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1. Introduction

In this paper we compute the one and the two level densities of zeros of L—functions
associated to quadratic characters over function fields. We compute certain Type-I con-
tributions (as in the work of Conrey and Keating [11-14,17]) and write down explicit
conjectural Type-II terms predicted by the Ratios Conjecture [10].

Understanding zeros in families of L—functions is a problem of considerable interest
which has been much-studied. Katz and Sarnak [27,28] conjectured that the behavior
of zeros close to the central point in a family of L—functions coincides with the distri-
bution of eigenvalues near 1 of matrices in a certain symmetry group associated to the
family. There is an abundance of papers in the literature in which the above mentioned
agreement is observed (for example [24-26,32]).

When computing the n-level density of zeros for a particular family of L—functions, the
Katz and Sarnak conjectures predict the main term in the asymptotic formula. Conrey,
Farmer and Zirnbauer [10] conjectured formulas for averages of ratios of L-functions,
and using the Ratios Conjecture, one can write down an explicit formula for the n—level
density which recovers the Katz-Sarnak main term and further include lower order terms
[18]. In the case of the Riemann zeta-function, the resulting expressions coincide with
formulas obtained earlier by Bogomolny and Keating using the Hardy-Littlewood twin-
prime conjecture [4] (see also [2,6,7]).

A related problem is that of computing moments in families of L—functions. Using
analogies with random matrix theory, Keating and Snaith [29,30] conjectured asymp-
totic formulas with the leading order term for moments in various families. A more
refined conjecture, due to Conrey, Farmer, Keating, Rubinstein and Snaith [9], and simi-
lar in nature to the Ratios Conjecture [10], predicts lower order terms undetected by the
random matrix models. More recent work of Conrey and Keating [11-14,17] revisits the
question of evaluating shifted moments of the Riemann zeta-function from a different
perspective, and recovers the lower order terms predicted in [9]. Conrey and Keating used
long Dirichlet polynomials rather than the approximate functional equation, and divide
the terms that arise into certain Type-0, Type-I and Type-II contributions (depending
on the number of swaps in the shifts). This builds on previous work in the case of the
n-point correlation of the zeros by Bogomolny and Keating [3,5], where a similar division
was first introduced (see also [15,16]). Here we use the same ideas to examine asymptotic
formulas including lower order terms for the n level density of zeros. Throughout the
paper, we use the Conrey and Keating nomenclature for Type-0, Type-I and Type-II
terms.

Conceptually speaking, Type-0 terms correspond to the diagonal contribution which
is usually not difficult to compute. In the case of quadratic Dirichlet L—functions, the
diagonal contribution comes from the square polynomials in the Dirichlet series we
are considering. Type-I terms are more difficult to detect. They arise from certain off-
diagonal terms, which, in the case of quadratic L—functions, are identified by using the
Poisson summation formula for quadratic characters. Type-II terms are more mysteri-
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ous, and computing this contribution is usually very difficult. It is our goal to shed some
light on the source of these terms, and to emphasize the importance of understanding
the Type-II terms in a setting where they are expected to be of the same size as the
Type-0 and Type-I terms.

For the family of quadratic Dirichlet L—functions, Ozliik and Snyder [33] computed
the one level density of zeros when the support of the Fourier transform of the test
function is in (—2,2). The higher densities in this family of L—functions were studied
by Rubinstein [36]. For a Schwartz test function f € S(R™), even in all the variables,
Rubinstein computed the n—level density when the Fourier transform of f is supported in
> i1 luj| <1, conditional on the Generalized Riemann Hypothesis. Gao [22] attempted
to double the range in Rubinstein’s result. More specifically, he showed that if f is of the
form f(z1,...,z,) = [[/—, fi(x:) and each f; is supported in |u;| < s; and 327", s; < 2,
then the n-level density of zeros is equal to a complicated combinatorial factor A(f).
For n = 2,3, he showed that A(f) agrees with the Katz and Sarnak conjecture. Recent
work of Entin, Roditty-Gershon and Rudnick [20] showed that indeed the combinatorial
factor A(f) obtained by Gao matches the random matrix theory prediction for all n.
Their novel approach does not involve doing the combinatorics directly, but passing to a
function field analog of the problem, taking the limit ¢ — oo and using equidistribution
results of Katz and Sarnak. An alternative approach was developed in [19,31].

In the function field setting, Rudnick [35] computed the one level density of zeros
for the family of quadratic Dirichlet L—functions and showed that there is a transition
when the support of the Fourier transform goes beyond 1. Bui and Florea [8] obtained
infinitely many lower order terms when the support of the Fourier transform is in certain
ranges, and further computed the pair correlation of zeros in the family.

In the present paper, we consider the two level density of zeros in the family of
quadratic Dirichlet L—functions. Let Hag441 denote the space of monic, square-free poly-
nomials of degree 2¢g + 1 over F,[¢]. For simplicity, in the definition of the two level
density, we take the test function to be equal to 1. The two level density of zeros is then
equal to (for more details, see Section 2)

1 ) A(f1)A(f2)xp(f1f2)

IZ(N;aaﬁ)_ |f|1/2+a|f|1/2+ﬁ ) (1)
1 2

H
| 2g+1| DeHagy1 fi,foe€EM

d(f1f2)<N

where A(f) denotes the von Mangoldt function over function fields, and xp(f) is the
quadratic character.

We explicitly write down the Ratios Conjecture over function fields in the case of
two L—functions over two L—functions (see also [1] for the more general statement) in
Conjectures 5.1, 5.2 and 5.3. We then use them to obtain precise formulas for the two
level density in terms of Type-0, Type-I and Type-II contributions in subsection 5.2. The
Type-0, I and II contributions in formulas (14), (16) and (20) are left in integral form,
and we do not evaluate the integrals, since it is easier to check their agreement with the
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rigorously computed terms later on. Sections 6 and 7 provide a rigorous computation of
the Type-0 and Type-I terms which arise when N < 4g (there are no Type-II terms in
this regime).

The Type-I terms kick in when N > 2g and Type-II terms appear when N > 4g.
We compute the Type-0 and Type-I terms rigorously by estimating sums over primes
(i.e. over monic irreducible polynomials). Our approach in computing the two level den-
sity is more direct than the one used by Entin, Roditty-Gershon and Rudnick [20], and we
do not take ¢ — oo (hence we do not use any equidistribution results). The Type-0 terms,
or the so-called “diagonal”, come from prime powers f; and f5 in (1) with the product
f1f2 being a square. The diagonal terms are relatively straightforward to compute. Eval-
uating the Type-I terms is more subtle and requires more involved computations. We
use the Poisson summation formula for the sum over D (after removing the squarefree
condition) and then we compute the contribution from the parameter on the dual side
of the Poisson summation formula being a square. We sum up these contributions and
then we check that they match the answer conjectured from the Ratios Conjecture.

Type-I terms essentially come from squares on the dual side of the Poisson summation
formula over function fields. Our methods do not allow us to identify the Type-II terms
which only arise when N > 4g, but we explicitly write down the conjectured Type-II
contribution. When N > 4g¢, the error terms arising from the methods described above
become unmanageable as the sums are too long; in fact, it is expected that these terms
are as big as the other contributions already computed. One of our main goals is to draw
attention to the fact that when the methods that have been employed successfully for
many years in calculations of the one level density are applied to the two level density
(as described above) they fail to capture all of the terms, underlining the importance of
developing methods to compute the Type-II terms in this case.

For the sake of completeness, we also include the computation of the one level density
(with a shift) and match the terms we obtain with the Type-0 and Type-I contributions.

1.1. Outline of the paper

In Section 2 we gather a few useful lemmas we will need. In Section 3 we use the
Ratios Conjecture to write down formulas for the one level density of zeros with Type-0
and Type-I terms (there are no Type-II terms for the one level density). In Section 4
we rigorously compute these terms when N < 4g and match them to the conjecture. In
Section 5 we again use the Ratios Conjecture to predict the Type-0, Type-I and Type-II
contributions for the two level density. The diagonal terms are computed in Section 6
and Type-I terms in Section 7. In subsection 7.3 we combine the various contributions
from Sections 7.1 and 7.2 and show that they agree with the conjecture.

