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transforms, for which we provide a complete solution. Prior 
to Soundararajan (2019), refinements of the discrepancy 
inequality of Erdős and Turán had been obtained by Ganelius 
(1954) and Mignotte (1992).

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

Following the elegant treatment of Soundararajan [18], we revisit the classical work of 
Erdős and Turán [9] on the distribution of zeros of polynomials in the complex plane. In 
particular, we establish a connection between the upper bound for the discrepancy of the 
angles of the zeros of a given polynomial and an extremal problem in Fourier analysis 
involving the maxima of Hilbert transforms. Before describing this extremal problem, 
which is solved completely in this paper, we first describe our application in number 
theory.

Let

P (z) =
N∏
j=1

(
z − αj

)
= zN + aN−1z

N−1 + · · · + a0

be a monic polynomial of degree N , with a0 �= 0 and roots αj = ρj e
2πiθj . Roughly 

speaking, Erdős and Turán proved that if the size of P (z) on the unit circle is small, 
and a0 is not too small, then its roots cluster around the unit circle and the angles 2πθj
become equidistributed as N → ∞. Two notions of size, or height, of a polynomial that 
have been considered in this problem are

H(P ) = max
|z|=1

|P (z)|√
|a0|

and h(P ) =
1∫

0

log+

(∣∣P (e2πiθ)∣∣√
|a0|

)
dθ,

where log+ x = max{log x, 0}. By Parseval’s identity, we have

1∫
0

|P
(
e2πiθ)∣∣2 dθ = 1 + |aN−1|2 + . . . + |a0|2,

from which it follows easily that H(P ) ≥ 1 and therefore h(P ) ≤ logH(P ). Hence, the 
assumption that h(P ) is small is weaker than the assumption that H(P ) is small. Let 
us also define the quantity
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M(P ) =
N∏
j=1

max
{
ρj ,

1
ρj

}
.

The observation that the zeros cluster around the unit circle is given by the inequality 
[18, Theorem 1]

logM(P ) ≤ 2h(P ),

that follows by an interesting application of Jensen’s formula in complex analysis.
We focus on the study of the equidistribution of the angles 2πθj. Given an interval I

on R/Z, we let N(I; P ) denote the number of zeros αj = ρj e
2πiθj for which θj ∈ I. A 

convenient way to measure the distribution of the sequence {θj}Nj=1 is by means of its 
discrepancy, defined by

D(P ) := sup
I

∣∣∣N(I;P ) − |I|N
∣∣∣,

where |I| denotes the length of the interval I. We list a few notable results in estimating 
the discrepancy D(P ). Erdős and Turán, in their original paper [9] of 1950, proved that

D(P ) ≤ C
√
N logH(P ), (1.1)

with C = 16. In 1954, Ganelius [10] established (1.1) with the constant C =
√

2π/k =
2.5619 . . ., where k = 1/12 − 1/32 + 1/52 − . . . = 0.9159 . . . denotes Catalan’s constant. 
Amoroso and Mignotte [2] have produced examples that show that the constant C in 
(1.1) must be at least 

√
2. In 1992, Mignotte [14] refined Ganelius’s result by establishing 

the stronger inequality

D(P ) ≤ C
√

N h(P ), (1.2)

with the same constant C =
√

2π/k = 2.5619 . . .. Only recently, in 2019, Soundararajan 
[18] improved this result by establishing (1.2) with the constant

C = 8
π

= 2.5464 . . . .

Our goal is to provide an improvement of the admissible value of C in (1.2). We 
follow the general outline of proof of Soundararajan in [18] up to a certain point, then 
we diverge and introduce a novel ingredient: the connection to a certain extremal problem 
in Fourier analysis involving the maxima of Hilbert transforms. As a direct consequence 
of Theorems 2 and 3 below, we prove that the constant

C = 4√ = 2.2567 . . .

π
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is admissible in (1.2) and show that this constant is the best possible with our particular 
strategy.

Theorem 1. If P is a monic polynomial of degree N with P (0) �= 0, then

D(P ) ≤ 4√
π

√
N h(P ).

Remark. In their original paper [9], Erdős and Turán were also interested in estimating 
the number R(P ) of real roots of a polynomial P . In particular, the notion of discrepancy 
can be used towards this goal. From the definition, letting I denote either the point 0 or 
1
2 , it plainly follows that R(P ) ≤ 2 D(P ).

We also note that, for the example P (z) = (z − 1)N , one has D(P ) = N and

h(P ) = N

1∫
0

log+ ∣∣e2πiθ − 1
∣∣dθ = N

3
√

3L(2, χ3)
4π , (1.3)

where χ3 denotes the quadratic character modulo 3. This last identity was observed by 
C. J. Smyth in a slightly different context, see [5, Appendix 1]. Hence, the constant C
in (1.2) cannot be smaller than√

4π
3
√

3L(2, χ3)
= 1.75936 . . . . (1.4)

1.2. Fourier optimization

Throughout this paper we consider functions in two different environments: the ones 
defined on R (usually denoted here with capital letters) and the ones defined on R/Z

(usually denoted here with lower case letters).
For F ∈ L1(R) we define its Fourier transform F̂ : R → C by

F̂ (t) =
∞∫

−∞

e−2πitx F (x) dx.

By Plancherel’s theorem one can extend the Fourier transform to an isometry on L2(R). 
The Hilbert transform H is another classical operator in harmonic analysis that has a 
few (equivalent) interpretations. As a singular integral it is defined by

H(F )(x) = p.v. 1
π

∫
F (x− t) 1

t
dt , (1.5)
R
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where the notation p.v. here means that such integral should be understood as a Cauchy 
principal value. The classical theory of singular integrals guarantees that the Hilbert 
transform is a well-defined operator on Lp(R) for 1 ≤ p < ∞, being a bounded operator 
if 1 < p < ∞, and satisfying a weak-type-(1, 1) estimate when p = 1. See, for instance 
[19, Chapters V and VI] or [13, Chapter 4] for proofs of these facts and the connections 
with the theory of conjugate harmonic functions. In particular, the appropriate limiting 
process in (1.5) converges a.e. for F ∈ Lp(R), 1 ≤ p < ∞. The operator H : L2(R) →
L2(R) is an isometry that can be alternatively defined on the Fourier space by the 
relation1

̂H(F )(t) = −i sgn(t) F̂ (t). (1.6)

Similarly, in the periodic setting, if f ∈ L1(R/Z) we define its Fourier transform 
f̂ : Z → C by

f̂(k) =
∫

R/Z

e−2πikθ f(θ) dθ.

