Received: 26 January 2021

Accepted: 14 June 2021

W) Check for updates

DOI: 10.1002/rsa.21055

RESEARCH ARTICLE

WILEY

The oriented swap process and last

passage percolation

Elia Bisi! | Fabio Deelan Cunden? | Shane Gibbons® | Dan Romik*

ITechnische Universitit Wien, Institut fiir
Stochastik und Wirtschaftsmathematik, E 105-07,
Wiedner Hauptstrae 8-10 Wien, 1040, Austria
2Dipartimento di Matematica, Universita degli
Studi di Bari, Bari, Italy

3School of Mathematics and Statistics, University
College Dublin, Dublin 4, Ireland

“Department of Mathematics, University of
California, Davis, Davis, California, USA

Correspondence
Elia Bisi, Technische Universitit Wien, Institut fiir

Abstract

We present new probabilistic and combinatorial identities
relating three random processes: the oriented swap pro-
cess (OSP) on n particles, the corner growth process, and
the last passage percolation (LPP) model. We prove one
of the probabilistic identities, relating a random vector
of LPP times to its dual, using the duality between the
Robinson—Schensted—Knuth and Burge correspondences.
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A second probabilistic identity, relating those two vectors
to a vector of “last swap times” in the OSP, is conjec-
tural. We give a computer-assisted proof of this identity for
n < 6 after first reformulating it as a purely combinato-
rial identity, and discuss its relation to the Edelman—Greene
correspondence. The conjectural identity provides precise
finite-n and asymptotic predictions on the distribution of
the absorbing time of the OSP, thus conditionally solving
an open problem posed by Angel, Holroyd, and Romik.
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1 | INTRODUCTION

Randomly growing Young diagrams, and the related models known as Last Passage Percola-
tion (LPP) and the Totally Asymmetric Simple Exclusion Process (TASEP), are intensively studied
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stochastic processes. Their analysis has revealed many rich connections to the combinatorics of Young
tableaux, longest increasing subsequences, the Robinson—Schensted—Knuth (RSK) algorithm, and
related topics—see, for example, [31, Chs. 4-5].

Random sorting networks are another family of random processes. Two main models, the Uniform
Random Sorting Network and the Oriented Swap Process (OSP), have been analyzed [1-3, 15, 17] and
are known to have connections to the TASEP, LPP, and also to staircase shape Young tableaux via the
Edelman—Greene bijection [19].

In this article, we discuss a new and surprising meeting point between the aforementioned subjects.
In an attempt to address an open problem from [2] concerning the absorbing time of the OSP, we
discovered elegant distributional identities relating the OSP to LPP, and LPP to itself. We will prove one
of the two main identities; the other one is a conjecture that we have been able to verify for small values
of a parameter n. The analysis relies in a natural way on well-known notions of algebraic combinatorics,
namely the RSK, Burge, and Edelman—Greene correspondences.

Our conjectured identity apparently requires new combinatorics to be explained and has
far-reaching consequences for the asymptotic behavior of the OSP as the number of particles grows to
infinity, as will be explained in Section 1.3.

Most of the results in this article were obtained in 2019 and announced in the proceedings of
the 32nd Conference on Formal Power Series and Algebraic Combinatorics [7]. The present article
contains complete proofs, as well as additional material including:

e More detailed information about the RSK and Burge correspondences for random tableaux and
their connection to distributional symmetries in LPP.

e Some explicit formulas related to the conjectural identity and its connection to the largest
eigenvalue of certain random matrices and Tracy—Widom distributions.

e More details about the Edelman—Greene correspondence and its relation to the conjectural
identity.

1.1 | Models

The two main identities presented in this article take the form

D . .. . . .
where = denotes equality in distribution, and U,, V,,, W,, are (n — 1)-dimensional random vectors
associated with the following three random processes.

1.1.1 | The oriented swap process
This process [2] describes randomly sorting a list of » particles labeled 1, ..., n. At time ¢ = 0, particle
labeled j is in position j on the finite integer lattice [1,n] = {1,...,n}. All pairs of adjacent positions

k,k + 1 of the lattice are assigned independent Poisson clocks. The system then evolves according to
the random dynamics whereby each pair of particles with labels i, j occupying respective positions &,
k + 1 attempt to swap when the corresponding Poisson clock rings; the swap succeeds only if i < j,
that is, if the swap increases the number of inversions in the sequence of particle labels. The OSP can
also be interpreted as a continuous-time random walk on the Cayley graph of S, with adjacent swaps
as generators (considered as a directed graph). See Figure 1A.
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FIGURE 1  Graphs related to the random walks representations of the oriented swap process and the randomly growing
Young diagram model. They can be regarded as directed graphs, with edges directed from bottom to top. (A) The Cayley
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graph of S, with Coxeter generators given by adjacent transpositions, for n = 4. (B) The Young sublattice Y(6,) of all Young
sub-diagrams of the staircase shape 6, forn =4

We define the vector U,, = (U, (1), ..., U,(n — 1)) of last swap times by
U, (k) := the last time ¢ at which a swap occurs between positions k and k+ 1.

As explained in [2], the last swap times are related to the particle finishing times: it is easy to
see that max{U,(n — k), U,(n — k + 1)} is the finishing time of particle k (with the convention that
U,(0) = U,(n) = 0); see the equation on the last line of page 1988 of [2].

1.1.2 | Randomly growing a staircase shape Young diagram

This process is a variant of the corner growth process. Starting from the empty Young diagram, boxes
are successively added at random times, one box at each step, to form a larger diagram until the staircase
shape 6, = (n — 1,n —2,...,1) is reached. We identify each box of a Young diagram A with the
position (i, j) € N?, where i and j are the row and column index, respectively. All boxes are assigned
independent Poisson clocks. Each box (i,) € é,, according to its Poisson clock, attempts to add itself
to the current diagram A, succeeding if and only if A U {(i,/)} is still a Young diagram. Notice that
the randomly growing Young diagram model can be thought of as a continuous-time random walk,
starting from @ and ending at §,, on the graph of Young diagrams contained in §, (regarded in the
obvious way as a directed graph). See Figure 1B. Furthermore, note that every such random walk path
is encoded by a standard Young tableau of shape §,, where the box added after m steps is filled with
m,forallm=1,..., (;) For more details on this, see Section 3.1 and, in particular, (22).

We define V,, = (V,,(1), ..., V,(n — 1)) as the vector that records when boxes along the (n — 1)th
anti-diagonal are added:

V,.(k) := the time at which the box at position (n — k, k) is added.
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FIGURE 2 A schematic illustration of point-to-line and line-to-line last passage percolation vectors. (A) Point-to-line LPP
vector V,,. (B) Line-to-line LPP vector W,

1.1.3 | The last passage percolation model

This process describes the maximal time spent traveling from one vertex to another of the
two-dimensional integer lattice along a directed path in arandom environment. Let (X; ;); j>1 be an array
of independent and identically distributed (i.i.d.) non-negative random variables, referred to as weights.
For (a, b), (c,d) € N?, define a directed lattice path from (a, b) to (c, d) to be any sequence ((ir, ji)) o
of minimal length |c—a|+|d —b| such that (iy, jo) = (a, b), (i, jm) = (¢, d), and |ix+1 =ik |+ [rr1 —jk] = 1
for all 0 < k < m. We then define the LPP time from (a, b) to (¢, d) as

L(a,b;c,d) := Xii, 1
(@ ¢d) ﬂ:(ur,rb})a—{((c,d) Z Y M
(i)En

where the maximum is over all directed lattice paths z from (a, b) to (c, d). It is immediate to see that
LPP times starting at a fixed point, say (1, 1), satisfy the recursive relation

L(1,1;4,j) = max {L(1, 1;i = 1,j), L(1, 1;i,j — D} + Xi, i,j>1, 2)

with the boundary condition L(1, 1;4,j) :=0ifi=0o0rj=0.