Acknowledgments. A. Florea gratefully acknowledges the support of an NSF Postdoc-
toral Fellowship during part of the research which led to this paper. J.P. Keating was
supported by a Royal Society Wolfson Research Merit Award, EPSRC Programme Grant
EP/K034383/1 LMF: L-Functions and Modular Forms, and by ERC Advanced Grant
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rey, Chantal David, Steve Gonek and Matilde Lalin for many stimulating discussions
and comments during SQuaRE meetings at AIM, as well as Zeev Rudnick for useful
comments on the paper.

2. Lemmas

Let ¢ = 1(mod4) be a prime. We denote the set of monic polynomials over F,[¢]
by M. Let M,, denote the set of monic polynomials of degree n, H,, the set of monic,
squarefree polynomials of degree n, and P,, the monic, irreducible polynomials of degree
n. The set of monic polynomials of degree less than or equal to n is denoted by M«,,. For
simplicity, we denote the degree of a polynomial f by d(f). The norm of a polynomial f
is defined by |f| = ¢*/). For d > 1, note that we have [Hy| = ¢%(1 — 1).

q
The zeta-function over Fy[t] is defined by

1
Gq(s) = Z W
fem
for R(s) > 1. Since there are ¢" monic polynomials of degree n, one can easily show that

1

Cols) = m7

and this provides a meromorphic continuation of (; with a simple pole at s = 1. Making
the change of variables u = ¢~*, the zeta-function becomes

B = Gs) = 3wl = =

bl
fem 1—qu

which has a simple pole at u = 1/q. Note that Z(u) is given by the Euler product

zw) =] (1 . ud(P)>71,

for |u| < 1/q, where the product is over monic, irreducible polynomials in F|t].
The quadratic character over Fg[t] is defined as follows. For P a monic, irreducible
polynomial let

1 if Pt f, f is a square modulo P,
(%) =4 -1 if Pt f, f is not a square modulo P,
0 if P|f.

We extend the definition of the quadratic residue symbol above to any monic D € F,[¢]
by multiplicativity, and define the quadratic character xp by
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Since we assumed that ¢ = 1 (mod4), note that the quadratic reciprocity law takes the
following form: if A and B are two monic coprime polynomials, then

(5)= (D)
B/  \AJ
The L—function associated to the quadratic character xp is defined by

xp(f)
[fls

L(S7 XD) =
feM

for R(s) > 1, and it has an Euler product representation as

L(s,xp) = [ [ (1 - XL;}]:))I,
PID

where the product is over monic, irreducible polynomials P. With the change of variables

S

u = ¢~ %, we have that

L(u,xp) =Y xp(f)u's.

fem

When D is not a square, then £(u, xp) is a polynomial of degree at most deg(D) — 1,
which follows from orthogonality of characters.

When D € Hagy1, L(u, xp) is a polynomial of degree 2¢g and it satisfies the functional
equation

1
£l xp) = (@*)L( X ).

(For a more general statement of the functional equation, see Theorem 5.9 in [34].) One
can write the L—function in terms of its zeros as

2g

Lluxp) = [[ @ - uy/ge>m%2).
j=1
We define the von Mangoldt function to be

AG) = {d(P) if f=cP*celFx,

0 otherwise.

The logarithmic derivative of the L—function is equal to
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/

uﬁ (u, xp) Z A(f deg(f
femM

—S

and since u = ¢~ ¢, we have that

/

(s) = —10ga(u (. x0)). 2)

We shall frequently use equation (2) throughout the paper.
The following constitutes the explicit formula in function fields, relating sums over
zeros to sums over primes. We have

< A(f)xo(f)
(nd;, e 3
E 2) ]g}n 7] ©)

and the formula holds for n both positive and negative (for more details, see [8], page
8026).

The following lemma expresses sums over squarefree polynomials in terms of sums
over monics.

Lemma 2.1. For f € M we have

> xohH =), > x)—a ) > xsh),

DeHagt1 C|fo° heMagi1-_24(c) C|fo° heMag_1_24(0)

where the summations over C are over monic polynomials C' whose prime factors are
among the prime factors of f.

Proof. See Lemma 2.2 in [21]. O

We define the generalized Gauss sum as follows. For f € M, let
uV
GV = > xrwe(*5),
u (mod f) f

where the exponential over function fields was defined in [23]. Specifically, for a €

Fq((1/1)),

e(a) _ eQﬂ'ial/q7

wherea=...+a1/t+...
The following two lemmas are Proposition 3.1 and Lemma 3.2 in [21].



396 H.M. Bui et al. / Journal of Number Theory 221 (2021) 389423

Lemma 2.2. Let f € M,,. If n is even then

> um=1g(conta ¥ cvn- ¥ awn)

heM,, V€M§n7m72 VEMSn,m,1
otherwise
qm+1/2
> xsh) = 7 > Gwf)
heMp, VeMp_m-1
Lemma 2.3.

(1) If (f,h) =1, then G(V, fh) = G(V, /)G(V, h).
(2) Write V.=V, P“ where P{Vy. Then

0 if j <aandj odd,
p(P7) if j < a andj even,

G(V,P?) =1 —|P}i~? if j=a+1 and j even,
xp(V))|PP=12 ifj=a+1 and j odd,
0 ifj>2+a.

The following lemmas are the equivalent of the Polya-Vinogradov inequality and the
WEeil bound in function fields.

Lemma 2.4. We have

> xp(P)<|PI'V?,
DeHogi1

and for Q a prime polynomial,

g 1/2
Z Xp(P) < —==|P[|"/~.
DeHagt1 d(Q)
(D,Q):l

Proof. See, for example, Lemma 3.5 and p. 8033 in [8]. O

Lemma 2.5 (The Weil bound). For V € M not a perfect square we have

> xv(P) < @q"”-

PeEP,

Proof. See equation (2.5) in [35]. O
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Lemma 2.6. For f € M we have

1 2\ __ 1 —2g
> ol =T (1= oy ) 0™

[Hag+1] DEHag41 P|f

Proof. See, for example, Lemma 3.7 in [8]. O
Now we will define the one and the two level density of zeros. Let ¢(0) =

Zln\SN $(n)e(n9) be a real, trigonometric polynomial and let ®(2g6) = ¢(#). The one
level density of zeros is defined by

W1:

Z‘b QQGJD

|H29+1| DeHagyr j=1

Following [8], page 8027, by using the explicit formula (3), computing the one level
density of zeros reduces to evaluating

\H2g+1\z (29> Z Z \F

DeHagy1 fEM,

For simplicity, we will take the test function so that ®(n/2g) = 1 for all n, and we will
introduce a small shift o such that |a| < 1/g. Then the one level density of zeros reduces
to evaluating

LNy =Ly y Al

1/24«
Hogt1l psir s senmen ]

To define the two level density of zeros, for i = 1,2 let ¢;(0) =>_,, <, gi)l( Je(nf) be
two real, trigonometric polynomials and let ®;(2g0) = ¢;(6). Then the two level density
of zeros is defined by

Wy = Z Z ®1(290;,0)P2(290k, D).

H
| 29+1| DeHagt1 jik=1
J#k

As in [8], computing W; reduces to evaluating

LS g (Mg (2 APXD() 5~ Alf)xo(f)
|H2g+1|n§\h¢1(2g>q}2(29) Zl m Z \/W .

