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ABSTRACT

Packet-level network simulators such as ns-3 rely on efficient PHY
layer abstraction represented by the packet error model for esti-
mating link performance. For complex PHY layer designs - such
as operating over frequency-selective MIMO wireless channels -
the runtime of the state-of-the-art error model suggested by Task
Group of IEEE 802.11ax (TGax) suffers from scaling with MIMO
dimensionality and bandwidth. While our prior work proposes a
runtime-efficient error model in the context of Independent and
Identically Distributed (IID) frequency-selective MIMO channels,
here we consider the time-varying frequency-selective MIMO chan-
nels that correlate over time. Our new error model is based on the
insight that our previous workflow for the IID channel scenario can
be extended using autoregressive modeling to the time-correlated
case. We validate the hypothesis via link simulation campaigns
and show that the runtime and storage complexity of the proposed
error model is low compared to existing error models.
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1 INTRODUCTION
1.1 Background

Wireless network system designers require accurate understand-
ings of PHY layer error performance to design better higher layer
network protocols. For example, the link layer error control (au-
tomatic repeat request, rate adaptation, etc.) and Transmission
Control Protocol (TCP) in the wireless network can be improved
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if the burstiness (temporal correlation) of PHY layer error is bet-
ter understood [5]. Packet-level network simulators such as ns-3
thus need accurate and efficient models for representing PHY layer
performance to enable trustworthy evaluation and development of
upper layer protocols.

Accurate full PHY implementations that incorporate detailed
symbol-level encoding/decoding to output packet error perfor-
mance are slow and not suitable for use in a packet-level network
simulator. As shown in Table 1, the average runtime (averaged
over 10 trials, as the runtime is very stable on a computer) of the
full PHY simulation is typically in the order of hours and scales
with MIMO dimension and bandwidth. Error models for packet-
level wireless network simulation skip the symbol-level details
and abstract the PHY layer via characterizing the instantaneous
Packet Error Ratios (PERs) at the output of the PHY layer. The
fundamental tension, however, is the following. The more abstract
error model may only be relevant for the narrower use case for
which it was derived, and may fail to accurately handle deviations
(e.g. environmental or configuration changes) from that use case.
But network simulation users desire error models that have a wide
scope of applicability. As the error model is enhanced to extend
its scope and accuracy, it becomes more complicated, and impacts
packet-level simulator in terms of runtime and storage complexity.
The increasingly complex components in the PHY layer, such as
Orthogonal Frequency Division Multiplexing (OFDM), Multiple-
Input Multiple-Output (MIMO), Frequency-Selective (FS) wireless
channel, make the design of a lightweight but accurate error model
quite challenging.

Table 1: Average Runtime Comparison in MATLAB: Full PHY Simu-
lation vs. Traditional EESM L2S Mapping, 200000-packet Simulation
under the Time-Varying TGax Channel at a Specific RX SNR [15]

N; X N, | Bandwidth | Full PHY | Traditional EESM
1x1 20MHz 171 min 97 min
1x1 40MHz 201 min 126 min
4x2 20MHz 362 min 234 min
4 X2 40MHz 544 min 320 min
8X2 20MHz 755 min 428 min
8% 2 40MHz 1098 min 573 min

1.2 Taxonomy of Existing Error Models

Existing error models can be classified by their underlying channel
models. Under the Independent and Identically Distributed (IID)
channels where the channel gains are IID over time, the error model
produces IID packet errors and the distribution of the channel gains
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Figure 1: Traditional L2S Mapping for CV-TV-FS Channel

fully characterizes the channel statistics. Under the Time-Varying
(TV) channels where channel gains are correlated over time, the
error model produces bursty packet errors and the channel gains
need to be described as random processes. Under the Continuous-
Valued (CV) channels, the channel gains are continuous; under the
Discrete-Valued (DV) channels, the continuous channel gains are
quantized into multiple discrete states. Different channels not only
produce different error statistics, but also impact the applicability
and complexity of the error model.

