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Abstract—Packet-level wireless network simulators face es-
calating system dimensionalities resulting from dense deploy-
ment scenarios supporting wideband, Multi-Input Multi-Output
(MIMO), Multi-User (MU) transmission. Managing the resulting
network simulation complexity and achieving practical runtimes
require continuing enhancements to physical (PHY) layer ab-
stractions. This work improves the state-of-the-art PHY layer ab-
stractions via a new computational workflow that maps extensive
offline link simulation results for OFDM/OFDMA MIMO/MU-
MIMO system performance over frequency-selective i.i.d. block
fading channels into Packet Error Ratio (PER) for network
simulations. The proposed method is shown to require modest
additional storage and the runtime is insensitive to the increase in
system dimensionalities (e.g., MIMO dimensions, MU dimensions,
etc.). We describe the principles of this new method and provide
details about its implementation, performance, and validation.

Index Terms—Communication system modeling, fast simula-
tions, software verification.

I. INTRODUCTION

For achieving higher network spectral efficiencies, the main
wireless network families (3GPP mobile cellular networks
and IEEE 802.11 WLANs) are implementing small cells
(higher node density) and more advanced physical (PHY) layer
technologies. For example, IEEE 802.11ax dense deployment
scenarios include enterprise, multi-dwelling establishments,
and crowded public hotspots (malls, airports, sports stadium,
etc.); the number of antennas per device scales to 8 for Multi-
Input Multi-Output (MIMO) operation and channel band-
widths scale up to 160 MHz [2]. In addition, new modes
of Multi-User (MU) transmission are introduced, based on
Orthogonal Frequency Division Multiple Access (OFDMA)
and Multi-User MIMO (MU-MIMO). Performance evaluation
of such (even modest scale) networks in various operational
scenarios of interest via pure mathematical analyses is infea-
sible and field trials are costly [3]. This leaves system-level
(network) simulations as the most feasible option, rendering
network simulators like ns-31 indispensable for investigating
wireless network performance [3] as a function of network
dimensionality.

With increasing node density and complexity in the PHY
layer, associated computational complexity is a major concern
for network simulators [3]. System-level simulations quantify
the network performance (e.g., throughput) from the packet-
level performance metrics such as instantaneous (per-packet)
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Packet Error Ratio (PER) [4]. In contrast, full PHY (link)
simulations, typically run on link simulators, obtain packet
performance at a single receiver, using runtime-costly symbol-
level simulation of the PHY layer. Running a full PHY
simulation that involves generating channel realizations and
transceiver signal processing is impractical within a network
simulator. As shown in Table I, the average runtimes of a full
PHY simulation for 40000 PHY layer packets2 on a single
Orthogonal Frequency Division Multiplexing (OFDM) MIMO
link require order of hour runtimes. Thus, system-level sim-
ulation must incorporate suitable PHY layer abstractions that
represent the PHY layer performance with sufficient accuracy
to be incorporated within network simulators at runtime. The
PHY layer abstraction in a network simulator is the packet
error model that produces a decision on whether the packet
is successfully received or not based on the PHY layer setup
including the received (RX) signal/interference/noise power,
the modulation and coding type, the channel models, etc.

TABLE I: Average runtime comparison using MATLAB WLAN
Toolbox on Intel Core i5 CPU at 2.0GHz (averaged over 10 trials):
40000-packet simulation for a single-link IEEE 802.11ax OFDM
MIMO with full spatial streams under a RX SNR [7].

nt × nr Bandwidth Full PHY Traditional PHY Layer
Abstraction [8]

1× 1 20MHz 40 min 16 min
1× 1 40MHz 46 min 20 min
4× 2 20MHz 97 min 36 min
4× 2 40MHz 132 min 44 min
8× 2 20MHz 180 min 68 min
8× 2 40MHz 295 min 76 min

The existing ns-3 Wi-Fi PHY layer abstraction - the YANS
model [9] - was developed for the OFDM Single-Input Single-
Output (SISO) transmission over Additive White Gaussian
Noise (AWGN) channel. However, WiFi systems have pro-
gressed to MIMO transmission over wideband frequency-
selective fading channels. To realize PHY layer abstraction
under such complex scenarios, link-to-system (L2S) mapping
has been widely adopted [4], [8], [10]–[12]. As shown in
Fig. 1, realizations of the frequency-selective fading channel
matrices, the MIMO precoding (i.e., multi-stream transmit
beamforming [13]) matrices and the MIMO decoding matrices

2The sample mean 1
n

∑n
i=1 Yk,i is used as estimator of the average

PER pavg,k at receiver k, where Yk,i ∈ {0, 1} is the binary packet error
state of the i-th packet and n is the number of packets in a simulation.
By [5], n ≥ 400(1−pavg,k)

pavg,k
can achieve PER estimation accuracy bound

P
[∣∣ 1
n

∑n
i=1 Yk,i − pavg,k

∣∣ ≤ 0.1pavg,k
]
≥ 0.95. Thus, for estimating

PER down to 10−2 [6] while achieving the accuracy described above, 40000-
packet runs are used in each full PHY simulation.
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from the desired and interfering sources are generated for
each packet. The channel, precoding and decoding matrices
determine the packet-level link performance, which is fully
characterized by a matrix of post-MIMO processing Signal-
to-Interference-plus-Noise-Ratios (SINRs) on different sub-
carriers and different MIMO streams. Thereafter, a suitable
L2S mapping function is needed to translate the post-MIMO
processing SINR matrix into a single scalar metric - the
effective SINR [14]. The effective SINR is a random variable
that summarizes the impact of the frequency-selective MIMO
channel, beamforming gain, and any interference. The effec-
tive SINR can be used to predict the instantaneous (per-packet)
PER on the link by looking up from a pre-stored PER-SNR
table for the AWGN-SISO channel [15]. As the instantaneous
PER is a function of the effective SINR, it is also a random
variable3. The instantaneous PER is used in a Bernoulli trial
to decide whether the current packet is successfully received
or not [8]. The accuracy of the instantaneous PER prediction
can be guaranteed via optimizing the L2S mapping tuning
parameters.

Fig. 1: Flow chart of traditional PHY layer abstraction in a network
simulator.

The PHY layer abstraction in Fig. 1 is suggested by the
IEEE TGax group [8] and has been developed for OFDM
SISO [5], [15], OFDM MIMO [1], [17], and OFDM MU-
MIMO systems [18]. However, our prior contribution in [1]
found while these earlier PHY layer abstractions do reduce
runtimes compared with full PHY simulation, they still suffer
from scaling with MIMO dimensions (the number of transmit
antennas and the number of receive antennas), MU dimen-
sions (the number of users that are simultaneously served),
bandwidth, and the number of interferers; see Table I that
shows how average runtimes scale with the number of transmit
(receive) antennas nt(nr) and bandwidth. The reason is that
these PHY layer abstractions require generating channel, pre-
coding and the decoding matrices, and calculating post-MIMO
processing SINR matrices online. These operations involve ex-
pensive matrix calculations that scale with MIMO dimensions,
MU dimensions, bandwidth, and the number of interferers.
This motivates us to create a new PHY layer abstraction whose
runtime is insensitive to the above dimensionality variations.