= fIEMn f?eMnQ
n2<Na

As in the case of the one level density, we will take the test functions such that @(n /2g9) =
1, and introduce small shifts a, 8 with |a], |3] < 1/g. Then we will evaluate
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Z Z A(f1)A(f2)xp(f1f2)

LN e f) = | f]V/ 2| fyl /248

|,H2g+1‘ DeHagr1 fi1,foEM

d(fif2)<N

3. The one level density - using the Ratios Conjecture

Here, we consider

L(N;a) =

> x el 4

|H29+1| DeH- g+1 fEMSN

where the shift is assumed to satisfy |o| < 1/g.
Using an analogue of the Perron formula in the form

S o= 5 f (Tt ) )

n<N uj=r n=0
we get
Li(N;a) = ! f{ xp(f)uth) du
BT Hagaal |f|1/2+a uN (1 —w)

DEHQ g+1

:7

1 Z 1 j{ u L ( u ) du
= = — XD ) N
Haral pebz,, 2ni f a5 £ e e =

for any r < ¢~/27¢. We enlarge the contour to |u| = r = ¢~¢. The Ratios Conjecture
implies that (see, for example, Theorem 8.1 in [8])

o 3w ) = 2 )~ B + (@0 A 02 () + Ol

|H2g+1| DeHag i1
where
d(P) 2d(P)
W =2 G (P ) (©)
and

=110~ 7) (- ey~ E)

2)71

! 1 _ 20/ _ ., 1-(qu
1;[( |P|2> (1 a \P|3u2d<P)) T Z2(1/¢3u?) Lt qg—1

Hence, up to an error of size O.(q=97¢9),
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1 du 1 B(u,a)du
1(Nsa) 2mi uN =11 —w)(qg?® —u?) 2w uN+1(1 — u) @
lul=r |u|=r
N q72ga j{ du N q72ga ]{ du
2mi uN=29-1(1 — u)(u? — ¢?*)  2mi(q—1) uN=2941(1 — )’
|u|=r |u|=r
where

B(u,a) = B(,ﬁ/%)

Enlarging the contours we cross the poles at ©w =1 and u = £¢ in the first integral,

and the only pole at u = 1 in the second integral. Note that B(u,«) is absolutely

1/2=¢ 50 in the second integral we shift the contour to lu| = q'/?—e,

—N/2+eN)

convergent for |u| < ¢
obtaining an error term of size O.(gq . Hence the contribution of the first two

terms in (7) is equal to

—2[N/2]a __ 1

e Ble) 0N, (®)
where
B — a(P)
Be) 1= B01.0) = T — 1y P 1) )

This should correspond to the diagonal terms.
For the remaining two terms in (7), we note that they vanish if N < 2¢g, and if N > 2g¢
they contribute

q72ga _ q72[N/2]a N q72goc
1— g2 g—1"

(10)

This should correspond to the Type-I terms. Combining (8) and (10) we arrive at the
following conjecture.

Conjecture 3.1. We have

q—2[N/2]a -1

Il(N;O[) =

1— g% +q—1

q—2goc _ q—Q[N/2]oc q—an)
1— q2a

— B(a) + ]lNzgg(

+ Oe(quJrsg) + Oe(qu/2+sN).
4. The one level density

We assume in this section that N < 4g.
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4.1. The diagonal

The diagonal, denoted by I{(N; ), corresponds to the terms f = P?* in (4), and so
in view of Lemma 2.6 we have

L(N;a) = Z Z P |k(1+2a

1<kn<[N/2] PEP,

(P) o
_ Os g+eg .
Z Z |P|k(1+2a (1P| + 1) +0c(q )

1<kn<[N/2] PEP,

The first term, by the Prime Polynomial Theorem, is equal to

> M)y e
|f|1+20¢ 1_q2(x

d(H)<IN/2] 1<n<[N/2]

For the second term, note that

Z Z |P|k(1+2a) |p|+1 Z Z |P|k(1+2a) |p|+ 1)

1<kn<[N/2] PEP» kn>[N/2] PEP,

= B(a) + O (¢~ N/?+e9).
Hence,

q72[N/2]o¢ -1

I)(N;a) = g

— B(a) + O; (qiN/QJFEQ).
Notice that the leading term matches up with (8).
4.2. Type-I terms

We now evaluate the off-diagonal terms corresponding to f = P?**1 in (4),
1 d(P)
IMNja) = ) o (P).
|%29+1| szZH)SN |‘P|(2k+1)(1/2+ ) DEHZ2g+1

Combining the Polya-Vinogradov inequality in Lemma 2.4 with the Prime Polynomial
Theorem, the contribution of the terms with k > 1 is

< q72g Z qu(kfl)n < Z\]q72g7

n<N k>1

and the contribution of the terms with d(P) = n is
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< ¢" 2,
So
1 d(P _
111(N§Q)ZW Z |P|ST)+Q Z xp(P) +O(q™9).
20t gr1<d(P)<N DeHag 1

From Lemma 2.1 we have

Z Xp(P) = Z Z xp(h) —q Z Z xp(h).

D€H2g+1 ClPOO hEMgg+1_2d(c) C’|P°C hEMgg_l_gd(c)

The sums over h are non-zero only if 0 < 2g + 1 — 2d(C) < d(P). Since C|P* and
d(P) > g+ 1, we must have C' = 1 and, consequently, d(P) > 2¢g. Thus,

HWso) = Y (N wm-a X ) <0,

2g<d(P)<N heEMag i1 heEMagy_1

Consider the terms with d(P) odd. Applying Lemma 2.2 and Lemma 2.3, the expres-
sion inside the bracket is

2g+3/2 G291/

q
|p|1/2 Z XP(V) - 7|P|1/2 Z XP(V)~
d(V)=d(P)—2g—2 d(V)=d(P)—2g

Notice that V' cannot be a square in the sums, and hence by Lemma 2.5 and by trivially
bounding the sum over V, the contribution of these terms to I} (N;a) is O(N¢g™/2729).
If d(P) is even, then from Lemma 2.2 and Lemma 2.3 we have

Z xp(h) —q Z xp(h)

heEMag i1 heEMag 1
2g+1
q
= |P|—1/2 (q Z xp(V) - Z XP(V)>
d(V)<d(P)—2g9-3 d(V)<d(P)—2g—2
q*
d(V)<d(P)—2g-1 d(V)<d(P)—2g

As above, the contribution of the terms V non-square is negligible. For V. = [, as
d(V) < d(P) we have xp(V) = 1. Thus, the contribution from V = O is

2g+1

|qp|1/2 (q Z 1- Z 1)
d(V)<d

(P)/2—g—2 d(V)<d(P)/2—g—-1

q*
- |P|1/2 (q Z 1- Z 1)
d(v)

<d(P)/2—g-1 d(V)<d(P)/2—g
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RE

[ i a(P) > 29 + 2,
qf if d(P) = 2g.

Using the fact that [H2g+1| = ¢*9(¢ — 1) and the Prime Polynomial Theorem, we hence
obtain that

Ill(N;a):]lNZQQ(_ > >

g+1<n<[N/2] PEP2n

72ga

|p|1+a ) +O(NgN2729) + O(q79).

Now, using the Prime Polynomial Theorem again,

> Y e X a0

g+1<n<[N/2] PEP2n g+1<n<[N/2]
—2g9a __ ,—2[N/2]a
= D). OTHO0l) =5 +0)
g+1<n<[N/2] 1
So
—2ga _ ,—2[N/2]a —2ga
]11(]\7;&) :]lszg(q 17qq2a + (f]l) +O(NQN/2_29)+O(C]_9).
Notice that the leading term matches up with (10).
5. The two level density - using the Ratios Conjecture
5.1. The Ratios Conjecture
We would like to study
1 L(1/2+ a,xp)L(1/2+ B, xp)
|H29+1| DeH L(1/2+’Y7XD)L(1/2+57XD)
2g+1

using the recipe in [18], where the shifts are assumed to satisfy |al, |8], |7, ]| < 1/g.

We use the approximate functional equation for each of the two L—functions in the
numerator. The contribution coming from the first parts of the approximate functional
equations is equal to

1 p1(h1) p(ha)
| fu[t/ 2o fo| /248  hy |[V/247 | g |1/2+9 Z xp(fi1fah1ha).
DeHagta

|H29+1 | f1,f2,h1,h2

We only keep the terms with fi foh1he = [J. The above expression then becomes
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Z p(hi)p(he)a(fif2hihs)

f1f2h1he=0 | f1]1/ 2t fo|L/24B | hy |1/ 2+ | hg |1/ 2467

where
a(f) :g <1+%>_1.