The periodic Hilbert transform is the singular integral operator defined by

H(f)(θ) = p.v.
∫

R/Z

f(θ − α) cot(πα) dα. (1.7)

Again, the appropriate limiting process in (1.7) converges a.e. if f ∈ Lp(R/Z) for 
1 ≤ p < ∞, defining a bounded operator on Lp(R/Z) if 1 < p < ∞, and verifying 
a weak-type-(1, 1) estimate when p = 1. In particular, H : L2(R/Z) → L2(R/Z) can be 
alternatively defined via the Fourier coefficients

̂H(f)(k) = −i sgn(k) f̂(k). (1.8)

Although we use the same notation for the Fourier transforms and Hilbert transforms on 
R and R/Z, it will be clear from the context which one we are referring to. We consider 
below some sharp inequalities for the Hilbert transform. Classical works in this theme 
include the ones of Pichorides [15], in which he finds the operator norm ‖H‖Lp→Lp for 
1 < p < ∞ (see also [12] for a simplified proof), and of Davis [8], in which he finds the 
weak-type-(1, 1) operator norm (such works consider both the situation in the real line 
and in the periodic setting).

1 Recall that sgn : R → R is defined by sgn(t) = 1, if t > 0; sgn(0) = 0; and sgn(t) = −1, if t < 0.
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Throughout the paper we let A be the following class of real-valued functions:

A =

⎧⎪⎨⎪⎩
F : R → R even, continuous and non-negative;
supp(F ) ⊆ [−1

2 ,
1
2 ];

F̂ ∈ L1(R).

For each F ∈ A we define its periodization fF : R/Z → R by

fF (θ) :=
∑
k∈Z

F (θ + k).

One can verify that fF ∈ L1(R/Z) and that f̂F (k) = F̂ (k) for all k ∈ Z. Moreover, in 
this situation, by a classical result of Plancherel and Pólya (see [16] or [21, eq. (3.1)]), 
for any δ > 0 we have

∑
k∈Z

∣∣F̂ (δk)
∣∣�δ

∥∥F̂∥∥
L1(R).

In particular, for F ∈ A, both H(F ) defined by (1.6) and H(fF ) defined by (1.8) via 
Fourier inversion are bounded and continuous functions. We consider the following op-
timization problem involving the L∞-norms of these Hilbert transforms.

Extremal Problem 1 (EP1). With notations as above, find the infimum:

C := inf
0�=F∈A

max
{
‖H(F )‖L∞(R) , ‖H(fF )‖L∞(R/Z)

}
‖F‖L1(R)

. (1.9)

This problem is the main theme of study in this paper. Without necessarily knowing 
the precise value of the constant C, our first main result gives a non-obvious theoreti-
cal connection between this optimization problem, purely in analysis, and the angular 
discrepancy D(P ) of a polynomial P .

Theorem 2. Let C be given by (1.9). If P is a monic polynomial of degree N with P (0) �=
0, then

D(P ) ≤ 4
√

C√
π

√
N h(P ).

We prove this result in Sections 2 and 3. From the observations leading to (1.4) and 
Theorem 2 we automatically have a lower bound coming from the number theory side:

C ≥ π
(

4π√
)

= 0.6077 . . . .
16 3 3L(2, χ3)
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In Theorem 2, we go much further in our understanding of this problem. Before stating 
this result, we set up a second optimization problem, somewhat related to the first one. 
Let A∗ be the following class of real-valued functions (slightly larger than A):

A∗ =
{

F ∈ L1(R), F ≥ 0;
supp(F ) ⊆ [−1

2 ,
1
2 ].

Consider the following problem:
Extremal Problem 2 (EP2). With notations as above, find the infimum:

C∗ := inf
0�=F∈A∗

‖H(F )‖L∞(R)

‖F‖L1(R)
. (1.10)

Since A ⊆ A∗ and ‖H(F )‖L∞(R) ≤ max
{
‖H(F )‖L∞(R) , ‖H(fF )‖L∞(R/Z)

}
, it is clear 

from the definitions of (EP1) and (EP2) that C∗ ≤ C. Our second main result establishes 
a complete solution for both of these extremal problems at once.

Theorem 3. For C given by (1.9) and C∗ given by (1.10), we have

C∗ = C = 1.

Moreover, there are no extremal functions F ∈ A for the problem (EP1), and the unique
(modulo multiplication by a positive constant) extremal function for the problem (EP2)
is

F(x) := 2
π

log
(

1 +
√

1 − 4x2

2|x|

) (
for − 1

2 ≤ x ≤ 1
2
)
. (1.11)

The proof of this theorem is given in Section 5. The proof relies on the serendipitous 
existence of two magic functions: the even function given in (1.11) and an odd function 
given in (5.2). For a different perspective on lower bounds for the Hilbert transform over 
intervals (mostly in L2), see [1].

Theorem 1 now follows directly from Theorems 2 and 3.

2. Soundararajan’s proof revisited

We now prepare for the proof of Theorem 2. At first, we closely follow Soundarara-
jan’s strategy of proof for the inequality (1.2) in [18], which we briefly review for the 
convenience of the reader. At a certain stage of the argument (discussed in §2.4 below), 
we make a crucial change of direction that leads to our optimization problem in analy-
sis. This is discussed in full detail in the next section, where we complete the proof of 
Theorem 2.
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2.1. Schur’s observation

First note that we can assume without loss of generality that the zeros of the poly-
nomial are all in the unit circle, an observation due to Schur [17]. In fact, letting 
P (z) =

∏N
j=1
(
z − ρj e

2πiθj
)

as above, we may define Q(z) =
∏N

j=1
(
z − e2πiθj

)
and 

observe, for |z| = 1, that

∣∣∣∣ z
√
ρj

−√
ρj e

2πiθj
∣∣∣∣2 ≥

∣∣z − e2πiθj
∣∣2.

