2] +2g—|—1)2(SE(1, [n/2]42g+1, X)—exg11€(E)SE (M, [n/2]4+2g+1, X))

+2([n/2]+28+1)£(55(1 [n/2]4+2g+1, X; 0, B)—€2g41€(E)SE(M, [n/2]+2g+1, X; 0, ﬁ))|ﬂ:0

+2([n/2]+28+1)£(SE(1’ [n/2]+2g+1, X; @, 0) =€ 1€(E)Sg (M, [n/2]42g+1, X; &, 0)) | ,_,

N 2 9?
log g d0adp

(Se(L, [n/2]+2g+1, X: a, B)—€2g1€(E)Sp (M, [n/2]+2¢+1, X a, ,3))|a:ﬂ:0,

and similarly

> Myp(X, [n/2])°

*
DEH2g+1

=2([n/2]1+2g + 1)*(SE(1, X, X) — €2¢41€(E)SE(M, X, X))

_l’_

2
logq n/2]+2g+1)£(515(1 X, X;0,p) —€2411€(E)Se(M, X, X; 0, ﬂ))|}3:0

+——(n/2]+2g + 1)5(55(1, X, X;a,0) —eg1€(E)Se(M, X, X; 0, 0))] _,

logg
N 2 92
(logq)? dadp

= (Sp(1 X, X: o0, B) — ag1€(E)SE(M. X, X: e, )|,y

Choosing X =2g — 100 log g and using Proposition 3.1, we obtain that

1

2
_ L'(E® xp. 3)” = cs(M)L(Sym® E, 1)’¢* + 0,(g*),
Hgnl p S
2g+1
where

|P|+1
Pl

es(M) = 16(log 9)*(Cp (13 1, 1. 1) — exg41e(E)Ce(M: 1, 1, D) [ (8-2)

PlA
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9. Proof of Theorem 1.5

By combining (7-1) and (8-1),

e; L(E1® xp. 3)L'(E2® xp. 3)
=& Mg, (X)L'(E2® xp. 3) + (log ) L(E1 ® xp. 5) Mo, (X, [n,/2])
— (log ) M1 g, (X) M2 g, (X, [n,/2])
+ (log q) (1,5, (1, X, [n,/2]) + €20 1€ (EDEL g, (M1, X, [(ny — 1)/2]))
X (&2,6,(1, X, [n,/2]) — €2g11€(E2)E E, (M2, X, [n,/2])).

We bound the last term above using Cauchy’s inequality and Proposition 4.7. In doing so we get

Y G L(Ei®xp. 3)L'(E2® xp. )
De’H;g-H

= Y, ML (E2@xp,5)+(ogg) Y L(E1® xp, 3)Ma 5, (X, [n,/2])
De’H;ngl D6H3g+l
—(ogq) > Mg (X)Ma g, (X, [n:/2]) + O (g*g" > (25 — X)%).  (9-1)

®
D€H2g+l

We shall estimate the remaining three terms using Proposition 3.1. They all have similar forms. For the
first term, by Lemma 2.3 again we have

> G Mip(OL(E2® xp. 1)

"
DeHyo

([n./2]+2g + 1 —deg(h) A1 (f)r2(h) xp(fh)
=1 1+ 1-— .
(logq) DE;E +1( el —e) feME 3 T

heMcin, /2142641

By expanding out, this equals

(logg)([n./2] +2g + 1)(SE1,E2(1, [n,/2]+2g + 1, X: 0, 0)
+ €2g+l€(E1)SE1,E2(M1, [n2/2] —|—2g +1,X; 0’ 0)
— €2011€(E2) Sk, 1, (M, [n,/2] +2g + 1, X: 0, 0)
—e(ENe(E2) S, 5, (MiM>, [n,/2]+2g+ 1, X; 0,0))
d
+ %(SEl,Ez(l, [n,/2]+2g + 1, X: 0, B)
+€20+1€(E1)SE, B, (M1, [n,/2]+2g + 1, X; 0, B)
— €24+1€(E2)SE, 5, (Mo, [n,/2]+2g+ 1, X; 0, B)

— €(ENe(E2) Sy, 5, (M Mo, [n;/2] 428 + 1, X; 0, B)) |,
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which is, by Proposition 3.1 and Cauchy’s residue theorem,

[ H3 o 1lce(My, My)L(Sym® Ey, 1)L(Sym® Ep, L(E1 ® Ez, 1)g + O(g*) + O(g*¢/+3%/8g3h),
where
c6(M1, Mp) =2(logq)(C,,£,(1;1,1,1,0,0) + €2411€(E1)CE,, £,(M151,1,1,0,0)

— €2611€(E2)CE, E,(M2;1,1,1,0,0)

—€e(Ee(E)CE, g, (M1 M; 1,1, 1,0,0))
P|A

|P|+1

9-2
P 9-2)

The other two terms in (9-1) have the same asymptotics so we obtain

1

= & L(Ey® xp. 5)L (E2® xp. 3)
| 2g+1| DeHs, .,

=ce(M, M2) L(Sym? E1, 1) L(Sym? Ey, 1) L(E\QE,, 1)g+0(qg3¢/*3X8g3 1 0,(g"/** (2g—X)).

Choosing X =2g — 100log g we obtain the theorem.