Our approach is driven by a key underlying question: since
the link performance (instantaneous PER) only needs the
effective SINR, can we bypass channel generation, precoder
calculation, decoder calculation as well as post-MIMO pro-
cessing SINR matrix calculation steps, and directly model
effective SINR? Under frequency-selective independent and

3As in [4], we use ‘instantaneous’ to indicate the random property of per-
packet PER. This contrasts with the average PER that is a constant equaling
to the ensemble averaging [16] of the random instantaneous PER.

identically distributed (i.i.d.) block fading channels, we dis-
cover that the effective SINR distribution under Exponential
Effective SINR Mapping (EESM) L2S mapping [5] can be
well approximated by a 4-parameter distribution called log-
SGN distribution. Therefore, under EESM L2S mapping, we
only need to store 4 log-SGN parameters under a specific
PHY layer setup (e.g., channel type, MIMO dimension, MCS,
etc.) and draw effective SINR samples from this specific
log-SGN distribution directly. We call such an approach the
EESM-log-SGN PHY layer abstraction, whose flow chart is
shown in Fig. 2. The payoff is significant: the runtime of the
traditional PHY layer abstraction in Fig. 1 scales as system
dimensionality increases, while the runtime of the EESM-log-
SGN PHY layer abstraction in Fig. 2 is much reduced and
is insensitive to the dimensionality change. A side benefit is
that we do not have to build increasingly complex channel
realizations (e.g., IEEE TGax channel [19], 3GPP TR 38.901
5G channel [20], 3GPP TR 37.885 V2X channel [21], etc.)
within the network simulator.

Fig. 2: Flow chart of the proposed EESM-log-SGN PHY layer
abstraction in a network simulator.

Nonetheless, the proposed EESM-log-SGN PHY layer ab-
straction faces two storage-complexity challenges. First, the
log-SGN parameters are sensitive to changes in the interfer-
ence setup (e.g., the distances of interferers to the receiver).
Storing log-SGN parameters for each interference scenario
leads to high storage complexity. This challenge is mitigated
by our discovery that the distributions of effective Signal-to-
Noise-Ratio (SNR) and effective Interference-to-Noise-Ratio
(INR) can be characterized and stored efficiently based on
EESM-log-SGN PHY layer abstraction. Therefore, we pro-
pose a Low-Storage Complexity version of EESM-log-SGN
(EESM-log-SGN-LSC) PHY layer abstraction that estimates
effective SINR based on effective SNR and effective INR.
The second challenge is that the log-SGN parameters for
effective SNR/INR are sensitive to the change of RX SNR/INR
(i.e., transmit SNR of the desired signal/interference subtracted
by the path loss from the desired transmitter/interferer to
the receiver in dB). In [1], we suggested storing log-SGN
parameters of effective SNR for different RX SNRs with
a granularity of 0.25dB, resulting in roughly 100 log-SGN
parameter sets. This leads to high storage complexity and
additional full PHY simulation burdens. In this work, we solve
this issue by proposing an EESM-log-SGN mixture model
that estimates effective SNR/INR distributions for the desired
range of RX SNRs/INRs using stored effective SNR/INR
distributions for only a few RX SNR/INR values. The pro-
posed two low-storage-complexity solutions greatly facilitate
the implementation of the proposed EESM-log-SGN PHY
layer abstraction in network simulators.
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Fig. 3: Simulation steps for implementing the proposed EESM-log-
SGN PHY layer abstraction.

The implementation flow of EESM-log-SGN is shown in
Fig. 3, which consists of an offline link simulation part
using a link simulator (MATLAB in our case) and the actual
network simulation part using a network simulator. The offline
link simulation part is conducted once per configuration and
generates log-SGN parameters for use at runtime in network
simulations. The offline simulation implements a full PHY
using MATLAB WLAN Toolbox under the setup introduced
in Section II-A, and outputs post-MIMO processing SINR
matrix as well as its associated binary packet error state.
Using multiple full PHY simulation outputs, the EESM tun-
ing parameter optimization block introduced in Section II-B
generates the optimized EESM tuning parameter. Using the
optimized EESM tuning parameter and multiple post-MIMO
processing SINR matrices, we obtain corresponding effective
SINR defined in Section II-B and statistically fit the effective
SINR histogram with the log-SGN distribution introduced in
Section III. The log-SGN parameters of the fitting are stored
in a network simulator for further use in network simulation.
The network simulation part in Fig. 3 uses the EESM-log-SGN
method to directly draw the instantaneous PER. The basic
EESM-log-SGN method is introduced in Section III while
the low-storage-complexity EESM-log-SGN-LSC method and
EESM-log-SGN mixture model are introduced in Section IV.
All MATLAB codes and detailed coding guides related to this
work are available at [7].

II. PHY LAYER ABSTRACTIONS FOR OFDM/OFDMA
MIMO/MU-MIMO SYSTEM

A. OFDM/OFDMA MIMO/MU-MIMO System Setup

Fig. 4: Illustration of OFDM, OFDMA, MU-MIMO and mixed
OFDMA MU-MIMO [22].

We review the basic principles of OFDMA, MU-MIMO,
and mixed OFDMA MU-MIMO as relevant to this work.
OFDM is a modulation scheme that modulates data symbols

in parallel on multiple subcarriers [23]. As shown in Fig. 4 (a),
all subcarriers in a channel (e.g., 20MHz for a typical Wi-Fi
channel) are allocated to a single user at a time [23]. OFDMA
is a multiple access scheme based on OFDM, whereby - as
shown in Fig. 4 (b) - different subsets of subcarriers are
assigned to different users [23]4. MU-MIMO is a multi-user
extension of MIMO - shown in Fig. 4 (c) - that serves
multiple receivers on the same time-frequency (subcarrier)
resources; the data symbols intended for different receivers are
separated in space via precoding (i.e., multi-stream transmit
beamforming [13]). Mixed OFDMA MU-MIMO, as shown
in Fig. 4 (d), can serve multiple receivers on a subset of
subcarriers via precoding at the same time [22].

Fig. 5: Frequency-selective i.i.d. block fading channel.

In this work, the frequency-selective channel instance is
assumed to be almost invariant during the transmission of
each packet (e.g., IEEE TGax channel models [19]) and
different channel instances for different packets are assumed
to be i.i.d. [4], [25], [26]. An illustrative example of such
frequency-selective i.i.d. block fading [14] channels used in
our simulation is shown in Fig. 5. Under the considered
block fading channels, the Doppler shift is assumed to be
small (e.g., IEEE TGax channel models [19]) such that inter-
carrier interference can be ignored. Noise at each receiver is
assumed to be AWGN [4], with identical power over differ-
ent subcarriers. We consider the downlink OFDM/OFDMA
MIMO/MU-MIMO transmission with perfect synchronization,
perfect phase tracking, and Channel State Information at
the Receiver/Transmitter (CSIR/CSIT) determined from noise-
free channel estimate [4]. We also consider a time-frequency
synchronous (fully overlapped) interference model (see Fig. 6),
where interference packets occupy the same time slots and
subcarriers as the desired packet, such that the interference
event is considered invariant over the packet [27].