The most general class of wireless channels is the Continuous-
Valued Time-Varying Frequency-Selective (CV-TV-FS) MIMO chan-
nel. For abstracting error performance under the CV-TV-FS channel,
Link-to-System (L2S) mapping [2, 8, 12, 13, 19, 25, 28] was proposed
and used for the development of OFDM-based systems such as Wi-
Fi, 4G LTE and 5G NR standards. We consider the L2S mapping
defined by Task Group of IEEE 802.11ax (TGax) [13], namely the
traditional L2S mapping in this work. As shown in Figure 1, the tra-
ditional L2S mapping requires implementing the CV-TV-FS channel
model within the network simulator to generate CV-TV-FS chan-
nel matrices at runtime. The channel matrix as well as the related
MIMO precoding matrix and MIMO decoding matrix are used to
calculate a post-equalization (post-MIMO-processing) SNR matrix.
Using a L2S mapping function, this matrix is further mapped into
a single metric effective SNR. A commonly chosen L2S mapping
function is the Exponential Effective SNR Mapping (EESM) L2S
function [8, 19, 28]. The effective SNR summarizes all important
link design features including channel frequency-selectivity, an-
tenna correlation, the effect of MIMO precoding and decoding,
modulation and coding, etc. Instantaneous PER can be predicted
from the effective SNR using a PER-SNR lookup table under Ad-
ditive White Gaussian Noise (AWGN) Single-Input Single-Output
(SISO) channel with low complexity. Table 1 shows that the tradi-
tional L2S mapping did not scale well to account for the increased
dimensionality of modern systems with high MIMO dimension and
channel bandwidth. In particular, the channel generation and the
post-equalization SNR matrix generation steps that involve expen-
sive matrix computations become prohibitively runtime-expensive
when the MIMO dimension and channel bandwidth increase.

In our previous work [16], we found a similar runtime complex-
ity issue for traditional L2S mapping under Continuous-Valued
Independent and Identically Distributed Frequency-Selective (CV-
IID-FS) channels. Based on our observation that the distribution
of the natural logarithm of the EESM based effective SNR can be
well modeled by a class of 4-parameter Skew Generalized Normal
(SGN) distribution, we devised EESM-log-SGN model shown in
Figure 2 to bypass the runtime-expensive matrix computation steps
in traditional L2S mapping and directly model the distribution of
the effective SNR. The EESM-log-SGN model has been shown to be

efficient for obtaining link error for OFDM/Orthogonal Frequency-
Division Multiple Access (OFDMA) MIMO/Multi-User (MU)-MIMO
systems over CV-IID-FS channels (e.g., TGax channels) with high
accuracy and low computational complexity. This is now the state-
of-the-art error model in ns-3 having substituted for the previous
YANS model [18] that is designed for OFDM SISO systems over
AWGN channels. However, our previous work [16] focused on the
CV-IID-FS channel case, rather than the time-correlated CV-TV-
FS channel found more often in practice. In ns-3, the error model
for the general time-correlated CV-TV-FS channels is long over-
due, and we need to find a proper error model for ns-3 over such
time-correlated TV channels.
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Figure 2: EESM-log-SGN Model [16] for CV-IID-FS Channel

For system simulation over a time-correlated TV channel, a tra-
ditional approach to channel representation is based on quantizing
the continuous channel gain into multiple discrete channel states,
resulting in a time-correlated Discrete-Valued Time-Varying (DV-
TV) channel. A Markov chain is used to model the state transitions
and the resulting accuracy depends on the number of states in
the model. Since 1960, the two-state (nominally: ‘good” and ‘bad’
states) Markov channel model known as Gilbert-Elliott Channel
(GEC) model has been widely used, whereby each state corresponds
to a bit error ratio or PER [33]. The state in the GEC model tran-
sitions with memory of order 1 (i.e., each state only depends on
the previous state) [33]. GEC was subsequently generalized into
the Finite-State Markov Channel (FSMC) model [9, 14, 30, 31, 34],
which contains D discrete states with memory order p (each state
depends on the previous p states) and is still widely used today.
More pertinent starting point to this work is wideband OFDM sys-
tem evaluation over a frequency selective (DV-TV-FS) channel, for
which [10] combined the L2S mapping approach with the FSMC
model. Specifically, [10] quantizes the range of the effective SNR
into multiple states and uses the FSMC model to directly charac-
terize the quantized effective SNR process. In this way, [10] can
efficiently simulate the error process using the quantized effective
SNR process and the PER-SNR lookup table. However, the methods
based on the FSMC model suffer from two disadvantages. First,
only D states of the channel gain or effective SNR are generated
while the real channel gain process or effective SNR processes are
continuous with a potentially wide range. Second, if D is increased
to improve accuracy, the number of transition probabilities to be
stored exponentially scale as DP (D — 1), which is significant [33].