If the weights X;; are i.i.d. exponential random variables of rate 1, the LPP model has a precise
connection (see [31, Ch. 4]) with the corner growth process, whereby each random variable L(1, 1; i)
is the time when box (i, ) is added to the randomly growing Young diagram. We can thus equivalently
define V, in terms of the last passage times between the fixed vertex (1, 1) and the vertices (i, j) along
the anti-diagonal line i + j = n:

V,=@{1,1;n-1,1),L(1,1;n—=2,2),...,L(1,1; 1,n — 1)). 3)

We refer to this as the point-to-line LPP vector (see the illustration in Figure 2A and the discussion
in Section 1.3).

Observe that V, (k) is the LPP time between two opposite vertices of the rectangular lattice
[1,n — k] X [1, k], namely (1, 1) and (n — k, k). On the other hand, we can also consider the “dual”
last passage times between the other two opposite vertices of the same rectangles, defining the vector
W, =W,Q),...,Wy(n—1)) as

W, :=@Ln—-1,1;1,1),Ln-2,1;1,2),....L(1,1;1,n — 1)). )
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In this case, the starting and ending points for each last passage time vary simultaneously along
the two lines i = 1 and j = 1, respectively. We then refer to this vector W as the line-to-line LPP vector
(see Figure 2B).

1.2 | Main results

We can now state our results.

Theorem 1.V, = W, foralln > 2.

Conjecture 1. U, 2 W foralln > 2.

One might hope to prove Theorem 1 and Conjecture 1 by methods similar to those used to derive
standard relations about LPP. For example, the LPP recursive relation (2) yields an explicit recursive
formula for the joint density of V,,,

min(v;,v,) min(v,,v;) min(v,_,,v,_;)
pv,(V1s e s Va1) =/ d)’1/ dy2~--/ dy,—2
0 0 0

n—1
X exp { D [max(e-r, ) — vi }pv,,l(yl, cv s Yn-2) ®
k=1

for n > 3, with the convention that yy = y,—; = 0, with the initial condition py, (v) = ™" 110,00)(V). Sur-
prisingly, formula (5) also holds for the line-to-line LPP vector W, (as it must, by virtue of Theorem 1);
Conjecture 1 says that the joint density of U, should also satisfy the same recursive relation. However,
we know of no simple recursive structure in the corresponding models to make possible such a direct
proof.

Theorem 1 and Conjecture 1 imply the equality of the one-dimensional marginal distributions

Un(k) 2 Vy(k) 2 Wy(k), forall 1<k<n—1, n>2. 6)

The identity U, (k) 2 Va(k) was proved by Angel, Holroyd, and Romik [2] using a connection

between the OSP, the TASEP and the corner growth model. The identity V,, (k) 2 W, (k) follows imme-
diately from the observation that these two variables are the LPP times, on the same i.i.d. environment
(Xi,)ij=1, between two pairs of opposite vertices of the same rectangular lattice [1,n — k] X [1, k].

It is also easy to see that the following two-dimensional marginals coincide

(Un (1), Up( = 1)) 2 (Vo(1), Vil = 1)) 2 (W, (1), Wy (n — 1)), 7

for all » > 2. The second equality actually holds almost surely, since V,, and W, are LPP vectors
on the same environment (X;);;>1. To check the first identity, observe that U,(n — 1) and U,(1) are
the finishing times of the first and last particle in the OSP, respectively. Particle labeled 1 (resp. n)
jumps n — 1 times only to the right (resp. to the left), always with rate 1. All these jumps are inde-
pendent of each other, except the one that occurs when particles 1 and » are adjacent and swap.
Hence, (U,(1), U,(n — 1)) is jointly distributed as (I' + X,I” + X) where I, I are independent with
Gamma(n — 2, 1) distribution and X has Exp(1) distribution and is independent of I",I”. This is the
same joint distribution of the LPP times (V,,(1), V,,(n — 1)).
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Theorem 1 is proved in Section 2. As we will see, the distributional identity V, 2 W, arises
as a special case of a more general family of identities (Theorem 4) involving LPP times between
pairs of opposite vertices in rectangles [1, i] X [1, ], where each (i, j) belongs to the so-called border
strip of a Young diagram. This result is, in turn, a consequence of the duality between the RSK and
Burge correspondences, and holds also in the discrete setting where the weights X; ; follow a geometric
distribution. Theorem 1 can be seen as a special case of a “shift-invariance” symmetry, conjectured
in [12] for a variety of integrable stochastic systems, and recently proved in full generality in [16,
Theorem 1.2].

On the other hand, the conjectural equality in distribution between U, and V, remains mys-
terious, but we made some progress toward understanding its meaning by reformulating it as an
algebraic-combinatorial identity that is of independent interest.

Conjecture 2. For n > 2, we have the identity of vector-valued generating functions

G TR A L S NCIRE ML @®)

teSYT(6,) SESN,,

Precise definitions and examples will be given in Section 3, where we will prove the equivalence
between Conjectures 1 and 2. For the moment, we only remark that the sums on the left-hand and
right-hand sides of (8) range over the sets of staircase shape standard Young tableaux ¢ and sorting
networks s of order n, respectively; f; and g are certain rational functions, and o,, 7y are permutations
in the symmetric group S,,—; that are associated with ¢ and s.

D
The identity (8) reduces the proof of U, = V,, for fixed n to a concrete finite computation. This
enabled us to provide a computer-assisted verification of Conjecture 1 for4 < n < 6 (thecasesn = 2,3
can be checked by hand) and thus prove the following:

Theorem 2. U, 2 wfor2 <n<e6.

1.3 | Absorbing times and random matrices

Conjecture 1 has an important consequence in the asymptotic analysis of the OSP. Specifically, it
addresses the open problem posed in [2] (see also [31, Ex. 5.22(e), p. 331]) about the limiting
distribution, as n — oo, of
UM = max U,(k), 9)
1<k<n—1

that is, the absorbing time of the OSP on rn particles.
Observe first that the random variable

Vi = max V=  max Xii, 10
" I<ksn—1 Xzl =(ab), Z N {10
a+b=n (ij)€n

where (X;;);j>1 are i.i.d. exponential random variables of rate 1, represents the time until the staircase
shape 6, is reached in the corner growth process. As the last expression in (10) points out, it can also
be seen as the maximal time spent traveling from the point (1, 1) to any point of the line {(a, b) € N? :
a + b = n} along a directed path in an exponentially distributed random environment. This variable
has been referred to as the point-to-line LPP time and has been an object of study in the literature.
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It is known that the point-to-line LPP time V;"®* with exponential weights is exactly distributed as
the largest eigenvalue A, of an n X n random matrix drawn from the Laguerre orthogonal ensemble
(LOE)—see, for example, [4, 20]. In the limit as n — oo, Afﬁgx features KPZ fluctuations of order
n'/3 and has the § = 1 Tracy—-Widom distribution (first obtained by Tracy and Widom in [35]) as its
limiting law; see [26, Theorem 1.1].

The asymptotic distribution of the point-to-line LPP time and some closely related random vari-
ables have also been studied independently of its connection with random matrix theory. Baik and
Rains [5] proved a limit theorem for a conceptually related model, that is, the length of the longest
increasing subsequence of random involutions. Borodin, Ferrari, Priahofer, and Sasamoto [11, 32]
studied the asymptotic distribution of the TASEP with particle-hole alternating (*“flat”) initial config-
uration; using the usual correspondence between LPP and TASEDP, this can be viewed as an analogous
result for the point-to-line LPP model. More recently, Bisi and Zygouras [9, Theorem 1.1] obtained
the asymptotics of the point-to-line LPP time (10) using the determinantal structure provided by
symplectic Schur functions.

On the other hand, modulo Conjecture 1, we have that

ax P .
Up = yme, (11)

The precise knowledge of the (finite n and asymptotic) distribution of V;"* thus extends to U;**.

Corollary 1. Let U™ be the absorbing time of the OSP on n particles, as in (9). Then, assuming
Conjecture 1:

(i) foranyn>2,t>0,

n—1
1 .
P U™ <1) = 5/ IT ti=w]] e av (12)
n S0 1<icj<n—1 i=1
where C, is a normalization constant;
(ii) the following limit in distribution holds:

U;lnax —2n n—oo
W‘—“) Fi, (13)

where F| is the f = 1 Tracy—Widom law.