Suppose nss,k spatial streams (independent information
flows) are transmitted from the desired transmitter to receiver
k using the set of subcarriers Nsc,k, and K receivers share the
same set of subcarriers, i.e., Nsc,k = Nsc, k = 1, 2, . . . ,K. On
each subcarrier i ∈ Nsc, the modulated nss,k spatial streams
are then mapped into nt transmit antennas using a nt × nss,k
MIMO precoding matrix Fk,i for receiver k and subcarrier
i [14]. Using CSIT of the desired channel, MIMO precoding
can provide transmit beamforming gain (power gain and/or
transmit diversity gain) in multi-stream MIMO systems [6],
[13], and can suppress inter-user interference in downlink MU-
MIMO broadcast channels (see Fig. 6) [6].

4In Fig. 4 (b), the OFDMA subcarriers are contiguous in frequency, which
is true for the IEEE 802.11ax system. However, in general (e.g., OFDMA in
5G NR [24]), non-contiguous subcarriers can also be used in OFDMA.
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Fig. 6: Example of OFDM/OFDMA MIMO/MU-MIMO system
setup with interference.

The desired transmitted packet is passed through the nr,k×
nt frequency-domain channel matrices Hk,i, i ∈ Nsc,k and ar-
rives at the nr,k receive antennas of receiver k. The frequency-
domain channel matrices Hk,i, i ∈ Nsc,k considered in
this work capture two key components of OFDM/OFDMA
MIMO/MU-MIMO channels: frequency-selectivity (the prop-
erty that Hk,i varies with subcarrier index i under a frequency-
selective channel) and antenna correlation (the correlation
between entries within Hk,i, which might cause rank reduction
in MIMO channel matrix) [6], [14], [23]. In later sections,
we validate our methods using IEEE TGax channel model-D,
which incorporates channel frequency selectivity and antenna
correlation, and is widely used for IEEE 802.11 system
performance evaluation [6].

As shown in Fig. 6, each receiver receives desired pack-
ets under potential time-frequency synchronous interference
packets. The interference packets to the victim receiver are
transmitted via the side-lobe of the interfering beam, as the
precoder at the interferer is not designed for the channel from
the interferer to the victim receiver. Each receiver uses linear
MIMO decoding to recover the desired signal. At receiver k’s
i-th subcarrier i ∈ Nsc,k and for stream j ∈ {1, 2, . . . , nss,k},
the post-MIMO processing SINR Γk,i,j is [8]

Γk,i,j =
Sk,i,j

Isk,i,j + Iok,i,j +Nk,i,j
, (1)

where Sk,i,j is the received signal power, Isk,i,j is the inter-
stream interference, Iok,i,j is the interference from other
interferers, and Nk,i,j is the post-MIMO processing noise
power. At subcarrier i, let Wk,i denote the nr,k × nss,k
linear MIMO decoding matrix of receiver k; let Fui de-
note the precoding matrix of interferer u; let Hu

k,i de-
note the channel matrix from interferer u to receiver
k. By [8], we have Sk,i,j = Pt,k

∣∣[Wk,i]
∗
jHk,i[Fk,i]j

∣∣2,
Isk,i,j = Pt,k||[Wk,i]

∗
jHk,iFk,i||2 − Sk,i,j , Iok,i,j =∑

u 6=k Pu,k||[Wk,i]
∗
jH

u
k,iF

u
i ||2, and Nk,i,j = σ2

k||[Wk,i]j ||2,
where Pt,k is the received signal power at receiver k from
the desired transmitter, Pu,k is the received signal power at
receiver k from interferer u, σ2

k is additive noise power on
each subcarrier of receiver k, [·]j denotes the j-th column
of a matrix, and || · || is the Euclidean norm of a vector.
The post-MIMO processing SINR matrix at receiver k is
defined by Γk , (Γk,i,j)i∈Nsc,k,1≤j≤nss,k

, which reflects

channel frequency-selectivity, antenna correlation captured by
Hk,i, i ∈ Nsc,k, and transmit beamforming gain captured by
Fk,i, i ∈ Nsc,k.

B. Overview of Traditional PHY Layer Abstraction

Fig. 7: Simulation steps for implementing traditional PHY layer
abstraction.

A network simulator requires PHY layer abstraction to
generate accurate link performance (instantaneous PER). To
implement the traditional PHY layer abstraction suggested by
the IEEE TGax group [8], the workflow in Fig. 7 is required.
This workflow consists of the offline link simulation and the
network simulation parts [1], [5]. The link simulation is con-
ducted using a credible link simulator (e.g., MATLAB WLAN
Toolbox in our case) to provide calibrated L2S mapping tuning
parameters. Thereafter, a PHY layer abstraction with calibrated
L2S mapping tuning parameters is used at runtime within a
suitable network simulator (e.g., ns-3 in our case).

In the link simulation part of the implementation, a full
PHY simulation is first conducted to obtain the post-MIMO
processing SINR matrix and the associated binary packet error
state (1 indicates packet error and 0 indicates packet success)
for each packet. Under the OFDM/OFDMA MIMO/MU-
MIMO setup specified in Section II-A, a closed-form post-
MIMO processing SINR matrix Γk is given by (1), and the
associated binary packet error state is determined by the full
PHY simulation. The set of {post-MIMO processing SINR
matrix Γk, binary packet error state} pairs are then provided
as inputs into the second block in Fig. 7 for optimizing the
tuning parameters. In this block, an L2S mapping function
Φ compresses the post-MIMO processing SINRs on different
subcarriers and streams into a single metric called effective
SINR, which would yield the same instantaneous PER if the
simulation was run for an AWGN-SISO channel. The effective
SINR at receiver k is [4], [8], [10]–[12]

Γsinreff,k = αΦ−1

 1

nsc,k

1

nss,k

∑
i∈Nsc,k

nss,k∑
j=1

Φ

(
Γk,i,j
β

) ,

(2)

where Φ−1 is the inverse L2S mapping function, Nsc,k is
the set of subcarriers for receiver k, nsc,k , |Nsc,k| is the
number of subcarriers allocated to receiver k, nss,k is the
number of spatial streams sent to receiver k, α and β are
L2S mapping tuning parameters that depend on PHY layer
configurations (channel type, OFDM/OFDMA MIMO/MU-
MIMO setup, MCS and channel coding). The effective SINR
is a generalization of effective SNR Γsnreff,k, which is for
interference-free cases (i.e., Iok,i,j = 0 in (1)) [1], [5]. Abstract-
ing the post-MIMO processing SINRs over all subcarriers and
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spatial streams using a single effective SINR greatly simplifies
the link-to-system interface [28]. The single effective SINR is
a convenient metric to describe the packet-level performance
for a network simulator, at the cost of losing detail for each
spatial stream (symbol-level performance). For example, in the
case of the ill-conditioned MIMO channel (low-rank MIMO
channel matrix) due to high antenna correlation [23], a low
effective SINR does not show which spatial streams have low
post-MIMO processing SINRs. This issue can be potentially
addressed by modeling different effective SINRs for different
spatial streams, but this leads to higher PHY layer abstraction
complexity and is a matter left for future investigation.

The tuning parameters α and β in (2) are optimized so that
the Mean Square Error (MSE) between the instantaneous PER-
effective SINR curve for the simulated frequency-selective
fading channel and the instantaneous PER-SNR curve under
the AWGN-SISO channel is minimized (see Fig. 7). Once the
tuning is complete, the optimized parameters are stored for
use in network simulations at runtime.