Using multiplicativity, this is equal to

(P pu(Ph2)a (Pl fathathey
11:[ ¥ fzh A |P|(1/2+Ot)fl+(1/2+[‘3)f2+(1/2+ry)h1+(1/2+6)h2
f1+f21"'1‘ﬁ«1+1]’1220vcn
— A, 8,7, 6) Co(142a)¢ (1 +28)¢ (1 + a+ B)C,(1 + v +6)
TG+ a+ NG+ a+8)G L+ B+ +B+06)

where

-1 1 1
Ales B 1,9) Q( |m> @‘szW>@‘uwﬂw)

1 -1 1 -1 1 -1 1 -1
G‘uﬂwﬂ> Q‘uwww> Q‘uwww> Q‘uwww>

1 1 1 1 1 1 1 1
TP |P| + |P[i+o+8 + |P[1+7+8  |P|itety  |P[itetds  |P[I+B+y  |P[1+8+9
1 1 1 1
- | P|2+2a o | P|2+28 + ‘P|2+o¢+,3+'y+5 + P|3+2a+2ﬁ)'

The contributions from the other parts of the approximate functional equations can
be determined by using the functional equation

L(% + a, XD) = q_anL(% -, XD)
Hence we have the following.

Conjecture 5.1. We have

Z L(1/2 +a,xp)L(1/2+ B, xp)

|H2g+1| (1/2+7,xp)L(1/2+4,xD)

DeHay

Cq(l + QQ)Cq(l + Qﬁ)Cq(l + o+ ﬂ)Cq(l +7+9)
Gl +a+7)CG(l+a+6)¢(1+B+7)¢(L+B+6)

—2ga A(_ Co(1 = 20a)Cy(1 +28)(y(1 — a + B) (1 + v +d)
A B ) e =t )G+ A+ &L+ B +0)

= A(e, 8,7, 0)
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Co(1 4+ 2a)(q(1 = 28)¢g(1 + a — ) (1 + v +6)
G+ a+7)G+a+0)G(1—B8+7)(1 - B+06)
Gq(1 = 20)¢(1 —28)Gq(1 — o — B)Gq(1 + v + 6)
Cq (1 -« +7)<q(1 - a+5)<q(1 - B +7)<q(1 —pB+9)

+ qingA(av 757 Y 6)

+ q—29(a+B)A(_a7 _ﬁv Y5 5)

FO.(g70+).

Notice that for a function f(u,v) analytic at (u,v) = (r,r) and a function F'(s) having
a simple pole at s = 1 with residue rz, we have

0 _jla) | _ )

O F(1—a+7) |4y TF

As r¢, = 1/logq, taking derivatives with respect to a and 3, and setting v = a, § = f3,
we obtain

Conjecture 5.2. We have

1 r r

- el Ly
|H29+1‘ DEH2g+1 (2 + a’XD) L (2 + ﬂ7XD)

Cq ¢ ¢

Cq(1+2 )Cq(1+2ﬂ) (Cq)(1+a+ﬁ)

T (log q>B<a>§—Z<1 1 28) + (logq)B(ﬁ)g—Z(l 1 20) + (log )2C(a B)

+ ¢ 9% (log q)* As () Ta (v, B) + q 29" (log q)* A2 () To(B, )

Cq(l - 20‘)@1(1 - 25)(«1(1 —a— 5)(11(1 +a+p8)

+¢729@ ) (1og g)2 A(a, B) G —a+ )1 +a—p)

£0.(g70+),
where

Cq( )Cq(l —2a)
Cq(2 —200)
1 1 _ q2a q

:1—q2a+q—1_1—q20‘+q—17

) () (o))

. 1 -1 . 1 -1 - 1 1
" [P ~ [PiTep TP [P T pprets

A2(a) = A(—Oé,ﬁ, a, B)Cq(l —2a )
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©|P|imetB  |P[ita=B  |P|2-2«  |P|2-28 + |P|? + |P|3—2a—28

1 1 1 1 1 1 )
B(«) is defined in (9),

d(P)*(|P|*+tP(1P| + 1)(IP|* — |P|7)? — (|P|"T*7 —1)%)
([P[t+2e = 1)(|P["F28 —1)(|P[H+etP —1)2(|P|+ 1)

P
_ d(P)?
EP: (P2 = 1)(|PIH20 = 1)(1P] + 1)
_ d(P)?|PIZHetA(|P|* — |PI7)?
= B(a )+ Z (|P|H2e — 1)(|P|MH26 — 1)(|P| +otP —1)2

_Z d(P)?|P|totp
(IP[*F2e = 1)(|P[*+20 = 1)(|P| + 1)
d(P)*|P|
- Z (IP[tF2e = 1)(|P[*+20 — 1)(|P| +1)2
and
1 (¢ ¢ ¢
T (a, B) := l4a+p)——=1—-a+ 1+2
20 f) = o (a5 = E-at )~ 21+26)
8A2(_a7 b7 Q, 5)/81)‘(,:5)
A (_aaﬁvavﬂ)
Z ‘P|2(1 a) _ |P|1—2a o |P|2—3a+,6’ + ‘P‘2—a+6) (11)
P (IP[PE=) — 1)(|P|HF26 — 1) '
Equivalently, using equation (2) (with u = ¢~ /2= and § = ¢~ */?>#) we have
Conjecture 5.3. We have
1 L' L
|H | U’UE(U, XD)Z(U7XD)
29+1 DeHogyi1
z 52 2/ 2z 2z
- u2v2§(u2)?(v2) + u%v? (z) (uv) + B(U)UQ?(UZ) + B(U)u2§( )+ C(u,v)
(qu®)? Az (u) T (u, v) + (qv*)? A2 () T (v, u)

where
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2
_ qu - 1 q
A2(u)_qu2—1+q—1_qu2—1+q—1’

T3 ) 8 o ) -

pd®P) N\t wd® N\t 1 1 d
oz v e T (P)
(1 P|ud<P>> (1 |P|vd<P>) (1 2]+ [PREny T )

pd(P) udP) 1 1 1 1 )

B |P|ud(P) o |P|,Ud(P) B |P|3u2d(P) o |P|3,U2d(P) + P2 + |p|5(uv)2d(P) )

B(u) is defined in (6),

wp)A(P) (yd(P) _ yd(P))2
Clu,v) = )+ Z 1- u2d(P) (1 — v2dP))(1 — (uw)d(P))2

AP ()
" 2 =) (= PP T

S d(P)?|P| (o)1
(1 — w2dP)) (1 — 2P ([P + 1)2

and

d P 2d(P) __ P 2d(P Pl3u 3d(P),,d(P) P (P)
() = 3 APVIPE 40 — P20 — PR 1 PP o)D)

— (|P[Bu2d(P) — 1)(1 p2d(P))

5.2. The two level density

Consider

Z Z A(f1)A (f2)XD(f1f2)' (12)

/240 1/2+8
DeHagr1 f1,f2eEM |f‘ |f|
d(f1f2)<N

I>(N;
(N;e, f) = ngm

Using the Perron formula (5) this is equal to

1 ?{ Z A(f2)xp(fifo)ut+d() du

[Hag 1l |f|1/2+a|f|1/2+5 uN+H(1 —u)

DGHQ f1,fa€M

IUI T

B 1 Z 1 7{ u? L’( U )E’( U ) du
Hagiil o 2mi [ qieesB L \q/ee X0 )L\ qies A0 J N1 )

[ul=r

for any r < ¢~'/27¢. We enlarge the contour to |u| = r = ¢~¢. In view of Conjecture 5.3
we write
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4
d
L(N:a,f) = _ij, f S Ry, 0,8) (? o). )
i=1

|lu|=r 77
The terms coming from the first parts of the approximate functional equations,
R (u, e, B), correspond to the diagonal terms, while the terms coming from only 1 swap
in the approximate functional equations, Ro(u,«, 8) and Rs(u,a, (), correspond to the
Type-I terms. Type-II terms are the terms with 2 swaps, R4(u, a, 5).