The integral formula in (12) is the distribution function of the largest eigenvalue in the LOE. It
occurs in the following way. Let ¥ be an n X (n — 1) matrix with entries that are independent real
Gaussian random variables with mean zero and variance 1/2. Then the right-hand side in (12) is the
probability that the largest eigenvalue of YY7 (also called a real Wishart matrix) is less than r—see,
for example, [21, § 3.2].

As mentioned in the extended abstract version of this article [7], the distributional limit (13)
answers the open problem posed in [2] about the asymptotic distribution of the absorbing time of the
OSP, conditionally on Conjecture 1. Following the appearance of the extended abstract version of this
article, Bufetov, Gorin, and Romik found a way to derive (11) (and therefore deduce (12) and (13))
by proving a weaker version of our Conjecture 1 that equates the joint distribution functions of the
random vectors U,, and V,, for “diagonal points,” that is, points (¢,¢, ... ,1) € R"!, This is of course
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FIGURE 3 Illustration of the RSK and Burge correspondences

sufficient to imply equality in distribution of the maxima of the coordinates of the respective vectors.
Thus, the open problem from [2] is now settled.

Theorem 3 (Bufetov—Gorin—Romik [13]). The relations (11)—(13) are true unconditionally.

2 | EQUIDISTRIBUTION OF LPP TIMES AND DUAL LPP TIMES ALONG
BORDER STRIPS

The goal of this section is to prove Theorem 1. We will in fact prove a more general statement
(Theorem 4), which establishes the joint distributional equality between LPP times and dual LPP times
along the so-called “border strips.”

2.1 | LPP and dual LPP tableaux

We first fix some terminology. We say that (i, j) is a border box of a Young diagram A if (i+1,j+1) & 4,
or equivalently if (i,j) is the last box of its diagonal. We refer to the set of border boxes of A as the
border strip of A. We say that (i,j) € Ais acorner of Aif A\ {(i,)} is a Young diagram. Note that every
corner is a border box. We refer to any array x = {x;; : (i,j) € A} of non-negative real numbers as a
tableau of shape A. We call such an x an interlacing tableau if its diagonals interlace, in the sense that

Xi-1, S)C,‘J' if i>1 and Xij—1 SX[J’ if ] > 1 (14)

for all (i,j) € A, or equivalently if its entries are weakly increasing along rows and columns. As a
reference, see the tableaux in Figure 3. Their common shape 4 = (4,3, 3,3, 1) has border strip B =
{(1,4),(1,3),(2,3),(3,3),(4,3),(4,2),(4,1),(5, 1)}, and corners (1,4), (4,3), (5, 1); the two tableaux
on the right are interlacing.

Throughout this section, A will denote an arbitrary but fixed Young diagram. Let now X be a random
tableau of shape A with i.i.d. non-negative random entries X; ;. We can then define the associated LPP
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time L(a, b; c,d) on X between two boxes (a, b), (c,d) € A as in (1). We will mainly be interested in
the special A-shaped tableaux L = (L; ;) es and L* = (LZ/-)(,- e which we, respectively, call the LPP
tableau and the dual LPP tableau, defined by

Ly :=L(,1;ij) and Lf :=LG1;1,)), for (i,)) € A (15)

It is easy to see from the definitions that L and L* are both (random) interlacing tableaux.
Now, it is evident that, for each (i,j) € A, the distributions of L;; and LZ‘J coincide. However, the
joint distributions of L and L* do not coincide in general.

Proposition 1.  Let X be a Young tableau of shape A with i.i.d. non-deterministic' entries. Then the
corresponding LPP and dual LPP tableaux L and L* follow the same law if and only if 1 is a hook
shape (a Young diagram with at most one row of length > 1).

Proof.  If Ais ahook shape, then L = L* almost surely; in particular, the two tableaux have the same
law. Suppose now that 4 is not a hook shape, that is, (2,2) € A. By definition of L and L*, we have

Liyy=Li; =X, Liy=Li,=X1+X12, Lyy=L;=X+X21,
Lyp = X1 + max(X12,Xo1) + X220, L35 = Xo1 + max(Xy,1, X22) + X1 0.

It immediately follows that

Ly —Lip— Ly + Ly =Xp0 —min(Xy2,X51),
Lyy—Lip— Ly + Lt = max(0,X22 — Xi.0).
As by hypothesis the X;;’s are non-deterministic, there exists t € R such that their (common)
cumulative distribution function F satisfies 0 < F(¢) < 1. We then have, by independence of the X;;’s,

that

Pops—Lip— Loy + L1 <0)=P(X22 < min(Xi, X21))
> P(Xap <t, Xi2 > 1, Xoy > 1) = F@)(1 — F())* > 0.

On the other hand,

It follows that Lo —Li 2 —Lpy+Lyy and L3, — Ly, — L3 | +Lj | are not equally distributed. In particular,
L and L* do not follow the same joint law. n

The main result of this section is that certain distributional identities between LPP and dual LPP
do hold as long as the common distribution of the weights is geometric or exponential:

Theorem 4. Let X be a Young tableau of shape A with i.i.d. geometric or i.i.d. exponential weights.

Then the border strip entries (and in particular the corner entries) of the corresponding LPP and dual
LPP tableaux L and L* have the same joint distribution.

In the sense that their common distribution is not a Dirac measure.
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Theorem 1 immediately follows from Theorem 4 applied to tableaux of staircase shape (n — 1,n —
2, ..., 1), since in this case the coordinates of V,, and W,, are precisely the corner entries of L and L*,
respectively.

Remark 1. In a similar vein to how Proposition 1 illustrates the limits of what types of identities
in distribution might be expected to hold, note as well that, in general, Theorem 4 fails to hold if the
weights are neither geometric nor exponential. For example, consider the square shape 4 = (2,2) and
assume the X;;’s are uniformly distributed on {0, 1}. Then, we have that

P(Lin=2,Loy=3,Lyi=)=PX;  =X12=Xan=1, X, =0)=27",

but

P(Li, =2, I3, =3, L}, =1)=0.

Thus L and L*, even when restricted to the border strip B = {(2, 1), (2,2),(1,2)} of 4, are not equally
distributed.

2.2 | RSK and Burge correspondences

We will prove Theorem 4 via an extended version of two celebrated combinatorial maps, the RSK and
Burge correspondences, acting on arrays of arbitrary shape A.

We denote by Tabz_ (4) the set of tableaux of shape 4 with non-negative integer entries, and by
IntTabz, (4) the subset of interlacing tableaux, in the sense of (14). Let Hﬁ,’f}n be the set of all unions
of k disjoint non-intersecting directed lattice paths z, ..., 7 with z; starting at (1,{) and ending at
(m,n — k + i). Similarly, let l'[,gi,(lﬁl be the set of all unions of k disjoint non-intersecting directed lattice
paths 7y, ..., m; with z; starting at (m, i) and ending at (1,n — k + i).

Theorem 5 ([8, 23, 28]). Let A be a Young diagram with border strip B. There exist two bijections
RSK
RSK : Tabz, (4) — IntTabz_ (4), x={xi: (,)) €A} » r={rj: () €A}
B
Bur : Tabz, (4) — IntTabz (A),  x= {x; : (i) € A} > b= {by; : (i,)) € A},

called the RSK and Burge correspondences that are characterized (in fact defined) by the following
relations: for any (m,n) € B and 1 < k < min(m, n),

k

D it = max Y xj, (16)
. ﬂ:el_[(k) P

i=1 mn (ij)En

k

Z bm—i+1,n—i+1 = max Z Xij- a7
. ﬂ:el_[*(k) -

i=1 mn (ij)en

The RSK correspondence was introduced by Robinson, Schensted, and Knuth—see the classic
paper [27] as well as the modern presentation in [34, § 7.11]. The Burge correspondence is one of the
bijections presented in [14]—see also [22, App. A]. In the usual setting, both these maps are regarded
as bijections between non-negative integer matrices x and a pair (P, Q) of semistandard Young tableaux
of the same shape. They are defined, respectively, in terms of row insertion and column insertion,
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two combinatorial algorithms that “insert” a given positive integer into a given semistandard Young
tableau, yielding a new semistandard Young tableau with one extra box—see [22, § 1.1 and A.2].