The current state-of-the-art PHY layer abstraction flow chart
is shown in Fig. 1 and is referred to as the traditional
PHY layer abstraction. The traditional PHY layer abstraction
requires the network simulator to implement a channel matrix
generator. Precoding matrices and MIMO decoding matrices
are calculated based on the channel matrices. Using the
channel matrices, precoding matrices, and MIMO decoding
matrices, (1) is used to calculate post-MIMO processing
SINRs. Then, (2) with optimized tuning parameters is used
to calculate the effective SINR Γsinreff,k. The effective SINR
Γsinreff,k is mapped into an instantaneous PER Pins,k using
the instantaneous PER-SNR curve (lookup table) under the
AWGN-SISO channel at the specified packet length, channel
coding and MCS, and each packet fails in decoding with
probability Pins,k.

The accuracy of the instantaneous PER prediction depends
on the L2S mapping function Φ, of which there are several.
Two widely adopted L2S mapping functions are Exponential
Effective SINR Mapping (EESM) and Received Bit Informa-
tion Rate (RBIR) mapping. For EESM L2S mapping, α = β
and L2S mapping function Φ(x) = exp(−x) [5], [11]. Then,
(2) reduces to

Γsinreff,k = −β ln

 1

nsc,k

1

nss,k

∑
i∈Nsc,k

nss,k∑
j=1

exp

(
−Γk,i,j

β

) .

(3)

For RBIR L2S mapping, α 6= β in general,
and the L2S mapping function for M-QAM
modulation is given by [8] Φ(x;M) = log2M −
1
M

∑M
m=1 EZ

[
log2(

∑M
k=1 exp[|Z|2 − |

√
x(sk − sm) + Z|2])

]
,

where Z ∼ CN (0, 1), sk and sm are constellation points with
normalized (unit) energy [10]. By [28], Φ(x;M) for RBIR
is upper bounded by the mutual information under M-QAM
modulation, i.e., Φ(x;M) ≤ log2M .

C. Validation of EESM and RBIR L2S Mappings
We next validate EESM and RBIR L2S mappings for the

general OFDM/OFDMA MIMO/MU-MIMO systems. This

is achieved by demonstrating that the instantaneous PER-
effective SINR curve under EESM/RBIR L2S mapping fits
the instantaneous PER-SNR curve (lookup table) for AWGN-
SISO channel (see Fig. 7). The traditional PHY layer abstrac-
tions are shown to be effective, with an example under a
mixed OFDMA MU-MIMO setup shown in Fig. 8 and other
simulation parameters shown in Table II. In this example,
the AWGN-SISO curve shows the relationship between the
input SNR and resulting instantaneous PER from full PHY
AWGN-SISO simulations conducted at 0.25dB SNR incre-
ments. The EESM/RBIR points show the relationship between
the EESM/RBIR based effective SNR/SINR on every 0.25dB
bin [8] and the full PHY simulated instantaneous PER in
each bin. The instantaneous PERs following those on the
AWGN-SISO curve indicate that we can successfully predict
instantaneous PERs using the AWGN-SISO lookup table and
effective SNRs/SINRs.

TABLE II: PHY layer simulation setup.

Communication system IEEE 802.11ax
Link simulator MATLAB WLAN Toolbox R2020b

Number of packets/simulation 40000
Channel type IEEE TGax channel model-D [19]

Channel for each packet i.i.d.
Speed of the scatters/users 0.089km/h

Channel coding LDPC
Payload length 1000

MCS 4
Bandwidth 20 MHz (242 subcarriers in total)

Channel estimation Noise-free
OFDMA subcarriers/user 26 or 52 or 106 or 242
MIMO/MU-MIMO PHY SVD/ZF precoding, MMSE decoding

Multi-user power allocation Uniform
CPU Intel Core i5 CPU at 2.0GHz

9 9.5 10 10.5 11 11.5

Effective SNR and Effective SINR (dB)

10
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Fig. 8: Validation of EESM and RBIR L2S mappings under a setup
where a receiver shares 106 subcarriers with another receiver using
8×{2, 2} MU-MIMO with 2 streams/user. For the interference case,
the RX INR is 30dB lower than RX SNR.

D. Simulation Runtime Evaluation

We compare runtimes for full PHY simulation versus tra-
ditional EESM/RBIR PHY layer abstraction simulation under
the setups in Table II. Consistent with the notation in [29],
we use {nsc, nt × {nr,1, . . . , nr,K} : {nss,1, . . . , nss,K}} to
denote that 1 transmitter with nt antennas simultaneously
transmits to K receivers using MU-MIMO on nsc subcarriers,
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where receiver k has nr,k receive antennas and receives
nss,k streams. If OFDMA is adopted, the notation // is used
to separate receivers on different subcarriers. For example,
{106, 8 × 2 : 2}//{106, 8× {2, 2} : {2, 2}} means that 1) the
transmitter with 8 antennas transmits to 3 receivers; 2) each
receiver has 2 antennas and receives 2 streams; 3) the first user
occupies 106 subcarriers and the last two users share another
106 subcarriers. As runtime fluctuation for any setup is very
small on the same machine, we only average over 10 runs each
comprising of 40000 packets (average PER down to 10−2 with
high accuracy)5 and record the average runtimes in Table III.

TABLE III: Average runtime comparison between the full PHY
simulation and traditional EESM and RBIR PHY layer abstractions
for running a 40000-packet simulation at a specific RX SNR in
MATLAB [7].

PHY Layer Setup Full
PHY

EESM/
RBIR

{242, 1× 1 : 1},
1-user OFDM SISO, no interferer

44
min

16
min

{242, 4× 2 : 2},
1-user OFDM MIMO, no interferer

107
min

40
min

{242, 8× 2 : 2},
1-user OFDM MIMO, no interferer

196
min

72
min

{242, 8× 2 : 2},
1-user OFDM MIMO, 1 interferer

378
min

155
min

{242, 8× 2 : 2},
1-user OFDM MIMO, 2 interferers

538
min

230
min

{106, 1× 1 : 1}//{52, 1× 1 : 1}//{52, 1× 1 : 1},
3-user OFDMA SISO, no interferer

88
min

28
min

{106, 8× 2 : 2}//{52, 8× 2 : 2}//{52, 8× 2 : 2},
3-user OFDMA MIMO, no interferer

472
min

152
min

{242, 8× {2, 2, 2} : {2, 2, 2}},
3-user OFDM MU-MIMO, no interferer

365
min

160
min

{106, 8× 2 : 2}//{106, 8× {2, 2} : {2, 2}},
3-user OFDMA MU-MIMO, no interferer

398
min

156
min

{106, 8× 2 : 2}//{106, 8× {2, 2} : {2, 2}},
3-user OFDMA MU-MIMO, 1 interferer

790
min

316
min

From Table III, we have the following observations:

• The traditional EESM/RBIR PHY layer abstraction sim-
ulations run faster than the full PHY simulations.

• The runtimes for EESM PHY layer abstraction simula-
tions are almost equal to RBIR PHY layer abstraction
simulations, which is consistent with [30].

• The runtime of the traditional EESM/RBIR PHY layer
abstraction simulation scales with the MIMO dimensions
(the number of transmit antennas and the number of
receive antennas), the MU dimensions (the number of
simultaneously served users), and the number of interfer-
ers.

