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Abstract
We present new probabilistic and combinatorial identities

relating three random processes: the oriented swap pro-

cess (OSP) on n particles, the corner growth process, and

the last passage percolation (LPP) model. We prove one

of the probabilistic identities, relating a random vector

of LPP times to its dual, using the duality between the

Robinson–Schensted–Knuth and Burge correspondences.

A second probabilistic identity, relating those two vectors

to a vector of “last swap times” in the OSP, is conjec-

tural. We give a computer-assisted proof of this identity for

n ≤ 6 after first reformulating it as a purely combinato-

rial identity, and discuss its relation to the Edelman–Greene

correspondence. The conjectural identity provides precise

finite-n and asymptotic predictions on the distribution of

the absorbing time of the OSP, thus conditionally solving

an open problem posed by Angel, Holroyd, and Romik.
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1 INTRODUCTION

Randomly growing Young diagrams, and the related models known as Last Passage Percola-
tion (LPP) and the Totally Asymmetric Simple Exclusion Process (TASEP), are intensively studied
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stochastic processes. Their analysis has revealed many rich connections to the combinatorics of Young

tableaux, longest increasing subsequences, the Robinson–Schensted–Knuth (RSK) algorithm, and

related topics—see, for example, [31, Chs. 4–5].

Random sorting networks are another family of random processes. Two main models, the Uniform
Random Sorting Network and the Oriented Swap Process (OSP), have been analyzed [1–3, 15, 17] and

are known to have connections to the TASEP, LPP, and also to staircase shape Young tableaux via the

Edelman–Greene bijection [19].

In this article, we discuss a new and surprising meeting point between the aforementioned subjects.

In an attempt to address an open problem from [2] concerning the absorbing time of the OSP, we

discovered elegant distributional identities relating the OSP to LPP, and LPP to itself. We will prove one

of the two main identities; the other one is a conjecture that we have been able to verify for small values

of a parameter n. The analysis relies in a natural way on well-known notions of algebraic combinatorics,

namely the RSK, Burge, and Edelman–Greene correspondences.

Our conjectured identity apparently requires new combinatorics to be explained and has

far-reaching consequences for the asymptotic behavior of the OSP as the number of particles grows to

infinity, as will be explained in Section 1.3.

Most of the results in this article were obtained in 2019 and announced in the proceedings of

the 32nd Conference on Formal Power Series and Algebraic Combinatorics [7]. The present article

contains complete proofs, as well as additional material including:

• More detailed information about the RSK and Burge correspondences for random tableaux and

their connection to distributional symmetries in LPP.

• Some explicit formulas related to the conjectural identity and its connection to the largest

eigenvalue of certain random matrices and Tracy–Widom distributions.

• More details about the Edelman–Greene correspondence and its relation to the conjectural

identity.

1.1 Models

The two main identities presented in this article take the form

Un
D
= Vn

D
= Wn,

where
D
= denotes equality in distribution, and Un, Vn, Wn are (n − 1)-dimensional random vectors

associated with the following three random processes.

1.1.1 The oriented swap process

This process [2] describes randomly sorting a list of n particles labeled 1,… , n. At time t = 0, particle

labeled j is in position j on the finite integer lattice [1, n] = {1,… , n}. All pairs of adjacent positions

k, k + 1 of the lattice are assigned independent Poisson clocks. The system then evolves according to

the random dynamics whereby each pair of particles with labels i, j occupying respective positions k,

k + 1 attempt to swap when the corresponding Poisson clock rings; the swap succeeds only if i < j,
that is, if the swap increases the number of inversions in the sequence of particle labels. The OSP can

also be interpreted as a continuous-time random walk on the Cayley graph of Sn with adjacent swaps

as generators (considered as a directed graph). See Figure 1A.
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FIGURE 1 Graphs related to the random walks representations of the oriented swap process and the randomly growing

Young diagram model. They can be regarded as directed graphs, with edges directed from bottom to top. (A) The Cayley

graph of Sn with Coxeter generators given by adjacent transpositions, for n = 4. (B) The Young sublattice (𝛿n) of all Young

sub-diagrams of the staircase shape 𝛿n, for n = 4

We define the vector Un = (Un(1),… ,Un(n − 1)) of last swap times by

Un(k) ∶= the last time t at which a swap occurs between positions k and k + 1.

As explained in [2], the last swap times are related to the particle finishing times: it is easy to

see that max{Un(n − k),Un(n − k + 1)} is the finishing time of particle k (with the convention that

Un(0) = Un(n) = 0); see the equation on the last line of page 1988 of [2].

1.1.2 Randomly growing a staircase shape Young diagram

This process is a variant of the corner growth process. Starting from the empty Young diagram, boxes

are successively added at random times, one box at each step, to form a larger diagram until the staircase

shape 𝛿n = (n − 1, n − 2,… , 1) is reached. We identify each box of a Young diagram 𝜆 with the

position (i, j) ∈ N2, where i and j are the row and column index, respectively. All boxes are assigned

independent Poisson clocks. Each box (i, j) ∈ 𝛿n, according to its Poisson clock, attempts to add itself

to the current diagram 𝜆, succeeding if and only if 𝜆 ∪ {(i, j)} is still a Young diagram. Notice that

the randomly growing Young diagram model can be thought of as a continuous-time random walk,

starting from ∅ and ending at 𝛿n, on the graph of Young diagrams contained in 𝛿n (regarded in the

obvious way as a directed graph). See Figure 1B. Furthermore, note that every such random walk path

is encoded by a standard Young tableau of shape 𝛿n, where the box added after m steps is filled with

m, for all m = 1,… ,
(

n
2

)
. For more details on this, see Section 3.1 and, in particular, (22).

We define Vn = (Vn(1),… ,Vn(n − 1)) as the vector that records when boxes along the (n − 1)th
anti-diagonal are added:

Vn(k) ∶= the time at which the box at position (n − k, k) is added.
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FIGURE 2 A schematic illustration of point-to-line and line-to-line last passage percolation vectors. (A) Point-to-line LPP

vector Vn. (B) Line-to-line LPP vector Wn

1.1.3 The last passage percolation model

This process describes the maximal time spent traveling from one vertex to another of the

two-dimensional integer lattice along a directed path in a random environment. Let (Xi,j)i,j≥1 be an array

of independent and identically distributed (i.i.d.) non-negative random variables, referred to as weights.

For (a, b), (c, 𝑑) ∈ N2, define a directed lattice path from (a, b) to (c, 𝑑) to be any sequence ((ik, jk)) m
k=0

of minimal length |c−a|+|𝑑−b| such that (i0, j0) = (a, b), (im, jm) = (c, 𝑑), and |ik+1−ik|+|jk+1−jk| = 1

for all 0 ≤ k < m. We then define the LPP time from (a, b) to (c, 𝑑) as

L(a, b; c, 𝑑) ∶= max
𝜋∶(a,b)→(c,𝑑)

∑
(i,j)∈𝜋

Xi,j, (1)

where the maximum is over all directed lattice paths 𝜋 from (a, b) to (c, 𝑑). It is immediate to see that

LPP times starting at a fixed point, say (1, 1), satisfy the recursive relation

L(1, 1; i, j) = max {L(1, 1; i − 1, j),L(1, 1; i, j − 1)} + Xi,j, i, j ≥ 1, (2)

with the boundary condition L(1, 1; i, j) ∶= 0 if i = 0 or j = 0.

If the weights Xi,j are i.i.d. exponential random variables of rate 1, the LPP model has a precise

connection (see [31, Ch. 4]) with the corner growth process, whereby each random variable L(1, 1; i, j)
is the time when box (i, j) is added to the randomly growing Young diagram. We can thus equivalently

define Vn in terms of the last passage times between the fixed vertex (1, 1) and the vertices (i, j) along

the anti-diagonal line i + j = n:

Vn = (L(1, 1; n − 1, 1),L(1, 1; n − 2, 2),… ,L(1, 1; 1, n − 1)). (3)

We refer to this as the point-to-line LPP vector (see the illustration in Figure 2A and the discussion

in Section 1.3).

Observe that Vn(k) is the LPP time between two opposite vertices of the rectangular lattice

[1, n − k] × [1, k], namely (1, 1) and (n − k, k). On the other hand, we can also consider the “dual”

last passage times between the other two opposite vertices of the same rectangles, defining the vector

Wn = (Wn(1),… ,Wn(n − 1)) as

Wn ∶= (L(n − 1, 1; 1, 1),L(n − 2, 1; 1, 2),… ,L(1, 1; 1, n − 1)). (4)
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In this case, the starting and ending points for each last passage time vary simultaneously along

the two lines i = 1 and j = 1, respectively. We then refer to this vector W as the line-to-line LPP vector

(see Figure 2B).