Theorem 5 presents the RSK and Burge correspondences, in a somewhat untraditional way, as
bijections between tableaux and interlacing tableaux with non-negative integer entries. This general-
ization goes through an alternative construction of these maps in terms of (max, min, +, —) operations
on the elements of the input tableau, as described in [8, § 2] (therein, the bijections are further
extended to tableaux with real entries). Relations (16) and (17) can be then regarded as an extension
of so-called Greene’s theorem [23]. The paper of Krattenthaler [28] contains all the details of the
constructions leading to Theorem 5, even though expressed in a slightly different language. For the
reader’s convenience we translate the results of [28] into our setting in the Appendix.

For the proof of Theorem 4, we will be using the extremal cases k = 1 and k = min(m, n) of (16)
and (17).

The case k = 1 explains the connection between the outputs of the RSK (respectively, Burge)
correspondence and the LPP (respectively, dual LPP) times. More precisely, we have that

Fun=__max Y x; and by,= max > x;j (18)

x:(1,1)=(m,n) (ihex z:(m,1)—(1,n) (ihex

for all (mm, n) on the border strip 13 on A.
On the other hand, taking kK = min(m, n) in Theorem 35, it is easy to see that the maxima in (16)
and (17) become both equal to the same “rectangular sum” Rec,, ,(x) of inputs:

n

2 rij = 2 bij = Z 2 xij = Recyq(x). (19)
i=1

(ij)EA, (ij)EA, j=1
Jj—i=n—m Jj—i=n—m
Let now (my,ny), ..., (my, n;) be the corners of a partition A, ordered so that m; > --- > m; and

ny < --- < ny. Then, (19) holds for (m, n) = (my, ny) and, if k > 1, also for (m, n) = (my, ny—) (both are
border boxes by construction). It is then clear that the “global sum” of the tableau x can be expressed
as a linear combination with integer coefficients of “rectangular sums” (19); specifically, we have the
representation

l

Y Xij=Recp, (@) + Y, [Recy,n, (x) — Recy, ()] .
(ij)eA k=2

We thus deduce a fact crucial for our purposes: for any shape A with corners (my, ny), ..., (my, n;) as
above, define {w;; : (i,j) € A} by setting

+1 if there exists k such that j —i = n; — my,
w;j t=4-1 if there exists k such that j —i = ng_1 — my,
0 otherwise.

We then have that

Z i ;lij = Z Xij = Z winiJ (20)

(i)ea (iy)er (iy)er

for all x € Tabz_ (4), where r := RSK(x) and b := Bur(x).
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Example 1. In Figure 3, we give a reference example of the RSK and Burge maps. The input is a
tableau x € Tabz,_ (1) with 4 = (4, 3, 3, 3, 1). The two outputs are the interlacing tableaux » = RSK(x)
and b = Bur(x) 3 IntTabz_ (4). One can easily verify the identities (18) and (19). For instance, taking
the box (3, 3) in the border strip 3 of 4, we have

RCC3,3(X) =nr3+tnrn+r,= b3,3 + bz,z + bl,l =12.
For this shape, we have w;; = 1 when (i,j) € {(5,1),(4,3),(3,2),(2,1),(1,4)}; w;; = —1 when

(i,)) € {(4,1),(1,3)}; and w;; = 0 otherwise.

2.3 | Equidistribution of random RSK and Burge tableaux

We now formulate as a lemma the key identity in the proof of Theorem 4. In a broad sense, we will
say that a random variable G is geometrically distributed (with support Zy, for some integer k > 0,
and parameter p € (0, 1)) if

P(G =m) =p(1 —p)"* forall m € Zs.

Lemma 1. [If X is a random tableau of shape A with i.i.d. geometric entries, then

RSK(X) = Bur(X). Q1

Proof.  Assume first that X has i.i.d. geometric entries with support Zy, and any parameter p € (0, 1).
Fix a tableau 7 € IntTabz_ (4) and lety := RSK™!(¢) and z := Bur™! (7). It then follows from (20) that

P(RSK(X) = 1) = P(X = y) = p!(1 = pyZusess = pl(1 — p)Zases @ity
= pMI(1 = p)Rires s = P(X = ) = PBur(X) = 1),

where |A| 1= ) .., A; is the size of A. This proves that RSK(X) and Bur(X) are equal in distribution.

The proof in the case of tableaux with i.i.d. geometric entries with support in Zsy, k > 0, follows
immediately from the following observation: if we shift all the entries of a tableau by a constant &, that
is, set ¥;; 1= X;; + k, then from (16) and (17) we have

RSK (Y);; = RSK (X);; + (i +j — Dk,
Bur (Y);; = Bur (X);; + (i +j — Dk.

By combining this lemma with (18), we derive the announced conclusion.

Proof of Theorem 4.  Fix a partition A with border strip B. Let X be a random tableau of shape 4,
and denote by L and L* the corresponding LPP and dual LPP tableaux, respectively. Let RSK(X) and
Bur(X) be the (random) images of X under the RSK and Burge correspondences, respectively. By (18),
we have the exact (not only distributional!) equalities

RSK X)mn = Lnn and Bur (X),, = Ly,,, forall (m,n) € B.
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Assume first that the entries of X are i.i.d. geometric variables, so that X takes values in Tabz_ (4). By
Lemma 1, RSK(X) and Bur(X) have the same joint distribution. It follows that the restrictions of the
LPP and dual LPP tableaux to the border strip, namely RSK(X)|s = L|s and Bur(X)|s = L*|3, are

also equal in distribution.
.. . . €l0
Suppose now that X has i.i.d. exponential entries of rate a. We have the convergence eX©— X

in law, where X© is a random tableau with i.i.d. geometric entries with parameter p = 1 —e™** (any
support Zs; works). Denote by L and L*© the LPP and dual LPP tableaux, respectively, correspond-
ing to the input tableau X(©. It is then immediate to see from the definition that eL©) and eL* are
the LPP and dual LPP tableaux, respectively, corresponding to eX©. Since both the LPP and dual
LPP tableaux are continuous functions of the input tableau, we deduce from the continuous mapping
theorem (see [18, Theorem 3.2.10]) that

10 10
eL©Z5 L and el L

D
in law. As the claim has already been proven for geometric weights, we know that L |3 = L*©| 5. It

D
follows that L| 3 = L*|, as required. n

Remark 2. 1Itis possible to extend Theorem 5 to view the RSK and Burge correspondences as acting
on tableaux with real, instead of integer, entries; see [8, § 2] for the construction. Viewed as real
functions, these bijections turn out to be volume-preserving (i.e., their Jacobians are both of modulus
1 almost everywhere). Using this property, the argument used to prove Lemma 1 can then be adapted
to establish the distributional equality between RSK(X) and Bur(X) also when the input tableau X has
exponential i.i.d. entries. The proof of Theorem 4 in the exponential case would then be akin to the
geometric case, with no need to take a scaling limit.

Remark 3. Let X be a random tableau of shape A. The proof of Lemma 1 suggests a sufficient condi-
tion on the joint distribution of X in order for (21) (and, hence, Theorem 4) to hold. Such a condition
is the property that the P(X = y) = P(X = z) whenever y, z € Tabz_ (1) have equal global sum, that is,
2ijerYii = 2ijea Zig- If we further assume the entries of X to be independent, this property forces
the entries of X to be i.i.d. with a geometric distribution. The latter claim follows from the fact that, if

f.&1,-..,8k are probability mass functions on Zs such that g;(x;)g2(x2) - - - gx(xx) is proportional to
SO+ -+ x) forall xp, ..., x, € Zxo, then f, g1, ..., g are necessarily all geometric with the same
parameter.

3 | FROM A PROBABILISTIC TO A COMBINATORIAL CONJECTURE

In this section, we reformulate Conjecture 1 by showing its equivalence to Conjecture 2. We start by
discussing the two families of combinatorial objects and defining the relevant associated quantities
appearing in identity (8).