By multiplying over j, we find that |P (z)|/
√

|a0| ≥ |Q(z)| for |z| = 1, and therefore 
h(P ) ≥ h(Q). Hence, from now on we assume that ρj = 1 for j = 1, 2, . . . , N .

2.2. Smoothed sums and h(P )

If we define ψ(θ) = log |2 sin(πθ)|, then its Fourier coefficients are given by ψ̂(0) = 0
and ψ̂(k) = − 1

2|k| for k �= 0 (e.g. [11, §1.441, eq. 2]). Hence, for P (z) =
∏N

j=1
(
z− e2πiθj

)
and k ∈ Z \ {0}, we have

∫
R/Z

e2πikθ log
∣∣P (e2πiθ)∣∣ dθ =

N∑
j=1

∫
R/Z

e2πikθ log
∣∣e2πiθ − e2πiθj

∣∣ dθ
=

N∑
j=1

e2πikθj
∫

R/Z

e2πikα log
∣∣e2πiα − 1

∣∣ dα
=

N∑
j=1

e2πikθj
∫

R/Z

ψ(α) e2πikα dα = − 1
2|k|

N∑
j=1

e2πikθj .

(2.1)

Identity (2.1) is essentially contained in [18, Lemma 2]. Let g : R/Z → C be a continuous 
and integrable function such that {k ĝ(k)}k∈Z is absolutely summable, and set

G := max
θ

∣∣∣∣∣∣
∑
k �=0

2|k| ĝ(k) e2πikθ

∣∣∣∣∣∣ .
By expanding g into its Fourier series, and using (2.1), we get

∣∣∣∣∣∣∣
N∑
j=1

g(θj) −N

∫
g(θ) dθ

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
k �=0

ĝ(k)
N∑
j=1

e2πikθj

∣∣∣∣∣∣

R/Z
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=

∣∣∣∣∣∣∣−
∫

R/Z

log
∣∣P (e2πiθ)∣∣⎛⎝∑

k �=0

2|k|ĝ(k)e2πikθ

⎞⎠dθ

∣∣∣∣∣∣∣
≤ G

∫
R/Z

∣∣∣ log
∣∣P (e2πiθ)∣∣∣∣∣dθ = G

⎛⎜⎝ ∫
R/Z

2 log+ ∣∣P (e2πiθ)∣∣dθ − ∫
R/Z

log
∣∣P (e2πiθ)∣∣ dθ

⎞⎟⎠
= 2G h(P ). (2.2)

In the last passage above, note the use of Jensen’s formula in the identity∫
R/Z

log
∣∣P (e2πiθ)∣∣ dθ = 0.

Inequality (2.2) is the content of [18, Proposition 1].

2.3. Majorizing the characteristic function of an interval

Having established the preliminaries in §2.1 and §2.2 above, we now move on to the 
proof itself. First observe that if we can prove the upper bound

N(I;P ) − |I|N ≤ C
√

N h(P ) , (2.3)

for a certain universal constant C and all intervals I ⊂ R/Z, we may use the identity

N(I;P ) − |I|N = |Ic|N −N(Ic;P ),

where Ic denotes the complementary interval to I, to obtain the corresponding lower 
bound. Therefore, it suffices to obtain the upper bound (2.3).

Let 0 �= F ∈ A, normalized so that ‖F‖L1(R) =
∫
R F (x) dx = 1. For each 0 < δ ≤ 1, 

let

Fδ(x) := 1
δF
(
x
δ

)
so that supp(Fδ) ⊂

[
− δ

2 , 
δ
2
]
. We let

fδ(θ) :=
∑
k∈Z

Fδ(θ + k)

be the periodization of Fδ. Note that 
∫
R/Z fδ(θ) dθ = 1 and, more generally, that

f̂δ(k) = F̂δ(k) = F̂ (δk)
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for all k ∈ Z. For each interval I ⊂ R/Z, let Iδ be the interval obtained by widening I
on either side by δ/2; if |I| + δ ≥ 1, then we just consider Iδ to be all of R/Z. Let χIδ

be the characteristic function of the interval Iδ and let gδ be the convolution of χIδ and 
fδ, that is

gδ(θ) =
∫

R/Z

χIδ(α) fδ(θ − α) dα. (2.4)

Note that gδ is a continuous and non-negative function that majorizes the characteristic 
function of the original interval I. We then write

N(I;P ) − |I|N ≤
N∑
j=1

gδ(θj) − |I|N

=

⎛⎜⎝ N∑
j=1

gδ(θj) −N

∫
R/Z

gδ(θ) dθ

⎞⎟⎠+ N

⎛⎜⎝ ∫
R/Z

gδ(θ) dθ − |I|

⎞⎟⎠ . (2.5)

Our goal now is to bound the two terms appearing on the right-hand side of (2.5). 
For the second term, we use the definition (2.4) and Fubini’s theorem to get

0 ≤ N

⎛⎜⎝ ∫
R/Z

gδ(θ) dθ − |I|

⎞⎟⎠ = N

⎛⎜⎝ ∫
R/Z

χIδ(α) dα− |I|

⎞⎟⎠ ≤ N
(
(|I| + δ) − |I|

)
= Nδ.