Another potential model simplification of the time-correlated
TV channel is achieved by assuming Rayleigh/Rician fading. Un-
der this assumption, the channel gain is complex Gaussian, and
hence the channel gain process over time can be modeled as an
AutoRegressive (AR) process with memory order p (namely, the
AR(p) model) [3, 4, 33]. Compared to the FSMC model whose



storage complexity exponentially increases with memory order
p, the AR(p) model has significantly lower storage complexity
as it only requires storing p + 2 parameters (linear storage com-
plexity). The AR(p) model is typically used for the frequency-flat
SISO Rayleigh/Rician fading channel whose channel gain is uni-
variate [4, 33]. The multivariate extensions of the AR(p) model to
cross-correlated Rayleigh/Rician fading FS multi-subcarrier MIMO
channels was shown in [3]. This extension characterizes a vector
of channel gains over M correlated MIMO channels or subcarriers,
and suffers from order of M?p storage complexity [3].

From the survey above, the state-of-the-art error model (tradi-
tional L2S mapping) under the most general CV-TV-FS channel
suffers from the runtime issue shown in Table 1, and requires im-
plementing complicated CV-TV-FS channel models. Other state-of-
the-art runtime-efficient error models suffer from high storage com-
plexity or can only work well in special channels. Under the most
general CV-TV-FS channel, there is no lightweight and runtime-
efficient error model that can accurately characterize the error
performance in the existing literature. Thus, we are motivated to
propose a new error model to reflect the CV-TV-FS channel with low
computational and low storage complexity for network simulators.

1.3 Contributions

Similar to EESM-log-SGN model [16] that directly characterizes the
effective SNR distribution under CV-IID-FS channels, we propose to
directly characterize the effective SNR process under the general CV-
TV-FS channels. We find that under EESM L2S mapping, the natural
logarithm of an effective SNR process can be well characterized
by an AR(p) process. Thus, we name our new model the EESM-
log-AR model. The novelty of the EESM-log-AR model over the
AR(p) model in [3] is that the EESM-log-AR model only requires
modeling a single effective SNR process while the AR(p) model
in [3] requires characterizing multiple cross-correlated channel
gain processes on different subcarriers or MIMO channels. Thus,
the EESM-log-AR model is much more storage-efficient. Under
each PHY layer setup including the channel type, OFDM MIMO
setup, Modulation and Coding Scheme (MCS), channel coding and
received (RX) SNR (transmitted SNR minus path loss in dB), the
EESM-log-AR model only requires storing p +2 parameters (namely
the log-AR parameters) for characterizing effective SNR process
as an AR(p) process. This is much lower than the FSMC model, as
the number of parameters in the FSMC model in each PHY layer
setup increases exponentially with memory order p, but typically
slightly larger than the number of parameters in the EESM-log-
SGN model (i.e., 4). After storing the log-AR parameters for each
PHY layer setup, the EESM-log-AR model can generate an effective
SNR process directly by taking the natural logarithm of the AR(p)
process with desired log-AR parameters. This effective SNR process
can be used to generate an instantaneous PER process using the
PER-SNR lookup table, and the instantaneous PER process is used
to further predict correlated error performance via Bernoulli trials
for every packet. We show the flow chart of the EESM-log-AR
model in Figure 3. As the EESM-log-AR model is based on L2S
mapping and does not quantize the channel, it keeps the accuracy
of the traditional L2S mapping under the general CV-TV-FS channel.
Since the EESM-log-AR model directly characterizes the effective

SNR process at the receiver without needing to generate channels
and calculate effective SNRs within the network simulation, its
runtime is very low and is insensitive to the increase of the MIMO
dimension and bandwidth. Finally, due to the direct characterization
of the effective SNR process, we do not need to implement complex
CV-TV-FS channels in a network simulator. These properties show
the benefits of the EESM-log-AR model over existing error models.
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Figure 3: Proposed EESM-log-AR Model for CV-TV-FS Channel
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2 SYSTEM SETUP AND EESM L2S MAPPING