3.1 | Staircase shape Young tableaux

Let 6, denote the partition (n—1,n—2,...,1) of N = n(n — 1)/2; as a Young diagram we will refer to
on as the staircase shape of order n. Let SYT(6,,) denote the set of standard Young tableaux of shape
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on. We associate with each t € SYT(6,) several parameters, which we denote by cor;, o;, deg,, and
fi- (Note: these definitions are somewhat technical; refer to Example 2 for a concrete illustration that
makes them easier to follow.)

First, we define

cory 1= (tn—1,1,tn=225 +-+ » tin—1)

to be the vector of corner entries of ¢ read from bottom-left to top-right. Second, we define o; € S,—;
to be the permutation encoding the ordering of the entries of cory, so that cor,(j) < cor,(k) if and only
if 6,(j) < o,(k) for all j, k. The vector cor, will denote the increasing rearrangement of cor;, so that
cor,(k) := cor,(c; ! (k)) for all k. For later convenience, we also adopt the notational convention that
cor,(0) = 0.

Notice that a tableau r € SYT(6,) encodes a growing sequence

G=210 740 7@ 50 50 =5 (22)

of Young diagrams that starts from the empty diagram, ends at §,, and such that each A% is
obtained from A*~D by adding the box (i,j) for which #;; = k. We then define the vector deg, =
(deg,(0), ..., deg,(N — 1)), where deg,(k) is the number of boxes (i,j) € 6,/A® such that AX U {(,))}
is a Young sub-diagram of &,. We may interpret deg, (k) as the out-degree of A%) regarded as a vertex
of the directed graph Y(6,) of Young diagrams contained in 6, (a sublattice of the Young Graph, or
Young Lattice, V), with edges corresponding to the box-addition relation u /' 4; see Figure 1B.

Notice that the randomly growing Young diagram model introduced in Section 1.1 is nothing but
a continuous-time simple random walk on Y(6,) that starts from the empty diagram (and necessarily
ends at 6,). Let T be the (random) standard Young tableau that encodes the path of such a random
walk, that is, the associated sequence of growing diagrams (22); then,

N—
P(T =1 =

—_

for all 1 € SYT(5,). (23)

Finally, we define the generating factor of t as the rational function

n—1

fixX1s oo s Xno1) ;:H

k=1 cor,(k—1)<j<cor, (k)

1
X+ deg () @Y

Recall from Section 1 that the vector V,, records the times when the corner boxes of the shape 6, are
added in the randomly growing Young diagram model/random walk on Y(6,). The generating factor
fi(x1, ... ,x,—1) is, essentially, the joint Fourier transform of the vector V,,, conditioned on the random
walk path encoded by the tableau f; see Section 3.5.

Example 2. For the tableau ¢ shown in Figure 4 (left), we have

cor, = (10, 13,15, 14, 11),
o, =(1,3,5,4,2),

deg, = (1,2,2,3,3,3,4,4,4,4,3,2,3,2, 1),

1 1 1 1 1
fr= D220 433 @+ 6+3 (42)(5+3)  x+2 x5+l
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EG
51215 —_—
9 |13
10

FIGURE 4 A staircase shape standard Young tableau ¢ of order 6, shown in “English notation,” and the associated sorting
network s = EG(?) of order 6 (illustrated graphically as a wiring diagram) with swap sequence
(5.1,2,4,1,3,5,4,2,1,5,3,2,4,3)

For example, deg,(5) = 3, because A®, the sixth Young diagram in the growth sequence associated
with the tableau ¢, is the partition (3, 1, 1), which has three external corners lying within &s, that is, its
out-degree in the graph Y(6s) is 3.

Here, we have used colors to illustrate how the entries of cor; determine a decomposition of deg,
into blocks, which correspond to different variables x; in the definition of the generating factor f;.

3.2 | Sorting networks

Recall that a sorting network of order n is a synonym for a reduced word decomposition of the reverse
permutation rev, = (n,n — 1,..., 1) in terms of the Coxeter generators 7; = (j j+ 1), 1 < j < n, of
the symmetric group S,. Formally, a sorting network is a sequence of indices s = (s, ..., sy) of length
N =n(n—1)/2, such that 1 <s; < nforalljand rev, = 7y, - - - 7,7y,

We denote by SN, the set of sorting networks of order n. The elements of SN,, can be portrayed
graphically using wiring diagrams, as illustrated in Figure 4. They can also be interpreted as mauxi-
mal length chains in the weak Bruhat order or, equivalently, shortest paths in the poset lattice (which
is the Cayley graph of S, with the adjacent transpositions 7; as generators, see Figure 1A) connect-
ing the identity permutation id, to the permutation rev,. We refer to [10, 25] for details on this
terminology.

We associate with a sorting network s € SN, the parameters last,, 7;, deg,, and g, that will play a
role analogous to the parameters cor;, oy, deg,, and f; for t € SYT(6,).

We define the vector last; = (lasty(1), lasty(2), ..., lasts(n — 1)) by setting

lasty(k) :=max{1 <j<N : 5=k}

to be the index of the last swap occurring between positions k and k 4+ 1. We define z; € S,_; to be the
permutation encoding the ordering of the entries of last,, so that last(j) < last,(k) if and only if z(j) <
zy(k). We denote by last, the increasing rearrangement of last,, and use the notational convention
last,(0) = 0.

We next define deg, = (deg,(0),...,deg (N — 1)) to be the vector with coordinates deg (k) :=
H1<j<n-1:v0G < v+ 1)}, where v =7, -7, 7, is the kth permutation in the path
encoded by s. In words, deg (k) is the out-degree of V(¥ in the Cayley graph of S, (with the adjacent
transpositions as generators); see Figure 1A.

Notice that the OSP on n particles introduced in Section 1.1 is a continuous-time simple random
walk on this graph that starts from id,, (and necessarily ends at rev, ). The (random) sorting network S
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that encodes the path of the OSP is then distributed as follows:

for all s € SN,,. 25)

Finally, the generating factor g of s is defined, analogously to (24), as the rational function

n—1
1
gs(X1, oty X)) = H H m (26)

k=1 Tast,(k—1)<j<last, (k)

Recall from Section 1 that the vector U, records the times when the last swap between particles in
any two neighboring positions occurs in the OSP/random walk on the graph defined above. The gen-
erating factor gy(xi, ..., x,—1) is, essentially, the joint Fourier transform of the vector U,,, conditioned
on the random walk path encoded by the sorting network s; see Section 3.5.

Example 3. For the sorting network s = (5,1,2,4,1,3,5,4,2,1,5,3,2,4,3) € SNg shown in
Figure 4 (right), we have that

last, = (10, 13,15, 14, 11),
77'-3‘ = (193759432)5

(5?473’3’3’2?372’2’332?17271’1)’
! R S
)+ +3)5 (0 42)7 0542 (a+D0G+2) g+l xs+l]

deg,

8s =

The above parameters are shown using color coding as in Example 2.

3.3 | The Edelman—Greene correspondence

Stanley conjectured and then proved [33] that sorting networks are equinumerous with staircase shape
Young tableaux of the same order, that is, |SN,| = |[SYT(6,)|. Edelman and Greene [19] found an
explicit combinatorial bijection EG : SYT(6,) — SN,,, which is now known as the Edelman—Greene
correspondence (see also [24, 29, 30]). The standard tableau and the sorting network of Examples 2
and 3 (see also Figure 4) are associated to each other via EG.

The map EG can be conveniently described in terms of the Schiitzenberger operator iterated N
times until all the original labels of a tableau t € SYT(5,) are “evacuated” (recall that N = n(n — 1) /2
is the number of boxes of the Young diagram 6,,).

The Schiitzenberger operator ® : SYT(5,) — SYT(5,) acts as follows. For a tableau t = (¢;;) €
SYT(6,), define the evacuation path to be the sequence ¢ = (cy, ¢3, ... , cy—1) Of boxes ¢, = (i, jm) €
6, such that:

(i) ¢1 = (i1,j1) where f; j, = N;
(ii) if ¢;—1 = (a, b), then ¢, is the box (a — 1,b) if 1,1 > t,5—1 and the box (a, b — 1) otherwise,
forall2 <m<n-1.

