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ABSTRACT

Efficient machine learning implementations
optimized for inference in hardware have
wide-ranging benefits, depending on the
application, from lower inference latency to
higher data throughput and reduced energy
consumption. Two popular techniques for
reducing computation in neural networks are
pruning, removing insignificant synapses, and
quantization, reducing the precision of the
calculations. In this work, we explore the
interplay between pruning and quantization
during the training of neural networks for
ultra low latency applications targeting high
energy physics use cases. Techniques
developed for this study have potential
applications across many other domains.
We study various configurations of pruning
during quantization-aware training, which we
term quantization-aware pruning, and the
effect of techniques like regularization, batch
normalization, and different pruning schemes
on performance, computational complexity,
and information content metrics. We find
that quantization-aware pruning yields more
computationally efficient models than either
pruning or quantization alone for our task.
Further, quantization-aware pruning typically
performs similar to or better in terms of
computational efficiency compared to other
neural architecture search techniques like
Bayesian optimization. Surprisingly, while

networks with different training configurations
can have similar performance for the benchmark
application, the information content in the
network can vary significantly, affecting its
generalizability.

Keywords: pruning, quantization, neural networks, generalizability,

regularization, batch normalization

1 INTRODUCTION
Efficient implementations of machine learning
(ML) algorithms provide a number of advantages
for data processing both on edge devices and
at massive data centers. These include reducing
the latency of neural network (NN) inference,
increasing the throughput, and reducing power
consumption or other hardware resources like
memory. During the ML algorithm design stage,
the computational burden of NN inference can be
reduced by eliminating nonessential calculations
through a modified training procedure. In this
paper, we study efficient NN design for an
ultra-low latency, resource-constrained particle
physics application. The classification task is to
identify radiation patterns that arise from different
elementary particles at sub-microsecond latency.
While our application domain emphasizes low
latency, the generic techniques we develop are
broadly applicable.

1

ar
X

iv
:2

10
2.

11
28

9v
2 

 [c
s.L

G
]  

19
 Ju

l 2
02

1



Hawks et al. Quantization-Aware Pruning

Two popular techniques for efficient ML
algorithm design are quantization and pruning.
Quantization is the reduction of the bit precision
at which calculations are performed in a NN to
reduce the memory and computational complexity.
Often, quantization employs fixed-point or integer
calculations, as opposed to floating-point ones,
to further reduce computations at no loss in
performance. Pruning is the removal of unimportant
weights, quantified in some way, from the NN.
In the most general approach, computations are
removed, or pruned, one-by-one from the network,
often using their magnitude as a proxy for their
importance. This is referred to as magnitude-
based unstructured pruning, and in this study,
we generically refer to it as pruning. Recently,
quantization-aware training (QAT), accounting
for the bit precision at training time, has been
demonstrated in a number of studies to be
very powerful in efficient ML algorithm design.
In this paper, we explore the potential of
combining pruning with QAT at any possible
precision. As one of the first studies examining
this relationship, we term the combination of
approaches quantization-aware pruning (QAP). The
goal is to understand the extent to which pruning
and quantization approaches are complementary
and can be optimally combined to create even more
efficiently designed NNs.

Furthermore, as detailed in Sec. 1.1, there are
multiple approaches to efficient NN optimization
and thus also to QAP. While different approaches
may achieve efficient network implementations
with similar classification performance, these
trained NNs may differ in their information
content and computational complexity, as quantified
through a variety of metrics. Thus, some
approaches may better achieve other desirable
characteristics beyond classification performance
such as algorithm robustness or generalizability.

This paper is structured as follows. Section 1.1
briefly recapitulates related work. Section 2
describes the low latency benchmark task in this
work related to jet classification at the CERN Large
Hadron Collider (LHC). Section 3 introduces our

approach to QAP and the various configurations we
explore in this work. To study the joint effects of
pruning and quantization, we introduce the metrics
we use in Section 4. The main results are reported
in Section 5. Finally, a summary and outlook are
given in Section 6.
1.1 Related work

While NNs offer tremendous accuracy on a variety
of tasks, they typically incur a high computational
cost. For tasks with stringent latency and throughput
requirements, this necessitates a high degree of
efficiency in the deployment of the NN. A variety
of techniques have been proposed to explore the
efficient processing of NNs, including quantization,
pruning, low-rank tensor decompositions, lossless
compression and efficient layer design. We refer the
reader to Sze et al. (2020) for a survey of techniques
for efficient processing of NNs, and focus on related
work around the key techniques covered in this
paper.

Pruning. Early work (LeCun et al., 1990a) in
NN pruning identified key benefits including better
generalization, fewer training examples required,
and improved speed of learning the benefits
through removing insignificant weights based on
second-derivative information. Recently, additional
compression work has been developed in light of
mobile and other low-power applications, often
using magnitude-based pruning (Han et al., 2016).
In Frankle and Carbin (2019), the authors propose
the lottery ticket (LT) hypothesis, which posits that
sparse subnetworks exist at initialization which
train faster and perform better than the original
counterparts. Renda et al. (2020) proposes learning
rate rewinding in addition to weight rewinding to
more efficiently find the winning lottery tickets.
Zhou et al. (2019) extends these ideas further to
learning “supermasks” that can be applied to an
untrained, randomly initialized network to produce
a model with performance far better than chance.
The current state of pruning is reviewed in Blalock
et al. (2020), which finds current metrics and
benchmarks to be lacking.
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Quantization. Reducing the precision of a
static, trained network’s operations, post-training
quantization (PTQ), has been explored extensively
in the literature (Banner et al., 2019; Duarte et al.,
2018; Han et al., 2016; Meller et al., 2019; Nagel
et al., 2019; Zhao et al., 2019). QAT (Courbariaux
et al., 2015; Hubara et al., 2018; Li and Liu, 2016;
Micikevicius et al., 2018; Moons et al., 2017;
Ngadiuba et al., 2020; Rastegari et al., 2016a; Wang
et al., 2018; Zhang et al., 2018; Zhou et al., 2016;
Zhuang et al., 2018) has also been suggested with
different frameworks like QKERAS (Coelho, 2019;
Coelho et al., 2021) and BREVITAS (Blott et al.,
2018; Pappalardo, 2020) developed specifically
to explore quantized NN training. Hessian-aware
quantization (HAWQ) (Dong et al., 2020; Dong
et al., 2019) is another quantization approach that
uses second derivative information to automatically
select the relative bit precision of each layer. The
Bayesian bits approach attempts to unify structured
pruning and quantization by identifying pruning as
the 0-bit limit of quantization (van Baalen et al.,
2020). In Hacene et al. (2020), a combination of
a pruning technique and a quantization scheme
that reduces the complexity and memory usage of
convolutional layers, by replacing the convolutional
operation by a low-cost multiplexer, is proposed. In
partuclar, the authors propose an efficient hardware
architecture implemented on field-programmable
gate array (FPGA) on-chip memory. In Chang et al.
(2021), the authors apply different quantization
schemes (fixed-point and sum-power-of-two) to
different rows of the weight matrix to achieve
better utilization of heterogeneous FPGA hardware
resources.