The runtimes of the traditional EESM/RBIR PHY layer ab-
straction in Fig. 1 are large because they require generating
channel matrices, precoding matrices as well as decoding
matrices, and calculating post-MIMO processing SINR ma-
trices online. These operations involve expensive matrix cal-
culations (e.g., matrix operations for obtaining (1)) that scale
with MIMO dimensions, MU dimensions, and the number of

5For most data applications, the scope of average PERs is typically in
[10−2, 1] [6]. For ultra-reliable applications requiring lower average PERs
(e.g., average PERs down to 10−3), more packets are required to be run in
each full PHY simulation and that takes longer full PHY simulation runtime.

interferers. This implies that we need a more efficient PHY
layer abstraction to achieve low network simulation runtimes.

III. EFFICIENT PHY LAYER ABSTRACTION USING
EFFECTIVE SINR DISTRIBUTION

Our method rests on the key observation that the necessary
PHY layer abstraction for network simulation only needs the
effective SINR and its mapped instantaneous PER. Hence,
we seek to bypass individual channel generation, precoder
as well as decoder calculation, and post-MIMO processing
SINR matrix calculation steps in Fig. 1, and directly model
the distribution of effective SINR.

A. Modeling Distribution of Effective SINR

We first focus on finding an approximate distribution of
Γsinreff,k under EESM L2S mapping, based on evidence from
our simulations in Fig. 9 and related works. First, under
IEEE TGax channel models, even when subcarrier index
difference |i − i′| is moderately large, the correlation coef-
ficient between Γk,i,j and Γk,i′,j (i.e., ρ(Γk,i,j ,Γk,i′,j)) is still
significant. For example, in Fig. 9 (a), ρ(Γk,i,1,Γk,1,1) ≥ 0.6
when i < 25. Since Γk,i,j , i ∈ Nsc,k, j = 1, . . . , nss,k
do not satisfy the weakly dependent condition in [31] and
nsc,k is not sufficiently large, the use of Central Limit
Theorem (CLT) for approximating the Probability Density
Function (PDF) of 1

nsc,k

1
nss,k

∑
i∈Nsc,k

∑nss,k

j=1 exp
(
−Γk,i,j

β

)
in (3) is not accurate. By simulation - see Fig. 9 (b) un-
der IEEE TGax channel model-D - the resulting PDF is
highly skewed (closer to Chi-square distribution under some
special cases [32]). Thus, the normal or Beta approxima-
tion for 1

nsc,k

1
nss,k

∑
i∈Nsc,k

∑nss,k

j=1 exp
(
−Γk,i,j

β

)
based on

CLT [33]–[35] no longer holds for IEEE TGax channels.

Fig. 9: Simulations under OFDMA with 52 subcarriers, SISO, IEEE
TGax channel model-D, MCS4, RX SNR = 11dB, no interferer.
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In contrast to [33], [35] and [34], [32] shows empiri-
cally that Γsinreff,k under EESM L2S mapping can be approx-
imated by a log-normal random variable (i.e., ln(Γsinreff,k) is
normally distributed), and this approximation is superior to
modeling 1

nsc,k

1
nss,k

∑
i∈Nsc,k

∑nss,k

j=1 exp
(
−Γk,i,j

β

)
as a Chi-

square/normal variable. In Fig. 9 (c), the histogram of Γsinreff,k

is approximated by a log-normal PDF using the method of
moments; the PDF shown departs from the observed results
because the log-normal variable has two parameters that can
control mean and variance, but lacks flexibility in controlling
the shape (e.g., skewness and kurtosis) simultaneously. To
achieve better control of shape, we model ln(Γsinreff,k) as a
Skew-Generalized Normal (SGN) random variable [36], i.e.,

X , ln(Γsinreff,k) ∼ SGN(µ̂, σ̂, λ̂1, λ̂2), (4)

with PDF

fX(x; µ̂, σ̂, λ̂1, λ̂2)

=
2

σ̂
ψ

(
x− µ̂
σ̂

)
Ψ

 λ̂1(x− µ̂)√
σ̂2 + λ̂2(x− µ̂)2

 , x ∈ R, (5)

where µ̂ ∈ R is the location parameter, σ̂ > 0 is the scale
parameter, λ̂1 ∈ R and λ̂2 ≥ 0 are shape parameters, ψ(x)
is the standard normal PDF, and Ψ(x) is the standard normal
cumulative distribution function. Γsinreff,k satisfying (4) is called
the log-Skew-Generalized Normal (log-SGN) random variable
following log-SGN distribution. Modeling Γsinreff,k using the
log-SGN distribution has two advantages. First, the log-SGN
distribution can simultaneously control mean, variance, and
shape (e.g., skewness and kurtosis), and is thus suitable for
Γsinreff,k from complicated fading channels (e.g., IEEE TGax
channels). It includes log-normal distribution as a special case
and is able to achieve better approximation (see Fig. 9 (c)).
Further, SGN random variables are easy to generate, as will
be shown in Algorithm 2.

We next comment on the distribution of effective SINR
under RBIR L2S mapping. As plotted in Fig. 10 (a), MCS 4
(16-QAM modulation), the effective SINR under RBIR L2S
mapping saturates at 20dB. This can be understood by refer-
ring to Fig. 10 (b): where for MCS 4, RBIR saturates at 4
for x ≥ 20dB; this causes the effective SINR to saturate at
20dB after the inverse mapping Φ−1 in (2). The PDF of the
effective SINR under RBIR L2S mapping hence deviates from
log-SGN distribution (as shown in Fig. 10 (a)).

To summarize: under EESM L2S mapping, the log-SGN
approximation for Γsinreff,k is more accurate than the log-
normal approximation [32]. Under RBIR L2S mapping, the
distribution of Γsinreff,k is bounded at high SINR, which makes
the log-SGN approximation less accurate in this range. In the
following, we focus on implementing the log-SGN approxima-
tion under EESM L2S mapping and validating its performance.

B. Log-SGN Parameter Estimation and Random Variable
Generation

In this part, we first discuss how to generate the log-SGN
parameters µ̂, σ̂, λ̂1, λ̂2 for the considered PHY layer setup.

Fig. 10: (a) Γsinreff,k under RBIR L2S mapping, OFDMA allocation
with 52 subcarriers, SISO, IEEE TGax channel model-D, MCS4,
RX SNR = 15dB; (b) RBIR L2S mapping function under MCS 4:
Φ(x; 16).

The idea is to first obtain an effective SINR histogram using
the optimized EESM parameter β and multiple post-MIMO
processing SINR matrices generated by the full PHY simula-
tion, and then statistically fit the effective SINR histogram with
the log-SGN distribution defined in (4). The steps for obtaining
the log-SGN parameters are shown in Algorithm 1, and the
log-SGN parameters are stored in the network simulator for
network simulations. Since the effective SINRs for log-SGN
fitting are based on full PHY simulation results, the four
log-SGN parameters summarize the key information in the
PHY layer, including frequency selectivity of the channel, an-
tenna correlation, OFDM/OFDMA MIMO/MU-MIMO setup,
beamforming gain, MCS, channel coding type, number of
interference sources, RX SNR and RX INRs. The log-SGN
parameters are insensitive to the change of the packet length
since the effective SINR distribution is insensitive to the
change of the packet length (the impact of the packet length is
mostly reflected in the generation of instantaneous PER, not
effective SINR).