2.1 System Setup

In this work, we consider the most general CV-TV-FS channel. The
channel instance is assumed to be almost invariant (e.g., TGax chan-
nel models [11]) during the transmission of each packet [25]. The
time ¢ is sampled with a fixed period T, and the sampled time index
is denoted as I. We investigate the channel and receiver perfor-
mance at t = Tgl, [ = 1,2,3,... For studying the time-correlated
channel, the sample period T is chosen to be several times smaller
than the channel coherence time (the time duration over which two
received signals have a strong correlation) T, [32]. Noise at each
receiver is assumed to be AWGN [25], whose power is the same
over different subcarriers. The power of AWGN and the received
signal power (transmit power minus path loss in dB) determine the
RX SNR. All transmissions are assumed to be interference-free.

We consider the OFDM MIMO transmission with perfect syn-
chronization, perfect phase tracking, and Channel State Information
at the Receiver/Transmitter (CSIR/CSIT) determined from noise-
free channel estimate [25]. ngs spatial streams are transmitted from
the desired transmitter to the receiver using the set of subcarri-
ers Nsc. On each subcarrier i € N, the modulated ngg spatial
streams are then mapped into n; transmit antennas using a n; X ngg
MIMO precoding matrix F;[I] for subcarrier i and time index .
The generation of the MIMO precoding matrices F;[l],i € N
requires the knowledge of the n, X n; frequency-domain chan-
nel matrices H;[I],i € Nsc (CSIT). The channel H;[[] is FS as its
value varies over subcarrier i and is TV as its value varies over
time index I. The desired transmitted packet is passed through the
channel H; [1],i € Ny and arrives at the n, receive antennas at the
receiver. At subcarrier i and time index [, each receiver employs
linear MIMO decoding to recover the desired signal with n, X ng
MIMO decoding matrices W;[I],i € Nsc using the knowledge of
H;[l],i € Nsc (CSIR). At receiver’s i-th subcarrier i € Nsc and
for stream j € {1,2,..., ns}, the post-equalization (post-MIMO-
decoding) SNR Tj ;[] at time index [ is [13]

P Wit |
= PSS HL LT 1P + o2l W 11

L[] (1)



where P, is the received signal power at the receiver from the
desired transmitter, o2 is the AWGN power on each subcarrier of
the receiver, [-] ; denotes the j-th column of a matrix, [-]-; denotes
the matrix excluding its j-th column, and || - || is the Euclidean
norm of a vector. The post-equalization SNR matrix at the receiver
is defined by T'[1] = (I,j)ie Ny, 1<) <ns,» a0d is an important metric
reflecting packet error performance.

In this paper, we use the simulation setup in Table 2 for all simu-
lations. A 20MHz OFDM MIMO system with SVD MIMO precoding
and MMSE MIMO decoding is considered. The CV-TV-FS MIMO
channel is chosen as the TGax channel model-D with Jakes’ Doppler
spectrum [1] generated by MATLAB WLAN [22] and Communica-
tion [21] Toolboxes. The maximum user moving speed (0.089km/h)
in the channel is chosen to be the same as the maximum environ-
mental speed in TGax channels [29]. This implies that the channel
coherence time is T, = 0.978s [32]. The sample period is chosen as
Ts = 0.250s because the considered channel typically does not have
too significant change over 0.250s according to our simulation.

Table 2: PHY Layer Simulation Setup

Communication system IEEE 802.11ax

MATLAB WLAN &
Link simulator Communication
Toolboxes R2020b
# of packets per simulation 200000

Channel type TGax channel model-D [22]

Doppler spectrum Jakes’ model [1]

Maximum moving speed 0.089km/h [29]

Coherence time T, = 0.978s [32]

Sample period Ts = 0.250s
Channel coding LDPC
Payload length 1000
MCS 4
RX SNR 15dB
Bandwidth 20 MHz
Channel estimation Noise-free
Phase tracking & Synchronization Perfect
MIMO precoding/decoding SVD/MMSE
MIMO dimension ngXnp=4x2
MIMO streams Ngs = 2
CPU Intel Core i5 CPU at 2.0GHz