Efficiency metrics. Multiple metrics have been
proposed to quantify neural network efficiency,
often in the context of dedicated hardware
implementations. The artificial intelligence quotient
(aiQ) is proposed in Schaub and Hotaling (2020)
as metric to measure the balance between
performance and efficiency of NNs. Bit operations
(BOPs) (Baskin et al., 2021) is another metric
that aims to generalize floating-point operations
(FLOPs) to heterogeneously quantized NNs. A

hardware-aware complexity metric (HCM) (Karbachevsky
et al., 2021) has also been proposed that aims to
predict the impact of NN architectural decisions
on the final hardware resources. Our work makes
use of some of these metrics and further explores
the connection and tradeoff between pruning and
quantization.

2 BENCHMARK TASK
The LHC is a proton-proton collider that collides
bunches of protons at a rate of 40 MHz. To reduce
the data rate, an online filter, called the trigger
system, is required to identify the most interesting
collisions and save them for offline analysis. A
crucial task performed on FPGAs in the Level-
1 trigger system that can be greatly improved by
ML, both in terms of latency and accuracy, is the
classification of particles coming from each proton-
proton collision. The system constraints require
algorithms that have a latency of O(µs) while
minimizing the limited FPGA resources available
in the system.

We consider a benchmark dataset for this task
to demonstrate our proposed model efficiency
optimization techniques. In Coleman et al. (2018);
Duarte et al. (2018); Moreno et al. (2020), a
dataset (Pierini et al., 2020) was presented for the
classification of collimated showers of particles,
or jets, arising from the decay and hadronization
of five different classes of particles: light flavor
quarks (q), gluons (g), W and Z bosons, and top
quarks (t). For each class, jets are pair-produced
(W+W−,ZZ, qq, tt, gg) in proton-proton collisions
at a center-of-mass energy of 13 TeV from the same
qq initial state. The jets are selected such that
the unshowered parton or boson has a transverse
momentum of 1 TeV within a narrow window
of ±1%(10GeV) such that transverse momenta
spectra is similar for all classes. Each jet is
represented by 16 physics-motivated high-level
features which are presented in Table 1 of Coleman
et al. (2018). The dataset contains 870,000 jets,
balanced across all classes and split into 472,500
jets for training, 157,500 jets for validation, and
240,000 jets for testing. Adopting the same baseline
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Figure 1. Baseline fully-connected neural network architecture, consisting of 16 inputs, five softmax-
activated outputs, and three hidden layers. The three hidden layers contain 64, 32, and 32 hidden nodes each
with ReLU activation. A configuration with batch normalization (BN) layers before each ReLU activation
function is also considered. The red and blue lines represent positive and negative weights, respectively,
and the opacity represents the magnitude of each weight for this randomly initialized network.

architecture as in Duarte et al. (2018), we consider
a fully-connected NN consisting of three hidden
layers (64, 32, and 32 nodes, respectively) with
rectified linear unit (ReLU) (Glorot et al., 2011;
Nair and Hinton, 2010) activation functions, shown
in Figure 1. The output layer has five nodes,
yielding a probability for each of the five classes
through a softmax activation function. We refer to
this network as the baseline floating-point model.

3 QUANTIZATION-AWARE PRUNING
Applying quantization and pruning to a NN can
drastically improve its efficiency with little to
no loss in performance. While applying these
changes to a model post-training can be successful,
to be maximally effective, we consider these
effects at the time of NN training. Because
computational complexity, as defined in Sec. 4,
is quadratically dependent on precision while it is
linearly dependent on pruning, the first step in our
QAP approach is to perform QAT. This is followed
by integrating pruning in the procedure.

3.1 Quantization-aware training
Quantized (Gong et al., 2014; Gupta et al.,

2015; Han et al., 2016; Hubara et al., 2018;

Vanhoucke et al., 2011; Wu et al., 2016) and even
binarized Courbariaux et al. (2015); Gupta et al.
(2015); Hubara et al. (2016); Loncar et al. (2020);
Merolla et al. (2016); Rastegari et al. (2016b)
NNs have been studied as a way to compress
NNs by reducing the number of bits required to
represent each weight and activation value. As a
common platform for NNs acceleration, FPGAs
provide considerable freedom in the choice of
data type and precision. Both choices should be
considered carefully to prevent squandering FPGA
resources and incurring additional latency. For
example, in QKERAS and hls4ml (Duarte et al.,
2018), a tool for transpiling NNs on FPGAs,
fixed-point arithmetic is used, which requires less
resources and has a lower latency than floating-point
arithmetic. For each parameter, input, and output,
the number of bits used to represent the integer and
fractional parts can be configured separately. The
precision can be reduced through PTQ, where pre-
trained model parameters are clipped or rounded
to lower precision, without causing a loss in
performance (Gupta et al., 2015) by carefully
choosing the bit precision.

