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We describe a method for precisely regulating the Gradient Magnet Power Supply (GMPS) at the
Fermilab Booster accelerator complex using a neural network trained via reinforcement learning.
We demonstrate preliminary results by training a surrogate machine-learning model on real
accelerator data to emulate the GMPS, and using this surrogate model in turn to train the neural
network for its regulation task. We additionally show how the neural networks to be deployed for
control purposes may be compiled to execute on field-programmable gate arrays (FPGAs), and
show the first machine-learning based control algorithm implemented on an FPGA for controls at
the Fermilab accelerator complex. As there are no surprise latencies on an FPGA, this capability
is important for operational stability in complicated environments such as an accelerator facility.
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I. INTRODUCTION

Particle accelerators are among the most complex en-
gineering systems in the world. They are crucially im-
portant to the study of the elementary constituents of
matter and the forces governing their interactions. Tun-
ing and controlling accelerators is challenging and time
consuming, but even marginal improvements can trans-
late very efficiently into improved scientific yield for an
experimental particle physics program, where integrated
accelerator run time imposes a substantial cost.

To date, the most common approach to accelerator
systems control has largely consisted of hand tuning by
experts, and has been guided by physical principles when-
ever possible. However, accelerator physics is complex
and highly nonlinear. While we may model accelera-
tor beams with impressive and improving precision [1],
building fully comprehensive Monte Carlo-based models
of entire facilities is challenging, often leaving optimiza-
tion and control to the intuition of experienced experts.
Even though this process has been successful to date, it
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is arduous and likely contains hidden inefficiencies. Re-
cently, deep learning [2–4], the training of neural net-
works consisting of many hidden layers, has proven itself
useful for complex control problems [5–8]. Notably, pro-
cesses within accelerator complexes occur between mi-
crosecond and millisecond timescales, much faster than
human operators can react.

In this study, we present a real-time artificial intel-
ligence (AI) control system for precisely regulating an
important subsystem of the Fermilab Booster accelera-
tor complex [9]. Our ultimate goal is to achieve a ten-
fold improvement in precision for the regulation system
we describe in this paper. To realize this system, we
use machine learning (ML) for two key features: to de-
velop surrogate models [10] that reproduce the behaviors
of the real-world system, and to train an online agent
to take control actions in the system. The online agent
is developed using reinforcement learning (RL) [11, 12],
a framework in which an artificial agent learns by in-
teracting with its environment. This online agent will
ultimately control the actual accelerator system. The
surrogate model provides an initial “safe” environment
in which to train and evaluate control algorithms, and
does so at higher rates and in a more controlled fash-
ion than real-time training could allow. In this work, to
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demonstrate the complete methodology, we show how the
control algorithms perform within the surrogate model.

Additionally, we propose a scheme for the first ML
control system implemented in FPGA firmware at the
Fermilab accelerator complex. Our approach utilizes
field-programmable gate arrays (FPGAs) for real-time
responses and includes full integration into the Booster
controls system for high-speed data ingestion. On-board
implementation, with dedicated hardware, is important
for operational stability and for reliable low-latency re-
sponse times. In advance of commissioning the full sys-
tem during online operations, we present important re-
sults from running a pretrained, static RL model in
FPGA test benches.

Fully realizing this system will inevitably create an im-
portant and versatile set of tools that could find applica-
tion in many areas in accelerator controls and monitor-
ing, thereby paving the way for more ambitious control
schemes. These tools may allow for more complex agents
to work in tandem to manage ever-larger portions of the
accelerator complex. While open questions remain as to
whether data-intensive RL algorithms can be effectively
used in this context without an independent, high-quality
simulator, the results presented in this paper are encour-
aging.

In Sec. II we briefly highlight some previous publica-
tions at the intersection of machine learning and acceler-
ator control. Section III describes the Fermilab Booster
accelerator and surrounding complex in sufficient detail
to understand the specific controls problem we address.
In Sec. IV, we describe the accelerator data used to train
a surrogate model, as well as the data processing used
to support our ML workflow. Next, in Sec. V we de-
scribe the ML algorithms for the surrogate model and
candidate agents. Then, in Sec. VI we briefly detail the
process of deploying ML control algorithms to an FPGA.
Section VII concludes with a discussion of our plans for
full RL-based control.