2.2 Traditional EESM L2S Mapping

We now overview traditional EESM L2S mapping [7, 8], a baseline
error model under the CV-TV-FS channel and a foundation of the
proposed error model. The key motivation for traditional EESM L2S
mapping is mapping the post-equalization SNR matrix I'[!] into a
single scalar called the effective SNR T, s r[I] to facilitate evaluating
the packet error performance in network simulation. As shown
in Figure 1, the traditional EESM L2S mapping requires a channel
matrix generator implemented in the network simulator to generate
channel matrices H; [1], i € N for each packet transmitted at time
index I. Then, the MIMO precoding matrices F;[I],i € Nsc and
MIMO decoding matrices W;[I],i € Nsc are generated based on

the channel matrices H; [[],i € N for that packet. These matrices
are used to calculate the post-equalization SNR matrix I'[/] given
by (1). Notice that the above matrix calculations for obtaining I'[/]
are runtime-expensive. The post-equalization SNR matrix I'[[] is
then mapped into the effective SNR given by [12, 13, 25]

sy Tl
gl =-pa| L 5 S (<) o)

Nge N n
S¢S jeNge =1

where nge = |N| is the number of subcarriers, and § is EESM L2S
mapping tuning parameter that depends on PHY layer configura-
tions (channel type, OFDM MIMO setup, MCS and channel coding).
The tuning parameter f in (2) is obtained by minimizing the Mean
Square Error (MSE) between the instantaneous PER-effective SNR
curve for the simulated frequency-selective fading channel and the
instantaneous PER-SNR curve under the AWGN-SISO channel [28].
The effective SNR I, r¢[!] is mapped into an instantaneous PER
Pins (1] using the instantaneous PER-SNR lookup table under the
AWGN-SISO channel at the specified packet length, channel coding
and MCS. The instantaneous packet error state Y[I] (‘1 for error
and ‘0’ for success) can be predicted from the Bernoulli trial with
instantaneous PER Pjus[1]. Such an error state prediction method
has high accuracy in terms of average PER and temporal error
correlation, as will be shown in Figure 9 and Figure 10.

We compare the runtimes of the full PHY simulation and the
traditional EESM L2S mapping in Table 1. Our simulation finds that
the traditional EESM L2S mapping achieves smaller runtime than
the full PHY simulation. However, the runtime of the traditional
EESM L2S mapping is still very large and scales with MIMO dimen-
sion and bandwidth due to generating channel matrices, precoding
matrices, MIMO decoding matrices, and post-equalization SNR ma-
trices online. According to the survey in the Introduction, there is
no lightweight, runtime-efficient, and accurate error model over
the general CV-TV-FS channels. This motivates us to propose a
new general error model that outperforms traditional EESM L2S
mapping with respect to runtime over the CV-TV-FS channels.

3 EESM-LOG-AR MODEL

In our previous work [16], we observed that the network simulator
only needs the effective SNR and its mapped instantaneous PER
for characterizing OFDM MIMO link performance. Thus in [16],
we sought to bypass any online individual channel generation, pre-
coder and decoder calculation as well as post-equalization SNR
matrix calculation steps, and directly model the effective SNR dis-
tribution for a CV-IID-FS channel. In this work, we extend such an
idea to the general CV-TV-FS channel with the focus on directly
modeling the effective SNR process. The proposed effective SNR
process model is called the EESM-log-AR model. We discuss the
principle, model assumption validation, error performance accu-
racy, and simulation runtime of the EESM-log-AR model as follows.

3.1 Modeling Effective SNR Process

Inspired by [7, 16] that find the marginal distribution of In(T, £ ¢ [1])
approximately follows the normal (Gaussian) distribution or SGN
distribution, we directly model the random process

X[1] = In(Tegr[1]).- (3)
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Figure 4: PACF of Effective SNR Processes under the Setup in Ta-
ble 2

Since the AR(p) process is widely used in random process modeling
and the marginal distribution of X [I] is approximately normal, we
model the random process X[I] as the AR(p) process:

P
X[ =c+ ) mX[l—m]+elll, @
m=1

where ¢ is a constant, ¢, m = 1,2,...,p are AR(p) model coeffi-
cients, and €[/] is the innovation process that is assumed to be the
zero-mean white Gaussian process with a constant variance UIZ,.
The AR(p) process in (4) is a Gaussian process, whose marginal
distribution is Gaussian [17]. We call all the p + 2 parameters in (4)
as log-AR parameters. As the effective SNR depends on the PHY
layer setup including the channel type, OFDM MIMO setup, MCS,
channel coding, and RX SNR (transmitted SNR minus path loss in
dB), the log-AR parameters also depend on such a PHY layer setup.
Notice that the log-AR parameters are insensitive to the change
of packet length, because the packet length mostly impacts the
instantaneous PER, not the effective SNR. The log-AR parameters
under a desired PHY layer setup are generated offline and stored in
the network simulator for network simulation. As X[!] is obtained
from EESM L2S mapping, we call such a model the EESM-log-AR
model. The flow chart of the EESM-log-AR model in a network
simulator is shown in Figure 3.