This is a provisional file, not the final typeset article 4
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Compared to PTQ, a larger reduction in precision
can be achieved through QAT Courbariaux et al.
(2015); Li and Liu (2016); Moons et al. (2017),
where the reduced precision of the weights and
biases are accounted for directly in the training of
the NN. It has been found that QAT models can be
more efficient than PTQ models while retaining the
same performance (Coelho et al., 2021). In these
studies, the same type of quantization is applied
everywhere. More recently (Dong et al., 2020;
Dong et al., 2019; Wang et al., 2019), it has been
suggested that per-layer heterogeneous quantization
is the optimal way to achieve high accuracy at
low resource cost. For the particle physics task
with a fully-connected NN, the accuracy of the
reduced precision model is compared to the 32-
bit floating-point implementation as the bit width
is scanned. In the PTQ case (Duarte et al., 2018),
the accuracy begins to drop below 14-bit fixed-
point precision, while in the QAT case implemented
with QKERAS (Coelho et al., 2021) the accuracy is
consistent down to 6 bits.

In this work, we take a different approach to
training quantized NNs using BREVITAS (Pappalardo,
2020), a PYTORCH library for QAT. BREVITAS

provides building blocks at multiple levels of
abstraction to compose and apply quantization
primitives at training time. The goal of BREVITAS

is to model the data type restrictions imposed by
a given target platform along the forward pass.
Given a set of restriction, BREVITAS provides
several alternative learning strategies to fulfill them,
which are exposed to the user as hyperparameters.
Depending on the specifics of the topology and
the overall training regimen, different learning
strategies can be more or less successful at
preserving the accuracy of the output NN. Currently,
the available quantizers target variations of binary,
ternary, and integer data types. Specifically, given
a real valued input x, the integer quantizer Qint(x)
performs uniform affine quantization, defined as

Qint(x) = s clamp
ymin,ymax

(
round

(x
s

))
(1)

where

clamp
ymin,ymax

(y) =


ymin y < ymin ,

y ymin ≤ y ≤ ymax ,

ymax y > ymax ,

(2)

round(·) : R→ Z is a rounding function, s ∈ R is
the scale factor, and ymin ∈ Z and ymax ∈ Z are the
minimum and maximum thresholds, respectively,
which depend on the available word length (number
of bits in a word).

In this work, we adopt round-to-nearest as
the round function, and perform per-tensor
quantization on both weights and activations,
meaning that s is constrained to be a scalar floating-
point value. As the ReLU activation function is
used throughout, unsigned values are used for
quantized activations. Thus, for a word length of
n, the clamp function, clampAmin,Amax

(·), is used
with Amin = 0 and Amax = 2n − 1. Quantized
weights are constrained to symmetric signed values
so clampwmin,wmax

(·) is used withwmax = 2n−1−1
and wmin = −wmax.

In terms of learning strategies, we apply the
straight-through estimator (STE) (Courbariaux
et al., 2015) during the backward pass of the
rounding function, which assumes that quantization
acts as the identity function, as is typically done in
QAT. For the weights’ scale, similar to Jacob et al.
(2018), sw is re-computed at each training step such
that the maximum value in each weight tensor is
represented exactly

sw =
maxtensor (|W |)

2n−1 − 1
, (3)

where W is the weight tensor for a given layer
and maxtensor(·) is the function that takes an input
tensor and returns the maximum scalar value found
within. For the activations, the scale factor sA is
defined as:

sA =
sA,learned
2n−1

, (4)

where sA,learned is a parameter individual to each
quantized activation layer, initialized to 6.0 (in
line with the ReLU6(·) activation function), and
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learned by backpropagation in logarithmic scale, as
described in Jain et al. (2020). In the following, we
refer to this scheme as scaled-integer quantization.

3.2 Integrating pruning
Network compression is a common technique

to reduce the size, energy consumption, and
overtraining of deep NNs Han et al. (2016). Several
approaches have been successfully deployed to
compress networks (Cheng et al., 2018; Choudhary
et al., 2020; Deng et al., 2020). Here we
focus specifically on parameter pruning: the
selective removal of weights based on a particular
ranking (Blalock et al., 2020; Frankle and Carbin,
2019; Han et al., 2016; LeCun et al., 1990b; Louizos
et al., 2018; Renda et al., 2020).

Prior studies (Duarte et al., 2018) have applied
pruning in an iterative fashion: by first training a
model then removing a fixed fraction of weights
per layer then retraining the model, while masking
the previously pruned weights. This processed
can be repeated, restoring the final weights from
the previous iteration, several times until reaching
the desired level of compression. We refer to
this method as fine-tuning (FT) pruning. While
the above approach is effective, we describe
here an alternative approach based on the LT
hypothesis (Frankle and Carbin, 2019) where the
remaining weights after each pruning step are
initialized back to their original values (“weight
rewinding”). We refer to this method as LT
pruning. We propose a new hybrid method for
constructing efficient NNs, QAP, which combines
a pruning procedure with training that accounts for
quantized weights. As a first demonstration, we use
BREVITAS (Pappalardo, 2020) to perform QAT and
iteratively prune a fraction of the weights following
the FT pruning method. In this case, we FT prune
approximately 10% of the original network weights
(about 400 weights) each iteration, with a reduction
in the number of weights to prune once a sparsity of
90% is reached. Weights with the smallest L1 norms
across the full model are removed each iteration.