(2.6)

Now, if Iδ = [α, β], for all k ∈ Z \ {0} we have

χ̂Iδ(k) = e−2πikα − e−2πikβ

2πik . (2.7)

Recall that ĝδ(k) = χ̂Iδ(k) f̂δ(k) for all k ∈ Z, hence the sequence {kĝδ(k)}k∈Z is abso-
lutely summable. Letting

Gδ := max
θ

∣∣∣∣∣∣
∑
k �=0

2|k|ĝδ(k)e2πikθ

∣∣∣∣∣∣ ,
we have seen in (2.2) that the first term on the right-hand side of (2.5) satisfies∣∣∣∣∣∣∣

N∑
j=1

gδ(θj) −N

∫
gδ(θ) dθ

∣∣∣∣∣∣∣ ≤ 2Gδ h(P ). (2.8)

R/Z
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2.4. Understanding the cancellation

We now need to bound the quantity Gδ and this is where we diverge from Soundarara-
jan’s original proof [18]. From (2.7) we have

∑
k �=0

2|k|ĝδ(k) e2πikθ = 1
π

∑
k �=0

−i sgn(k)f̂δ(k)
(
e2πik(θ−α) − e2πik(θ−β)

)
, (2.9)

and hence ∣∣∣∣∣∣
∑
k �=0

2|k|ĝδ(k) e2πikθ

∣∣∣∣∣∣≤ 1
π

∣∣∣∣∣∣
∑
k �=0

−i sgn(k)f̂δ(k) e2πik(θ−α)

∣∣∣∣∣∣
+ 1

π

∣∣∣∣∣∣
∑
k �=0

−i sgn(k)f̂δ(k) e2πik(θ−β)

∣∣∣∣∣∣
= 1

π

∣∣H(fδ)(θ − α)
∣∣+ 1

π

∣∣H(fδ)(θ − β)
∣∣.

This plainly yields

Gδ ≤ 2
π
‖H(fδ)‖L∞(R/Z). (2.10)

Equality is actually attained if one considers the maximum over all intervals [α, β], so 
there is no loss in this use of the triangle inequality.

Remark. In the corresponding step in [18], Soundararajan is working in the restricted 
subclass of A for which F̂ ≥ 0, and at the end he chooses F to be a triangular graph. 
He couples the terms k and −k in (2.9) and uses the triangle inequality, further moving 
the absolute values inside the sum, to get

Gδ ≤ 4
π

max
θ

∑
k≥1

f̂δ(k) | sin(2πkθ)|.

This particular extra step of moving the absolute values inside disregards some cancel-
lation in the sum. This is precisely the point where our analysis diverges from [18].

We now state a relation that is fundamental for our purposes, which essentially says 
that the supremum over this one-parameter family (for 0 < δ ≤ 1) of L∞-norms of 
Hilbert transforms in (2.10), when properly normalized, occurs at one of the endpoints 
δ = 0+ or δ = 1.
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Proposition 4. Let F ∈ A and 0 < δ ≤ 1. With notations as above, we have

sup
0<δ≤1

δ ‖H(fδ)‖L∞(R/Z) = max
{
‖H(F )‖L∞(R) , ‖H(fF )‖L∞(R/Z)

}
.

We postpone the proof of this result until the next section.

2.5. Conclusion

Assume for a moment that we have established Proposition 4. Let us simplify the 
notation by writing

C(F ) := max
{
‖H(F )‖L∞(R) , ‖H(fF )‖L∞(R/Z)

}
.

It then follows from (2.10) and Proposition 4 that

Gδ ≤ 2
πδ

C(F ), (2.11)

and from (2.5), (2.6), (2.8), and (2.11) we get

N(I;P ) − |I|N ≤ Nδ + 4
πδ

C(F )h(P ).

The choice of

δ =
√

4 C(F )h(P )
πN

(2.12)

minimizes the right-hand side of the expression above and leads to the bound

N(I;P ) − |I|N ≤ 4
√

C(F )√
π

√
N h(P ).

Note that this is independent of the interval I. Minimizing over F ∈ A we arrive at the 
desired conclusion

D(P ) ≤ 4
√

C√
π

√
N h(P ).

Therefore, Theorem 2 follows from Proposition 4.

Remark. From the fact that log+ xy ≤ log+ x + log+ y for any x, y > 0, if P (z) =∏N
j=1
(
z − e2πiθj

)
we get

h(P ) =
1∫

0

log+ ∣∣P (e2πiθ)∣∣dθ ≤ N

1∫
0

log+ ∣∣e2πiθ − 1
∣∣ dθ = N

3
√

3L(2, χ3)
4π ,
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as remarked in (1.3). Hence, the choice of δ in (2.12) indeed falls in the interval (0, 1] if

C(F ) ≤ π2

3
√

3L(2, χ3)
= 2.43107 . . . . (2.13)

In Section 4, we observe that there are functions F ∈ A that verify this bound. For 
example, the triangle function F�(x) = 2 max

{
1 − 2|x|, 0

}
has C(F�) = 1.12219 . . .. 

Hence, without loss of generality, we may assume that from the start we are working 
under the threshold (2.13).

3. Maxima of Hilbert transforms

The purpose of this section is to prove the key Proposition 4, hence concluding 
the proof of Theorem 2. Recall that we have been using the definition of the Hilbert 
transforms via the multipliers (1.6) and (1.8) and Fourier inversion (hence all Hilbert 
transforms here are bounded and continuous functions). In this section, the alternative 
representations of the Hilbert transforms as singular integrals will be particularly use-
ful. Throughout this section we continue to assume that 0 �= F ∈ A is normalized so 
that ‖F‖L1(R) =

∫
R F (x) dx = 1, and for each 0 < δ ≤ 1 we let Fδ(x) := 1

δF
(
x
δ

)
and 

fδ(θ) :=
∑

k∈Z Fδ(θ + k). For x ∈ R, let

‖x‖ := min{|x− n| : n ∈ Z}

be the distance of x to the nearest integer.

3.1. Hilbert transforms as singular integrals

For each 0 < δ ≤ 1, since H(fδ) is an odd and continuous function in R/Z, we 
have H(fδ)(0) = H(fδ)(±1

2 ) = 0. We start by establishing the following useful relation 
between the periodic Hilbert transforms H(fδ) and the Hilbert transform H(F ).