1.2 Main results

We can now state our results.

Theorem 1. Vn
D
= Wn for all n ≥ 2.

Conjecture 1. Un
D
= Vn for all n ≥ 2.

One might hope to prove Theorem 1 and Conjecture 1 by methods similar to those used to derive

standard relations about LPP. For example, the LPP recursive relation (2) yields an explicit recursive

formula for the joint density of Vn,

pVn(v1,… , vn−1) = ∫
min(v1,v2)

0

dy1∫
min(v2,v3)

0

dy2 · · ·∫
min(vn−2,vn−1)

0

dyn−2

× exp

{n−1∑
k=1

[
max(yk−1, yk) − vk

]}
pVn−1

(y1,… , yn−2) (5)

for n ≥ 3, with the convention that y0 = yn−1 = 0, with the initial condition pV2
(v) = e−v𝟙[0,∞)(v). Sur-

prisingly, formula (5) also holds for the line-to-line LPP vector Wn (as it must, by virtue of Theorem 1);

Conjecture 1 says that the joint density of Un should also satisfy the same recursive relation. However,

we know of no simple recursive structure in the corresponding models to make possible such a direct

proof.

Theorem 1 and Conjecture 1 imply the equality of the one-dimensional marginal distributions

Un(k)
D
= Vn(k)

D
= Wn(k), for all 1 ≤ k ≤ n − 1, n ≥ 2. (6)

The identity Un(k)
D
= Vn(k) was proved by Angel, Holroyd, and Romik [2] using a connection

between the OSP, the TASEP and the corner growth model. The identity Vn(k)
D
= Wn(k) follows imme-

diately from the observation that these two variables are the LPP times, on the same i.i.d. environment

(Xi,j)i,j≥1, between two pairs of opposite vertices of the same rectangular lattice [1, n − k] × [1, k].
It is also easy to see that the following two-dimensional marginals coincide

(Un(1),Un(n − 1))
D
= (Vn(1),Vn(n − 1))

D
= (Wn(1),Wn(n − 1)) , (7)

for all n ≥ 2. The second equality actually holds almost surely, since Vn and Wn are LPP vectors

on the same environment (Xi,j)i,j≥1. To check the first identity, observe that Un(n − 1) and Un(1) are

the finishing times of the first and last particle in the OSP, respectively. Particle labeled 1 (resp. n)

jumps n − 1 times only to the right (resp. to the left), always with rate 1. All these jumps are inde-

pendent of each other, except the one that occurs when particles 1 and n are adjacent and swap.

Hence, (Un(1),Un(n − 1)) is jointly distributed as (Γ + X,Γ′ + X) where Γ,Γ′ are independent with

Gamma(n − 2, 1) distribution and X has Exp(1) distribution and is independent of Γ,Γ′. This is the

same joint distribution of the LPP times (Vn(1),Vn(n − 1)).
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Theorem 1 is proved in Section 2. As we will see, the distributional identity Vn
D
= Wn arises

as a special case of a more general family of identities (Theorem 4) involving LPP times between

pairs of opposite vertices in rectangles [1, i] × [1, j], where each (i, j) belongs to the so-called border

strip of a Young diagram. This result is, in turn, a consequence of the duality between the RSK and

Burge correspondences, and holds also in the discrete setting where the weights Xi,j follow a geometric

distribution. Theorem 1 can be seen as a special case of a “shift-invariance” symmetry, conjectured

in [12] for a variety of integrable stochastic systems, and recently proved in full generality in [16,

Theorem 1.2].

On the other hand, the conjectural equality in distribution between Un and Vn remains mys-

terious, but we made some progress toward understanding its meaning by reformulating it as an

algebraic-combinatorial identity that is of independent interest.

Conjecture 2. For n ≥ 2, we have the identity of vector-valued generating functions∑
t∈SYT(𝛿n)

ft(x1,… , xn−1)𝜎t =
∑

s∈SNn

gs(x1,… , xn−1)𝜋s. (8)

Precise definitions and examples will be given in Section 3, where we will prove the equivalence

between Conjectures 1 and 2. For the moment, we only remark that the sums on the left-hand and

right-hand sides of (8) range over the sets of staircase shape standard Young tableaux t and sorting

networks s of order n, respectively; ft and gs are certain rational functions, and 𝜎t, 𝜋s are permutations

in the symmetric group Sn−1 that are associated with t and s.

The identity (8) reduces the proof of Un
D
= Vn for fixed n to a concrete finite computation. This

enabled us to provide a computer-assisted verification of Conjecture 1 for 4 ≤ n ≤ 6 (the cases n = 2, 3

can be checked by hand) and thus prove the following:

Theorem 2. Un
D
= Vn for 2 ≤ n ≤ 6.

1.3 Absorbing times and random matrices

Conjecture 1 has an important consequence in the asymptotic analysis of the OSP. Specifically, it

addresses the open problem posed in [2] (see also [31, Ex. 5.22(e), p. 331]) about the limiting

distribution, as n → ∞, of

Umax
n ∶= max

1≤k≤n−1
Un(k), (9)

that is, the absorbing time of the OSP on n particles.

Observe first that the random variable

Vmax
n ∶= max

1≤k≤n−1
Vk = max

𝜋∶(1,1)→(a,b),
a+b=n

∑
(i,j)∈𝜋

Xi,j, (10)

where (Xi,j)i,j≥1 are i.i.d. exponential random variables of rate 1, represents the time until the staircase

shape 𝛿n is reached in the corner growth process. As the last expression in (10) points out, it can also

be seen as the maximal time spent traveling from the point (1, 1) to any point of the line {(a, b) ∈ N2 ∶
a + b = n} along a directed path in an exponentially distributed random environment. This variable

has been referred to as the point-to-line LPP time and has been an object of study in the literature.
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It is known that the point-to-line LPP time Vmax
n with exponential weights is exactly distributed as

the largest eigenvalue 𝜆
(n)
max of an n × n random matrix drawn from the Laguerre orthogonal ensemble

(LOE)—see, for example, [4, 20]. In the limit as n → ∞, 𝜆
(n)
max features KPZ fluctuations of order

n1∕3 and has the 𝛽 = 1 Tracy–Widom distribution (first obtained by Tracy and Widom in [35]) as its

limiting law; see [26, Theorem 1.1].

The asymptotic distribution of the point-to-line LPP time and some closely related random vari-

ables have also been studied independently of its connection with random matrix theory. Baik and

Rains [5] proved a limit theorem for a conceptually related model, that is, the length of the longest

increasing subsequence of random involutions. Borodin, Ferrari, Prähofer, and Sasamoto [11, 32]

studied the asymptotic distribution of the TASEP with particle-hole alternating (“flat”) initial config-

uration; using the usual correspondence between LPP and TASEP, this can be viewed as an analogous

result for the point-to-line LPP model. More recently, Bisi and Zygouras [9, Theorem 1.1] obtained

the asymptotics of the point-to-line LPP time (10) using the determinantal structure provided by

symplectic Schur functions.

On the other hand, modulo Conjecture 1, we have that

Umax
n

D
= Vmax

n . (11)

The precise knowledge of the (finite n and asymptotic) distribution of Vmax
n thus extends to Umax

n .

Corollary 1. Let Umax
n be the absorbing time of the OSP on n particles, as in (9). Then, assuming

Conjecture 1:

(i) for any n ≥ 2, t ≥ 0,

P (Umax
n ≤ t) = 1

Cn ∫[0,t]n−1

∏
1≤i<j≤n−1

|yi − yj|n−1∏
i=1

e−yi dyi, (12)

where Cn is a normalization constant;
(ii) the following limit in distribution holds:

Umax
n − 2n
(2n)1∕3

n→∞
−−−−−→ F1, (13)

where F1 is the 𝛽 = 1 Tracy–Widom law.

The integral formula in (12) is the distribution function of the largest eigenvalue in the LOE. It

occurs in the following way. Let Y be an n × (n − 1) matrix with entries that are independent real

Gaussian random variables with mean zero and variance 1∕2. Then the right-hand side in (12) is the

probability that the largest eigenvalue of YYT (also called a real Wishart matrix) is less than t—see,

for example, [21, § 3.2].

As mentioned in the extended abstract version of this article [7], the distributional limit (13)

answers the open problem posed in [2] about the asymptotic distribution of the absorbing time of the

OSP, conditionally on Conjecture 1. Following the appearance of the extended abstract version of this

article, Bufetov, Gorin, and Romik found a way to derive (11) (and therefore deduce (12) and (13))

by proving a weaker version of our Conjecture 1 that equates the joint distribution functions of the

random vectors Un and Vn for “diagonal points,” that is, points (t, t,… , t) ∈ Rn−1. This is of course
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FIGURE 3 Illustration of the RSK and Burge correspondences

sufficient to imply equality in distribution of the maxima of the coordinates of the respective vectors.