The modeling of the X[I] as AR(p) process presumes X [!] is sta-
tionary. We validate this assumption using the modified Leybourne-
McCabe (LMC) Test [24]. In the modified LMC test, the null hypoth-
esis is that X[I] is a stationary AR(p) process. By our simulation,
the modified LMC test fails to reject the null hypothesis with a
large p-Value (> 0.05). This means that X[[] is stationary and can
be modeled as an AR(p) process.

We next determine the memory order p using Partial AutoCor-
relation Function (PACF). By [6], the PACF of an AR(p) process
becomes 0 after lag p. From Figure 4, although we do not observe
such an ideal property for X[I], it’s practical to choose p to be a
large enough value, such that the PACF is close to 0 afterwards. For
example, from Figure 4, we choose p = 10 for the setup in Table 2.

After determining the model order p and obtaining a long sam-
ple path of X[I], we estimate the log-AR parameters c, ¢, m =
1,2,...,pand O’IZJ using Maximum Likelihood (ML) estimation [20].
We denote the estimated log-AR parameters at RX SNR y as é(y),

Table 3: ML Estimation of Log-AR Parameters at Different RX SNRs
under the Setup in Table 2 and p = 10

RXSNRy | ¢() | i) | d5) | do() | 65,0
12dB 0.5764 | 1.3454 | 0.3685 | 0.0607 | 0.0076
13dB 0.6525 | 1.2702 | 0.3068 | 0.0474 | 0.0085
14dB 0.7297 | 1.2047 | 0.2561 | 0.0370 | 0.0096
15dB 0.8093 | 1.1443 | 0.2128 | 0.0294 | 0.0112

gﬁm(y), m=1,2,...,p and é'fz,(y). Table 3 shows part of the ML
estimated log-AR parameters, and indicates that the estimated log-
AR parameters are sensitive to the change of RX SNRs. However,
storing estimated log-AR parameters for all RX SNRs for lookup
at runtime is infeasible due to escalating storage complexity. As
an alternative, we store log-AR parameters for a few selected RX
SNRs, which are then used to interpolate these estimates for other
RX SNRs. Specifically, for any RX SNR y € [y1, y2], where y; and
Y2 are two RX SNRs with known log-AR parameters, we can model
the estimated log-AR parameters at RX SNR y as

&(y) = (1 - HE(n) + E(y2),
Gm(y) = (1 = OPm(y1) + Efm(y2), m=1,2,....p,
Gp(r) = (1= 85(11) + E65(y2) ()

where ¢ = %. We call the EESM-log-AR with parameters ob-
tained using (5) as the EESM-log-AR with Linear Interpolated (LI)
parameters. We can easily check the relation in (5) holds with high
accuracy using the examples in Table 3. This significantly reduces
the storage complexity of the EESM-log-AR model.

We plot the sample paths of X[I] obtained from EESM and the
EESM-log-AR models with estimated log-AR parameters in Figure 5.
From Figure 5, we can see that the EESM-log-AR model under ML
parameters or LI parameters generates a process with a similar
mean compared to the traditional EESM L2S mapping and does not
produce outliers (very large or very small values). This shows the
goodness of the EESM-log-AR model visually. For rigorous valida-
tion of the EESM-log-AR model, we present residual diagnoses and
packet error performance validation in the next two subsections.

3.2 Residual Diagnoses

A standard method to validate the AR(p) model is diagnosing the
residual

P
el = X[ =é(y) = ), $m(y)XTL = m], (6)
m=1

which is the estimated innovation process [6]. In the EESM-log-
AR model, we assume the innovation process is white, zero-mean
Gaussian, and has a constant variance. In the following, we validate
these assumed properties of the innovation process. Our simulation
is run at RX SNR y = 15dB using ML parameters and LI parameters,
where the LI parameters are estimated from the ML parameters
under y; = 14dB and y2 = 16dB using (5).