When running each packet in a network simulator, a realiza-
tion of SGN distributed X can be generated using Algorithm 2
with stored log-SGN parameters µ̂, σ̂, λ̂1, λ̂2 as inputs. The
realization of X is then used to calculate Γsinreff,k = exp(X).
Then, the effective SINR Γsinreff,k is mapped into an instan-
taneous PER using the instantaneous PER-SNR lookup table
under the AWGN-SISO channel at the specified packet length,
channel coding and MCS. These steps are summarized in
Fig. 2, and is called the EESM-log-SGN PHY layer abstrac-
tion. Compared to traditional PHY layer abstraction in Fig. 1,
a benefit of the proposed method is that the implementation of
increasingly complex channels (e.g., IEEE TGax channel [19],
3GPP TR 38.901 5G channel [20], 3GPP TR 37.885 V2X
channel [21], etc.) can be avoided. In EESM-log-SGN PHY
layer abstraction, reducing a complicated channel generation
and PHY layer processing into drawing a log-SGN variable for
calculating effective SINR is the fundamental innovation, that
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Algorithm 1 Obtain Parameters of SGN Distributed X
Input: Channel type (e.g., IEEE TGax channel models A ∼ F),

MIMO/MU-MIMO dimension (nt, nr,k, nss,k), number of subcarri-
ers to the user of interest (user k), index of the user sharing these
subcarriers via MU-MIMO, MCS, channel coding type (e.g., LDPC
or BCC), number of interferers, RX SNR and RX INRs.

Output: µ̂, σ̂, λ̂1, λ̂2.
1: Obtain n realizations of post-MIMO processing SINR matrices

Γk and the EESM tuning parameter β from the first two blocks
in Fig. 3.

2: Generate n realizations of effective SINR Γsinreff,k using (3), and
the resulting n realizations of X = ln(Γsinreff,k) are xi, i =
1, 2, . . . , n.

3: Use MATLAB fmincon function to numerically maximize the
log-likelihood function of the SGN random variable X [36]:

−n
2

ln
πσ̂2

2
−
∑n
i=1(xi − µ̂)2

2σ̂2
+

n∑
i=1

ln Ψ
( λ̂1(xi − µ̂)√

σ̂2 + λ̂2(xi − µ̂)2

)
under the constraints σ̂ > 0 and λ̂2 ≥ 0, and output the optimized
solution.

makes the runtime insensitive to the dimension of the PHY
layer parameters (e.g., nt, nr,k). Changing these PHY layer
parameters only changes the values of log-SGN parameters
µ̂, σ̂, λ̂1, λ̂2, which hardly impacts the runtime in Algorithm 2.

Algorithm 2 Generate A Realization of SGN Distributed X [36],
[37]

Input: µ̂, σ̂, λ̂1, λ̂2 obtained from Algorithm 1.
Output: A realization of X .

1: Generate a Gaussian distributed random variable Ξ =
√
λ̂2Υ +

λ̂1, where Υ ∼ N (0, 1).
2: Based on the realization of Ξ, generate two i.i.d. Gaussian

random variables U1, U2 ∼ N
(√

1+Ξ2

2
µ̂, σ̂2

)
.

3: Based on the realization of U1 and U2, let U = max(U1, U2)
and V = min(U1, U2). Then, X = 1+Ξ√

2(1+Ξ2)
U + 1−Ξ√

2(1+Ξ2)
V .

C. Validation and Runtime Performance of EESM-log-SGN
PHY Layer Abstraction

In this section, we validate PHY layer abstraction methods
and runtime performance under different OFDM/OFDMA
MIMO/MU-MIMO scenarios. The implementations of the
traditional EESM and RBIR PHY layer abstraction methods
follow the flow in Fig. 7; the implementations of EESM-log-
SGN methods follow the flow in Fig. 3; the implementation
flows in Fig. 3 and Fig. 7 are suitable for all OFDM/OFDMA
MIMO/MU-MIMO scenarios. The general simulation setup
for all OFDM/OFDMA MIMO/MU-MIMO scenarios is shown
in Table II. For estimating average PER in this section, the
channel realizations for different packets are assumed to be
i.i.d. [25], [26]; 40000 packets are sent in each simulation for
achieving average PER down to 10−2 with high accuracy.

We first compare the effective SNR/SINR distribution ob-
tained from both traditional EESM PHY layer abstraction in
Fig. 1 and EESM-log-SGN PHY layer abstraction in Fig. 2.
From Fig. 11, we can see that the effective SNR/SINR
distribution of EESM-log-SGN PHY layer abstraction fits well

with the effective SNR/SINR distribution of traditional EESM
PHY layer abstraction. In addition, the change in RX SNR
(e.g., from 14dB to 10dB in Fig. 11) does not simply result
in a shift of the effective SNR/SINR distribution, but changes
also in skewness and kurtosis that necessitate the use of a
new log-SGN distribution. The shapes of the effective SNR
and effective SINR distributions are also different due to the
frequency-selective interference.

Fig. 11: Validation of EESM-log-SGN PHY layer abstraction under
OFDMA allocation with 52 subcarriers, 8×2 MIMO with 2 streams,
IEEE TGax channel model-D, MCS4. For the interference case, the
RX INR is 20dB lower than the RX SNR.

We next compare the runtime of the EESM-log-SGN PHY
layer abstraction with the traditional EESM PHY layer ab-
straction in Table IV. From Table IV, we can see that the
runtime of the EESM-log-SGN PHY layer abstraction is much
smaller than the runtime of the traditional EESM PHY layer
abstraction in Fig. 1. The runtimes of the EESM-log-SGN
based model do not scale with the MIMO dimensions, the
MU dimensions, and the number of interferers, as all channel
generation and PHY layer processing are mapped into the
generation of X in Algorithm 2, whose runtime does not
change with the change of the four log-SGN parameters.

IV. STORAGE-COMPLEXITY ASPECTS

The EESM-log-SGN PHY layer abstraction requires storing
log-SGN parameters for each PHY layer configurations spec-
ified in Algorithm 1, including channel models, the number
of subcarriers, MCS, MIMO/MU-MIMO setups and channel
coding type specified by the standards. For example, the IEEE
802.11ax system configuration includes 6 different channels
(IEEE TGax channel model-A to model-F), the number of
subcarriers in set {26, 52, 106, 242, 484, 996}, up to 12
MCSs (MCS0 - MCS11), the number of antennas for each
device in the range 1 ∼ 8 [2], and either BCC or LDPC
channel coding. While the number of combinations of these
setups can be large, this is not the primary contributor to
storage complexity. Instead, two major storage complexity
challenges arise from the fact that log-SGN parameters also
depend on the interference scenario (the number of interferers
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TABLE IV: Average runtime comparison between the traditional
EESM PHY layer abstraction and the proposed EESM-log-SGN PHY
layer abstraction for running a 40000-packet simulation at a specific
RX SNR in MATLAB [7].