Thus, the open problem from [2] is now settled.

Theorem 3 (Bufetov–Gorin–Romik [13]). The relations (11)–(13) are true unconditionally.

2 EQUIDISTRIBUTION OF LPP TIMES AND DUAL LPP TIMES ALONG
BORDER STRIPS

The goal of this section is to prove Theorem 1. We will in fact prove a more general statement

(Theorem 4), which establishes the joint distributional equality between LPP times and dual LPP times

along the so-called “border strips.”

2.1 LPP and dual LPP tableaux

We first fix some terminology. We say that (i, j) is a border box of a Young diagram 𝜆 if (i+1, j+1) ∉ 𝜆,

or equivalently if (i, j) is the last box of its diagonal. We refer to the set of border boxes of 𝜆 as the

border strip of 𝜆. We say that (i, j) ∈ 𝜆 is a corner of 𝜆 if 𝜆⧵{(i, j)} is a Young diagram. Note that every

corner is a border box. We refer to any array x = {xi,j ∶ (i, j) ∈ 𝜆} of non-negative real numbers as a

tableau of shape 𝜆. We call such an x an interlacing tableau if its diagonals interlace, in the sense that

xi−1,j ≤ xi,j if i > 1 and xi,j−1 ≤ xi,j if j > 1 (14)

for all (i, j) ∈ 𝜆, or equivalently if its entries are weakly increasing along rows and columns. As a

reference, see the tableaux in Figure 3. Their common shape 𝜆 = (4, 3, 3, 3, 1) has border strip  =
{(1, 4), (1, 3), (2, 3), (3, 3), (4, 3), (4, 2), (4, 1), (5, 1)}, and corners (1, 4), (4, 3), (5, 1); the two tableaux

on the right are interlacing.

Throughout this section, 𝜆will denote an arbitrary but fixed Young diagram. Let now X be a random
tableau of shape 𝜆 with i.i.d. non-negative random entries Xi,j. We can then define the associated LPP
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time L(a, b; c, 𝑑) on X between two boxes (a, b), (c, 𝑑) ∈ 𝜆 as in (1). We will mainly be interested in

the special 𝜆-shaped tableaux L = (Li,j)(i,j)∈𝜆 and L∗ = (L∗
i,j)(i,j)∈𝜆, which we, respectively, call the LPP

tableau and the dual LPP tableau, defined by

Li,j ∶= L(1, 1; i, j) and L∗
i,j ∶= L(i, 1; 1, j), for (i, j) ∈ 𝜆. (15)

It is easy to see from the definitions that L and L∗ are both (random) interlacing tableaux.

Now, it is evident that, for each (i, j) ∈ 𝜆, the distributions of Li,j and L∗
i,j coincide. However, the

joint distributions of L and L∗ do not coincide in general.

Proposition 1. Let X be a Young tableau of shape 𝜆 with i.i.d. non-deterministic1 entries. Then the
corresponding LPP and dual LPP tableaux L and L∗ follow the same law if and only if 𝜆 is a hook
shape (a Young diagram with at most one row of length > 1).

Proof. If 𝜆 is a hook shape, then L = L∗ almost surely; in particular, the two tableaux have the same

law. Suppose now that 𝜆 is not a hook shape, that is, (2, 2) ∈ 𝜆. By definition of L and L∗, we have

L1,1 = L∗
1,1 = X1,1, L1,2 = L∗

1,2 = X1,1 + X1,2, L2,1 = L∗
2,1 = X1,1 + X2,1,

L2,2 = X1,1 + max(X1,2,X2,1) + X2,2, L∗
2,2 = X2,1 + max(X1,1,X2,2) + X1,2.

It immediately follows that

L2,2 − L1,2 − L2,1 + L1,1 = X2,2 − min(X1,2,X2,1),
L∗

2,2 − L∗
1,2 − L∗

2,1 + L∗
1,1 = max(0,X2,2 − X1,1).

As by hypothesis the Xi,j’s are non-deterministic, there exists t ∈ R such that their (common)

cumulative distribution function F satisfies 0 < F(t) < 1. We then have, by independence of the Xi,j’s,

that

P(L2,2 − L1,2 − L2,1 + L1,1 < 0) = P(X2,2 < min(X1,2,X2,1))
≥ P(X2,2 ≤ t, X1,2 > t, X2,1 > t) = F(t)(1 − F(t))2 > 0.

On the other hand,

P(L∗
2,2 − L∗

1,2 − L∗
2,1 + L∗

1,1 < 0) = P(max(0,X2,2 − X1,1) < 0) = 0.

It follows that L2,2−L1,2−L2,1+L1,1 and L∗
2,2−L∗

1,2−L∗
2,1+L∗

1,1 are not equally distributed. In particular,

L and L∗ do not follow the same joint law. ▪

The main result of this section is that certain distributional identities between LPP and dual LPP

do hold as long as the common distribution of the weights is geometric or exponential:

Theorem 4. Let X be a Young tableau of shape 𝜆 with i.i.d. geometric or i.i.d. exponential weights.
Then the border strip entries (and in particular the corner entries) of the corresponding LPP and dual
LPP tableaux L and L∗ have the same joint distribution.

1In the sense that their common distribution is not a Dirac measure.
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Theorem 1 immediately follows from Theorem 4 applied to tableaux of staircase shape (n− 1, n−
2,… , 1), since in this case the coordinates of Vn and Wn are precisely the corner entries of L and L∗,

respectively.

Remark 1. In a similar vein to how Proposition 1 illustrates the limits of what types of identities

in distribution might be expected to hold, note as well that, in general, Theorem 4 fails to hold if the

weights are neither geometric nor exponential. For example, consider the square shape 𝜆 = (2, 2) and

assume the Xi,j’s are uniformly distributed on {0, 1}. Then, we have that

P(L1,2 = 2, L2,2 = 3, L2,1 = 1) = P(X1,1 = X1,2 = X2,2 = 1, X2,1 = 0) = 2−4,

but

P(L∗
1,2 = 2, L∗

2,2 = 3, L∗
2,1 = 1) = 0.

Thus L and L∗, even when restricted to the border strip  = {(2, 1), (2, 2), (1, 2)} of 𝜆, are not equally

distributed.

2.2 RSK and Burge correspondences

We will prove Theorem 4 via an extended version of two celebrated combinatorial maps, the RSK and

Burge correspondences, acting on arrays of arbitrary shape 𝜆.

We denote by TabZ≥0
(𝜆) the set of tableaux of shape 𝜆 with non-negative integer entries, and by

IntTabZ≥0
(𝜆) the subset of interlacing tableaux, in the sense of (14). Let Π(k)

m,n be the set of all unions

of k disjoint non-intersecting directed lattice paths 𝜋1,… , 𝜋k with 𝜋i starting at (1, i) and ending at

(m, n − k + i). Similarly, let Π∗(k)
m,n be the set of all unions of k disjoint non-intersecting directed lattice

paths 𝜋1,… , 𝜋k with 𝜋i starting at (m, i) and ending at (1, n − k + i).

Theorem 5 ([8, 23, 28]). Let 𝜆 be a Young diagram with border strip . There exist two bijections

RSK ∶ TabZ≥0
(𝜆) → IntTabZ≥0

(𝜆), x = {xi,j ∶ (i, j) ∈ 𝜆}
RSK
→ r = {ri,j ∶ (i, j) ∈ 𝜆},

Bur ∶ TabZ≥0
(𝜆) → IntTabZ≥0

(𝜆), x = {xi,j ∶ (i, j) ∈ 𝜆}
Bur
→ b = {bi,j ∶ (i, j) ∈ 𝜆},

called the RSK and Burge correspondences that are characterized (in fact defined) by the following
relations: for any (m, n) ∈  and 1 ≤ k ≤ min(m, n),

k∑
i=1

rm−i+1,n−i+1 = max
𝜋∈Π(k)

m,n

∑
(i,j)∈𝜋

xi,j, (16)

k∑
i=1

bm−i+1,n−i+1 = max
𝜋∈Π∗(k)

m,n

∑
(i,j)∈𝜋

xi,j. (17)

The RSK correspondence was introduced by Robinson, Schensted, and Knuth—see the classic

paper [27] as well as the modern presentation in [34, § 7.11]. The Burge correspondence is one of the

bijections presented in [14]—see also [22, App. A]. In the usual setting, both these maps are regarded

as bijections between non-negative integer matrices x and a pair (P,Q) of semistandard Young tableaux

of the same shape. They are defined, respectively, in terms of row insertion and column insertion,
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two combinatorial algorithms that “insert” a given positive integer into a given semistandard Young

tableau, yielding a new semistandard Young tableau with one extra box—see [22, § 1.1 and A.2].