Lemma 5. Let 0 < δ ≤ 1 and −1
2 < θ < 1

2 . Then

δH(fδ)(θ) = H(F )
(
θ
δ

)
+ δ

π

∑
k≥1

δ
2∫

0

fδ(α) 4θ(θ2 − α2 − k2)(
(θ − α)2 − k2

)(
(θ + α)2 − k2

) dα. (3.1)

Proof. Let Γ ⊂ R be the set of full measure (i.e. R \ Γ has measure zero) such that for 
every x ∈ Γ the limit

lim
ε→0

1
π

∫
F (x− t) 1

t
dt (3.2)
ε≤|t|
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exists and is equal to H(F )(x). Similarly, for a fixed 0 < δ ≤ 1, let Γδ ⊂ R/Z be the set 
of full measure such that for every θ ∈ Γδ the limit

lim
ε→0

∫
ε≤|α|≤ 1

2

fδ(θ − α) cot(πα) dα (3.3)

exists and is equal to H(fδ)(θ).

Recall that, for ‖α‖ ≥ ε > 0, we have the absolutely convergent expansion (e.g. [11, 
§1.421 eq. 3])

cot(πα) = 1
π

⎛⎝ 1
α

+
∑
k≥1

2α
α2 − k2

⎞⎠ . (3.4)

Assume that θ ∈ Γδ and θδ ∈ Γ. Let ε be small and write Xε =
{
α ∈

[
− δ

2 , 
δ
2 ] : ‖θ−α‖ ≥

ε
}

and Yε =
{
β ∈

[
− 1

2 , 
1
2 ] : ‖θ− δβ‖ ≥ ε

}
. Using (3.4), and with a change of variables 

α = δβ, we note that

δ

∫
ε≤|α|≤ 1

2

fδ(θ − α) cot(πα) dα = δ

∫
Xε

fδ(α) cot(π(θ − α)) dα

= δ

π

∫
Xε

fδ(α)
(θ − α) dα + δ

π

∑
k≥1

∫
Xε

fδ(α) 2(θ − α)
(θ − α)2 − k2 dα

= 1
π

∫
Yε

F (β)(
θ
δ − β

) dβ + δ

π

∑
k≥1

∫
Xε

fδ(α) 2(θ − α)
(θ − α)2 − k2 dα.

Passing to the limit as ε → 0, and using the fact that fδ is even (to combine α and −α

in the integral below), we get

δH(fδ)(θ) = H(F )
(
θ
δ

)
+ δ

π

∑
k≥1

δ
2∫

− δ
2

fδ(α) 2(θ − α)
(θ − α)2 − k2 dα

= H(F )
(
θ
δ

)
+ δ

π

∑
k≥1

δ
2∫

0

fδ(α) 4θ(θ2 − α2 − k2)(
(θ − α)2 − k2

)(
(θ + α)2 − k2

) dα.

(3.5)

In principle, (3.5) holds for θ in the set of full measure (−1
2 , 

1
2 ) ∩ Γδ ∩ δΓ. Since the 

functions in (3.5) are continuous functions of θ ∈ (−1
2 , 

1
2 ) we conclude that the identity 

is valid for all θ in this range. �
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3.2. Proof of Proposition 4

We start by observing that, for 0 < δ ≤ 1 and −1
2 ≤ θ ≤ − δ

2 , we have

H(fδ)(θ) ≤ 0. (3.6)

In fact, if δ < 1 and θ ∈ (−1
2 , −

δ
2 ) ∩Γδ, using that fδ is even, non-negative and supported 

in [− δ
2 , 

δ
2 ] along with the singular integral representation (3.3), we get

H(fδ)(θ) = lim
ε→0

∫
Xε

fδ(α) cot(π(θ − α)) dα =

δ
2∫

− δ
2

fδ(α) cot(π(θ − α)) dα

= 2

δ
2∫

0

fδ(α)
(
cot(π(θ − α)) + cot(π(θ + α))

)
dα ≤ 0.

A similar argument shows that if x ≤ −1
2 then H(F )(x) ≤ 0.

Since H(fδ) is an odd and continuous function in [−1
2 , 

1
2 ] (not identically zero), its 

maximum in absolute value coincides with the positive maximum, and we investigate 
the latter. Recall that H(fδ)(0) = H(fδ)(±1

2 ) = 0. We split our analysis into two cases.

3.2.1. Case 1
Assume that 0 < θ < 1

2 is such that H(fδ)(θ) > 0. In this case, the sum on the 
right-side of (3.1) is clearly non-positive and it plainly follows by Lemma 5 that

δH(fδ)(θ) ≤ H(F )
(
θ
δ

)
. (3.7)

3.2.2. Case 2
Assume that −1

2 < θ < 0 is such that H(fδ)(θ) > 0. As observed in (3.6), we must 
have − δ

2 < θ < 0 in this situation. Using Lemma 5, letting θ′ = θ
δ (hence −1

2 < θ′ < 0) 
and changing variables α = δβ in the integral, we rewrite (3.1) as

δH(fδ)(θ) = H(F )(θ′) + 1
π

∑
k≥1

1
2∫

0

F (β)
4θ′
(
θ′ 2 − β2 −

(
k
δ

)2)(
(θ′ − β)2 −

(
k
δ

)2)((θ′ + β)2 −
(
k
δ

)2) dβ.

(3.8)

The important observation now is that, for each k ≥ 1, the term

4θ′
(
θ′ 2 − β2 −

(
k
δ

)2)(
(θ′ − β)2 −

(
k
)2)((θ′ + β)2 −

(
k
)2)
δ δ
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is positive and, for fixed −1
2 < θ′ < 0 and 0 ≤ β ≤ 1

2 , the function

h(x) :=
4θ′
(
θ′ 2 − β2 − x2)(

(θ′ − β)2 − x2
)(

(θ′ + β)2 − x2
)

verifies h′(x) < 0 for x ≥ 1. This is a routine calculation. The conclusion is that we could 
replace δ on each summand on the right-hand side of (3.8) by its maximum value δ = 1
and do better, i.e.

δH(fδ)(θ) ≤ H(F )(θ′) + 1
π

∑
k≥1

1
2∫

0

F (β)
4θ′
(
θ′ 2 − β2 − k2)(

(θ′ − β)2 − k2
)(

(θ′ + β)2 − k2
) dβ

= H(f1)(θ′) ,

(3.9)

where the last identity follows from another application of Lemma 5.