We first test the whiteness of the residual €[] by plotting the
AutoCorrelation Function (ACF) and PACF of the residual in Fig-
ure 6. Figure 6 shows that the residual is approximately white as
the ACF and PACF of residual are close to 0 at lags larger than 0.
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Figure 6: Residual Whiteness Test under the Setup in Table 2

We next check whether the residual é[[] follows the zero-mean
Gaussian distribution. In Figure 7, we fit the empirical histogram
of é[I] at 200000 continuous time instants using Gaussian distri-
bution. The Gaussian approximation is close to zero-mean and
matches the histogram of é[/]. However, the skewness and kurtosis
of the histogram of €[I] are 0.164 and 3.400 respectively, while the
skewness and the kurtosis of a Gaussian distribution are 0 and 3
respectively. This implies that the innovation process is not exactly
Gaussian, hence the marginal distribution of the X[I] is also not
exactly Gaussian. In fact, in our previous work [16], we validated
that the marginal distribution of the X[I] follows SGN distribu-
tion with wider ranges of skewness and kurtosis. Finding a proper
innovation process that makes the marginal distribution of X [I]
follow SGN distribution is non-trivial. A recent paper [27] proposes

[ Residual under ML parameters
[CIResidual under LI parameters

Normal fitting of residual under ML parameters
= = Normal fitting of residual under LI

-0.4 -0.2 0 0.2 0.4 0.6

Figure 7: Residual Distribution under the Setup in Table 2

an ARSGN(p) model that modifies the AR(p) model by relaxing
the white Gaussian innovation process into the IID SGN process.
[27] claims that the ARSGN(p) model has higher flexibility by ac-
commodating the skewness and kurtosis of the innovation process.
We leave explorations of such model extensions for future work.

We finally check whether the residual é[!] has a constant vari-
ance by checking the whiteness of the squared residual series
€[1]? [26]. That is, if €[I]? is white, then é[I] has a constant vari-
ance. From Figure 8, we can see that the ACF and PACF of the
squared residual series are close to 0 at lag larger than 1 but have
small non-zero values at lag 1. In this case, one can model X[I]
as a composite AR(p) and GARCH(P, Q) process [23]. However,
this can significantly increase the model complexity. In addition,
from our implementation, we find that the composite AR(p) and
GARCH(P, Q) modeling of X[I] can lead to higher inaccuracy in
average PER prediction than the AR(p) modeling. Thus, we do not
consider AR(p) and GARCH(P, Q) modeling of X[!] in this work.

This subsection validates the AR(p) modeling of In(T s [1]),
an intermediate output of the EESM-log-AR error model. In the
next subsection, we validate the statistics of the packet error per-
formance, the final output of the EESM-log-AR error model that
directly impacts the higher layer performance.

3.3 Packet Error Performance Validation

The effective SNR T, ff[l] modeled in the above predicts instan-
taneous PER Pjps[l] via an AWGN-SISO PER-SNR lookup table
stored in the network simulator. At the output of the EESM-log-AR
error model, the instantaneous packet error state Y[I] (‘1” for error
and ‘0’ for success) for a packet can be predicted from the instan-
taneous PER Pj,s[l] via a Bernoulli trial. The first-order statistic
of the packet error performance is the average PER. The average
PER is the sample mean of Y[I] over multiple time instants, i.e.,
% Zf:l Y[I], where L is the number of simulated time indices. In
this work, we consider the setup in Table 2, where L = 200000.
The second-order statistics of the error performance are the ACF
and PACF of the instantaneous error state Y[!]. The ACF of Y[I] is
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Figure 8: ACF and PACF of Squared Residual under the Setup in
Table 2

widely used to validate the goodness in modeling temporal correla-
tion of the error performance [33].

Figure 9 and Figure 10 plot the average PER, ACF, and PACF of
the error performance predicted by full PHY simulation, traditional
EESM L2S mapping, and EESM-log-AR error model with ML pa-
rameters and LI parameters. We find both traditional EESM L2S
mapping and EESM-log-AR error model with ML parameters and
LI parameters achieve very good average PER and temporal cor-
relation prediction when compared to the most accurate full PHY
simulation. Although Section 3.2 shows slight model imperfection
of EESM-log-AR error model, the simulation in this part shows
that the first and second order of error performance produced by
the EESM-log-AR error model is very accurate. In addition, this
simulation shows that the low-storage-complexity EESM-log-AR
error model with LI parameters achieves almost the same first order
and second order error performance as the high-storage-complexity
EESM-log-AR error model with ML parameters. These results show
that the EESM-log-AR error model can achieve desired first/second
order error prediction performance with low-storage-complexity.