Theorem 5 presents the RSK and Burge correspondences, in a somewhat untraditional way, as

bijections between tableaux and interlacing tableaux with non-negative integer entries. This general-

ization goes through an alternative construction of these maps in terms of (max,min,+,−) operations

on the elements of the input tableau, as described in [8, § 2] (therein, the bijections are further

extended to tableaux with real entries). Relations (16) and (17) can be then regarded as an extension

of so-called Greene’s theorem [23]. The paper of Krattenthaler [28] contains all the details of the

constructions leading to Theorem 5, even though expressed in a slightly different language. For the

reader’s convenience we translate the results of [28] into our setting in the Appendix.

For the proof of Theorem 4, we will be using the extremal cases k = 1 and k = min(m, n) of (16)

and (17).

The case k = 1 explains the connection between the outputs of the RSK (respectively, Burge)

correspondence and the LPP (respectively, dual LPP) times. More precisely, we have that

rm,n = max
𝜋∶(1,1)→(m,n)

∑
(i,j)∈𝜋

xi,j and bm,n = max
𝜋∶(m,1)→(1,n)

∑
(i,j)∈𝜋

xi,j, (18)

for all (m, n) on the border strip  on 𝜆.

On the other hand, taking k = min(m, n) in Theorem 5, it is easy to see that the maxima in (16)

and (17) become both equal to the same “rectangular sum” Recm,n(x) of inputs:

∑
(i,j)∈𝜆,

j−i=n−m

ri,j =
∑

(i,j)∈𝜆,
j−i=n−m

bi,j =
m∑

i=1

n∑
j=1

xi,j =∶ Recm,n(x). (19)

Let now (m1, n1),… , (ml, nl) be the corners of a partition 𝜆, ordered so that m1 > · · · > ml and

n1 < · · · < nl. Then, (19) holds for (m, n) = (mk, nk) and, if k > 1, also for (m, n) = (mk, nk−1) (both are

border boxes by construction). It is then clear that the “global sum” of the tableau x can be expressed

as a linear combination with integer coefficients of “rectangular sums” (19); specifically, we have the

representation ∑
(i,j)∈𝜆

xi,j = Recm1,n1
(x) +

l∑
k=2

[
Recmk ,nk (x) − Recmk ,nk−1

(x)
]
.

We thus deduce a fact crucial for our purposes: for any shape 𝜆 with corners (m1, n1),… , (ml, nl) as

above, define {𝜔i,j ∶ (i, j) ∈ 𝜆} by setting

𝜔i,j ∶=
⎧⎪⎨⎪⎩
+ 1 if there exists k such that j − i = nk − mk,

−1 if there exists k such that j − i = nk−1 − mk,

0 otherwise.

We then have that ∑
(i,j)∈𝜆

𝜔i,jri,j =
∑
(i,j)∈𝜆

xi,j =
∑
(i,j)∈𝜆

𝜔i,jbi,j (20)

for all x ∈ TabZ≥0
(𝜆), where r ∶= RSK(x) and b ∶= Bur(x).
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Example 1. In Figure 3, we give a reference example of the RSK and Burge maps. The input is a

tableau x ∈ TabZ≥0
(𝜆) with 𝜆 = (4, 3, 3, 3, 1). The two outputs are the interlacing tableaux r = RSK(x)

and b = Bur(x) ∈ IntTabZ≥0
(𝜆). One can easily verify the identities (18) and (19). For instance, taking

the box (3, 3) in the border strip  of 𝜆, we have

Rec3,3(x) = r3,3 + r2,2 + r1,1 = b3,3 + b2,2 + b1,1 = 12.

For this shape, we have 𝜔i,j = 1 when (i, j) ∈ {(5, 1), (4, 3), (3, 2), (2, 1), (1, 4)}; 𝜔i,j = −1 when

(i, j) ∈ {(4, 1), (1, 3)}; and 𝜔i,j = 0 otherwise.

2.3 Equidistribution of random RSK and Burge tableaux

We now formulate as a lemma the key identity in the proof of Theorem 4. In a broad sense, we will

say that a random variable G is geometrically distributed (with support Z≥k, for some integer k ≥ 0,

and parameter p ∈ (0, 1)) if

P(G = m) = p(1 − p)m−k for all m ∈ Z≥k.

Lemma 1. If X is a random tableau of shape 𝜆 with i.i.d. geometric entries, then

RSK(X)
D
= Bur(X). (21)

Proof. Assume first that X has i.i.d. geometric entries with support Z≥0 and any parameter p ∈ (0, 1).
Fix a tableau t ∈ IntTabZ≥0

(𝜆) and let y ∶= RSK−1(t) and z ∶= Bur−1(t). It then follows from (20) that

P(RSK(X) = t) = P(X = y) = p|𝜆|(1 − p)
∑

(i,j)∈𝜆 yi,j = p|𝜆|(1 − p)
∑

(i,j)∈𝜆 𝜔i,jti,j

= p|𝜆|(1 − p)
∑

(i,j)∈𝜆 zi,j = P(X = z) = P(Bur(X) = t),

where |𝜆| ∶= ∑
i≥1 𝜆i is the size of 𝜆. This proves that RSK(X) and Bur(X) are equal in distribution.

The proof in the case of tableaux with i.i.d. geometric entries with support in Z≥k, k ≥ 0, follows

immediately from the following observation: if we shift all the entries of a tableau by a constant k, that

is, set Yi,j ∶= Xi,j + k, then from (16) and (17) we have

RSK (Y)i,j = RSK (X)i,j + (i + j − 1)k,
Bur (Y)i,j = Bur (X)i,j + (i + j − 1)k.

▪

By combining this lemma with (18), we derive the announced conclusion.

Proof of Theorem 4. Fix a partition 𝜆 with border strip . Let X be a random tableau of shape 𝜆,

and denote by L and L∗ the corresponding LPP and dual LPP tableaux, respectively. Let RSK(X) and

Bur(X) be the (random) images of X under the RSK and Burge correspondences, respectively. By (18),

we have the exact (not only distributional!) equalities

RSK (X)m,n = Lm,n and Bur (X)m,n = L∗
m,n, for all (m, n) ∈ .
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Assume first that the entries of X are i.i.d. geometric variables, so that X takes values in TabZ≥0
(𝜆). By

Lemma 1, RSK(X) and Bur(X) have the same joint distribution. It follows that the restrictions of the

LPP and dual LPP tableaux to the border strip, namely RSK(X)| = L| and Bur(X)| = L∗|, are

also equal in distribution.

Suppose now that X has i.i.d. exponential entries of rate 𝛼. We have the convergence 𝜖X(𝜖) 𝜖↓0
−−−→ X

in law, where X(𝜖) is a random tableau with i.i.d. geometric entries with parameter p = 1 − e−𝜖𝛼 (any

support Z≥k works). Denote by L(𝜖) and L∗(𝜖) the LPP and dual LPP tableaux, respectively, correspond-

ing to the input tableau X(𝜖). It is then immediate to see from the definition that 𝜖L(𝜖) and 𝜖L∗(𝜖) are

the LPP and dual LPP tableaux, respectively, corresponding to 𝜖X(𝜖). Since both the LPP and dual

LPP tableaux are continuous functions of the input tableau, we deduce from the continuous mapping

theorem (see [18, Theorem 3.2.10]) that

𝜖L(𝜖) 𝜖↓0
−−−→ L and 𝜖L∗(𝜖) 𝜖↓0

−−−→ L∗

in law. As the claim has already been proven for geometric weights, we know that L(𝜖)| D
= L∗(𝜖)|. It

follows that L| D
= L∗|, as required. ▪

Remark 2. It is possible to extend Theorem 5 to view the RSK and Burge correspondences as acting

on tableaux with real, instead of integer, entries; see [8, § 2] for the construction. Viewed as real

functions, these bijections turn out to be volume-preserving (i.e., their Jacobians are both of modulus

1 almost everywhere). Using this property, the argument used to prove Lemma 1 can then be adapted

to establish the distributional equality between RSK(X) and Bur(X) also when the input tableau X has

exponential i.i.d. entries. The proof of Theorem 4 in the exponential case would then be akin to the

geometric case, with no need to take a scaling limit.