3.2.3. Conclusion
From (3.7) and (3.9), we plainly arrive at the conclusion that

sup
0<δ≤1

δ ‖H(fδ)‖L∞(R/Z) ≤ max
{
‖H(F )‖L∞(R) , ‖H(fF )‖L∞(R/Z)

}
=: C(F ). (3.10)

If C(F ) = ‖H(fF )‖L∞(R/Z), then (3.10) is obviously an equality (recall that fF = f1 in 
this notation). On the other hand, if C(F ) = ‖H(F )‖L∞(R), let x0 ∈ R be such that

C(F ) = ‖H(F )‖L∞(R) = H(F )(x0)

(note that H(F ) goes to zero at infinity, hence such x0 indeed exists). Let θ(δ) = δx0, for 
δ sufficiently small so that −1

2 < θ(δ) < 1
2 . We apply Lemma 5 once more, by changing 

variables α = δβ in the integral and rewriting (3.1) in the form

δH(fδ)(δx0) = H(F )(x0) + 1
π

∑
k≥1

1
2∫

0

F (β)
4δ2x0

(
δ2x2

0 − δ2β2 − k2)(
δ2(x0 − β)2 − k2

)(
δ2(x0 + β)2 − k2

) dβ.

(3.11)

An application of the dominated convergence theorem on the right-hand side of (3.11)
guarantees that

lim
δ→0+

δH(fδ)(δx0) = H(F )(x0) ,

and we have equality in (3.10) as desired. This concludes the proof of Proposition 4.
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4. A brief interlude

Before moving to the final section, where we present the proof of Theorem 3, let 
us briefly make some remarks to highlight a few important elements in our discussion. 
Throughout this section let f = fF .

4.1. Dichotomy

In the definition of C(F ) we have a maximum between two L∞-norms. One may 
wonder if one of these is always dominated by the other. Our first observation is that 
this is not always the case. In principle, there are examples of functions for which either 
L∞-norm can be maximal.

If the maximum value of H(f)(θ) occurs at a certain 0 < θ < 1
2 , then

C(F ) = ‖H(F )‖L∞(R). (4.1)

This follows directly from (3.7) with δ = 1. This is the case, in particular, if F is radial 
decreasing. In fact, under such assumption, for a.e. −1

2 < θ < 0 we have

H(f)(θ) = lim
ε→0

∫
ε≤|α|≤ 1

2

f(θ−α) cot(πα) dα = lim
ε→0

1
2∫

ε

(
f(θ−α)−f(θ+α)

)
cot(πα) dα ≤ 0.

Since H(f) is continuous, this inequality is valid for all −1
2 < θ < 0. Note that above we 

used the fact that ‖θ + α‖ ≤ ‖θ − α‖ in our range to argue that f(θ − α) ≤ f(θ + α).
On the other hand, if the maximum value of H(F )(x) occurs at a certain −1

2 < x < 0
(recall that we have seen that H(F )(x) ≤ 0 for x ≤ −1

2 ), then

C(F ) = ‖H(f)‖L∞(R/Z). (4.2)

This follows from (3.1) with δ = 1. There are indeed functions F with such behaviour, 
for instance the piecewise linear function, normalized so that 

∫
R F (x) dx = 1,

F (x) =

⎧⎪⎪⎨⎪⎪⎩
0, if 0 ≤ |x| ≤ 1

4 ;
64|x| − 16, if 1

4 ≤ |x| ≤ 5
16 ;

1
3 (32 − 64|x|), if 5

16 ≤ |x| ≤ 1
2 .

(4.3)

See Fig. 1 for the plots of the Hilbert transforms of this example. In a certain sense, the 
cases for which (4.2) holds are slightly unusual, and produce large L∞-norms. We prove 
in the next section that functions F such that C(F ) is very close to the infimum C tend 
to like option (4.1) better.



18 E. Carneiro et al. / Journal of Functional Analysis 281 (2021) 109199
Fig. 1. For the function F defined in (4.3), on the left we have the graph of H(F ) and on the right we have 
the graph of H(fF ).

4.2. The triangle function

Consider the triangle function F� given by

F�(x) = 2 max
{
1 − 2|x|, 0

}
.

Note that ‖F�‖L1(R) = 1. An application of integration by parts in (3.2) shows that

H(F�)(x) = 1
π

1
2∫

0

F ′
�(t) log

(
|x− t|
|x + t|

)
dt = 4

π

1
2∫

0

log
(
|x + t|
|x− t|

)
dt.

We seek the global maximum of H(F�)(x) when x > 0. One can check that this function 
is decreasing if x > 1

2 , simply because |x+t|
|x−t| <

|y+t|
|y−t| if x > y > 1

2 for all 0 < t < 1
2 . For 

0 < x < 1
2 , we may write

H(F�)(x) = 4
π

⎛⎜⎜⎝
x+ 1

2∫
x

log |y|dy −
x∫

x− 1
2

log |y|dy

⎞⎟⎟⎠ .

Hence, by the fundamental theorem of calculus, we have

H(F�)′(x) = log |x + 1
2 | − 2 log |x| + log |x− 1

2 | ,

and for 0 < x < 1
2 we find that H(F�)′(x) = 0 if and only if

(
x + 1

2
)( 1

2 − x
)

x2 = 1 ,

which yields x = 1/(2
√

2). This is the global maximum and by (4.1) we get
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‖H(F�)‖L∞(R) =H(F�)
( 1

2
√

2

)
= 4

π

⎛⎜⎜⎝
1

2
√

2+ 1
2∫

1
2
√

2

log y dy −

1
2
√

2∫
1

2
√

2−
1
2

log |y|dy

⎞⎟⎟⎠= 4
π

log(1 +
√

2).