In this definition, the convention is that 7,y = t;o = 0 for all i and j. Note that ¢,_; = (1, 1).
Define ¢ = (¢! ijes, by letting &, =t form=1,..n-214 :=0,and? 1= t;j whenever
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1]3 7 [11 1]al7]1 1] 7 [11] 1] 7 [11]
268 |14]® 3|8 |14|® 348G 348G
5 [12]15|@ 56 |12|@ 56 |12]|@ 6 12| @
9 [13]® 9 [13]® 9 [13|® 59 |®
10|@ 10|@ 10|@ 10]@
o) o) o) o)
17 [11 1]7 1]7 1]7
48|06 48 48 48
3|6|@ 3|6|@ 3|6|@ 6@
59 (® 59 (® 29 |® 23 |®
10]® 10 5@ 5 @
o) @ o) o)
1]7 1 1 1
4|® 4|® 4|® 4|®
6@ 6@ @ @
2(3(® 2(3(® 2(3(® 3(®
5@ 5@ 5@ 2@
o) o) o) o)
1 1 1
® ® ® ®
@ @ @ @
3|10 ® ® ®
2@ 2|@ @ @

FIGURE 5 The map EG:SYT(6,) — SN, can be visualized as “emptying” the tableau 7. Here the tableau is the same as in
Figure 4. We highlight in blue the evacuation paths (obtained by starting from the maximum entry and repeatedly moving to
the box above or to the left that contains the largest entry). At each step we perform an outward sliding along the evacuation
path, keeping track of j,,, (in red). To keep the picture as intuitive as possible, we do not perform the increment +1 (the
omission of this step does not change the sequence of j,,.’s) and we only indicate the original labels of the tableau ¢. The
associated sorting network is the sequence of indices j,, s read in reverse order: (5, 1,2,4,1,3,5,4,2,1,5,3,2,4,3)

(i,j) & c (sliding along the evacuation path). Then, the tableau ®(r) = (7; Jjes, 1 constructed by
setting 7;; = 1/ ;+ 1forall (i, ) € 8, (increment).

In the notation of [3, § 4], for a tableau r € SYT(6,,), set jmax(?) := ji. Then, the Edelman—Green
map takes the tableau ¢ as an input and returns the sorting network

EG(@) := (jmax ((DN_m(t)))ISmSN ?

where @ denotes the mth iterate of ®. See Figure 5.
The following result is easy to guess from Examples 2 and 3.

Proposition 2. If t € SYT,, and s = EG(t) € SN,, then

last, = cor;, and 7x; = o;. 27
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Proof.  The second relation follows trivially from the first. This first identity is an easy consequence
of the definition of the Edelman—Greene correspondence, and specifically of the way the map EG :
SYT(6,) — SN, can be visualized as “emptying” the tableau ¢ (see the discussion above and Figure 5)
by repeatedly applying the Schiitzenberger operator:

last,(k) = max{1 <m <N : jmax(®V7"(t)) = k}
=N-min{0<r<N—-1 : jn(®(®) =k}
=N =N = tygs) = taix = cor,(k).

3.4 | The combinatorial identity

Let C—'S,_, denote the free vector space generated by the elements of S,_; over the field of ratio-

nal functions C~' := C(x,...,x,_1). Define the following generating functions as elements of
Cﬁ_lan :
Faer, oo Xum) 2= 0 filtts oo Xm0, (28)
1€SYT(s5,)
(CACTRNE ) R S NCNE A (29)
SESN,,
Conjecture 2 is the identity F,(xy, ... ,X,—1) = G,(x1, ..., x,—1) (an equality of vectors with (n —1)!
components).

Remark 4. Note that in general it is not true that f; = g, if s = EG(¢), as Examples 2 and 3 clearly
show. Thus, the Edelman—Greene correspondence does not seem to imply the conjecture in an obvious
way. However, using (27) we see that the correspondence does imply the limiting case

mxN(F,(x, ..., x) = Gu(x, ..., x)) = 0. (30)

X—>00

The above limit is equivalent to the statement
[{t€SYT(,) : o,=y}=|{s€SN,,: ny=y} forall yeS,,
which is true by Proposition 2.

Remark5. Ttisnatural to wonder if there exists a bijection ¢ : SYT(6,,) — SN, (necessarily different
from EG), such that f; = gy, for all € SYT(5,), thus leading to a proof of Conjecture 1. However,
already for n = 4, one can verify using Figure 6 that the two sets of generating factors {f; };esyr(s,) and
{gs}sesn, are different. Therefore, no bijection between SYT(5,) and SN, has the desired property.

The calculation of F,(xi,...,x,—1) and G,(xy, ...,Xx,_1) involves a summation over |[SYT(5,)| =
ISN,| = N!/(1""1.3"2. .. (2n — 3)!) elements (e.g., 768 elements for n = 5 and 292 864 elements for
n = 6). For n < 6, this calculation is feasible by using symbolic algebra software. We wrote code in
Mathematica—downloadable as a companion package [6] to this article—to perform this calculation
and check that the two functions are equal, thus proving Theorem 2.
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tableau ¢ parameters tableau ¢ parameters sorting network s parameters sorting network s parameters

4 1 4 1
TeT6] cor, = 3,560 1374 cor, = 6,60 3 2 last, = (3,5,6) 3 2 last, = (5,6,4)
2[5 o= (1,2,3) 2] o= (2,3,1) P— 3 o1 o= (1,2,3) 2 3 m o= (23,1
3| deg; = (1,2,2,1,2,1) | |[5 | deg, = (1,2,2,3,2,1)| |, 4 degs = (3,2,2,2,1,1)| |, ' 4 degs = (3,2,1,2,1,1)
_ _ 3213 2 3 31 2 3 1 2

4 1 4 1
13Te] cor = @.5.6) 12]4] cor = G.600) 3 . 2 last, = (4,5,6) 3 2 last, = (5,6,4)
2[5 o= (1,2,3) BB o= (2,3,1 2 3 mo= (1,2,3) 2 3 mo= (2,3,0)
] deg, = (1,2,2,3,2,) | |[5] deg, = (1,2,2,3,2,0 |, L deg = G22,L,L1| | o, deg, = (3,2,1,2,1,1)
_ _ 32 31 2 3 1.3 2 3 1 2

4 1 4 1

.

12]8] cor, = 5.6 T1213] cor = (5,6,3) 3 2 Jast, = (4,5,6) 3 2 last, = (5,6,3)
3|5 o = (1,2,3) 4|6 o = (2,3,1) 2 3 o= (1,2,3) 2 3 mo=(2,3,1)
a deg, = (1,2,2,3,2,1)| |[5] deg, = (1,2,2,1,2,1) | |, 4 degs = G,2,2,LLD | |, x 4 degs = (3,2,2,2,1,1)
* — 2 321 2 3 1.2 3 2 1 2

4 1 4 1

. .

13]6] eor, = .4,6) 13]5] eon = 6.4,5) 3 2 Jast, = (5,4,6) 3 2 last, = (6,4,5)
2|4 o= (2,1,3) 2 o = (3,1,2) 2 3 1= (2,1,3) 2 3 o= (3,1,2)
1 deg, = (1,2,2,3,2,) | |57 deg, = (1,2,2,3,2,1)| |, o degs = (3,2,2,1,2,1 || o deg = (3,2,2,1,2,1)
_ _ 213 21 3 213 2 3 1

4 1 4 1

. .