Remark 3. Let X be a random tableau of shape 𝜆. The proof of Lemma 1 suggests a sufficient condi-

tion on the joint distribution of X in order for (21) (and, hence, Theorem 4) to hold. Such a condition

is the property that the P(X = y) = P(X = z) whenever y, z ∈ TabZ≥0
(𝜆) have equal global sum, that is,∑

(i,j)∈𝜆 yi,j =
∑

(i,j)∈𝜆 zi,j. If we further assume the entries of X to be independent, this property forces

the entries of X to be i.i.d. with a geometric distribution. The latter claim follows from the fact that, if

f , g1,… , gk are probability mass functions on Z≥0 such that g1(x1)g2(x2) · · · gk(xk) is proportional to

f (x1 + · · · + xk) for all x1,… , xk ∈ Z≥0, then f , g1,… , gk are necessarily all geometric with the same

parameter.

3 FROM A PROBABILISTIC TO A COMBINATORIAL CONJECTURE

In this section, we reformulate Conjecture 1 by showing its equivalence to Conjecture 2. We start by

discussing the two families of combinatorial objects and defining the relevant associated quantities

appearing in identity (8).

3.1 Staircase shape Young tableaux

Let 𝛿n denote the partition (n− 1, n− 2,… , 1) of N = n(n− 1)∕2; as a Young diagram we will refer to

𝛿n as the staircase shape of order n. Let SYT(𝛿n) denote the set of standard Young tableaux of shape
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𝛿n. We associate with each t ∈ SYT(𝛿n) several parameters, which we denote by cort, 𝜎t, degt, and

ft. (Note: these definitions are somewhat technical; refer to Example 2 for a concrete illustration that

makes them easier to follow.)

First, we define

cort ∶= (tn−1,1, tn−2,2,… , t1,n−1)

to be the vector of corner entries of t read from bottom-left to top-right. Second, we define 𝜎t ∈ Sn−1

to be the permutation encoding the ordering of the entries of cort, so that cort(j) < cort(k) if and only

if 𝜎t(j) < 𝜎t(k) for all j, k. The vector cort will denote the increasing rearrangement of cort, so that

cort(k) ∶= cort(𝜎−1
t (k)) for all k. For later convenience, we also adopt the notational convention that

cort(0) = 0.

Notice that a tableau t ∈ SYT(𝛿n) encodes a growing sequence

∅ = 𝜆(0) ↗ 𝜆(1) ↗ 𝜆(2) ↗ · · · ↗ 𝜆(N) = 𝛿n (22)

of Young diagrams that starts from the empty diagram, ends at 𝛿n, and such that each 𝜆(k) is

obtained from 𝜆(k−1) by adding the box (i, j) for which ti,j = k. We then define the vector degt =
(degt(0),… , degt(N − 1)), where degt(k) is the number of boxes (i, j) ∈ 𝛿n∕𝜆(k) such that 𝜆(k) ∪ {(i, j)}
is a Young sub-diagram of 𝛿n. We may interpret degt(k) as the out-degree of 𝜆(k) regarded as a vertex

of the directed graph (𝛿n) of Young diagrams contained in 𝛿n (a sublattice of the Young Graph, or
Young Lattice, ), with edges corresponding to the box-addition relation 𝜇 ↗ 𝜆; see Figure 1B.

Notice that the randomly growing Young diagram model introduced in Section 1.1 is nothing but

a continuous-time simple random walk on (𝛿n) that starts from the empty diagram (and necessarily

ends at 𝛿n). Let T be the (random) standard Young tableau that encodes the path of such a random

walk, that is, the associated sequence of growing diagrams (22); then,

P(T = t) =
N−1∏
j=0

1

degt(j)
for all t ∈ SYT(𝛿n). (23)

Finally, we define the generating factor of t as the rational function

ft(x1,… , xn−1) ∶=
n−1∏
k=1

∏
cort(k−1)<j≤cort(k)

1

xk + degt(j)
. (24)

Recall from Section 1 that the vector Vn records the times when the corner boxes of the shape 𝛿n are

added in the randomly growing Young diagram model/random walk on (𝛿n). The generating factor

ft(x1,… , xn−1) is, essentially, the joint Fourier transform of the vector Vn, conditioned on the random

walk path encoded by the tableau t; see Section 3.5.

Example 2. For the tableau t shown in Figure 4 (left), we have

cort = (10, 13, 15, 14, 11),
𝜎t = (1, 3, 5, 4, 2),

degt = (1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 3, 2, 3, 2, 1),

ft = 1

(x1+1)(x1+2)2(x1+3)3(x1+4)4
⋅ 1

x2+3
⋅ 1

(x3+2)(x3+3)
⋅ 1

x4+2
⋅ 1

x5+1
.
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FIGURE 4 A staircase shape standard Young tableau t of order 6, shown in “English notation,” and the associated sorting

network s = EG(t) of order 6 (illustrated graphically as a wiring diagram) with swap sequence

(5, 1, 2, 4, 1, 3, 5, 4, 2, 1, 5, 3, 2, 4, 3)

For example, degt(5) = 3, because 𝜆(5), the sixth Young diagram in the growth sequence associated

with the tableau t, is the partition (3, 1, 1), which has three external corners lying within 𝛿5, that is, its

out-degree in the graph (𝛿5) is 3.

Here, we have used colors to illustrate how the entries of cort determine a decomposition of degt
into blocks, which correspond to different variables xk in the definition of the generating factor ft.

3.2 Sorting networks

Recall that a sorting network of order n is a synonym for a reduced word decomposition of the reverse

permutation revn = (n, n − 1,… , 1) in terms of the Coxeter generators 𝜏j = (j j + 1), 1 ≤ j < n, of

the symmetric group Sn. Formally, a sorting network is a sequence of indices s = (s1,… , sN) of length

N = n(n − 1)∕2, such that 1 ≤ sj < n for all j and revn = 𝜏sN · · · 𝜏s2
𝜏s1

.

We denote by SNn the set of sorting networks of order n. The elements of SNn can be portrayed

graphically using wiring diagrams, as illustrated in Figure 4. They can also be interpreted as maxi-
mal length chains in the weak Bruhat order or, equivalently, shortest paths in the poset lattice (which

is the Cayley graph of Sn with the adjacent transpositions 𝜏j as generators, see Figure 1A) connect-

ing the identity permutation idn to the permutation revn. We refer to [10, 25] for details on this

terminology.

We associate with a sorting network s ∈ SNn the parameters lasts, 𝜋s, degs, and gs that will play a

role analogous to the parameters cort, 𝜎t, degt, and ft for t ∈ SYT(𝛿n).
We define the vector lasts = (lasts(1), lasts(2),… , lasts(n − 1)) by setting

lasts(k) ∶= max{1 ≤ j ≤ N ∶ sj = k}

to be the index of the last swap occurring between positions k and k+ 1. We define 𝜋s ∈ Sn−1 to be the

permutation encoding the ordering of the entries of lasts, so that lasts(j) < lasts(k) if and only if 𝜋s(j) <
𝜋s(k). We denote by lasts the increasing rearrangement of lasts, and use the notational convention

lasts(0) = 0.

We next define degs = (degs(0),… , degs(N − 1)) to be the vector with coordinates degs(k) ∶=|{1 ≤ j ≤ n − 1 ∶ 𝜈(k)(j) < 𝜈(k)(j + 1)}|, where 𝜈(k) ∶= 𝜏sk · · · 𝜏s2
𝜏s1

is the kth permutation in the path

encoded by s. In words, degs(k) is the out-degree of 𝜈(k) in the Cayley graph of Sn (with the adjacent

transpositions as generators); see Figure 1A.

Notice that the OSP on n particles introduced in Section 1.1 is a continuous-time simple random

walk on this graph that starts from idn (and necessarily ends at revn). The (random) sorting network S



16 BISI ET AL.

that encodes the path of the OSP is then distributed as follows:

P(S = s) =
N−1∏
j=0

1

degs(j)
for all s ∈ SNn. (25)

Finally, the generating factor gs of s is defined, analogously to (24), as the rational function

gs(x1,… , xn−1) =
n−1∏
k=1

∏
lasts(k−1)<j≤lasts(k)

1

xk + degs(j)
. (26)

Recall from Section 1 that the vector Un records the times when the last swap between particles in

any two neighboring positions occurs in the OSP/random walk on the graph defined above. The gen-

erating factor gs(x1,… , xn−1) is, essentially, the joint Fourier transform of the vector Un, conditioned

on the random walk path encoded by the sorting network s; see Section 3.5.

Example 3. For the sorting network s = (5, 1, 2, 4, 1, 3, 5, 4, 2, 1, 5, 3, 2, 4, 3) ∈ SN6 shown in

Figure 4 (right), we have that

lasts = (10, 13, 15, 14, 11),
𝜋s = (1, 3, 5, 4, 2),

degs = (5, 4, 3, 3, 3, 2, 3, 2, 2, 3, 2, 1, 2, 1, 1),

gs = 1

(x1+5)(x1+4)(x1+3)5(x1+2)3
⋅ 1

x2+2
⋅ 1

(x3+1)(x3+2)
⋅ 1

x4+1
⋅ 1

x5+1
.