Our procedure for FT and LT pruning are
demonstrated in Figure 2, which shows the training
and validation loss as a function of the epoch. To
demonstrate the effect of QAP, we start by training
a network using QAT for our jet substructure
task constraining the precision of each layer
to be 6 bits using BREVITAS. This particular
training includes batch normalization (BN) layers
and L1 regularization described in more detail
in Section 3.3, although we also present results
without these aspects.

In Figure 2A, the FT pruning procedure iteratively
prunes the 6-bit weights from the network. Each
iteration is denoted by the dotted red lines after
which roughly 10% of the lowest magnitude
weights are removed. At each iteration, we train
for 250 epochs with an early stopping criteria
of no improvement in the validation loss for 10
epochs. The FT pruning procedure continues to
minimize or maintain the same loss over several
pruning iterations until the network becomes so
sparse that the performance degrades significantly
around epoch 300. In Figure 2 (right), the LT
pruning procedure is shown. Our approach deviates
from the canonical LT pruning study (Frankle and
Carbin, 2019) in that we fully train each pruning
iteration until the early stopping criteria is satisfied
instead of partially optimizing the network. This is
because we would like to explore the performance
of the network at each stage of pruning to evaluate
a number of metrics. However, the behavior is as
expected—at each pruning iteration the loss goes
back to its initial value. Similar to the FT pruning
case, when the LT pruning neural network becomes
very sparse, around epoch 1500, the performance
begins to degrade. We note that because of the
additional introspection at each iteration, our LT
pruning procedure requires many more epochs to
train than the FT pruning procedure.

3.3 Neural network training
configurations

In this section, we describe BN and L1

regularization, which have the power to modify the
efficiency of our QAP models. We also describe
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Figure 2. The loss function for the QAP procedure for a 6-bit jet classification neural network. FT pruning
is demonstrated on the left (A) and LT pruning is shown on the right (B).

Bayesian optimization (BO), which we use to
perform a standard neural architecture search for
comparison to QAP.

3.3.1 Batch normalization and L1

regularization
BN (Ioffe and Szegedy, 2015) was originally

proposed to mitigate internal covariate shift,
although others have suggested its true benefit
is in improving the smoothness of the loss
landscape (Santurkar et al., 2018). The BN
transformation y for an input x is

y = γ
x− µ√
σ2 + ε

+ β, (5)

given the running mean µ and standard deviation
σ, the learnable scale γ and shift β parameters, and
ε a small number to increase stability. Practically,
the BN layer shifts the output of dense layers to
the range of values in which the activation function
is nonlinear, enhancing the network’s capability of
modeling nonlinear responses, especially for low
bit precision (Courbariaux et al., 2015; Ngadiuba
et al., 2020). For this reason, it is commonly used
in conjunction with extremely low bit precision.

We also train models with and without L1

regularization (Duarte et al., 2018; Han et al., 2016,
2015), in which the classification loss function Lc

is augmented with an additional term,

L = Lc + λ‖w‖1 , (6)

where w is a vector of all the weights of the model
and λ is a tunable hyperparameter. This can be
used to assist or accelerate the process of iterative
pruning, as it constrains some weights to be small,
producing already sparse models (Ng, 2004). As the
derivative of the penalty term is λ whose value is
independent of the weight, L1 regularization can be
thought of as a force that subtracts some constant
from an ineffective weight each update until the
weight reaches zero.

3.3.2 Bayesian optimization
BO (Jones et al., 1998; O’Hagan, 1978; Osborne,

2010) is a sequential strategy for optimizing
expensive-to-evaluate functions. In our case, we
use it to optimize the hyperparameters of the
neural network architecture. BO allows us to tune
hyperparameters in relatively few iterations by
building a smooth model from an initial set of
parameterizations (referred to as the “surrogate
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model”) in order to predict the outcomes for as
yet unexplored parameterizations. BO builds a
smooth surrogate model using Gaussian processes
(GPs) based on the observations available from
previous rounds of experimentation. This surrogate
model is used to make predictions at unobserved
parameterizations and quantify the uncertainty
around them. The predictions and the uncertainty
estimates are combined to derive an acquisition
function, which quantifies the value of observing
a particular parameterization. We optimize the
acquisition function to find the best configuration
to observe, and then after observing the outcomes
at that configuration a new surrogate model is
fitted. This process is repeated until convergence is
achieved.

We use the Ax and BoTorch libraries (Balandat
et al., 2020; Daulton et al., 2020; Facebook, 2019)
to implement the BO based on the expected
improvement (EI) acquisition function,

EI(x) = E
[
min(f(x)− f∗), 0)

]
, (7)

where f∗ = mini yi is the current best observed
outcome and our goal is to minimize f . The total
number of trials is set to 20 with a maximum
number of parallel trials of 3 (after the initial
exploration). Our target performance metric is
the binary cross entropy loss as calculated on a
“validation” subset of the jet substructure dataset.
After the BO procedure is complete, and a “best”
set of hyperparameters is found, each set of
hyperparameters tested during the BO procedure
is then fully trained for 250 epochs with an early
stopping condition, and then metrics are calculated
for each model on the “test” subset of the jet
substructure dataset.

4 EVALUATION METRICS
As we develop NN models to address our
benchmark application, we use various metrics to
evaluate the NNs’ performance. Traditional metrics
for performance include the classification accuracy,
the receiver operating characteristic (ROC) curve
of false positive rate versus true positive rate and

the corresponding area under the curve (AUC). In
physics applications, it is also important to evaluate
the performance in the tails of distributions and
we will introduce metrics to measure that as well.
The aim of quantization and pruning techniques
is to reduce the energy cost of neural network
implementations, and therefore, we need a metric
to measure the computational complexity. For this,
we introduce a modified version of BOPs (Baskin
et al., 2021). In addition, in this study we aim to
understand how the network itself changes during
training and optimization based on different neural
network configurations. While the performance
may be similar, we would like to understand if the
information is organized in the neural network in the
same way. Then we would like to understand if that
has some effect on robustness of the model. To that
end, we explore Shannon entropy metrics (Shannon,
1948) and performance under class randomization.