10. Proof of Theorem 1.6

We argue as in the previous section. From (8-1) we have

€6 L'(Ei®xp, 3)L'(E2® xp. 3)
= (log q)(€; Ma2,, (X, [0, /2DL'(E2® xp. 3) +€; L'(E1 ® xp, )Mo, £, (X, [n,/2]))
— (log q)*Ma. g, (X, [0, /2) Mo £, (X, [n,/2])

+ (log q)* (&2, (1, X, [n,/2]) — €2g41€(EN)E2 g, (M1, X, [1n1/2]))
X (SZ,EZ(L X’ [nz/z]) - 62g-‘,—1E(E‘Z)(C/‘Z,Ez(]‘42’ X’ [nz/z]))

Bounding the last term above using Cauchy’s inequality and Proposition 4.7 leads to

Z e; & L'(E\® xp, 3)L'(E2® xp, %)

*
DE,HZngl

=(ogq) Y & Myg (X, [n/2DL(E2® xp. })

*
De’HZg-H

+(ogq) Y € L'(Ei®xp, 5)Map, (X, [n,/2])
De?—[ﬁﬁl

—(logg)® Y Mag (X, [n/2D My, (X, [0,/2]) + O (g% g (2g — X)*).  (10-1)

*
D€H2g+1
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We shall illustrate the evaluation of the third term using Proposition 3.1. The first two terms can be
treated in the same way, and in fact they all have the same asymptotics. We have

(logq)® Y Mo (X, [n/2D Mo 5, (X, [n,/2]) = (logg)® Y (1—e)(1—€)

Dety, Detrei
3 (Ina/2]1+2g 41 —deg(f))([n./2] +2g + 1 — deg(h))A1(f)A2(h) xp(fh)
FhemMox VIfhl .

By expanding out, this equals

(log ¢)*([n, /2] +2g + D([n, /2] +2g + D (S5, (1, X, X;0,0) — €041€(E)) S, 5, (M1, X, X;0,0)
- 62g+16(E2)SE|,E2(M27 Xa X? Oa 0) +€(E1)6(E2)SE1,E2(M1 MZa Xa X’ 05 0))

ad
+ (logQ)([nl/z] +2g + 1)£(SE1,E2(19 X, X, 09 13) - €2g+16(E1)SE1,E2(M1, X, Xa O’ IB)

— €20+1€(E2)SE, E,(M2, X, X; 0, B) +€(E1)e(E2)SE, E,(M1 M, X, X; 0, '3))|,3=0

a
+ (log g)([n,/2] +2g + l)a(SEl,Ez(l, X, X;0,0) — €2011€(E1)SE, E,(M), X, X 2, 0)
— €2041€(E2) Sk, 5, (Mo, X, X: &, 0) + €(E1)€e(E2) Sg, £, (MM, X, X; @, 0))|,_,
2
+ 80{8,3 (SE],EZ(I’ Xa X» o, ﬂ) _52g+1€(E1)SE1,E2(M1, Xv Xa o, /3)

— €2011€(E2) Sp, 1, (Mo, X, X; @, ) + €(EN€(E2) Sgy iy (M1 Mo, X, X 0, )|,y

In view of Proposition 3.1 and Cauchy’s residue theorem, this is

|H3 o 1lc7(My, My)L(Sym® Ey, 1)L(Sym® Ep, ) L(E1 ® Ez, 1)g* + 0(q*g) + O (q/*H3¥/4g3),
where

c7(My, M>) :4(10gQ)2(CE1,E2(1§ 1,1,1,0,0) — e 11€(E\)CE, £, (M1 1,1, 1,0, 0)
— €2441€(E2)CE, E,(M2; 1,1, 1,0, 0)

[PI+1  (10-2)

+€(Ee(Ex)Cr, 5, (MiMy: 1,1,1,0,0)) T | 7

PlA
The other two terms in (10-1) have the same asymptotics so we obtain

1

*
|H2g+1|

Y e L(Ei®xp. 3)L'(E2® xp. 3)
DE%E}H
= ¢7(My, M>) L(Sym?® Ey, 1)L(Sym?® E,, 1)L(E, E», 1)g?
+0(g)+ 0(g 8P X 4 0,877 2g — X)),

Choosing X =2g — 1001log g we obtain the theorem.
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11. Proof of Corollary 1.7
The results in Section 4 imply that

> LE®xp. »)* <. g% (11-1)
DEH;ngl

We next obtain some upper bounds for moments of the derivatives. We have

L(E ,1/2 -L(E ,1/2
s = (L) § - f HEDIAR ) 10 0,y
i o e
where we are integrating along small circles of radii » around the origin. Then using Holder’s inequality
leads to
0 n*
Z ILY(E®xp. 5) ’ < Tk E®XD’2+“)‘d“
DeHj, = DEH2g+1

Choosing r = 1/g and using upper bounds for moments of L-functions we get that

Z ‘L(l)(E®XDs %)‘k <z qlg(l!)kglk+k(k—1)/2+a.
DE?—@K+1

In particular, with / = 1 and k = 4, we have

Y L(E®xp. 1) <. q¥g'0" (11-2)
DEH;ngl

Now from Holder’s inequality we have

( ) L(E1®XD,%)4)< 3 L'(E2®XD,%)4)( 5 1>2

DeHagqt DeHog 1 DeHogr1, (D,A1A2)=1
(D,A)=1 (D,Az)=1 € L(E\®xp,1/2)L'(E2®xp.1/2)#0
4
1 1
> ( > L(E1 ® xp, 3)L'(E2® xp, g)) :
D€H2g+l
(D,A1A2)=1

Combining (11-1) and (11-2) with Theorem 1.5 we get
q*

#{D e H5,, ¢, L(E1 ® xp, DL (E2® xp. 3) #0} e — gbte’

which implies the first statement. The second statement can be obtained similarly.
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