The above parameters are shown using color coding as in Example 2.

3.3 The Edelman–Greene correspondence

Stanley conjectured and then proved [33] that sorting networks are equinumerous with staircase shape

Young tableaux of the same order, that is, |SNn| = |SYT(𝛿n)|. Edelman and Greene [19] found an

explicit combinatorial bijection EG∶SYT(𝛿n) → SNn, which is now known as the Edelman–Greene

correspondence (see also [24, 29, 30]). The standard tableau and the sorting network of Examples 2

and 3 (see also Figure 4) are associated to each other via EG.

The map EG can be conveniently described in terms of the Schützenberger operator iterated N
times until all the original labels of a tableau t ∈ SYT(𝛿n) are “evacuated” (recall that N = n(n− 1)∕2

is the number of boxes of the Young diagram 𝛿n).

The Schützenberger operator Φ ∶ SYT(𝛿n) → SYT(𝛿n) acts as follows. For a tableau t = (ti,j) ∈
SYT(𝛿n), define the evacuation path to be the sequence c = (c1, c2,… , cn−1) of boxes cm = (im, jm) ∈
𝛿n such that:

(i) c1 = (i1, j1) where ti1,j1 = N;

(ii) if cm−1 = (a, b), then cm is the box (a − 1, b) if ta−1,b > ta,b−1 and the box (a, b − 1) otherwise,

for all 2 ≤ m ≤ n − 1.

In this definition, the convention is that ti,0 = tj,0 = 0 for all i and j. Note that cn−1 = (1, 1).
Define t′ = (t′i,j)(i,j)∈𝛿n by letting t′cm ∶= tcm+1

for m = 1,… , n − 2, t′cn−1
∶= 0, and t′i,j ∶= ti,j whenever
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FIGURE 5 The map EG∶SYT(𝛿n) → SNn can be visualized as “emptying” the tableau t. Here the tableau is the same as in

Figure 4. We highlight in blue the evacuation paths (obtained by starting from the maximum entry and repeatedly moving to

the box above or to the left that contains the largest entry). At each step we perform an outward sliding along the evacuation

path, keeping track of jmax (in red). To keep the picture as intuitive as possible, we do not perform the increment +1 (the

omission of this step does not change the sequence of jmax’s) and we only indicate the original labels of the tableau t. The

associated sorting network is the sequence of indices jmax’s read in reverse order: (5, 1, 2, 4, 1, 3, 5, 4, 2, 1, 5, 3, 2, 4, 3)

(i, j) ∉ c (sliding along the evacuation path). Then, the tableau Φ(t) = (̂ti,j)(i,j)∈𝛿n is constructed by

setting t̂i,j = t′i,j + 1 for all (i, j) ∈ 𝛿n (increment).
In the notation of [3, § 4], for a tableau t ∈ SYT(𝛿n), set jmax(t) ∶= j1. Then, the Edelman–Green

map takes the tableau t as an input and returns the sorting network

EG(t) ∶=
(
jmax

(
ΦN−m(t)

))
1≤m≤N ,

where Φm denotes the mth iterate of Φ. See Figure 5.

The following result is easy to guess from Examples 2 and 3.

Proposition 2. If t ∈ SYTn and s = EG(t) ∈ SNn, then

lasts = cort and 𝜋s = 𝜎t. (27)
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Proof. The second relation follows trivially from the first. This first identity is an easy consequence

of the definition of the Edelman–Greene correspondence, and specifically of the way the map EG ∶
SYT(𝛿n) → SNn can be visualized as “emptying” the tableau t (see the discussion above and Figure 5)

by repeatedly applying the Schützenberger operator:

lasts(k) = max{1 ≤ m ≤ N ∶ jmax(ΦN−m(t)) = k}
= N − min{0 ≤ r ≤ N − 1 ∶ jmax(Φr(t)) = k}
= N − (N − tn−k,k) = tn−k,k = cort(k).

▪

3.4 The combinatorial identity

Let Cn−1
x Sn−1 denote the free vector space generated by the elements of Sn−1 over the field of ratio-

nal functions Cn−1
x ∶= C(x1,… , xn−1). Define the following generating functions as elements of

Cn−1
x Sn−1:

Fn(x1,… , xn−1) ∶=
∑

t∈SYT(𝛿n)
ft(x1,… , xn−1)𝜎t, (28)

Gn(x1,… , xn−1) ∶=
∑

s∈SNn

gs(x1,… , xn−1)𝜋s. (29)

Conjecture 2 is the identity Fn(x1,… , xn−1) = Gn(x1,… , xn−1) (an equality of vectors with (n−1)!
components).

Remark 4. Note that in general it is not true that ft = gs if s = EG(t), as Examples 2 and 3 clearly

show. Thus, the Edelman–Greene correspondence does not seem to imply the conjecture in an obvious

way. However, using (27) we see that the correspondence does imply the limiting case

lim
x→∞

xN(Fn(x,… , x) − Gn(x,… , x)) = 0. (30)

The above limit is equivalent to the statement

|{t ∈ SYT(𝛿n) ∶ 𝜎t = 𝛾}| = |{s ∈ SNn ∶ 𝜋s = 𝛾}| for all 𝛾 ∈ Sn−1,

which is true by Proposition 2.

Remark 5. It is natural to wonder if there exists a bijection𝜙 ∶ SYT(𝛿n) → SNn (necessarily different

from EG), such that ft = g𝜙(t) for all t ∈ SYT(𝛿n), thus leading to a proof of Conjecture 1. However,

already for n = 4, one can verify using Figure 6 that the two sets of generating factors {ft}t∈SYT(𝛿n) and

{gs}s∈SNn are different. Therefore, no bijection between SYT(𝛿n) and SNn has the desired property.

The calculation of Fn(x1,… , xn−1) and Gn(x1,… , xn−1) involves a summation over |SYT(𝛿n)| =|SNn| = N!∕(1n−1 ⋅3n−2 · · · (2n − 3)1) elements (e.g., 768 elements for n = 5 and 292 864 elements for

n = 6). For n ≤ 6, this calculation is feasible by using symbolic algebra software. We wrote code in

Mathematica—downloadable as a companion package [6] to this article—to perform this calculation

and check that the two functions are equal, thus proving Theorem 2.
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FIGURE 6 The 16 staircase shape standard Young tableaux and sorting networks of order 4 (ordered so that entries in the

same relative positions in the two tables correspond to each other via the Edelman–Greene correspondence). As in Examples 2

and 3, the coloring of the parameter entries emphasizes how different entries of degt and degs correspond to different factors in

the definition of the generating factors ft and gs

Example 4. For n = 4, the generating functions can be computed by hand using the tables shown

in Figure 6. For example, the component of the two generating functions associated with the identity

permutation i𝑑 = (1, 2, 3) is

(F4(x1, x2, x3))id = (G4(x1, x2, x3))id

= x1 + 2x2 + 5

(x1 + 1)(x1 + 2)2(x1 + 3)(x2 + 1)(x2 + 2)(x3 + 1)
.

3.5 Equivalence of combinatorial and probabilistic conjectures

We now prove the equivalence between Conjectures 1 and 2. Conjecture 1 can be viewed as claiming

the equality pUn = pVn of the joint density functions of Un and Vn. We thus aim to derive explicit

formulas for pUn and pVn .

3.5.1 Decomposition of the densities

As discussed in Sections 3.1 and 3.2, both the randomly growing Young diagram model and the OSP

can be interpreted as continuous-time random walks. The idea is then to write the density function of

the last swap times Un (resp. Vn) as a weighted average of the conditional densities conditioned on the
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path that the process takes to get from the initial state idn (resp. ∅) to the final state revn (resp. 𝛿n):

pUn (u1,… , un−1) =
∑

s∈SNn

P(S = s) pUn|S=s(u1,… , un−1),

pVn(v1,… , vn−1) =
∑

t∈SYT(𝛿n)
P(T = t) pVn|T=t(v1,… , vn−1). (31)

Here, s (resp. t) can be viewed as a realization of a simple random walk S (resp. T) on the Cayley

graph of Sn (resp. on the directed graph (𝛿n)). The probabilities P(S = s) and P(T = t) are simply

given by (23) and (25). We will now deal with the conditional densities.

3.5.2 Conditional densities

We will now show that the conditional densities pUn|S=s(u1,… , un−1) and pVn|T=t(v1,… , vn−1) are com-

pletely determined by the vectors lasts and cort and their corresponding orderings 𝜎t and 𝜋s in the

simple random walks, and the sequences of out-degrees degt and degs along the paths (which corre-

spond to the exponential clock rates to leave each vertex in the graph where the random walk is taking

place).