II. PREVIOUS WORK

The field of AI for accelerators is quite active in the de-
velopment of new applications. AI algorithms are poised
to play a salient role in accelerator control, tuning, diag-
nostics, and modeling. Here we provide a brief overview
with a focus on recent work.

Predictive diagnostics are important precursors for
control networks because they enable modeling of ac-
celerator functions to a high degree of precision. The
authors of Ref. [13] use ML-based diagnostics to predict
the longitudinal phase space distribution in a particle
accelerator. Reference [14] offers an example of AI appli-
cations for fault classification in superconducting radio
frequency cavities. Furthermore, in groundbreaking con-
ceptual studies [15–20], the authors built predictive net-
works for accelerator modeling that could serve as pre-
decessors to control networks. See also [21].

In Ref. [22] the authors use a neural network to demon-
strate control of the longitudinal phase space of relativis-
tic electron beams with very fine time resolution. How-
ever, as they and others have found, methods based on a
priori models face serious challenges in regard to manag-
ing complexity. A very recent study, found in Ref. [23],
explores some of the trade-offs between model-based and
model-free training methods in an RL-based context and
find some interesting advantages for each approach. Here
we seek to train, test, and deploy model-free RL control
algorithms, but nevertheless must initiate that training
using a surrogate model that provides a safe environ-
ment in which to evaluate algorithms before deployment.
Surrogate models are an important ML-based tool for
understanding other ML models (among other things) at
accelerators where it is impractical to train from scratch
using real accelerator hardware due to the risk of down-
time and the absence of precisely repeatable history. The
authors of Ref. [24] use neural network (NN) based sur-
rogate models for the Compact Linear Collider (CLIC)
final-focus system. See also [15, 25, 26].

Additionally, ML algorithms for tuning have been
studied at the Linac Coherent Light Source (LCLS) at
SLAC National Accelerator Laboratory, and at the Swiss
Free Electron Laser (FEL). Bayesian optimization of the
Swiss FEL is explored in Ref. [27]. Likewise, in Ref. [28],
the authors use Bayesian optimization via Gaussian pro-
cesses for fast tuning in response to the need to change
beam configurations frequently. Gaussian process mod-
els are sample efficient for producing accurate representa-
tions and uncertainties with limited data, but inefficient
with respect to the number of samples in the dataset.
Furthermore, in Ref. [29], the authors extend the Gaus-
sian process-based methods to employ physics-based sim-
ulations in cases where archival data is not available. The
challenge addressed in this paper does not involve an ex-
plicit physical model for use by such a simulation.

Reference [30] summarizes a workshop that functions
as a partial review of ML for accelerator controls and
diagnostics and Ref. [31] provides an overview of beam
dynamics studies using AI at CERN. See also Ref. [32].
In the most closely related previous work [33], the au-
thors approach the controls problem of maximization of
the CERN Low Energy Ion Ring multi-turn injected in-
tensity in a similar way to how we approach rapidly cy-
cling magnet power supply stabilization here. Some of
the same authors very recently published Ref. [34], which
studies continuous, model-free RL training algorithms at
some different parts of the CERN accelerator complex.
Reference [35] similarly studies RL to control the RF sys-
tem of the KIT Karlsruhe Research Accelerator (KARA)
storage ring and improve microbunching instability. The
authors of Refs. [36, 37] deploy model-free RL training
algorithms at the FERMI free-electron laser at Elettra
with promising results for alignment in the first paper
and for optimization and stabilization in the second. As
a proof of concept, the authors deploy a RL environment
on an FPGA-ARM system for solving a classic cart-pole
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control problem [38].
Fast NN inference has been explored on various edge

devices, including FPGAs, for a variety of applications
ranging from internet of things [39] to high energy
physics [40]. Surveys of some existing toolflows can be
found in Refs. [41–44], and include the fpgaConvNet
library [45–48], FP-DNN [49], DNNWeaver [50], Caf-
feine [51], Vitis AI [52], the FINN project [53–55],
FixyNN and DeepFreeze [56, 57], hls4ml [58–66], and
others [67–70]. Many of these toolflows are specific to Xil-
inx FPGAs. In this work, we build our implementation
using the hls4ml library as it has been extended to In-
tel FPGAs and allows for an easy exploration of the NN
design space, as explained in Sec. VI B.