2[5 con = Gi40) 12[5] con = 6,45 3 2 last, = (5,4,6) 3 2 last, = (6,4,5)
3[4 o= (2,1,3) 3 o= (3,1,2) 2 3 mo= (2,1,3) 2 3 o= (3,1,2)
5 | deg, = (1,2,2,3,2,1) | |5 | deg, = (1, 32,0 |, 4 degs = (3,2,2,1,2,1)| |, 4 degs = (3,2,2,1,2,1)
— _ 2 31 2 1 3 2 31 2 3 1

4 1 4 1
TeT5] eor = 36,5 11314 cor = (6,5,4) 3 . 2 Jast, = (3,6,5) 3 . 2 last, = (6,5,4)
26 o = (1,3,2) 25 o= (3,2,1) 2 3 m o= (1,3,2) 2 3 omo= (32,1
3 | deg, = (1,2,2,1,2,1) | |[§] deg, = (1,2,2,3,2,) | |, 4 degs = (3,2,2,2,L,1 | |, 4 degs = (3,2,2,1,1,1)
7 — 32 1 2 3 2 2 1 2 3 2 1

4 1 4 1
13]5] eon = 46,5 1214 cor, = 65,9 3 2 last, = (4,6,5) 3 2 last, = (6,5,4)
2|6 o = (1,3,2) 3s o = (3,2,1) 2 3 m o= (1,3,2) 2 X 3 o= (3,2,1)
] deg, = (1,2,2,3,2,1) | |[51 deg, = (1,2,2,3,2,0] |, . L degs = 32,1211 | L degs = (3,2,2,1,1,1)
_ _ 3121 3 2 1.2 13 2 1

4 1 4 1
12]5] cor, = 4,6,5) 112]3] cor, = (6,5,3) 3 2 last, = (4,6,5) 3 2 last, = (6,5,3)
3|6 o = (1,3,2) 45 o= (3,2,1) 2 3 o= (1,3,2) 2 . 3 o= (3,2,1)
2 | deg; = (1,2,2,3,2,1) | [ | deg, = (1,2,2,1,2,D) | |, ‘ 4 degs = G.2,1,2, L1 | 4 degs = (3,2,2,2,1,1)
_ _ 1.3 2 1 3 2 1.2 3 1 2 1

FIGURE 6 The 16 staircase shape standard Young tableaux and sorting networks of order 4 (ordered so that entries in the
same relative positions in the two tables correspond to each other via the Edelman—Greene correspondence). As in Examples 2
and 3, the coloring of the parameter entries emphasizes how different entries of deg, and deg, correspond to different factors in
the definition of the generating factors f; and g;

Example 4. For n = 4, the generating functions can be computed by hand using the tables shown
in Figure 6. For example, the component of the two generating functions associated with the identity
permutation id = (1,2,3) is

(Falx1,x2,x3))ig = (Galxr, X2, X3))ig
X1 +2x+5
(1 4+ DOy 4+ 2)2(x +3)( + Do + 23 + 1)

3.5 | Equivalence of combinatorial and probabilistic conjectures

We now prove the equivalence between Conjectures 1 and 2. Conjecture 1 can be viewed as claiming
the equality py, = py, of the joint density functions of U, and V,. We thus aim to derive explicit
formulas for py_and py, .

3.5.1 | Decomposition of the densities

As discussed in Sections 3.1 and 3.2, both the randomly growing Young diagram model and the OSP
can be interpreted as continuous-time random walks. The idea is then to write the density function of
the last swap times U, (resp. V,,) as a weighted average of the conditional densities conditioned on the
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path that the process takes to get from the initial state id, (resp. f) to the final state rev,, (resp. §,):

pu, (Ui, ..., Up1) = 2 P(S = 5) pu,s=s(U1 ..., Un-1),

sESN,,

Py, 01 vy = D BT =10 py, =, V). 31)
1€SYT(S,)

Here, s (resp. #) can be viewed as a realization of a simple random walk S (resp. T) on the Cayley
graph of S, (resp. on the directed graph Y(6,)). The probabilities P(S = s) and P(T' = ¢) are simply
given by (23) and (25). We will now deal with the conditional densities.

3.5.2 | Conditional densities

We will now show that the conditional densities py s=s(u1, ... , u,—1) and py j7=(v1, ..., V,_1) are com-
pletely determined by the vectors last, and cor, and their corresponding orderings ¢, and z, in the
simple random walks, and the sequences of out-degrees deg, and deg, along the paths (which corre-
spond to the exponential clock rates to leave each vertex in the graph where the random walk is taking
place).

In the case of the OSP conditioned on the path S = s, take a sequence of independent random
variables &y, ..., &y, where &; has exponential distribution with rate deg (7). Once the OSP has reached
the state 7, - - - 7,7y, , there are deg(j) Poisson clocks running in parallel, so, by standard properties
of Poisson clocks (see [31, Ex. 4.1, p. 264]) the time until a swap occurs is distributed as &; and is
independent of the choice of the swap actually occurring. Let then #, be defined as

id, if 0<t<¢y,
Ty, if & <t<é+6,
. N L it&+H<t<é+6H+ 8,
r =
Ty, " Ts, T, if S +&++évaSt<éi+6+ -+ 6y,
TonTsyoy ~ " " Tsy Tsy if 51 +§2+' "+§N <t

Thanks to the remarks above, this construction gives the correct distribution for the process (1;),»( as
an OSP on n particles.

Next, observe that the conditional density py |s=s(u1, ... , ,—1) is nonzero on one and only one of
the (n — 1)! Weyl chambers

. -1 .
W, = {ll = Uy, ..., Up—1) € Rgo DUy Sy -0 < uy—l(n_l)} (32)

associated to each of the different possible orderings y € S,—; of the variables u,,...,u,_;. For a
path s € SN,, the permutation z; € S,-; encodes the information about the relative order of the
variables U, (1), U,(2), ..., U,(n — 1), hence the conditional density will be nonzero precisely on the
chamber W, .

The last piece of information needed to compute the conditional density is the vector of integers
last, that encodes, for each &, the point along the path wherein the last swap between positions k and k+1
occurred. Denote by U, the increasing rearrangement of U,,, so that U,(1) < U,(2) < --- < U,(n—1)
are the order statistics of U,,. Conditioned on S = s, we have that U,(k) = U,(x; ' (k)) and
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U (D) =&+ -+ St (1)
Un() = Un(D) = G )41+ + i

Un(k) - Un(k - 1) = éﬁx(k—l)+l +-+ fﬁy(k)’

Un-1)-U,(n-2)= gﬁl(n—Z)H +---4 5@@-1)'
In particular, conditioned on the event S = s, the variables U,(k)—Upk—1,k=1,...,n—1are
independent and have density

j=last (k—1)+1

Tast, (k)
PG wo-T,k-1is=sO = _*  Eaegp) | (),
j

where the notation % fj is a shorthand for the convolution f; * - - - % f,, of one-dimensional densities
j_
and E,(x) = pe " 1[90)(x) is the exponential density with parameter p > 0. We conclude that the

density of U, conditioned on S = s is

n—1 —
last (k)
pu,is=@) = 1w @[] ( _ Edegd.m) (-1 — Un-11)) - (33)
J

wr \Uslast(k=1)+1

with the convention that 1y := 0 and, for any y € S,_;, y(0) := 0.
An analogous construction holds for the continuous-time random walk on Y(6,,). Mutatis mutandis,
we thus obtain that

cor,(k)
pv,ir=(v) = Tw, (V)H < E eg,(i>> (Vayl(zo - Va,’l(k—l)>’ (34

e Jj=cor, (k H+1

with the convention that vy := 0.

3.5.3 | Probability densities of U, and V,

Putting together (25) with (33) and (23) with (34), the formulas for the density functions of U, and of
V,, take the form

Tw @) = Tast, (k)
pu,m) = Z — H _ % Eaeg ) | (Urigy = Unien)) 5
j

sesw, Limo deg,(D izt \J=last,k=1)+1

n—1

Tw, ) cor, (k)
V) = _ % Egeo (i (v “1ep) = Vgl (fo— )
pyv,(v) = Z H <j=c_0rr(k_1)+1 deg,(;)) o1k ~ Vol k-1

1eSYT(s, )H, -0 deg,(]) k=1

Notice that the indicator functions of the Weyl chambers may be dropped, due to the support [0, c0)
of the exponential densities; however, we keep them in the formulas for later convenience.
Example 5. Forn = 4, using the parameters last,, 7;, and deg, from Figure 6, we can deduce explicit
formulas for py, (u1, uz, u3) in every Weyl chamber. Using the same colors as in Figure 6, we have, for
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example, that
pu, (U, u, uz) = [E3 % Ey * Ex(up)] [Ex * Ei(uz — up)] [E1(u3 — u2)]
+2[E5 % Ey % Ep % Ey(u1)] [E1(uz — up)] [E1(u3 — u2)]

if u; < up < uz, whereas

pu, (Ui, uz,uz) =2 [E3 % By % Ey % E(u2)] [Ex(uy — u)] [E1(u3 — uy)]

if up < u; < us. Considering all these 3! expressions, and evaluating the convolutions of exponential
densities, one obtains that

)
e~(mritis) [etits — (yy — D' — (uy + De> — 1] if uy < wp <us,
e—(ul+uz+u3) [e2 — 2upet> — 1] if uy <up <us,
e‘(”l+“2+“3) [e“1+“3 —(u; — e — (u; + e — 1] if uy <us <uy,

pu, (U, up, u3) = 3 () .

e\ TihTi) [ely — Dpyset2 — 1] if up <uz <uy,
e~ (i) femtis — (3 — De's — (us + De's — 1] if u3 < uy < uo,
e (i) fetts — (3 — 1)e's — (us + e = 1] if us Sup S uy.

g

Similarly, one can compute py,, using the data cor;, o, and deg, (or, alternatively, using the recur-
sion (5)) and check that py, = py,.