PHY Layer Setup EESM EESM-
log-SGN

{242, 1× 1 : 1},
1-user OFDM SISO, no interferer

16
min

0.6
sec

{242, 4× 2 : 2},
1-user OFDM MIMO, no interferer

40
min

0.6
sec

{242, 8× 2 : 2},
1-user OFDM MIMO, no interferer

72
min

0.6
sec

{242, 8× 2 : 2},
1-user OFDM MIMO, 1 interferer

155
min

0.6
sec

{242, 8× 2 : 2},
1-user OFDM MIMO, 2 interferers

230
min

0.6
sec

{106, 1× 1 : 1}//{52, 1× 1 : 1}//{52, 1× 1 : 1},
3-user OFDMA SISO, no interferer

28
min

0.6
sec

{106, 8× 2 : 2}//{52, 8× 2 : 2}//{52, 8× 2 : 2},
3-user OFDMA MIMO, no interferer

152
min

0.6
sec

{242, 8× {2, 2, 2} : {2, 2, 2}},
3-user OFDM MU-MIMO, no interferer

160
min

0.6
sec

{106, 8× 2 : 2}//{106, 8× {2, 2} : {2, 2}},
3-user OFDMA MU-MIMO, no interferer

156
min

0.6
sec

{106, 8× 2 : 2}//{106, 8× {2, 2} : {2, 2}},
3-user OFDMA MU-MIMO, 1 interferer

316
min

0.6
sec

and corresponding RX INRs) and RX SNR input, which
involve numerous cases and can vary over wide ranges. Storing
log-SGN parameters for each interference scenario and RX
SNR input leads to high storage complexity. In this section,
we address these two challenges by proposing low storage-
complexity solutions.

A. Handling Interference Scenarios

In Section II-B, we defined the random variable effective
SNR Γsnreff,k under an interference-free scenario. We now
introduce the random variable effective INR Γinr,veff,k as the
effective SNR at receiver k with the signal from an interferer
v only (no other transmitters). In Section IV-B, we will show
that an effective SNR/INR distribution can be stored with
low complexity under an arbitrary RX SNR/INR based on
the EESM-log-SGN PHY layer abstraction. Therefore, for
numerous interference scenarios, we consider the following
motivating question: can we estimate an effective SINR distri-
bution given an effective SNR and effective INR distribution?

Fig. 12: Flow chart of EESM-log-SGN-LSC PHY layer abstraction.

We propose a Low-Storage-Complexity (LSC) version of
EESM-log-SGN (EESM-log-SGN-LSC) PHY layer abstrac-
tion, specified in Fig. 12. The key component of the EESM-
log-SGN-LSC PHY layer abstraction is an effective SINR
estimator Γ̂sinreff,k. This is inspired by the definition: SINR=

S/(N+I)=SNR/(1+INR). For any PHY layer setup (channel
type, number of subcarriers, MCS, MIMO/MU-MIMO setup
and channel coding type) with a given number of interferers,
the effective SINR estimator is given by

Γ̂sinreff,k =
Γsnreff,k

1 + θ
∑
v∈V Γinr,veff,k

, (6)

where V is the set of interferers, Γsnreff,k is the EESM-
log-SGN generated random variable under the same PHY
layer setup without interference, Γinr,veff,k is the EESM-log-SGN
generated random variable under the same PHY layer setup
with interferer v as the only transmitter, and the scalar θ is
called the interference tuning parameter that is optimized to
minimize the MSE between the distribution of Γ̂sinreff,k and the
distribution of Γsinreff,k under the above PHY layer setup with
a specified RX SNR and RX INRs. The interference tuning
parameter θ comes from our innovation to make the effective
SINR estimator accurate. For the effective SINR estimation
to be an LSC solution, the optimal θ under a PHY layer
setup with a specified RX SNR and RX INRs should provide
accurate approximations of SINR distribution under the same
PHY layer setup with other RX SNR and RX INRs. That is,
the EESM-log-SGN-LSC method with a single θ should be
insensitive to the change of RX SNR and RX INRs (the change
of the geometry of the desired transmitter and interferers).
Fortunately, our simulation results validate that a single θ can
provide accurate effective SINR distribution estimation for a
wide range of RX SNR/INRs, with three examples shown
in Fig. 13 (a)-(c). For different numbers of interferers, we
find different θ should be used to preserve SINR modeling
accuracy, as shown in Fig. 13 (b)-(c). For any PHY setup, we
recommend storing different values of θ for a limited number
of interferers (e.g., 1 ∼ 4) using EESM-log-SGN-LSC and
leave cases of a larger number of interferers for future work.

Fig. 13: Validation of EESM-log-SGN-LSC PHY layer abstraction
under OFDM, 20MHz IEEE TGax channel model-D, MCS4, where
θ in each subfigure is obtained at 4dB RX INR.

We compare the runtimes of the EESM-log-SGN and the
EESM-log-SGN-LSC PHY layer abstractions in Table V.
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While the runtime of EESM-log-SGN PHY layer abstraction
is insensitive to the change of PHY layer setup, the positions
of interferers, and the number of interferers, the runtime
of EESM-log-SGN-LSC linearly scales with the number of
interferers, because (6) requires computations that scale with
the number of interferers. However, the runtimes of both
proposed schemes are in the order of seconds and insensitive
to the increase of MIMO and MU dimensions.

TABLE V: Average runtime comparison between the EESM-log-
SGN PHY layer abstraction and the EESM-log-SGN-LSC PHY layer
abstraction for running a 40000-packet simulation at a specific RX
SNR in MATLAB [7].

PHY Layer Setup EESM-
log-SGN

EESM-log-
SGN-LSC

{242, 1× 1 : 1},
1-user OFDM SISO, no interferer 0.6 sec 0.6 sec

{242, 4× 2 : 2},
1-user OFDM MIMO, no interferer 0.6 sec 0.6 sec

{242, 4× 2 : 2},
1-user OFDM MIMO, 1 interferer 0.6 sec 1.2 sec

{242, 8× 2 : 2},
1-user OFDM MIMO, no interferer 0.6 sec 0.6 sec

{242, 8× 2 : 2},
1-user OFDM MIMO, 1 interferer 0.6 sec 1.2 sec

{242, 8× 2 : 2},
1-user OFDM MIMO, 2 interferers 0.6 sec 1.8 sec

{106, 8× 2 : 2}//{106, 8× {2, 2} : {2, 2}},
3-user OFDMA MU-MIMO, 1 interferer 0.6 sec 1.2 sec

B. Handling Wide Range of RX SNRs and INRs

Section IV-A suggests estimating an effective SINR using
log-SGN parameters of an effective SNR and effective INRs.
We now focus on how to generate an effective SNR distri-
bution under an arbitrary RX SNR with low complexity, and
the same principle can also be applied to generate an effective
INR distribution.

For generating effective SNR under an arbitrary RX SNR,
a simple approach is finding the closest stored RX SNR, and
then lookup its log-SGN parameters. This requires storing
a large number of log-SGN parameters under different RX
SNRs for achieving high accuracy. From Section 5 in [6]
(Figures 5.8, 5.13 - 5.15) and our MATLAB simulations
in Section III-C, we can see that varying transmit/receive
SNR over 25dB range suffices for obtaining all reasonable
average PERs down to 10−2 for IEEE 802.11 system. The
simulation in our conference paper [1] shows that 0.25dB
changes to the RX SNR result in a discernible but not
too significant change of effective SNR distribution. Thus,
[1] suggests storing 25dB/0.25dB = 100 sets of log-SGN
parameters for every 0.25dB RX SNR increment for each PHY
layer setup. However, storing 100 sets of log-SGN parameters
for each PHY layer setup requiring moderately large storage
complexity and increased burden of running the additional
underlying full PHY simulations.