Relative to the body of prior work on AI for accel-
erators, we offer new developments in the integration of
realistic RL algorithms into embedded systems (FPGAs).
By embedding the algorithm in an FPGA, we may take
advantage of the very stable, low-latency performance of-
fered by that platform, which is critical for controls in a
particle accelerator. Further, we indicate how this result
may be extended through the use of a statistical ensemble
of agent models, enabling increased learning rates, pre-
diction stability, and robustness against potential mode
collapse in individual agents. Given models of sufficiently
small size, FPGA implementation of the models enables
us to run an ensemble of models in parallel in order to
optimize decision stability at no additional cost to overall
latency.

III. FERMILAB BOOSTER ACCELERATOR
COMPLEX

A. Accelerator Environment of the GMPS
Regulator

The Booster rapid-cycling synchrotron receives the
400 MeV (kinetic energy) beam from the Fermilab Lin-
ear Accelerator (Linac) via charge-exchange (H− to H+).
This beam is accelerated to 8 GeV by synchronously rais-
ing (“ramping”) the Booster accelerator cavities’ fre-
quency and the magnetic field of the combined-function
bending and focusing electromagnets known as gradi-
ent magnets, which are powered by the gradient magnet
power supply (GMPS) [71, 72]. The beam is extracted at
peak kinetic energy, after which the system is returned
to the injection state. This complete cycle repeats, si-
nusoidally varying the GMPS magnet current between
programmed current minimum and maximum at 15 Hz.

Meanwhile, other nearby high-current, high-power
electrical loads are varying in time, causing unwanted
fluctuations of the actual GMPS electrical current, and
thus fluctuations of the magnetic field in the Booster
gradient magnets. The role of the GMPS regulator is
to calculate and apply small compensating offsets in the
GMPS driving signal, improving the agreement of the re-
sulting minimum and maximum currents with their set
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FIG. 1. Schematic view of the GMPS control environment.
The human operator specifies a target program via the Ac-
celerator Control Network that is transmitted to the GMPS
control board. The FPGA-based control logic utilizes these
settings together with readings from a reference magnet to
prescribe a driving signal to the GMPS. The effect of this
prescribed signal on the bending magnets is measured by an
in-series reference magnet, with sampled readings transmitted
back to the GMPS control board. Reference measurements
and prescribed signals may be logged and transmitted over
network for later analysis.

points. The present GMPS regulator system is a propor-
tional–integral–derivative (PID) controller [73, 74]. Fig-
ure 1 shows a schematic overview of the GMPS control
environment.

The power supplies that provide the combined DC
and AC components of the desired gradient magnet cur-
rent consist of a pair of three-phase series-connected
silicon controlled rectifier [71] bridges fired at 720 Hz.
An inductor-capacitor (LC) filter network at the out-
put greatly reduces 720 Hz ripple, resulting in an output
voltage that is proportional to the sinusoidal program
provided by the GMPS regulator system. The series-
connected electromagnet circuits and their cell capacitor
banks are driven at resonance at 15 Hz and coupled via a
distributed choke system for bypassing DC current. Fig-
ure 2 shows the power supply output voltage due to the
cosine program.

For monitoring purposes, a special series-connected
half-cell reference magnet located in the equipment
gallery includes a pickup coil located between its poles
to measure the time rate of change of the magnetic field
~̇B, which is an important input to the GMPS regulator.
Powered with the other gradient magnets and housed
in a low-radiation environment without charged particle
beam passing through it, this reference magnet provides
an accurate representation of the magnetic field under
control throughout the accelerator.

Timing information derived from ~̇B = 0 synchro-
nizes the GMPS regulator system to the minimum and
maximum values of the magnetic field and provides a
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FIG. 2. A single 15 Hz cycle of the power supply program
voltage, from one minimum to the next.

transistor-transistor-logic (TTL) based 15 Hz master
clock signal that drives the timing system for the GMPS
regulator and indeed the rest of the accelerator complex.
The high-frequency sampled measurements near the min-
imum and maximum values of the magnetic field are au-
tomatically fitted each cycle, and the finite impulse re-
sponse (FIR) parameters are used as the primary feed-
back mechanism for the GMPS regulator system. Reduc-
ing the errors (the difference between the target and real-
ized GMPS current especially at injection) of the GMPS
system is of primary concern in the operational perfor-
mance and efficiency of the Booster. The following Sec-
tions discuss the details of the present and proposed reg-
ulation systems.