4.1 Classification performance
For our jet substructure classification task, we

consider the commonly-used accuracy metric to
evaluate for the multi-class performance: average
accuracy across the five jet classes. Beyond that, we
also want to explore the full shape of the classifier
performance in the ROC curve. This is illustrated
in Figure 3 where the signal efficiency of each
signal class is plotted against the misidentification
probability for the other four classes, denoted as
the background efficiency. The general features of
Figure 3 illustrate that gluon and quark jets are
more difficult to distinguish than higher mass jet
signals, W and Z boson, and the top quark. The Z
boson is typically easier to distinguish than the W
boson due to its greater mass. Meanwhile, the top
quark is initially the easiest to distinguish at higher
signal efficiency but at lower signal efficiencies
loses some performance—primarily due to the top
quark radiating more because the top quark has
color charge. In particle physics applications, it is
common to search for rare events so understanding
tail performance of a classifier is also important.
Therefore, as another performance metric, we
define the background efficiency at a fixed signal
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efficiency of 50%, εεs=0.5
b . We can report this metric

εεs=0.5
b for any signal type, considering all other

classes as background processes. From these ROC
curves, we see that εεs=0.5

b can range from a few
percent to the per-mille scale for the background
samples. In Fig. 3, we show the ROC curves for two
NN models: one trained with 32-bit floating-point
precision and another one trained with QAT at 6-bit
scaled-integer precision. The networks are trained
with L1 regularization and BN layers and do not
include pruning.
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Figure 3. The ROC curve for each signal jet
type class where the background are the other 4
classes. Curves are presented for the unpruned 32-
bit floating point classifier (solid lines) and 6-bit
scaled integer models (dashed lines). All models
are trained with batch normalization layers and L1
Regularization.

4.2 Bit operations
The goal of quantization and pruning is to

increase the efficiency of the NN implementation
in hardware. To estimate the NN computational
complexity, we use the BOPs metric (Baskin et al.,
2021). This metric is particularly relevant when
comparing the performance of mixed precision
arithmetic in hardware implementations on FPGAs
and ASICs. We modify the BOPs metric to include

the effect of unstructured pruning. For a pruned
fully-connected layer, we define it as

BOPs = mn [(1− fp)babw + ba + bw + log2(n)]
(8)

where n (m) is the number of inputs (outputs), bw
(ba) is the bit width of the weights (activations),
and fp is the fraction of pruned layer weights. The
inclusion of the fp term accounts for the reduction
in multiplication operations because of pruning. In
the dominant term, due to multiplication operations
(babw), BOPs is quadratically dependent on the
bit widths and linearly dependent on the pruning
fraction. Therefore, reducing the precision is the
first step in our QAP procedure, as described above,
followed by iterative pruning.

4.3 Shannon entropy, neural efficiency,
and generalizability

Typically, the hardware-centric optimization of
a NN is a multi-objective, or Pareto, optimization
of the algorithm performance (in terms of accuracy
or AUC) and the computational cost. Often, we
can arrive at a range of Pareto optimal solutions
through constrained minimization procedures.
However, we would like to further understand
how the information in different hardware-
optimized NN implementations are related. For
example, do solutions with similar performance and
computational cost contain the same information
content? To explore that question, we use a metric
called neural efficiency ηN (Schaub and Hotaling,
2020).

Neural efficiency measures the utilization of state
space, and it can be thought of as an entropic
efficiency. If all possible states are recorded for data
fed into the network, then the probability, ps, of a
state s occurring can be used to calculate Shannon
entropy E` of network layer `

E` = −
S∑
s=1

ps log2(ps), (9)

where the sum runs over the total size of the
state space S. For a b-bit implementation of a
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network layer withN` neurons, this sum is typically
intractable to compute, except for extremely low
bit precision and small layer size, as the state
space size is S = 2bN` Therefore, a simplification
is made to treat the state of a single neuron as
binary (whether the output value is greater than
zero) so that S = 2N` . The maximum entropy
of a layer corresponds to the case when all states
occur with equal probability, and the entropy value
is equal to the number of neurons E` = N`. The
neural efficiency of a layer can then be defined as
the entropy of the observed states relative to the
maximum entropy: η` = E`/N`. Neuron layers
with neural efficiency close to one (zero) are making
maximal (minimal) usage of the available state
space. Alternatively, high neural efficiency could
also mean the layer contains too few neurons.

To compute the neural efficiency of a fully-
connected NN ηN we take the geometric mean of
the neural efficiency of each layer η` in the network

ηN =

(
L∏
`=1

η`

) 1
L

(10)

Although neural efficiency ηN does not directly
correlate with NN performance, in Schaub and
Hotaling (2020), it was found there was connection
between NN generalizability and the neural
efficiency. NNs with higher neural efficiency that
maintain good accuracy performance were able
to perform better when classes were partially
randomized during training. The interpretation is
that such networks were able to learn general
features of the data rather than memorize images
and therefore are less susceptible to performance
degradation under class randomization. Therefore,
in the results of our study, we also explore the effect
of class randomization on our jet substructure task.

5 RESULTS
In the previous sections, we have introduced the
benchmark task, the QAP approach, and metrics
by which we will evaluate the procedure. In this
section, we present the results of our experiments.

Our experiments are designed to address three
conceptual topics:

• In Section 5.1, we aim to study how certain
training configuration choices can affect the
performance (accuracy and εεs=0.5

b ) of our QAP
procedure and how it compares to previous
works. In particular, we study the dependence
of performance on the pruning procedure,
the bit width, and whether we include batch
normalization and L1 regularization into the
network training.