This shows that the constant C in (EP1) satisfies

C ≤ C(F�) = 4
π

log(1 +
√

2) = 1.12219 . . . ,

and, as a consequence of Theorem 2, for monic polynomials P of degree N with P (0) �= 0
we deduce that

D(P ) ≤ C
√

N h(P ) with C = 8
π

√
log(1 +

√
2) = 2.3906 . . . . (4.4)

Remark. In [18], Soundararajan works with the triangle test function F� as above, es-
tablishing a bound in (1.2) with C = 8/π = 2.54 . . .. Later, it came to our attention 
that, in unpublished notes,2 he independently arrived at the refined inequality in (4.4)
by further studying the situation with this particular test function.

5. Magic functions

In this section we prove Theorem 3. Ultimately, our proof relies on the existence of 
two magic functions. The first one, mentioned in the statement of the theorem, is the 
even function, supported in [−1

2 , 
1
2 ],

F(x) := 2
π

log
(

1 +
√

1 − 4x2

2|x|

) (
for − 1

2 ≤ x ≤ 1
2
)
. (5.1)

The second one is the odd function, also supported in [−1
2 , 

1
2 ], given by

G(x) := 2x√
1 − 4x2

(
for − 1

2 < x < 1
2
)
. (5.2)

We first treat the extremal problem (EP1), to find the value of the sharp constant C. 
Later, with some of the main ingredients already laid out, we discuss the details that 
lead to the solution of the extremal problem (EP2) and the sharp constant C∗.

5.1. Lower bound via duality

The map H : L2(R) → L2(R) is an isometry and verifies H2 = −I (therefore the 
inverse of H is −H). Hence, whenever F1, F2 ∈ L2(R) we have

2 Personal communication.
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Fig. 2. On the left, the graph of the magic function G. On the right, the graph of the Hilbert transform 
H(G). ∫

R

H(F1)(x)F2(x) dx = −
∫
R

F1(x)H(F2)(x) dx. (5.3)

Since H : Lp(R) → Lp(R) is a bounded operator for 1 < p < ∞, identity (5.3) extends to 
the situation where F1 ∈ Lp(R) and F2 ∈ Lp′(R), where 1

p + 1
p′ = 1 and 1 < p, p′ < ∞. 

The odd function G belongs to Lp(R) for 1 ≤ p < 2 but not to L2(R). It verifies

‖G‖L1(R) =
∫
R

|G(x)|dx = 1. (5.4)

The Hilbert transform of G can be explicitly computed and is given by

H(G)(x) =
{
−1, if |x| < 1

2 ;
−1 + 2|x|√

4x2−1 , if |x| > 1
2 .

(5.5)

We refer the reader to [3, p. 248, eq. (25)] for this computation.3 We shall see in a 
moment that the fact that G has L1(R)-norm equal to 1 and that its Hilbert transform 
is constant (equal to −1) in the interval [−1

2 , 
1
2 ] is precisely what makes it magical. The 

graphs of G and H(G) are plotted in Fig. 2.
Take any 0 �= F ∈ A, normalized so that ‖F‖L1(R) =

∫
R F (x) dx = 1. Note that 

F ∈ Lp(R) for all 1 ≤ p ≤ ∞. Using (5.3) with F1 = F and F2 = G, together with (5.4), 
(5.5), and the fact that supp(F ) ⊂ [−1

2 , 
1
2 ], we get the following relation

‖H(F )‖L∞(R) = ‖H(F )‖L∞(R)

∫
R

|G(x)|dx ≥
∫
R

H(F )(x)G(x) dx

= −
∫
R

F (x)H(G)(x) dx =

1
2∫

− 1
2

F (x) dx = 1.

(5.6)

3 Letting L(x) be the function on the left-hand side of [3, p. 248, eq. (25)] with a = 1
2 , we have G(x) =

1
2
(
L(x) − L(−x)

)
. Note also that the Hilbert transform in [3] is defined with a multiplying factor of −1.
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Since (5.6) holds for any such normalized F ∈ A, we plainly get the lower bound

C ≥ 1.

In addition, once we establish in the next subsection that C is actually equal to 1, 
relation (5.6) also tells us that there are no extremizers for the problem (EP1) in the 
class A. In fact, equality in (5.6) could only be attained if

H(F )(x) = sgn(x) ‖H(F )‖L∞(R) = sgn(x)

for a.e. −1
2 < x < 1

2 , which cannot occur since H(F ) is odd and continuous when F ∈ A.

5.2. A rogue extremal function

We now turn our attention to the function F defined in (5.1). Observe first that F ≥ 0
in [−1

2 , 
1
2 ], F is continuous and radial decreasing on R \{0} (with a logarithmic singularity 

at the origin), and F is smooth on R \{0, ±1
2}. Moreover, F ∈ Lp(R) for 1 ≤ p < ∞, and 

we note that

‖F‖L1(R) =
∫
R

F(x) dx = 1. (5.7)

5.2.1. The Hilbert transform of F
The Hilbert transform H(F) is an odd function. For almost every x ∈ R it is given 

by its singular integral representation. We may carefully apply integration by parts 
(excluding the singularities and then passing to the limit) to get, for a.e. x > 0,

H(F)(x) = p.v. 1
π

∫
R

F(x− t) 1
t

dt = 1
π

∫
R

F′(x− t) log |t|dt = 1
π

1
2∫

− 1
2

F′(t) log |x− t|dt

= − 1
π

1
2∫

0

F′(t) log
(
|x + t|
|x− t|

)
dt = 2

π2

1
2∫

0

1
t
√

1 − 4t2
log
(
|x + t|
|x− t|

)
dt.

This last integral can be evaluated explicitly, see [11, §4.297 eqs. 8 and 10], yielding

H(F)(x) =
{

sgn(x), if |x| ≤ 1
2 ;

2
π arcsin

( 1
2x
)
, if |x| > 1

2 .
(5.8)

From (5.8) we see that ‖H(F)‖L∞(R) = 1, and given that F has the correct normalization 
(5.7), it is essentially an extremizer for our problem. We say ‘essentially’ because F does 
not exactly belong to our class A, but it is almost there (hence the rogue in the title of 
this subsection). The graphs of F and H(F) are plotted in Fig. 3.
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Fig. 3. On the left, the graph of the magic function F. On the right, the graph of the Hilbert transform 
H(F).