For the 0 swap terms we have

ut 2w N2 WP u? 2N\ w2
Bi(u,a, ) = 20+ath) Z (q1+2a) Zz (q1+2/3> + 2(+a+h) <§> <q1+a+,6> (14)
u? Z' s ou? u2 Z' ou?
+B(us0) i 5 () + B0 8) s 5 (i) + € 9)

where

C(ua avﬂ) = C(ql/++a’ q1/++5>
= B(u, a)B(u, 5)

d(P)2|P|2+a+ﬁu4d(P)(|P|a _ ‘P‘ﬁ)Q
+ XP: (‘P‘1+2a _ u2d(P))(|P|1+2B — u2d(P))(‘p‘1+a+ﬁ _ u2d(P))2

BS d(P)?|P[ et -
5 (‘P‘1+2a _ u2d(P))(|P|1+2ﬁ _ u2d(P))(‘P‘ + 1)

N Z d(P)2|P|u4d(P)
= ([P0 2@ (P33P ([P 4 1)%°

Concerning the 1 swap terms we have

R2 (ua «, B) + R3 (u7 «, 6) = q_2gau2gA2 (ua 04)7-2<’U,, «, 6) + q—2gﬁu2gA2 (U, B)E(ua ﬂa Oé),
(16)

where

=5t —=5 5+ (17)

and
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u
T2(u, o, B) = 7-2( 1/2+a’ 1/2+5)

_ Z P)u2d(P)(|P|2(1—a) 2d(P) _ |P‘1—2a 2d(P) _ |P|2 3a+p3 2d(P) 4 |P|2 a+6)
- (|P[2(=e)q2d(P) —1)(|P|1+28 — 24(P))
P

Note that 1 swap terms kick in once N > 2g. In the computation of Type-I terms in
section 7 we also assume that N < 4g. We write T2(u, «, 8) as a sum of four terms. For
the first three terms, we claim that we can truncate the sum over P to those primes P
with d(P) < g; otherwise the corresponding integrals in equation (13) will be equal to
zero. Indeed, in order for the integrals to be non-vanishing, we need 2g + 2d(P) = N.
Since N < 4g it follows that d(P) < g. We write the fourth term in the expression of
T2(u, ar, B) as

d(P) 2d(P) |P|2—a+5
Z(\PP“ @)q2d(P) — 1)(|P|1+26 — ¢,24(P))

d(P)UQd(P) ‘P|27a+ﬁ

= (18)
d(%;g (|P|2(T—a)q2d(P) — 1)(|P[1+25 — 4,2d(P))
d(P)u 2d(P)| p|2—atpB
+ Z 2(1—a) (2d()P) > 1428 _ ,,2d(P)
o u2P) — 1) ([P0 — 2P

d(P) 2d(P ‘P|2 a+pB
- Z (|P[20=2)q2d(P) — 1)(|P|I+28 — 4,2d(P)) + Z |p|1+/3 P
d(P)<g d(P)>g
|P|2 1- a)u4d(P) + |P|1+26 _ u2d(P))

+d(; |P|1+f3 o (|P2(1=a)2d(P) — 1)(|P[1+25 — ¢,2d(P))

u2d(P)|P|2—a+,6

= O _g -
d(%; (|P|2(—e)q2d(P) — 1)(|P|1+28 — 24(P)) + dz |P|1+ﬁ p (a79)
I (P)>g

We use the Prime Polynomial Theorem for the sum over d(P) > g above and without
worrying abut convergence issues since the recipe is a heuristic argument, we replace it
by what we get by summing the geometric series. Then when N < 4g we rewrite

u o /8 Z d 2d(P)(|P|2(1—a)u2d(P) _ |P|l—2au2d(P) _ ‘P|2—3a+ﬁu2d(P) 4 |P|2—a+ﬁ)
) ([P[2(1=a)2d(P) — 1)(|P|1+28 — 4,2d(P))
d(P)<g
g(—B+a) 1 1
+4q T_go b (19)

We remark that although the term in the second line above gives a term involving
q9*8) in the expression of Ry(u,,3), when we put all the terms together, the con-
tributions of this type will cancel out.
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For the 2 swaps terms we have

R4(u7 a, ﬁ)

2

_2g(a+ﬁ) 49-/4( u ) Z(q“%auQ)Z(ql’%BuQ)Z(qkal’ﬁ?ﬁ)z(qlfaﬂg)
1/24a’ 1/2+B Z(quﬁg)z(qu}ka) .

(20)
6. The two level density - the diagonal
In this and the following section, we assume that N < 4g.

The diagonal, denoted by I$(N; a, 3), comes of the terms with f; fo = O in (12). From
Lemma 2.6 and the Perron formula (5) we have

0/ - A(f1)A(f2) 1 —og+t
L(N;e,f)= Y W 17|P|ﬁ + O:(q77)
f1,f2EM | | ‘ | P|f1f2
(f1f2)<N
fif=0
1 0 du 9
=— 4 O.(q %t 21
omi J2(“’a’ﬁ)uN+1(1fu) +0:(q ) (21)
|u|=r
for any r < ¢~1/?27¢ where
0 A(fO)A(fo)u?tH72) 1
T (w,a,B) = Y e 1 (1 i)
f17f2€M ik £ P|f1f2
f1f2=0
We write

I (u,a, B) = Ty (u, o, B) + T3 (u, v, B),

where Jy°°(u,a, ) consists of the terms f; = P?* f, = Q% with k,l > 1, and
J9°°(u, v, B) consists of the terms f = P21 f, = P2H1 with k,1 > 0.
We have

o w2kd(P)+21d(Q) 1 1
Jy " (u, 0, B) = Z Z |P|k(1+2a Q! (14+28) (1 B | P| +1) (1 N W>

k,l>1P,Q

|P|u (k+0)d(P

+ Z Z |P|k 1+20¢)+l(1+2ﬁ)(|P| + 1)

k,l>1 P

2 ZI 2 2 Z/ 2
_ (qfim Z (=) +B(u,a))< oz 5 () + Bl ﬁ)) (22)
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B d(PP|Plut™P)
(|P[1+2a — u2d(P) )(|P|1+28 — w2d(P))(|P| + 1)2'

On the other hand,

000 P)2q2(kH+1)A(P) 1
Sy (u, v, B) = ; XP: |p|1+a+6+k(1+2a)+z(1+25) (1 TP+ 1)
0

)2|P|1+a+ﬂu2d(P)
ZP: |P|1+2a — u2d(P))(|P|1+28 — ¢2d(P))

d(P)2|P|1+a+ﬁu2d(P)
2 P ) [P — [P+ 1)

Note that
=z / d(P)2ud(P)
(2w e
_ . d(P))2
Z - (1 ud(P))
So

4 AN 2
0,00 U 2 u_
J2 (U, «, B) - q2(1+a+ﬁ) (E) <q1+a+ﬁ)

B d(P)2|P|2+a+ﬁu4d(P)(|P|a _ ‘P‘B)Q
= 2 T = P P37 — P[P et —

(23)

d(P)2|P|1+a+5u2d(P)
2 (TP =) [P — P[P+ 1)

We enlarge the contour in (21) to |u| = r = ¢~¢. Combining (22) and (23), and comparing
with (14) and (15) we see that

Jg(uv Q, 5) = Rl(U, a, B)
7. The two level density - type-I terms
7.1. The terms f; = P2+ fo = Q% withk>0,1>1

We denote this contribution by I9°(N; «, 8), and IS°(N; «, 8) is analogously defined.
In this section, we assume N > 2g. We have

1 d(P)d(Q) 2
I3°(N; e, B) = > > xn(PQ?)
|Hog 1] | P|(2k+1)(1/2+0)| Q[U(1+26)
d(szI:fQQQZ)SN et
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1 d(P)
to— > z > xo(P).
|H2g+1| d(P2k+21+1)< N ‘P‘(2k+1)(1/2+ Hi(L+28) DeHagi1

By the Polya-Vinogradov inequality in Lemma 2.4, the second term is O(N?g~29). We
now consider the first term with P # ). The same argument also shows the terms with
k > 1 are bounded by the same error term, and the contribution of the terms with
d(P) =nis O(N¢"29). So

(N f) = S AP s pg2) 4 o(g ),

- 1/24a|O)|L(1+2B8)
|H29+1| A(PQ> <N |P| |Q‘ DeHogya

d(P)>g+1

Applying Lemma 2.1 and since d(P) > g + 1, we have

S owre)=-Y( ¥ wel-1 ¥ ),
DeHagia 720 MheMagii-254(Q) heMag1-254(Q)
(24)

If d(P) is odd, then using Lemmas 2.2 and 2.3 it follows that the term in parentheses is

equal to
2g+3/2
q 2
|p|1/2|Q‘2j+2 Z xp(V)G(V,Q7)
d(V)=d(P)+(2j+2)d(Q)—2g—2
G29t1/2 )
- |P|1/2]Q29+2 xp(V)G(V,Q%).

d(V)=d(P)+(2j+2)d(Q)—2g

As V cannot be a square in the sums, by Lemma 2.5, the contribution of these terms to
I$¢(N; a, B) is O(N?gN/2=29).