3.4 Runtime Evaluation

For traditional EESM L2S mapping or EESM-log-AR under each PHY
layer setup, we need to perform the offline full PHY simulation once
with runtime shown in Table 1. Table 4 shows their average runtime
(averaged over 10 trials) in recursive online network simulations.
We can see that the network simulation runtime of EESM-log-AR
is much smaller than that of traditional EESM L2S mapping. This is
because EESM-log-AR bypasses the process of generating channels
and post-equalization SNRs, and directly generates effective SNR
processes. Also, while the runtime of traditional EESM L2S mapping
scales with MIMO dimension and bandwidth, the runtime of EESM-
log-AR is insensitive to the change of the MIMO dimension and
bandwidth. This is because the change of the system dimensions
only changes the values of the log-AR parameters, which seldom
changes the runtime of AR(p) process generation.
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Figure 9: Comparison of Average PER under the Setup in Table 2,
where the Simulated Average PER Goes Down to 102 as in Most
Data Applications [29]
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Figure 10: Comparison of ACF and PACF of Instantaneous Error
State under the Setup in Table 2, where the Sample Period T; = 0.250s
and the Coherence Time T, = 0.978s

Table 4: Average Runtime Comparison in MATLAB: EESM-log-AR
vs. Traditional EESM L2S Mapping, 200000-packet Simulation under
the Time-Varying TGax Channel at a Specific RX SNR [15]

N¢ X Ny | Bandwidth | Traditional EESM | EESM-log-AR
1x1 20MHz 97 min 0.4 sec
1x1 40MHz 126 min 0.4 sec
42 20MHz 234 min 0.4 sec
4x2 40MHz 320 min 0.4 sec
8 X2 20MHz 428 min 0.4 sec
8X2 40MHz 573 min 0.4 sec




4 CONCLUSION AND FUTURE WORK

In this work, we showed that traditional EESM L2S mapping pro-
vides accurate packet error performance prediction under the gen-
eral CV-TV-FS channel, but suffers from scaling runtime complexity
with system dimension. Our previous work [16] showed a similar
runtime complexity issue for the CV-IID-FS channel and dealt with
this issue by proposing the EESM-log-SGN model, which bypasses
the CV-IID-FS channel generation as well as post-equalization SNRs
calculation and directly generates effective SNR distribution. In-
spired by [16], we provided, in this work, the EESM-log-AR error
model that models the effective SNR process directly. We validated
the EESM-log-AR model using the modified LMC test, residual
diagnoses, and error performance validation. We showed that it
can predict the average PER and temporal correlation of the error
performance very well, while keeping the runtime very low and
insensitive to the change of system dimension. The storage com-
plexity of the EESM-log-AR error model is low as the number of
model parameters increases linearly with the memory order and
the proposed LI parameter estimation further reduces the storage
complexity. The EESM-log-AR error model also does not require im-
plementing increasingly complex CV-TV-FS channels in a network
simulator. These properties show that the proposed EESM-log-AR
error model is a promising candidate for the error model under
the general CV-TV-FS channel. The MATLAB codes related to the
EESM-log-AR error model are available at [15].

We comment that our previous EESM-log-SGN model [16] is
more accurate for the CV-IID-FS channel, as it accurately character-
izes the marginal distribution of the logarithm of the effective SNR
process using an SGN distribution (an extension of the Gaussian
distribution) that can simultaneously control skewness and kurtosis.
The EESM-log-AR error model proposed in this work has wider
applicability as it models the error performance under the general
time-correlated CV-TV-FS channel, but it lacks the accuracy in con-
trolling the skewness and kurtosis of the marginal distribution of
the the logarithm of the effective SNR process due to the Gaussian
innovation assumption in the AR(p) model.

For future work, we will extend the EESM-log-AR error model
to the OFDMA, MU-MIMO, and interference cases. Extending the
EESM-log-AR error model to millimeter-wave channels is also a
promising direction.
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