• In Section 5.2, now with an optimized
procedure for QAP, we would like to
understand the relationship between structured
(neuron-wise) and unstructured (synapse-
wise) pruning. These two concepts are
often overloaded but reduce computational
complexity in different ways. To do this, we
compare the unstructured pruning procedure
we introduced in Section 5.1 to removing whole
neurons in the network. Structured pruning,
or optimizing the hyperparameter choice of
neural network nodes, is performed using a
Bayesian Optimization approach introduced in
Section 3.3.2.

• In Section 5.3, we make preliminary explorations
to understand the extent to which QAP
is removing important synapses which may
prevent generalizability of the model. While
there are a number of ways to test this; in our
case, we test generalizability by randomizing
a fraction of the class labels and checking if
we are still able to prune the same amount
of weights from the network as in the non-
randomized case.

5.1 QAP performance
The physics classifier performance is measured

with the accuracy and εεs=0.5
b metric for each

signal class. We train a number of models at
different precision: 32-bit floating-point precision
and 12-, 6-, and 4-bit scaled-integer precision.
For each precision explored, we then apply a
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Figure 4. Model accuracy (A) and background efficiency (B) at 50% signal efficiency versus BOPs for
different sparsities achieved via QAP, for both FT and LT pruning techniques

pruning procedure. We explore both of the LT
and FT pruning schemes described in Section 3.
The result is illustrated in Figure 4 where each
of the colored lines indicates a different model
precision, the solid (dashed) lines correspond to
FT (LT) pruning, and each of the points along
the curves represents the percent of the original
network weights that have been pruned. Each NN
includes a BN layer after each of the hidden layers
and has been trained including an L1 regularization
loss term. Further, each model’s performance was
verified via a k-fold cross-validation scheme, where
k = 4 in which training and validation datasets were
shuffled over multiple training instances. Plotted
performance is the mean value and error bars
represent the standard error across the folds. All
metrics were calculated on the same test dataset,
which stayed static across each training instance.

The first observation from Figure 4 is that we
can achieve comparable performance to the 32-
bit floating-point model with the 6-bit scaled-
integer model. This is consistent with findings in

a previous QKERAS-based study (Coelho et al.,
2021) where, with uniform quantization, the
performance was consistent down to 6-bit fixed-
point quantization. When the precision is reduced
to 4-bits, the performance begins to degrade. Then,
as we increasingly prune the models at all of the
explored precisions, the performance is maintained
until about 80% of the weights are pruned. The
observations are consistent whether we consider
the accuracy (Figure 4 left) or εεs=0.5

b (Figure 4
right) metric. For the case of εεs=0.5

b , there is
an increase of roughly 1.2–2× with respect to
the 32-bit floating-point model; however, there
are statistical fluctuations in the values because
of the limited testing sample size and the small
background efficiencies of 2× 10−3 that we probe.
Instead, now if we compare the computational
cost of our QAP 6-bit model to the unpruned 32-
bit model, we find a greater than 25× reduction
in computational cost (in terms of BOPs) for the
same classifier performance. For the jet substructure
classification task, the quantization and pruning
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techniques are complementary and can be used in
tandem at training time to develop an extremely
efficient NN. With respect to earlier work with FT
pruning at 32-bit floating-point precision and PTQ
presented in Duarte et al. (2018), we find a further
greater than 3× reduction in BOPs.

In Figure 4, we also find that there is no significant
performance difference between using FT and LT
pruning. As we prune the networks to extreme
sparsity, greater than 80%, the performance begin
to degrade drastically for this particular dataset and
network architecture. While the plateau region is
fairly stable, in the ultra-sparse region, there are
significant variations in the performance metrics
indicating that the trained networks are somewhat
brittle. For this reason, we truncate the accuracy
versus BOPs graphs at 60% accuracy.

We also explore the performance of the model
when removing either the BN layers or the L1

regularization term, which we term the no BN
and no L1 models, respectively. This is illustrated
in Figure 5 for the 32-bit floating-point and
6-bit scaled-integer models. For easier visual
comparisons, we omit the 4-bit and 12-bit models
because the 6-bit model is the lowest precision
model with comparable performance to the 32-bit
model. In Figure 5 (A), we see that there is a modest
performance degradation in the no BN configuration
for both lower and full precision models. In
our application, we find that batch normalization
does stabilize and improve the performance of
our neural network and thus include it in our
baseline model definition. In Figure 5 (B), we find
that including or removing the L1 regularization
term in the loss function does not affect the
performance significantly until extreme sparsity
where the variations in performance can be large.
However, as we will see in Section 5.3, this does
not mean that the entropic information content of
the NNs are similar.

To highlight the performance of the QAP
procedure, we summarize our result compared
to previous results for this jet substructure
classification task with the same NN architecture

shown in Figure 1. The results are summarized
in Table 1. In the nominal implementation, no
quantization or pruning is performed. In Duarte et al.
(2018), the 32-big floating-point model is FT pruned
and then quantized post-training. This approach
suffers from a loss of performance below 16 bits.
Using QAT and QKERAS (Coelho et al., 2021),
another significant improvement was demonstrated
with a 6-bit fixed-point implementation. Finally, in
this work with QAP and BREVITAS, we are able
to prune the 6-bit network by another 80%. With
respect to the nominal implementation we have
reduced the BOPs by a factor of 25, the original
pruning + PTQ approach a factor of 3.3, and the
QAT approach by a factor of 2.2.

One further optimization step is to compare
against a mixed-precision approach where different
layers have different precisions (Coelho et al., 2021).
We leave the study of mixed-precision QAP to
future work and discuss it in Section 6.
5.2 Pruned versus unpruned quantized

networks
To compare against the efficacy of applying

QAP, we explore QAT with no pruning. In an
alternate training strategy, we attempt to optimize
the NN architecture of the unpruned QAT models.
This is done using the BO technique presented
in Section 3.3. The widths of the hidden layers
are varied to find optimal classifier performance.
We compare the performance of this class of
possible models using BO against our QAP
procedure, including BN and L1 regularization,
presented in the previous section. It is important
to note, as we will see, that QAP and BO are
conceptually different procedures and interesting
to compare. The QAP procedure starts with a
particular accuracy-optimized model and attempts
to “streamline” or compress it to its most optimal
bit-level implementation. This is the reason that the
accuracy drops precipitously when that particular
model can no longer be streamlined. Alternatively,
the family of BO models explores the Pareto
optimal space between BOPs and accuracy. In
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Figure 5. Comparison of the model accuracy when trained with BN layers and L1 regularization versus
when trained without BN layers (A) or L1 regularization (B).