Now consider the case d(P) is even. Applying Lemma 2.2, the first sum over h in (24)
is

ot 2
|P||Q|2j+2<q Z G(V.P)G(V,Q7)

VeM<a(p)+(2j+2)d(Q)—29—3

- )3 GV.P)G.Q))

VeMcap)+(2i+2)a(Q)—29—2

From Lemma 2.3, we have that G(V, Q?) is nonzero if either V = QV; with (V1,Q) = 1,
in which case G(V,Q?) = —|Q|, or if Q?|V, in which case G(V,Q?) = ¢(Q?). Applying
Lemma 2.3 again, we have that G(V, P) = xp(V)|P|'/2. Then we get that the first sum
over h is (24) becomes



412 H.M. Bui et al. / Journal of Number Theory 221 (2021) 389423

2g+1
e, X wt- S )

VeM<a(p)+(2j+1)d(Q)—29-3 VEM<a(p)+(2j+1)d(Q)—29-2
Q=1 Q)=1
2t (Q?
e ORI VU LR S L)
VeMca(p)+2jd(Q)-29-3 VeMcap)+2jd(Q)—29-2

As above, the contribution of the first term and that of V' # [0 in the second term to
I$¢(N; v, ) is bounded by O(N2¢N/2729). We are thus left with V' = O in the second
term above. Replacing V + V2, and keeping in mind that d(P)/2+7d(Q)—g—1 < d(P),
it follows that the contribution from V' = O in the second term above is equal to

(@)
‘P|1/2‘Q|2j+2 (q Z 1= Z 1)
VeMca(p)/2+jd(Q)—g—2 VeMcap)/2+ja(@)-g-1
q29t1 2 . .
_ W”ﬂ% if d(P) + 2jd(Q) > 2g,
0 otherwise.
Indeed, if d(P)+27jd(Q) < 2g then each of the sums in parentheses is empty. Otherwise,

by counting monic polynomials of a given degree, the term in parentheses is equal to —1.
The same argument applies to the second sum over h in (24), and hence we obtain

*(Nia,f)=— > ) d(P)d(Q)(Q?)

|p|1+a|Q|l(1+2B)+2j+2
d(PQ*)<N d(P)+2jd(Q)>2g
d(P)even >g+1

1 d(P)d(Q)p(Q?) 2 Nj2-2 _

T > > [P[i+a|Q[ia+20)+27+2 +O0(N%q 9)+O(Ng™).
APQHMN d(P)+2jd(Q)=2g
d(P)>g+1

By the Prime Polynomial Theorem, the condition d(P) > g+ 1 can be removed at the
cost of an error of size O(q~9/2). Indeed, the sum over [ is of size O(1), and if we let
d(P) = n and d(Q) = k, then using the Prime Polynomial Theorem twice, we get that
the first term in the formula above is bounded by

<X Y gasa”

n<gj>1 k> 29 -n

and a similar bound holds for the second. The same argument also implies that we can
restrict the sum to jd(Q) < g. So

oe 1 oe du - -
I (N;Oévﬁ):% jé J3 (u,a,ﬁ)m—f—O(quN/z 29) +0(q79) (25)

ul=r
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for any r < ¢—¢, where

A(P)(Q)p( @) 4@

|P‘1+a|Q‘l(1+25)+2j+2

Bues=--Y ¥ Y

1>1 d(P) even d(P)+2jd(Q)>2g
Jjd(Q)<g

d 2\, d(P)+21d(Q)
Ly oy (P)d(Q)e(Q)u

| P+ |Q)! (1+28)+2j+2

1>1 d(P)+2jd(Q)=2g

d(P)d 2, 4(P)+2d(Q)
—— ¥ 3 (P)d(Q)p(Q7)

- | P |QP+2(|QI20 — u2d(@)

d(P) even d(P)+2jd(Q)>2g
Jjd(Q)<g

1 A(P)A(Q)p(Q)u' ") 2@
T iy, oy TPHIQPI QI @

+
d(P)+2jd(Q)=2g

From the Prime Polynomial Theorem we have

d(P)ud(?) u
Z |P[iFe = Z g2ne (1+0(a™)
d(P) even >2g—25d(Q) n>g—jd(Q)

2
— g 29 20-214(Q)| | 25 u O(q~9|Qp).

u2 — q2a
Hence, using (17), we get
2)—274(Q)+2d(Q)

_ ,—2ga,,2 _
Iy (u, @, B) = ¢ Ay (u, Z Z |Q|23(1 a)+2 |Q|1+2,8_u2d(Q)) +0(g9q77)

7>0QeP

: AQ)(QP1- — Q[ -2t )
— 299,29 g
= A0) ) (gt i@ — Qe — e O

(26)

where in the first line we have removed the condition jd(Q) < ¢ with an admissible
error. Note that we can truncate the sum over @) above to d(Q) < g using a similar
argument as in section 5. Indeed, when d(Q) > g the corresponding term in integral (25)
will be equal to zero since there will be no poles inside the contour of integration. Then

we rewrite

_ d(Q)(|Q)P1~) — Q[ >*)utH()
IS (u, o, B) = ¢~ 29U Ay (u, @) E 5
(1—a),,2d(Q) _— 1428 _ ,,2d(Q)
d(Q)<g(\Q| u D(1Q| u?d(@))

+O(gq™7). (27)
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7.2. The terms f; = P2+ fo = Q%+ with P # Q and k,1 >0

We denote this contribution by IS°(N;«, ), and write

0O (N . ) 1 — d(P)d(Q)
Lo (N, ) '7|’H29+1| Z | P|(2k+1)(1/2+0)|Q|(21+1)(1/2+5) Z xp(PQ)

P#Q DeHogy1
d(P2FH1QRA+ < N

= 120,0>(Naa75) +I§,0<(N;avﬁ) +IO,0:(N;O[75)7

corresponding to the terms with d(P) > d(Q), d(P) < d(Q) and d(P) = d(Q), respec-
tively.
Applying Lemma 2.1 we have

Z Xp(PQ) = Z ( Z xrq(h)

DeHagt1 1,§20 YheMog i1 _2id(P)—25d(Q)

D SO} (28)

hEMog 1 _2i4(P)—2jd(Q)

As in the previous subsection, the terms with d(PQ) odd shall lead to V # O after
applying Lemma 2.2, and their contribution, as before, is bounded by O(NQqN/2_29).
We are left with the terms with d(PQ) even. From Lemmas 2.2 and 2.3, the expression
inside the bracket is equal to

q2g+1
| P|2i+1/2| Q2 +1/2 (q Z xprQ(V)

VeMca(pQ)+2id(P)+2jd(Q)—29—3

- > xro(V))

VeEMci(pQ)+2id(P)+2id(Q)—29—2

2g
q
T PRHL2|QRA1/2 (q Z xpQ(V)

VeMca(pQ)+2id(P)+2jd(Q)—29—1

- > XPQ(V)>~

VeMca(p)+2id(P)+2jd(Q)—29g

Again the contribution from the terms V' # O is negligible and we focus on the term
with V = [, which is

2g+1
|P|21’+1q/2|Q|2j+1/2 q Z 1- Z 1
VeEMca(PQ)/24id(P)+id(Q)—g—2 VeMca(pQ)/2+id(P)+id(Q)—g—1
(V,PQ)=1 (V,PQ)=1