To avoid having to generate and store parameter sets at small
RX SNR increments, we explore whether we can estimate
effective SNR for any RX SNR using a small number of
stored effective SNR distributions. We recommend an EESM-
log-SGN mixture model, similar to the widely adopted Gaus-
sian mixture model [16]. Specifically, consider an RX SNR

γ ∈ [γ1, γ2], where the log-SGN parameters under RX SNRs
γ1 and γ2 are stored, and γ1 and γ2 are the closest stored RX
SNR values. Then, the PDF of effective SNR Γsnreff,k at user
k with RX SNR γ is estimated by

f̂(Γsnreff,k; γ) = (1− ξ)f(Γsnreff,k; γ1) + ξf(Γsnreff,k; γ2), (7)

where ξ = γ−γ1
γ2−γ1 , and f(Γsnreff,k; γi) is the known log-SGN

distribution under RX SNR γi, i ∈ {1, 2}. Typically, the RX
SNR interval of interest6 is in [γmin, γmax], where γmin is the
minimum stored RX SNR chosen to be small enough such
that the average PER is close to 1, γmax is the maximum
stored RX SNR chosen to be large enough such that the
average PER is below 10−2. We implement the EESM-log-
SGN mixture model in Algorithm 3. Using the EESM-log-
SGN mixture model and a few values of stored effective SNR
distributions, we are able to estimate instantaneous effective
SNRs for any RX SNR in [γmin, γmax]. Compared with the
method in [1] that stores 100 sets of log-SGN parameters and
uses the closest RX SNR for log-SGN parameters lookup, the
EESM-log-SGN mixture model significantly reduces the link
simulation burden and the storage complexity in implementing
the proposed EESM-log-SGN method.

Algorithm 3 Generate Effective SNR Random Variable for Any
RX SNR γ ∈ [γmin, γmax]

Input: The RX SNR γ ∈ [γmin, γmax] at receiver k.
Output: A realization of Γsnreff,k.

1: Obtain RX SNR γ’s minimum interval γ ∈ [γ1, γ2], where the
log-SGN parameters of RX SNRs γ1 and γ2 are stored.

2: Generate a realization of uniform random variable u ∼ unif(0, 1).
3: Calculate ξ = γ−γ1

γ2−γ1
.

4: if u < 1− ξ then
5: Generate a realization of Γsnreff,k from the log-SGN PDF

f(Γsnreff,k; γ1);
6: else
7: Generate a realization of Γsnreff,k from the log-SGN PDF

f(Γsnreff,k; γ2).
8: end if

We validate the proposed EESM-log-SGN mixture model
for estimating arbitrary effective SNR distributions in
the interference-free case. In Fig. 14, the green dash-
dotted curve shows the distribution f̂(Γsnreff,k; 21dB)
estimated from the stored log-SGN distributions
f(Γsnreff,k; 20dB) and f(Γsnreff,k; 22dB). Fig. 14 compares the
distribution f̂(Γsnreff,k; 21dB) with the log-SGN distribution
f(Γsnreff,k; 21dB) and shows that the proposed EESM-log-SGN
mixture model can produce an acceptable estimate of effective
SNR distribution.

Since the EESM-log-SGN mixture model has been shown to
be effective, we can combine the EESM-log-SGN-LSC PHY
layer abstraction and EESM-log-SGN mixture model into an
EESM-log-SGN-LSC mixture model where the effective SINR
distribution can be estimated using (6) as well as effective
SNR/INR distributions produced by the mixture model under
arbitrary RX SNR and RX INRs.

6If the RX SNR γ < γmin or γ > γmax, the network simulator is required
to use an alternative approach to estimate the effective SNR distribution under
such an RX SNR and we leave this for future work.
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Fig. 14: Validation of EESM-log-SGN mixture model under
OFDMA allocation with 106 subcarriers, 8×{2, 2} MU-MIMO with
2 streams/user, IEEE TGax channel model-D, MCS4.

We validated all proposed methods via results shown in
Fig. 15 under the interference-free case and the 1 interferer
case. Under the PHY layer setup in Fig. 15, log-SGN param-
eters for 14, 16, 18, 20, 22dB RX SNRs are stored for gen-
erating effective SNR distributions, and log-SGN parameters
for −16,−14,−12,−10,−8dB of RX INRs are stored for
generating effective INR distributions. For the two curves
under the mixture models, the effective SNR/SINR distribu-
tions for 15, 17, 19, 21dB of RX SNRs are estimated. The
PER at each RX SNR is averaged over 40000 realizations.
From Fig. 15, we can see that all PHY layer abstractions
approximate the full PHY simulation results over the range.
Furthermore, Fig. 15 shows that the mixture models can in
general produce acceptable PER prediction when the log-SGN
parameters are stored for every 2dB of RX SNR increment
for the considered setup. Specifically, in the low RX SNR
region (average PER is above 0.1), the PER predictions by
the mixture models are accurate; in the high RX SNR region
(average PER is below 0.1), the log-SGN parameters under
different RX SNRs are recommended to be stored with higher
granularity to improve PER prediction accuracy. For practical
implementation, we recommend storing log-SGN parameters
under 6 ∼ 10 different RX SNRs and 6 ∼ 10 different RX
INRs in the network simulator for each PHY layer setup (chan-
nel type, MCS, OFDM/OFDMA MIMO/MU-MIMO setup,
and channel coding type), and use the mixture models to
estimate effective SNR/INR/SINR distributions under other
RX SNRs/INRs.

V. CONCLUSION AND FUTURE WORK

In this work, traditional EESM and RBIR PHY layer
abstraction methods are extended to general OFDM/OFDMA
MIMO/MU-MIMO setups. These preserve accuracy at the cost
of huge computation cost, due to the need for generating
the channel instances and computing post-MIMO processing
SINR matrices online. To manage this increase in simula-
tion runtime, we next developed EESM-log-SGN PHY layer
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Fig. 15: Average PER versus RX SNR under OFDMA allocation
with 106 subcarriers, 8 × {2, 2} MU-MIMO with 2 streams/user,
IEEE TGax channel model-D, MCS4. For the interference case, the
RX INR is 30dB lower than RX SNR, and a single θ = 1.1535 is
used for all RX SNRs.

abstraction that directly characterizes the distribution of the
output effective SINR at the receiver. The proposed EESM-
log-SGN PHY layer abstraction achieves good accuracy in
modeling the PHY layer performance, while the runtime is in-
sensitive to system dimensionality change and is much reduced
as compared to the traditional PHY layer abstraction methods.
We finally discussed two storage challenges for the numerous
interference scenarios and wide RX SNR/INR ranges, and
proposed the corresponding low-complexity solutions.

Future priorities include considering the impact of temporal
correlation in channels [38], extremely fast fading where chan-
nel varies during the transmission of each packet [39], inter-
carrier interference [39], and time-frequency asynchronous
interference [27]. In addition, inclusion of the impact of
noisy channel estimation [40], imperfect time/frequency syn-
chronization, imperfect phase tracking, and other PHY layer
impairments (e.g., phase noise, power amplifier non-linearity,
etc.) [8] are also needed. Extending the proposed EESM-
log-SGN PHY layer abstraction to 5G system with Hybrid
Automatic Repeat Request (HARQ) [15], heterogeneous user
setup (different users are configured to different MCSs, chan-
nels, number of received streams, etc.), and millimeter-wave
channel with hybrid precoding [13] are other considerations.
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