In the case of the OSP conditioned on the path S = s, take a sequence of independent random

variables 𝜉1,… , 𝜉N , where 𝜉j has exponential distribution with rate degs(j). Once the OSP has reached

the state 𝜏sk · · · 𝜏s2
𝜏s1

, there are degs(j) Poisson clocks running in parallel, so, by standard properties

of Poisson clocks (see [31, Ex. 4.1, p. 264]) the time until a swap occurs is distributed as 𝜉j and is

independent of the choice of the swap actually occurring. Let then 𝜂t be defined as

𝜂t ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

idn if 0 ≤ t < 𝜉1,

𝜏s1
if 𝜉1 ≤ t < 𝜉1 + 𝜉2,

𝜏s2
𝜏s1

if 𝜉1 + 𝜉2 ≤ t < 𝜉1 + 𝜉2 + 𝜉3,

⋮ ⋮

𝜏sN−1
· · · 𝜏s2

𝜏s1
if 𝜉1 + 𝜉2 + · · · + 𝜉N−1 ≤ t < 𝜉1 + 𝜉2 + · · · + 𝜉N ,

𝜏sN𝜏sN−1
· · · 𝜏s2

𝜏s1
if 𝜉1 + 𝜉2 + · · · + 𝜉N ≤ t.

Thanks to the remarks above, this construction gives the correct distribution for the process (𝜂t)t≥0 as

an OSP on n particles.

Next, observe that the conditional density pUn|S=s(u1,… , un−1) is nonzero on one and only one of

the (n − 1)! Weyl chambers

W𝛾 ∶=
{

u = (u1,… , un−1) ∈ R
n−1≥0 ∶ u𝛾−1(1) ≤ u𝛾−1(2) ≤ · · · ≤ u𝛾−1(n−1)

}
(32)

associated to each of the different possible orderings 𝛾 ∈ Sn−1 of the variables u1,… , un−1. For a

path s ∈ SNn, the permutation 𝜋s ∈ Sn−1 encodes the information about the relative order of the

variables Un(1),Un(2),… ,Un(n − 1), hence the conditional density will be nonzero precisely on the

chamber W𝜋s .

The last piece of information needed to compute the conditional density is the vector of integers

lasts that encodes, for each k, the point along the path wherein the last swap between positions k and k+1

occurred. Denote by Un the increasing rearrangement of Un, so that Un(1) ≤ Un(2) ≤ · · · ≤ Un(n− 1)
are the order statistics of Un. Conditioned on S = s, we have that Un(k) = Un(𝜋−1

s (k)) and
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Un(1) = 𝜉1 + · · · + 𝜉
lasts(1)

,

Un(2) − Un(1) = 𝜉
lasts(1)+1

+ · · · + 𝜉
lasts(2)

,

⋮
Un(k) − Un(k − 1) = 𝜉

lasts(k−1)+1
+ · · · + 𝜉

lasts(k)
,

⋮
Un(n − 1) − Un(n − 2) = 𝜉

lasts(n−2)+1
+ · · · + 𝜉

lasts(n−1).

In particular, conditioned on the event S = s, the variables Un(k) − Un(k − 1), k = 1,… , n − 1 are

independent and have density

pUn(k)−Un(k−1)|S=s(x) =

(
lasts(k)∗

j=lasts(k−1)+1

Edegs(j)

)
(x) ,

where the notation
m
∗

j=1
fj is a shorthand for the convolution f1 ∗ · · · ∗ fm of one-dimensional densities

and E𝜌(x) = 𝜌e−𝜌x𝟙[0,∞)(x) is the exponential density with parameter 𝜌 > 0. We conclude that the

density of Un conditioned on S = s is

pUn|S=s(u) = 𝟙W𝜋s
(u)

n−1∏
k=1

(
lasts(k)∗

j=lasts(k−1)+1

Edegs(j)

)(
u𝜋−1

s (k) − u𝜋−1
s (k−1)

)
, (33)

with the convention that u0 ∶= 0 and, for any 𝛾 ∈ Sn−1, 𝛾(0) ∶= 0.

An analogous construction holds for the continuous-time random walk on(𝛿n). Mutatis mutandis,

we thus obtain that

pVn|T=t(v) = 𝟙W𝜎t
(v)

n−1∏
k=1

(
cort(k)∗

j=cort(k−1)+1
Edegt(j)

)(
v𝜎−1

t (k) − v𝜎−1
t (k−1)

)
, (34)

with the convention that v0 ∶= 0.

3.5.3 Probability densities of Un and Vn

Putting together (25) with (33) and (23) with (34), the formulas for the density functions of Un and of

Vn take the form

pUn(u) =
∑

s∈SNn

𝟙W𝜋s
(u)∏N−1

j=0 degs(j)

n−1∏
k=1

(
lasts(k)∗

j=lasts(k−1)+1

Edegs(j)

)(
u𝜋−1

s (k) − u𝜋−1
s (k−1)

)
,

pVn(v) =
∑

t∈SYT(𝛿n)

𝟙W𝜎t
(v)∏N−1

j=0 degt(j)

n−1∏
k=1

(
cort(k)∗

j=cort(k−1)+1
Edegt(j)

)(
v𝜎−1

t (k) − v𝜎−1
t (k−1)

)
.

Notice that the indicator functions of the Weyl chambers may be dropped, due to the support [0,∞)
of the exponential densities; however, we keep them in the formulas for later convenience.

Example 5. For n = 4, using the parameters lasts, 𝜋s, and degs from Figure 6, we can deduce explicit

formulas for pU4
(u1, u2, u3) in every Weyl chamber. Using the same colors as in Figure 6, we have, for
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example, that

pU4
(u1, u2, u3) = [E3 ∗ E2 ∗ E2(u1)] [E2 ∗ E1(u2 − u1)] [E1(u3 − u2)]

+ 2 [E3 ∗ E2 ∗ E2 ∗ E1(u1)] [E1(u2 − u1)] [E1(u3 − u2)]

if u1 ≤ u2 ≤ u3, whereas

pU4
(u1, u2, u3) = 2 [E3 ∗ E2 ∗ E2 ∗ E1(u2)] [E2(u1 − u2)] [E1(u3 − u1)]

if u2 ≤ u1 ≤ u3. Considering all these 3! expressions, and evaluating the convolutions of exponential

densities, one obtains that

pU4
(u1, u2, u3) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e−(u1+u2+u3) [eu1+u2 − (u1 − 1)eu1 − (u1 + 1)eu2 − 1
]

if u1 ≤ u2 ≤ u3,

e−(u1+u2+u3) [eu2 − 2u2eu2 − 1] if u2 ≤ u1 ≤ u3,

e−(u1+u2+u3) [eu1+u3 − (u1 − 1)eu1 − (u1 + 1)eu3 − 1
]

if u1 ≤ u3 ≤ u2,

e−(u1+u2+u3) [eu2 − 2u2eu2 − 1] if u2 ≤ u3 ≤ u1,

e−(u1+u2+u3) [eu1+u3 − (u3 − 1)eu3 − (u3 + 1)eu1 − 1
]

if u3 ≤ u1 ≤ u2,

e−(u1+u2+u3) [eu2+u3 − (u3 − 1)eu3 − (u3 + 1)eu2 − 1
]

if u3 ≤ u2 ≤ u1.

Similarly, one can compute pV4
, using the data cort, 𝜎t and degt (or, alternatively, using the recur-

sion (5)) and check that pU4
= pV4

.

3.5.4 Fourier transforms and Weyl chambers

The conjectural equality pUn = pVn of the joint density functions of Un and Vn is equivalent to the

equality p̂Un = p̂Vn of their corresponding Fourier transforms. In turn, the latter can be manipulated

and recast as the combinatorial identity (8) of Conjecture 2. We now outline the calculations.

Recalling the notation W𝛾 for the Weyl chamber associated to a permutation 𝛾 ∈ Sn−1, as in (32),

we observe that the identity pUn = pVn is equivalent to the (n − 1)! equalities

pUn (z)𝟙W𝛾
(z) = pVn(z)𝟙W𝛾

(z), 𝛾 ∈ Sn−1. (35)

Introduce the change of variables

Γ𝛾 ∶ R
n−1≥0 → W𝛾 , z → 𝜻 = Γ𝛾 (z) (36)

defined by setting
𝜁k = z1 + · · · + z𝛾(k) for 1 ≤ k ≤ n − 1.