3.5.4 | Fourier transforms and Weyl chambers

The conjectural equality py, = py, of the joint density functions of U, and V,, is equivalent to the
equality py = py, of their corresponding Fourier transforms. In turn, the latter can be manipulated
and recast as the combinatorial identity (8) of Conjecture 2. We now outline the calculations.

Recalling the notation W, for the Weyl chamber associated to a permutation y € S,_1, as in (32),
we observe that the identity py = py, is equivalent to the (n — 1)! equalities

pu,@1w, @) =py,@1Tw,@), 7 € Sp-1. (35)

Introduce the change of variables

IR > W, z0¢=T& (36)

defined by setting
G=z+ - +zu for 1<k<n-1.

Notice that for all permutations y € S, I', is a bijection with inverse

VW, >Ry, Cez=T50) (37)

given by
1 = Cy‘](l) and Tk = Cy‘l(k) - Cy“(k—l) for 2 < k <n- 1.

Therefore, (35) are equivalent to the (n — 1)! equalities

7y @ =qy @. 7 €S, (38)
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where

qy,@ = py, Ty @) g @),
4y, @ = py, [T @) g @).

Now, the identities (38) are equivalent to the equalities of the corresponding Fourier transforms.
Using the explicit expression for the density of U,, the Fourier transform of ¢}, can be written as

n—1
CI{/“(M, e Xpe]) = / ‘]Zn(zl’ ’Zn—l)H e dz,
n—1

k=1

n—1
—ix,
/IH PU,,(F;/(Z))“R%I (z)g e W% dz,

n—1 J—
last, (k) _
2 / [Tl % B ) (2 T@0)
seSN, JR =y \J=last (=Dl

Tw, (@)
X fi - 1(z) _”‘M dz
1 deg,() I[ v

Observe now that, when z € R’g)l R
rxew, < =n=y.

Applying the convolution theorem and the fact that the Fourier transform of the exponential density is

Ex := | E,we ™ du=—P s
(%) /Rp() P

we then continue the above computation:

—1 —

~ Tieey 1 Tast, (k) e

qy (X1, 0 Xno1) = Z %H / _ % Egeg | (@) e™™% dz
sesn, Lli=p deg(Dizi /R \y=last (k=141

- last (k)

¥ 1]{7: =) H H /Edegl(,)(Zk)e_ix"Z* dz
R

sesN, 1= 0 ' deg, () 1= U jfast, (k=1)+1

n—1  last,(k)

> Vg II !

- deg. +'ka'
sESN, k=1 j—fast (k—1)+1 &,0)

Similarly, the expression for the density of V,, yields

n—1

q(,”(xl, e Xpo1) = /q{;ﬂ(m, ...,zn_l)H e~ dzy

-1 cor,

=

1
= z ﬂ{o‘,=r} ];[ m

teSYT(5,) k=1 j=co D+1
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Replacing each x; with —ix; in the expressions for ¢}, and g}, , we recognize the generating factors g,
and f; from (26) and (24), respectively. We thus conclude that the equality py, = py, is equivalent to
the (n — 1)! identities

Z H{m:y} gs(xlv »xn—l) = z H{G,ZY} ﬁ(-xlv ,xn—l)s Y €St
SESN, 1€SYT(5,)

These can be written more compactly as the equality of the generating functions F, and G, defined in
(28) and (29), that is, the relation (8).
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APPENDIX : THE RSK AND BURGE CORRESPONDENCES

In this appendix, we translate the results of [28] into Theorem 5.

We identify a Young diagram A with the sequence (m;,n;)\-} of its border boxes, ordered so that
m; > m;_y andn; < n;_; forall 2 < i < k— 1. Such a sequence forms a directed “line-to-line” path, that
is, a directed path starting on the line {(i,j) € N? : i = 1} and ending on the line {(i,j) € N : j = 1}.
In other words, we have that m; = 1, ny_; = 1, and each increment w; := (m;,n;) — (m;_1,n;_1) is
either D := (0,—1) or R := (1,0) for all 2 < i < k — 12. Setting also by convention w; := R and
wi := D, one can identify A with a “D-R-sequence” w = w - - - wy starting at R and ending at D. For
instance, the shape of the tableaux in Figure 3 is encoded as the sequence RDRRRDDRD.

Given a partition A associated with a D-R sequence w = wy - - - Wy, [28, Theorem 7] describes the
RSK map as a bijection between Young tableaux x of shape A with non-negative integers entries and
sequences (B = u°, u', ..., u* = @) of partitions such that x’/u~! is a horizontal strip if w; = R and
w1/ ul is a horizontal strip if w; = D. One can easily verify that, for 1 <i < k — 1, the partition 4’ is

Letters D and R refer to down and right steps of the directed path, respectively, if one uses the French notation for Young
diagrams as in [28]. In the English translation, which we have used throughout this article, D and R correspond to left and down
steps, respectively.
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of length p; := min(m;, n;) at most. We can then form a new Young tableau r = {r;; : (i,j) € A} by
setting the diagonal of r that contains the border box (m;, n;) to be

(P Fn— L1 <o s Fm—p i p—p 1) = ' for 1 <i<k—1.

It is then easy to check that the conditions on g'/u*~! and u'~! /i’ are equivalent to the fact that r is
an interlacing tableau in the sense of (14). Therefore, the sequence (§ = u°, u',..., u* = @) can be
rearranged into an interlacing tableau of shape A with non-negative integer entries, thus yielding the
RSK correspondence of Theorem 5. The fact that (16) holds follows then from [28, Theorem 8-(G'1)].

The statement about the Burge correspondence in Theorem 5, which is called dualRSK’ (to be
read: dual RSK prime) in [28], can be recovered in a similar way from the results of that paper. Given
a partition A associated with a D-R sequence w = wj - - - wy, [28, Theorem 11] presents the Burge
correspondence as a bijection between Young tableaux x of shape A with non-negative integer entries
and sequences (# = V%, v!, ..., vk = @) of partitions such that v/ /vi~! is a vertical strip if w; = R and
vi=l /vl is a vertical strip if w; = D. This time, we define the Young tableau b = {b;; : (i,j) € A} by
identifying the diagonal of b that contains (m;, n;) with the conjugate partition of v':

(bmi,n,-s bmi—l,ni—ls sbmi—pi+1,n,-—pi+1) = (Vl), for 1 <i< k—1.

This resulting map x + b satisfies (17) thanks to [28, Theorem 12-(G*2)].

When A is a rectangular shape [1,m] X [1,n], the RSK and Burge correspondences degenerate
to the classical ones in the following way. The sequence of partitions (§ = u°, u',..., )" = @)
corresponding to an m X n matrix x via RSK can be split into an ascending and a descending sequence:

Q=,uo<_:/41Q--~§/4’"Q-~-Z_>;4’"+"_1Q,u””":ﬂ.

One can then form two Young tableaux P and Q of common shape u™ by setting Q;; := kif and only if
(i,j) € uk/p*= forall 1 < k < mand P;; :=[if and only if (i, j) € ™"~ /™"~ forall 1 <1< n.
The constraint on the partitions make the two tableaux P and Q semistandard, and the map x — (P, Q)
corresponds to the classical RSK correspondence. An analogous connection with the classical Burge
correspondence also holds.