B. GMPS Regulation

The GMPS regulation system seeks to minimize the
impact of disturbances due to environmental factors such
as ambient temperature, nearby high-power pulsed RF
systems, and ramping power supplies with inductive
loads. Variations in the AC line frequency and ampli-
tude are also significant sources of error, and are due in
part to other particle accelerators in the complex chang-
ing currents in their own high-current electromagnets as
part of their normal operations. Without regulation, the
fitted minimum of the magnetic field may vary from the
set point by as much as a few percent.

The existing regulator reduces GMPS regulation er-
rors to roughly 0.1% of the set value by implementing
a proportional-integral-derivative (PID) control scheme.
Each cycle, the fitted minimum and maximum of the
magnetic field reflect the combined influences of the set
points, any compensation applied by the regulator for
that cycle, and any new influence of other nearby elec-
trical loads. Calculated estimates for the minimum and
maximum values of the changing magnetic field of the
previous 15 Hz cycle are used to adjust the power supply
program to decrease the errors of the system. The cal-

FIG. 3. Distribution of fractional measured error in the
GMPS current at the minimum value of the magnet current,
with the non-ML PID regulator discussed in the text.

culation of the compensated minimum current B:VIMIN,
used in the next cycle of the power supply program volt-
age, proceeds as follows at each time step t:

B:IMINER(t) = 10[Imin
fit (t)− Imin

set (t)] , (1)

β(t) = Γ(t)B:IMINER(t) + β(t− 1) , (2)

B:VIMIN(t) = Imin
set (t)− α(t)B:IMINER(t)− β(t) , (3)

where B:IMINER(t) and B:VIMIN(t) are the correspond-
ing control system readings at time t; Imin

fit is the mea-
sured (fitted) current minimum of the present cycle;
Imin
set is the nominal set value of the current minimum;

Γ is the integral gain; and α is the proportional gain.
The running parameter β is effectively an integral of
the error which rapidly downweights past measurements
of the error. Typical values of the gain constants are
Γ = 7.535 × 10−5 and α = 8.5 × 10−2, adjustable by
system experts. B:IMINER is proportional to the error in
the system, and for our purposes they are synonymous.

The environmental perturbations, discussed above, in-
crease the distributed long-term steady-state errors of the
GMPS system. A traditional PID regulation loop, given
a sufficient amount of time and unchanging perturba-
tions, will decrease the steady-state error of a system to
zero. In reality, and within the timescale of the Booster
beam cycle, the PID loop decreases the steady-state er-
ror to some nonzero error, typically of order 0.1% for
the cycle minimum. See Figure 3 for a sample distri-
bution of measured errors for the minimum value of the
sinusoidally varying magnet current. Efforts to decrease
the steady-state error further by adjusting the closed-
loop gains to be more responsive would come at the cost
of reduced overall system stability. Therefore, a balance
between the steady-state error and stability of the system
has been struck.

We seek to improve upon this regulation performance
in order to decrease injection losses and improve Booster
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efficiency. An RL model, whose inputs include all of the
most important outside influences on the GMPS system,
can infer more accurate cycle-by-cycle compensations on
an FPGA, reliably producing better regulation against
those influences. Creating such an algorithm begins with
collecting time-series data from the accelerator complex
in operation.

IV. DATASET

We collected a dataset for Booster GMPS regulation
to provide cycle-by-cycle time series of readings and set-
tings from the most relevant devices available in the Fer-
milab control system [75]. This data was drawn from
the time series of a select subset of the roughly 200,000
entries that populate the device database of the acceler-
ator control network [76]. Data was sampled at 15 Hz for
54 devices that pertain to the regulation of the GMPS
during two separate periods of time: Period 0 (June 3,
2019 to July 11, 2019) was ended by the annual Summer
Shutdown and Maintenance. Period 1 (December 3, 2019
to April 13, 2020) ended when the accelerator operations
were suspended in response to the COVID-19 pandemic.
In this paper, we use a subset of this dataset’s devices
and a single day—March 10, 2020—for development and
demonstration, as detailed in Sec V A. For a more de-
tailed overview, please see the corresponding Data De-
scriptor available online [77]. To our knowledge, this is
one of the first well-documented datasets of accelerator
device parameters made publicly available. We strongly
encourage our colleagues on other accelerator ML appli-
cation projects to do likewise; reproducible results are
the foundations of science.