(29)
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2g
q
- | P|2i+1/2|Q|2i+1/2 (q Z 1- Z 1)

VEM<i(pPQ)/24id(P)+id(Q)—g—1 VeMc<apQ)/2+id(P)+id(Q)—g
(V,PQ)=1 (V,PQ)=1

First consider I3 (N;a, ). The treatment for I3 (N; a, () is similar. From (28) we
have id(P) + jd(Q) < g, so

d(V) < d(PQ)/2+id(P) 4+ jd(Q) — g < d(PQ)/2 < d(P),

and hence (V, P) = 1 automatically. Note that

q > 1-— > 1

VeEM<a(PQ)/2+id(P)+id(@)—g—1 VeMc<a(pQ)/2+id(P)+id(Q)—g
~ (4 )3 1 > 1)
VEM<i(pPQ)/24id(P)+id(@)—g—1 VeMc<a(pQ)/2+id(P)+id(Q)—g
(s > - > 1)
VeMc(a(P)-d(Q))/2+id(P)+id(Q)—g—1 VeMc<(a(p)—d(Q))/2+id(P)+id(Q)—g
-1 if 20+ 1)d(P)+ (25 —1)d(Q) <29 < (2i+1)d(P)+ (2 +1)d(Q),
0 otherwise,

where in the first line we write the sum over (V,Q) = 1 as the sum over all V' of the
given degree, minus the sum over polynomials V' which are divisible by Q. So

— s i (20 1)d(P) + (2 — 1)d(Q) < 29

< (2i+1)d(P) + (2 + 1)d(Q),
(29) = { = prrargmere if (204 1Dd(P) + (2 — 1)d(Q) = 29,
prhEEE i (20 1D)d(P) + (25 + 1Dd(Q) = 29,

0 otherwise.

Hence 192 (N; o, §) is equal to, up to an error of size O(N?¢N/?—29),

- D D

d(P)>d(Q) (2i+1)d(P)+(2j—1)d(Q) <2g
d(PPHIQAHY) even <N 29<(2i+1)d(P)+(2j+1)d(Q)
d(P)d(Q)

X |P|(2k+1)(1/2+a)+2i+1/2|Q|(2l+1)(1/2+ﬁ)+2j+1/2

q 2 :
q—1 , ;
d(P)>d(Q) (2i+1)d(P)+(2j—1)d(Q)=2g
d(P2k+1Q2H'1)even <N
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d(P)d(Q)

X |P|(2k+1)(1/2+a)+2i+1/2|Q|(2l+1)(1/2+,6’)+2j+1/2

1
Ly >
d(P)>d(Q) (2i+1)d(P)+(25+1)d(Q)=2g
d(P?FT1Q2 1) even <N

d(P)d(Q)

X | P|(2k+1D)(1/24a)+2i+1/2| Q[ (I 1)(1/2+6)+25+1/2

By the Prime Polynomial Theorem, the contribution of the terms with d(P) = m and
d(Q) = n to I3 (N; a, ) for each 4, j, k, 1 is bounded by

<< qf(k+2i)m7(l+2j)n. (30)

Note that (2¢ + 1)m + (2§ + 1)n > 2g, so this is, in particular, bounded by
O(g~ 29t =F)m+0=Dny Tt follows that the contribution of the terms with m 4+ n < g is
O(q9). For those with m+n > g, the condition m > n leads to m > ¢/2, and it follows
from (30) that the contribution of such terms with k 4+ 2i > 1 is O(Ng~9/2). Hence we
can restrict to the case : = k = 0 and get

BLNap)=— Y 3 A(P)d(Q)

|P|1+a|Q|(2l+1)(1/2+,6’)+2j+1/2
d(P)>d(Q) d(P)+(2j-1)d(Q)<2g
d(PQ**1) even <N 29<d(P)+(2j+1)d(Q)

q d(P)d(Q)
- g—1 Z Z |p|1+a|Q|(2l+1)(1/2+6)+2j+1/2
d(P)>d(Q)  d(P)+(2j-1)d(Q)=2g
d(PQ¥ <N

1 d(P)d(Q)
+ g—1 Z Z |p|1+a|Q|(21+1)(1/2+6)+2j+1/2
d(P)>d(Q) d(P)+(2j+1)d(Q)=2g
d(PQ* <N

+O(N*gN/2729) 4 O(Ng~9/?).

We shall write
I3 (Nya, ) = I32 (Ns a0, B) + I3 (N o, B) + O(N?¢N/2729) + O(Ngq~9/?)

to separate the cases j+1 > 1 and j =1 = 0, respectively. For 12°°>b (a, 8), by the Perron
formula we have

1 du
oob oob
BEWN; 0 0) =55 ¢ B2 B) i

|u|=r

€

for any r < ¢~¢, where
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d(P)d<Q)ud(P)+(2l+1)d(Q)
oob _
J (u,a,ﬁ) - Z Z |P|1+a|Q|(2l+1)(1/2+[3)+2j+1/2
I+5>1 d(P)>d(Q)
d(PQ) even
d(P)+(2j-1)d(Q)<2g
2g9<d(P)+(2j+1)d(Q)
q d(p)d(Q)ud(P)+(2l+1)d(Q)
g-—1 Z Z |P[Ia|Q|FD(1/25)+2i+1/2
I+521 d(P)>d(Q)
d(P)+(2j-1)d(Q)=2g
1 d(P)d(Q)ud(P)+(2l+l)d(Q)
+ g—1 Z Z |P|1+e|Q|HD(/2+5)+2j+1/2"
I+5>1 d(P)>d(Q)

d(P)+(2+1)d(Q)=2

Given @, from the Prime Polynomial Theorem (if we let 2n = d(PQ)), we have

>

4P)>d(Q)
d(PQ) even

d(P)+(25-1)d(Q)<2g

2g<d(P)+(2j+1)d(Q)

|Q|a 2n 1/2
- 2 e (107 "QIY2)
max{d(Q),g—jd(Q)}<n<g—(j—1)d(Q)

d(P)ud(Pe)
|P[i+a

2a

,q*Zgau2g*2J‘d(Q)|Q|(2j+1 + g 29029720 -1)d(@) || (2 —Der i

2& 2a

+0<q—g|QV‘+1/2) if (j+ 1)d(Q) <g,

—q

_u2d(Q)|Q|—a —2ga,,29—2(j—1)d( Q)‘Q|(2] a a2 +O(|Q| 1/2)
us—q=
if jd(Q) < g < (j+1)d(Q).
Hence
’ 2(1-5)d(Q)
oob _ _—2ga, 2 u d(Q)'LL
J (u,a,ﬂ) = q 9% 9<u2 _ q2 ) Z Z |Q|1—a+ﬁ+l(1+2[3)+2j(1_a)
I+5>1 (j+1)d(Q)<g
T 5 d(Q)u20+1(@)
u? — g2 |Q[1+a+A+1(1+28)+2;
I+521 jd(Q)<g<(j+1)d(Q)
2 L2(1=i+1)d(Q)
—2ga, 2 q o
sa 9<u2_q2a ) Z Z |Q|1+a+ﬁ+l(1+2,@)+zj(l @) +O(q™ 7).

I+352>1 jd(Q

By the Prime Polynomial Theorem again, it is easy to see that the second expression
is bounded by O(g™9). Also, we can extend the sum over ) in the third expression to
all of Q € P at the cost of an error of size O.(q~297¢9). For the first expression, let
r = w24 Q) /|QI"?P and y = 1/(u*UD|Q[?(1~)). We can assume that |u| = ¢=2° for
example, and then we write
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d(Q i d(Q j
> Z ﬁxl@/Zﬁ Yo aly

21 (1)@ d(Q)<g 1>1
Jj<g/d(Q)—1

d(Q —g+te

S s ¥ o

dQ I+5>1
d(Q) < T y ) _

= Z + + O (q™9799).