Table 1. Performance evolution of the jet substructure classification task for this NN architecture.
“Nominal” refers to an unpruned 32-bit implementation, “pruning + PTQ” refers to a network with
FT pruning at 32-bit precision with PTQ applied to reduce the precision to 16 bits, “QAT” refers to a
QKERAS implementation, and “QAP” is this result. The bolded value in each column indicates the best
value of each metric.

Model Precision BN or L1 Pruned [%] BOPs Accuracy [%] 〈εεs=0.5
b 〉 [%] 〈AUC〉 [%]

Nominal 32-bit floating-point L1 + BN 0 4,652,832 76.977 0.00171 94.335
Pruning + PTQ 16-bit fixed-point L1 + BN 70 631,791 75.01 0.00210 94.229
QAT 6-bit fixed-point L1 + BN 0 412,960 76.737 0.00208 94.206
QAP 6-bit scaled-integer L1 + BN 80 189,672 76.602 0.00211 94.197

future work, we would like to further explore the
interplay between QAP and BO.

Figure 6 presents both the accuracy versus BOPs
curves for the QAP models and the unpruned QAT
models found using BO. For ease of comparison,
we display only the 32-bit and 6-bit models. The
solid curves correspond to the QAP models while
the individual points represent the various trained
unpruned models explored during the BO procedure.
The unpruned model with the highest classification
performance found using the BO procedure is
denoted by the star. While the starred models are
the most performant, there is a class of BO models
that tracks along the QAP curves fairly well. There
is a stark difference in how QAP and BO models

behave as the accuracy degrades below the so-
called “plateau” region where the accuracy is fairly
constant and optimal. When the sub-network of
the QAP model can no longer approximate the
optimally performing model, its performance falls
off dramatically and the accuracy drops quickly.
Because BO explores the full space including Pareto
optimal models in BOPs versus accuracy, they
exhibit a more gentle decline in performance at
small values of BOPs. It is interesting to note that
the classification performance of the BO models
begins to degrade where the QAP procedure also
falls off in performance; for example, just above
105/BOPs in Figure 6A for the 6-bit models. We
anticipate future work to explore combining BO
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Figure 6. Comparison of FT pruned model’s and BO model’s accuracy (A) and background efficiency (B)
at 50% signal efficiency. Each hyperparameter configuration that was explored during the BO procedure is
marked as a transparent dot, with the resulting “best” model, which the lowest BCE Loss as calculated on
the “test” set, is marked by the outlined star.

and QAP procedures to see if any accuracy optimal
model can be found at smaller BOPs values.

5.3 Entropy and generalization
QAP models exhibit large gains in computational

efficiency over (pruned and unpruned) 32-bit
floating-point models, as well as significant gains
over unpruned QAT models for our jet substructure
classification task. In certain training configurations,
we have found similar performance but would
like to explore if the information in the neural
network is represented similarly. As a metric for
the information content of the NN, we use the
neural efficiency metric defined in Equation (10),
the Shannon entropy normalized to the number of
neurons in a layer then averaged over all the layers
of the NN.

By itself, the neural efficiency is an interesting
quantity to measure. However, we specifically
explore the hypothesis, described in Section 4,
that the neural efficiency is related to a measure
of generalizability. In this study, we use the
classification performance under different rates of

class randomization during training as a probe of
the generalizability of a model. We randomize the
class labels among the five possible classes for 0%,
50%, 75%, and 90% of the training dataset. To
randomize the training data, we iterate over a given
percent of the normal dataset, setting the real class
of each input to 0, choosing a new class at random
out of the 5 possible, then setting that new class to
1. The data is then shuffled and split as normal.

To compare with the results in Section 5.1, we
study models that are trained using QAP with 6-
bit precision and are pruned using the fine-tuning
pruning procedure. The results are presented in
Figure 7 where the left column shows the classifier
accuracy versus BOPs. The center column shows
the εεs=0.5

b metric. The right column displays the
neural efficiency versus BOPs. The three rows
explore three different scenarios: with both BN
and L1 regularization (upper), no BN (middle),
and no L1 (lower). The various curves presented
in each graph correspond to different class label
randomization fractions of the training sample.

Among these training procedures, the L1 +
BN model accuracy (upper left) is the highest
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Figure 7. Comparison of accuracy, εεs=0.5
b , and neural efficiency at 50% signal efficiency for a 6-bit QAP

model as BN layers and/or L1 regularization is present in the model. L1 + BN (upper), no BN (middle),
and no L1 (lower)

and most consistent across the entire pruning
procedure. Even with 90% class randomization,
the accuracy is still greater than 72.5% and
εεs=0.5
b < 10−2. Alternatively, the no BN

model accuracy is consistently worse than the

L1 + BN models for all values of randomization.
Interestingly, the no BN model accuracy with
90% randomization drops precipitously out of
the range of the graphs indicating that BN is
even more important to performance when class
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randomization is introduced. Meanwhile, the no
L1 model exhibits an interesting behavior with
lower accuracy at larger values of BOPs. As the
no L1 model is pruned, the accuracy improves
until we arrive at extreme sparsity and the model
performance degrades as usual. Our interpretation
is that the generalization power of the unregularized
model is worse than the L1 regularized models.
However, as we implement the QAP procedure,
the pruning effectively regularizes the model
building robustness to the class randomization and
recovering some of the lost accuracy.