5.2.2. Approximating the rogue extremal function
We need to make a small correction to F via a standard approximation argument. 

Let ϕ ∈ C∞
c (R) be a non-negative radial decreasing function supported in [−1

2 , 
1
2 ], with ∫

R ϕ(x) dx = 1 and Fourier transform ϕ̂ also non-negative. To construct such a function, 
we can just take ϕ = ψ∗ψ, where ψ is a smooth, radial decreasing, non-negative function 
supported in [−1

4 , 
1
4 ]. Recall that the convolution of two radial decreasing functions is 

still radial decreasing (for a beautiful proof of this fact we refer the reader to [4, p. 171]). 
For ε > 0 small, let

ϕε(x) := 1
ε ϕ
(
x
ε

)
and F1−ε(x) := 1

1−ε F

(
x

1−ε

)
,

and define

F ε := F1−ε ∗ ϕε.

Observe that F ε is a smooth, radial decreasing and non-negative function, supported in 
[−1

2 , 
1
2 ] with 

∫
R F ε(x) dx = 1. Moreover, F̂ ε(t) = F̂

(
(1 − ε)t

)
ϕ̂(εt) ∈ L1(R) (recall that 

F̂ is bounded since F ∈ L1(R)). Hence F ε ∈ A. At the level of the Hilbert transform, we 
have

H(F ε)(x) =
(
H(F1−ε) ∗ ϕε

)
(x) =

(
1

1−εH(F)
( �

1−ε

)
∗ ϕε

)
(x),

and we see from (5.8) that

‖H(F ε)‖L∞(R) = 1
1 − ε

.

As we have argued in §4.1, since F ε is radial decreasing we do have C(F ε) =
‖H(F ε)‖L∞(R). Sending ε → 0 we conclude that

C = 1.



E. Carneiro et al. / Journal of Functional Analysis 281 (2021) 109199 23
5.3. The extremal problem (EP2)

Note that F ∈ A∗ and that C∗ ≤ C = 1. We now verify the lower bound. Let 0 �= F ∈
A∗ be a given function, normalized so that ‖F‖L1(R) =

∫
R F (x) dx = 1. We may assume 

without loss of generality that ‖H(F )‖L∞(R) < ∞. Since H(F )(x) = 1/(πx) +O
(
1/|x|2

)
for |x| large, we find that H(F ) ∈ Lp(R) for any 1 < p ≤ ∞. This implies that F must 
have been in Lp(R), for any 1 ≤ p < ∞, from the start.

This last claim deserves a brief justification. An argument of Calderón and Capri [6, 
Lemma 4]4 shows that whenever F ∈ L1(R) and H(F ) ∈ Lp(R), for some 1 < p < ∞, 
and Ψ is a continuous function of compact support, for a.e. x ∈ R we have

H(F ∗ Ψ)(x) =
(
H(F ) ∗ Ψ

)
(x). (5.9)

Letting ϕ be a smooth function of compact support, with 
∫
R ϕ(x) dx = 1, and setting 

ϕε(x) := 1
εϕ 
(
x
ε

)
as usual, identity (5.9) holds with Ψ replaced by ϕε. Since F ∗ ϕε and 

H(F ) ∗ ϕε belong to Lp(R) we may apply the Hilbert transform on both sides of (5.9), 
using the fact that H2 = −I on Lp(R), to arrive at

−(F ∗ ϕε)(x) = H
(
H(F ) ∗ ϕε

)
(x) (5.10)

for a.e. x ∈ R. Letting ε → 0, since H(F ) ∗ ϕε → H(F ) in Lp(R) and the Hilbert 
transform is bounded on Lp(R), the right-hand side of (5.10) converges to H

(
H(F )

)
in 

Lp(R). The left-hand side of (5.10) converges to −F a.e. The conclusion is that we must 
indeed have −F = H

(
H(F )

)
, and therefore F ∈ Lp(R) as well. An alternative way to 

argue when F has compact support and 
∫
R F (x) dx = 1, is by observing that F −χ[− 1

2 ,
1
2 ]

belongs to the Hardy space H1(R) = {G ∈ L1(R) ; H(G) ∈ L1(R)}. This is a Banach 
space with norm ‖G‖H1(R) := ‖G‖L1(R) + ‖H(G)‖L1(R) (see e.g. [13, Theorem 6.7.4]) in 
which H is an isometry with H2 = −I.

Having gone through these considerations, the application of (5.6) is justified and 
we arrive at the conclusion that C∗ ≥ 1, and hence C∗ = 1. Let us now discuss the 
uniqueness of the extremizer. Equality happens in (5.6) if and only if

H(F )(x) = sgn(x) ‖H(F )‖L∞(R) = sgn(x)

for a.e. −1
2 < x < 1

2 . This implies that

H(F− F )(x) = 0 (5.11)

4 This lemma is stated for the situation when the singular integral operator belongs to L1, but the proof 
works for Lp (1 < p < ∞) as well. One simply applies Minkowski’s inequality for integrals to arrive at 
eq. (17) with 1 < p < ∞.
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for a.e. −1
2 < x < 1

2 . We are now in position to invoke a suitable uniqueness result, first 
established in a classical paper by Tricomi [20], and revisited recently by Coifman and 
Steinerberger [7, Theorem 1].

Lemma 6 (cf. [20] and [7]). Let G be a real-valued function such that supp(G) ⊂ [−1
2 , 

1
2
]

and G(x)(1 − 4x2)1/4 ∈ L2(− 1
2 , 

1
2
)
. If H(G) ≡ 0 on 

(
− 1

2 , 
1
2
)

then, for some c ∈ R, we 
have

G(x) = c√
1 − 4x2

(
for − 1

2 < x < 1
2
)
.

From (5.11) and Lemma 6 we arrive at

F(x) − F (x) = c√
1 − 4x2

for a.e. −1
2 < x < 1

2 . Since 
∫
R F(x) dx =

∫
R F (x) dx = 1, we conclude that c = 0 and 

F = F, as proposed.
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