1—a+p — _ _ €

WD Q| l—z (Q1-21-yv)

The identities in (17) and an argument similar to that used in the evaluation of
J9°(u, a, B) in equation (27) then imply that

B d(Q)qu(Q)
T2 (u, 0, B) = ¢~ 9% u As (u a)< Y. o
s Ly ’ —a+B 1428 _ ,,2d(Q)
Aoy IR FR(QITH27 — 24
d(Q)|Q*”
+ Z IQPU @), 2d(Q) _1)(‘Q|1+2B_u2d(62)) (31)
Q|2—3a+84d(Q) 124(Q) B
Z (|Q\2(1 a)izd)(Lg |7 1)(‘Q|1+2ﬁ _ u2d(Q) + Z ‘Q|1+a+l3 + O(q 9/2)'
a(Q)<g d(Q)<g

For ISOJ(N ;a, B), by the Perron formula we have

00 1 00 du
—72,>T(N;Oé,5) =5 JQ,j(uvavﬁ) NI

lu|=r

€

for any r < ¢~ ¢, where

Bluap=- Yy ABHMOMTY

[P relQf+?
d(P)>d(Q) d(P)~d(Q)<2g
d(PQ) even 29<d(P)+d(Q)

RIS d(P)d(Q)u’"Y

-1 P|1+a 1+
L i) g 1T
1 d(P)d(Q)uPD
+qf1 Z Z |P|L+e|Q+8

d(P)>d(Q) d(P)+d(Q)=2g

The last two terms can be evaluated using the Prime Polynomial Theorem. Concerning
the first term, note that given @,

> X

d(P)>d(Q) d(P)—d(Q)<2g
d(PQ) even 2g<d(P)+d(Q)

d(P)udPe)
|P|1+a

> B arowiar)

max{d(Q),g}<n<g+d(Q)
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2

— _q—2gau2g|Q|a u2322a + q—2gau2g+2d(Q) |Q|_a u2(17:20¢ + O(q_g/2) lf d(Q) < g7
~1Q|u24@) +0(q79?)  ifd(Q) >y,

22& +q72gau2g+2d(Q)|Q|—a g2

u
u?—gq uZ—g2o

by writing d(PQ) = 2n. So

- Z Z —d<P>d(Q>Ud(PQ) = g 292,29 71;2 Z 1)

|P|1+a‘Q|1+ﬁ =4q u2 — q2a ‘Q|1—o¢+ﬁ
d(P)>d(Q) d(P)—d(Q)<2g d(Q)<g
d(PQ)even 2g<d(P)+d(Q)

u? d(Q)U2d(Q) —2ga, 2 > d(Q)UZd(Q) —g/2
+u2 2o Z PG ! “gu2,q2a Z Q[1Fa+5 +0(g ).

d(Q)=g QeP

Hence, using (17), we have

2 d
Jﬁwmm—qMM% et 1)22@#%a
d(

u2_q2a q_l

Q)<g

w? 4(Q)u(@

+ uZ — g2 Z |Q[1+a+8
d(Q)=>g

2a 2d(Q)
20029 4 q d(Q)u=") O(q—9/2
¢ T <u2_q2a +q_1)@§> |Q[IFo+s + 0@

e a(Q d(Qu@
=q 29 UQQAQ(’LL7OZ)( Z |C?|1(fa)+ﬁ_ Z %)

d(Q)<yg d(Q)<yg
2 A(Q)u@
+ 2_ g2 Z QL Fots +0(g77),
d(Q)>g

where in the second identity we truncated the second sum over @) using a similar argu-
ment as before. For the third term, from the Prime Polynomial Theorem we have

d(Q)u*@) u?" 2 e o
Z ‘Q|l+a+ﬁ = Z qn(aJrﬁ) (1+O(q " )) =—q 9Py gm +0(q97).
d(Q)2g n>g

Thus,

00 —2ga d(Q) d(Q)u*H@)

T3 (u, 0, B) = g% 'uz-"fb(u,a)( > [Q[i—a+F 2. JQ[ats
d(Q)<g d(Q)<yg

qa+6u2

_ g—9(a+B) 29
T W =)

+0(q79?).

(32)



420 H.M. Bui et al. / Journal of Number Theory 221 (2021) 389423

Combining (31) and (32) we obtain

du

A= T O(N?¢N/?729) + O(Ng~9/?),

I3% (N, B) = -— % 2 (u, o, B)

|u\_r
where

d(Q)u2d@
[QIeFA(|QI2 — u2d(@)

I e 8) = 7 ) (3
d(Q)<g

|Q|a+6 |Q|273a+6u4d(Q))
+ Z \Q|2(1 a)u2d(Q) _ 1)(|Q|1+2[3 _u2d(Q))

d(@)<g
_d@)
- Y G (33)
d(Q)<g
a+3,,2
—g(a+8),,29 g v O(q—9/2
4 U — 2a) (a2 — goth) +0(q™777).

Now consider I3 (N; a, ). As before we will have (V, PQ) = 1 automatically in (29).
So

q2g+1
(29) = | P|2it2i+1 (q > 1= > 1)

VEM<(itjt1)d(p)—g-2 VEMc(ivjt1yap)—g-1
2
L 3 1 3 1
| P|2i+2i+1
VeM<(itjrnap)—g—1 VeEM<(itj+1ar)—g

2 _ . . .
—rbpia i (45 +1)d(P) > g,
29

= Ua\zzw if (i +j+1)d(P)=g,

0 otherwise.

Hence

00 3 d(P)2
I (N;o, B) = — > | P|@RHD(/Za)+ (D) (/24 A) 42 2541
d(szﬁ;;lgz)SN
d(P)=d(Q)>g/(i+j+1)

1 d(P)? 2 N/2-2g
+ g—1 zggg | P|@k+D)(1/2+a)+ (20+1) (1/245)+2i+2j+1 +O(N%g )-

A(PAR2F2 < N
d(P)=d(Q)=g/(i+j+1)

The same argument as before shows that the contribution of the term with i+j+k+1 > 1
is O(Nq¢79). For i = j = k =1 = 0, we can ignore the condition P # @ at the cost of
O(gq™9). So using the Perron formula we obtain that
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1 du
7%° (N: - = 00 N2 N/2—2g —g
2,_( 7a75) 27i f J,_(U,Ol,ﬂ) UN+1(1—U) +O( q )+O(gq )
|u|=r
for any r < ¢~¢, where
d(P)2u2d(P) 1 d(P)ZUQd(P)
sLwof)== >,  “pmas t,o1 2. " |pprers
q
d(P)=d(Q)>g d(P)=d(Q)=g
From the Prime Polynomial Theorem we get
u2n qu(a+6)u29
00 _ —g/2
Bruwa)==-) —amt oy T 0@
n>g
— g~ 9(a+B),,29 u? 1 O(g—9/? 4
=g (e ) 0. (34)

7.8. Combining type-1 terms
In view of (16), (19), (27) and (33) we obtain
I3°(N; o, B) + I3% (N3 o, B)

L du 2 N/2—-2g —g/2
J2(u7a75) UN+1(1—U,) +O(N q )+O(Nq )7

= o
|u|=r
where
—g(a+8),,29
Ja(u,0,8) = Ra(u,a, ) - L Arlw0)
1—qoF
+842
—g(a+p),2 q" u e
e U s "
g—9(a+8)20 g 9@tBy29 g2 —g/2
_ B _ [0) g/ .
2(“70476) (1 _ qa—ﬁ)(q _ 1) 1— qa_B ’LL2 — qa+5 + (q )
Similarly,
. o 1 du
I5°(N; 0, B) + I3 (N5, ) = o— ]{ Ja(u, o ) N1 — )
lul=r
+O(N?¢N/?729) + O(Nq~9/?),
where

g 9(tB)y 29 g 9(@th)y29 w2

J3<u’ o, B) = R3(u7 O"ﬁ) o (1— q—a+ﬁ)(q —1) 1= g—otP y2 — goth + O(qig/Q)'
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Now note that

1 n 1 _
1— qa—ﬁ 1— q—a+5 B

L,

and hence, by using (34),

I3%(N; o, B) + 1I5° (N o, ) + 13°(N; e, B)

1 du
- e N2gN/2—2g Na—9/2).
5 j[ (B, 0, 6) + Ra(ws 0, B)) i 7 — 5 + OWNg ) +O(Ng™7)
|u|=r
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