The corresponding neural efficiency plots are
shown in the right column of Figure 7. As a general
observation, we find that the neural efficiency
follows the same trend versus BOPs as the accuracy,
i.e. that within a given training configuration, the
neural efficiency is stable up to a given sparsity.
Thus, up to this point, pruning does not affect the
information content. This is particularly true in the
case of the no BN model, while with BN there is
more freedom, and thus modest variation in neural
efficiency during the pruning procedure.

If we first only consider the 0% randomized
models for the right column, we can see that the
neural efficiency drops from about 0.3 to about
0.2 with the no BN configuration. As the neural
efficiency is a measure of how balanced the neurons
are activated (i.e. how efficiently the full state
space is used), we hypothesize that BN more
evenly distributes the activation among neurons.
For the models that include L1 regularization
(upper and middle), the neural efficiency drops
along with the accuracy as the randomization is
increased. This effect is not nearly as strong in
the no L1 case in the lower row. We note that
the performance of the 90% randomized no BN
model is catastrophically degraded and the neural
efficiency drops to zero, which we interpret to
indicate that BN is an important factor in the
robustness and generalizability of the model.

The no L1 models (lower) are particularly notable
because the neural efficiency does not decrease
much as we the class randomization fraction is

increased, in contrast with the upper and middle
rows of Figure 7. This however, does not translate
into a more robust performance. In fact, at 90%
class randomization and 80% pruned, the L1 + BN
and no L1 models are drastically different in neural
efficiency while being fairly similar in classifier
accuracy.

Finally, the accuracy and neural efficiency of the
highest accuracy models from the BO procedure
in Section 5.2 are represented as stars in the top
row of Figure 7. They have slightly lower neural
efficiencies because the width of each hidden layer
is bigger than in the QAP models while the entropy
remains relatively similar to those same models.
The BO models, as seen in the upper left graph
of Figure 7, are no better at generalizing under
increasing class randomization fractions than the
QAP models.

6 SUMMARY AND OUTLOOK
In this study, we explored efficient neural network
(NN) implementations by coupling pruning and
quantization at training time. Our benchmark
task is ultra low latency, resource-constrained jet
classification in the real-time online filtering system,
implemented on field-programmable gate arrays
(FPGAs), at the CERN Large Hadron Collider
(LHC). This classification task takes as inputs
high-level expert features in a fully-connected NN
architecture.

Our procedure, called quantization-aware pruning
(QAP), is a combination of quantization-aware
training (QAT) followed by iterative unstructured
pruning. This sequence is motivated by the
fact that quantization has a larger impact on a
model’s computational complexity than pruning as
measured by bit operations (BOPs). We studied
two types of pruning: fine-tuning (FT) and lottery
ticket (LT) approaches. Furthermore, we study the
effect of batch normalization (BN) layers and L1

regularization on network performance. Under this
procedure, considering networks with uniformly
quantized weights, we found that with nearly no loss
in classifier accuracy and 1.2–2× increase in εεs=0.5

b ,
the number of BOPs can be reduced by a factor of
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25, 3.3, and 2.2 with respect to the nominal 32-bit
floating-point implementation, pruning with post-
training quantization (PTQ), and QAT, respectively.
This demonstrates that, for our task, pruning and
QAT are complementary and can be used in concert.

Beyond computational performance gains, we
sought to understand two related issues to the
QAP procedure. First, we compare QAP to QAT
with a Bayesian optimization (BO) procedure that
optimizes the layer widths in the network. We
found that the BO procedure did not find a network
configuration that maintains performance accuracy
with fewer BOPs and that both procedures find
similarly efficiently sized networks as measured
in BOPs and high accuracy.

Second, we studied the information content,
robustness, and generalizability of the trained
QAP models in various training configurations
and in the presence of randomized class labels.
We compute both the networks’ accuracies and
their entropic information content, measured by
the neural efficiency metric (Schaub and Hotaling,
2020). We found that both L1 regularization and
BN are required to provide the most robust NNs to
class randomization. Interestingly, while removing
L1 regularization did not significantly degrade
performance under class randomization, the neural
efficiencies of the NNs were vastly different—
varying by up to a factor of 3. This illustrates, that
while NNs may arrive at a similar performance
accuracy, the information content in the networks
can be very different.

6.1 Outlook
As one of the first explorations of pruning coupled

with quantization, our initial study of QAP lends
itself to a number of follow-up studies.

• Our benchmark task uses high-level features,
but it is interesting to explore other canonical
datasets, especially those with raw, low-level
features. This may yield different results,
especially in the study of generalizability.

• Combining our approach with other optimization
methods such as Hessian-based quantization (Dong

et al., 2020; Dong et al., 2019) and pruning
could produce networks with very different
NNs in information content or more optimal
solutions, particularly as the networks become
very sparse.

• An important next step is evaluating the
actual hardware resource usage and latency
of the QAP NNs by using FPGA co-design
frameworks like hls4ml (Duarte et al., 2018)
and FINN (Blott et al., 2018; Umuroglu et al.,
2017).

• It would be interesting to explore the
differences between seemingly similar NNs
beyond neural efficiency; for example, using
metrics like singular vector canonical correlation
analysis (SVCCA) (Raghu et al., 2017) which
directly compare two NNs

• We would like to explore further optimal
solutions by combining BO and QAP procedures.
Beyond that, there is potential for more efficient
solutions using mixed-precision QAT, which
could be done through a more general BO
procedure that explores the full space of layer-
by-layer pruning fractions, quantization, and
sizes.

QAP is a promising technique to build efficient
NN implementations and would benefit from
further study on additional benchmark tasks. Future
investigation of QAP, variations on the procedure,
and combination with complementary methods may
lead to even greater NN efficiency gains and may
provide insights into what the NN is learning.
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