Notice that for all permutations 𝛾 ∈ Sn, Γ𝛾 is a bijection with inverse

Γ−1
𝛾 ∶ W𝛾 → R

n−1≥0 , 𝜻 → z = Γ−1
𝛾 (𝜻) (37)

given by
z1 = 𝜁𝛾−1(1) and zk = 𝜁𝛾−1(k) − 𝜁𝛾−1(k−1) for 2 ≤ k ≤ n − 1.

Therefore, (35) are equivalent to the (n − 1)! equalities

q𝛾
Un
(z) = q𝛾

Vn
(z), 𝛾 ∈ Sn−1, (38)
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where

q𝛾
Un
(z) ∶= pUn(Γ𝛾 (z))𝟙R

n−1≥0
(z),

q𝛾
Vn
(z) ∶= pVn(Γ𝛾 (z))𝟙R

n−1≥0
(z).

Now, the identities (38) are equivalent to the equalities of the corresponding Fourier transforms.

Using the explicit expression for the density of Un, the Fourier transform of q𝛾
Un

can be written as

q̂𝛾
Un
(x1,… , xn−1) = ∫

Rn−1

q𝛾
Un
(z1,… , zn−1)

n−1∏
k=1

e−ixkzk dzk

= ∫
Rn−1

pUn (Γ𝛾 (z))𝟙R
n−1≥0
(z)

n−1∏
k=1

e−ixkzk dzk

=
∑

s∈SNn
∫

Rn−1

n−1∏
k=1

(
lasts(k)∗

j=lasts(k−1)+1

Edegs(j)

)(
Γ−1
𝜋s (Γ𝛾 (z))

)
×

𝟙W𝜋s
(Γ𝛾 (z))∏N−1

j=0 degs(j)
𝟙R

n−1≥0
(z)

n−1∏
k=1

e−ixkzk dzk.

Observe now that, when z ∈ Rn−1≥0 ,

Γ𝛾 (z) ∈ W𝜋s ⇔ 𝜋s = 𝛾.

Applying the convolution theorem and the fact that the Fourier transform of the exponential density is

Ê𝜌(x) ∶= ∫
R

E𝜌(u)e−ixu du = 𝜌

𝜌 + ix
,

we then continue the above computation:

q̂𝛾
Un
(x1,… , xn−1) =

∑
s∈SNn

𝟙{𝜋s=𝛾}∏N−1

j=0 degs(j)

n−1∏
k=1

∫
R

(
lasts(k)∗

j=lasts(k−1)+1

Edegs(j)

)
(zk) e−ixkzk dzk

=
∑

s∈SNn

𝟙{𝜋s=𝛾}∏N−1

j=0 degs(j)

n−1∏
k=1

lasts(k)∏
j=lasts(k−1)+1

∫
R

Edegs(j) (zk) e−ixkzk dzk

=
∑

s∈SNn

𝟙{𝜋s=𝛾}

n−1∏
k=1

lasts(k)∏
j=lasts(k−1)+1

1

degs(j) + ixk
.

Similarly, the expression for the density of Vn yields

q̂𝛾
Vn
(x1,… , xn−1) = ∫ q𝛾

Vn
(z1,… , zn−1)

n−1∏
k=1

e−ixkzk dzk

=
∑

t∈SYT(𝛿n)
𝟙{𝜎t=𝛾}

n−1∏
k=1

cort(k)∏
j=cort(k−1)+1

1

degt(j) + ixk
.
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Replacing each xk with −ixk in the expressions for q̂𝛾
Un

and q̂𝛾
Vn

, we recognize the generating factors gs
and ft from (26) and (24), respectively. We thus conclude that the equality pUn = pVn is equivalent to

the (n − 1)! identities∑
s∈SNn

𝟙{𝜋s=𝛾} gs(x1,… , xn−1) =
∑

t∈SYT(𝛿n)
𝟙{𝜎t=𝛾} ft(x1,… , xn−1), 𝛾 ∈ Sn−1.

These can be written more compactly as the equality of the generating functions Fn and Gn defined in

(28) and (29), that is, the relation (8).
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APPENDIX : THE RSK AND BURGE CORRESPONDENCES

In this appendix, we translate the results of [28] into Theorem 5.

We identify a Young diagram 𝜆 with the sequence (mi, ni)k−1
i=1 of its border boxes, ordered so that

mi ≥ mi−1 and ni ≤ ni−1 for all 2 ≤ i ≤ k−1. Such a sequence forms a directed “line-to-line” path, that

is, a directed path starting on the line {(i, j) ∈ N2 ∶ i = 1} and ending on the line {(i, j) ∈ N2 ∶ j = 1}.

In other words, we have that m1 = 1, nk−1 = 1, and each increment wi ∶= (mi, ni) − (mi−1, ni−1) is

either D ∶= (0,−1) or R ∶= (1, 0) for all 2 ≤ i ≤ k − 12. Setting also by convention w1 ∶= R and

wk ∶= D, one can identify 𝜆 with a “D-R-sequence” w = w1 · · ·wk starting at R and ending at D. For

instance, the shape of the tableaux in Figure 3 is encoded as the sequence RDRRRDDRD.

Given a partition 𝜆 associated with a D-R sequence w = w1 · · ·wk, [28, Theorem 7] describes the

RSK map as a bijection between Young tableaux x of shape 𝜆 with non-negative integers entries and

sequences (∅ = 𝜇0, 𝜇1,… , 𝜇k = ∅) of partitions such that 𝜇i∕𝜇i−1 is a horizontal strip if wi = R and

𝜇i−1∕𝜇i is a horizontal strip if wi = D. One can easily verify that, for 1 ≤ i ≤ k − 1, the partition 𝜇i is

2Letters D and R refer to down and right steps of the directed path, respectively, if one uses the French notation for Young

diagrams as in [28]. In the English translation, which we have used throughout this article, D and R correspond to left and down

steps, respectively.
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of length pi ∶= min(mi, ni) at most. We can then form a new Young tableau r = {ri,j ∶ (i, j) ∈ 𝜆} by

setting the diagonal of r that contains the border box (mi, ni) to be

(rmi,ni , rmi−1,ni−1,… , rmi−pi+1,ni−pi+1) ∶= 𝜇i for 1 ≤ i ≤ k − 1.

It is then easy to check that the conditions on 𝜇i∕𝜇i−1 and 𝜇i−1∕𝜇i are equivalent to the fact that r is

an interlacing tableau in the sense of (14). Therefore, the sequence (∅ = 𝜇0, 𝜇1,… , 𝜇k = ∅) can be

rearranged into an interlacing tableau of shape 𝜆 with non-negative integer entries, thus yielding the

RSK correspondence of Theorem 5. The fact that (16) holds follows then from [28, Theorem 8-(G11)].

The statement about the Burge correspondence in Theorem 5, which is called 𝑑ualRSK′ (to be

read: dual RSK prime) in [28], can be recovered in a similar way from the results of that paper. Given

a partition 𝜆 associated with a D-R sequence w = w1 · · ·wk, [28, Theorem 11] presents the Burge

correspondence as a bijection between Young tableaux x of shape 𝜆 with non-negative integer entries

and sequences (∅ = 𝜈0, 𝜈1,… , 𝜈k = ∅) of partitions such that 𝜈i∕𝜈i−1 is a vertical strip if wi = R and

𝜈i−1∕𝜈i is a vertical strip if wi = D. This time, we define the Young tableau b = {bi,j ∶ (i, j) ∈ 𝜆} by

identifying the diagonal of b that contains (mi, ni) with the conjugate partition of 𝜈i:

(bmi,ni , bmi−1,ni−1,… , bmi−pi+1,ni−pi+1) ∶= (𝜈i)′ for 1 ≤ i ≤ k − 1.

This resulting map x → b satisfies (17) thanks to [28, Theorem 12-(G42)].

When 𝜆 is a rectangular shape [1,m] × [1, n], the RSK and Burge correspondences degenerate

to the classical ones in the following way. The sequence of partitions (∅ = 𝜇0, 𝜇1,… , 𝜇m+n = ∅)
corresponding to an m×n matrix x via RSK can be split into an ascending and a descending sequence:

∅ = 𝜇0 ⊆ 𝜇1 ⊆ · · · ⊆ 𝜇m ⊇ · · · ⊇ 𝜇m+n−1 ⊇ 𝜇m+n = ∅.

One can then form two Young tableaux P and Q of common shape 𝜇m by setting Qi,j ∶= k if and only if

(i, j) ∈ 𝜇k∕𝜇k−1 for all 1 ≤ k ≤ m and Pi,j ∶= l if and only if (i, j) ∈ 𝜇m+n−l∕𝜇m+n−l+1 for all 1 ≤ l ≤ n.

The constraint on the partitions make the two tableaux P and Q semistandard, and the map x → (P,Q)
corresponds to the classical RSK correspondence. An analogous connection with the classical Burge

correspondence also holds.