In this accelerator complex data-logging nomenclature,
device parameters with the B: prefix are related to the
Booster, whereas device parameters beginning with I:
are related to the Main Injector. Additionally, “MDAT”
denotes the accelerator (machine) data communication
broadcast.

A. Variable Selection

We chose a subset of the 54 device time series avail-
able to facilitate initial studies of B:IMINER, the mea-
sure of regulation error at each GMPS cycle minimum.
These first studies (which are presented here) were con-
ducted using five sets of time-series data suggested by
accelerator domain experts to be the most important for
regulating B:IMINER. In addition to B:IMINER, these in-
clude B:LINFRQ, B:VIMIN, I:IB, and I:MDAT40. Further
optimization will be pursued prior to deployment of the
production system.

Here, B:VIMIN is the compensating recommendation
for the minimum value of the offset-sinusoidal GMPS cur-
rent, issued by the GMPS regulator in order to reduce the
magnitude of B:IMINER. B:LINFRQ is the measured off-

set from the expected 60 Hz line frequency powering the
GMPS. I:IB and I:MDAT40 provide measurements of the
main injector bending dipole current at different points
in the circuit and through different communication chan-
nels.

This expert-chosen set of just five parameters was used
to train the surrogate model with the RL agent described
in Sec. V, and to characterize RL agent models on an
FPGA in Sec. VI.

As a check on this selection, a Granger causality study
[78] was performed using those variables correlated or an-
ticorrelated with B:IMINER, with absolute Pearson corre-
lation coefficient |r| > 0.20. Additionally, B:LINFRQ and
I:IB were included in the study on the advice of system
experts. The Granger causality study, described here,
allows us to explore the utility of the full set of logged
signals for future studies, with minimal human bias.

For a given pair of concurrent time series—one poten-
tially causal and the other responsive (one affects the
other)—Granger causality does not prove pure causa-
tion. Instead, Granger causality suggests the response
variable could be better predicted using both time se-
ries jointly rather than using the response variable’s self-
history alone. This test consists of creating and com-
paring two linear regression models: a self-model and a
joint-model for both the response variable and the po-
tentially causal variable, and calculating coefficients for
each lag value (time difference) being tested, from one up
to some predetermined maximum number of time offsets
[78]. If at least one coefficient is not zero in the joint
model, then the other variable is said to be “Granger
causal” with respect to the response variable, at the lag
value being tested. We compared p-values to test sta-
tistical significance at each lag value up to 50 lags (ap-
proximately 3.33 s) as well as looked at the difference
between the Bayesian information criterion of the self
and joint-models. As a result of these iterative calcula-
tions, we identified three additional variables—B:VIMAX,
the compensated maximum GMPS current, B:VIPHAS,
the GMPS ramp phase with respect to line voltage,
and I:MXIB, the main injector dipole bend current—that
will be considered in the next iteration of the surrogate
model.

The expert-selected devices B:IMINER, B:LINFRQ,
B:VIMIN, I:IB, and I:MDAT40 were indeed a subset of
the top eight “causal” variables identified through the
causality study, boosting confidence in their utility. Ta-
ble I briefly summarizes the parameters of interest used
in this iteration of the surrogate model.

B. Data Processing for ML

Although the devices were configured to write out
reading and setting data at 15 Hz, actual timestamp in-
tervals varied from this nominal frequency, and times-
tamps were not well synchronized across devices. Thus,
for time alignment purposes, we made use of the recorded
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TABLE I. Description of dataset parameters chosen by ex-
perts and later validated with a causality study. Here,“MI”
means Main Injector, “MDAT” means accelerator (machine)
data communication, and device parameters that begin with
B are related to the Booster, whereas device parameters that
begin with I are related to the Main Injector.

Parameter Details [Units]
B:IMINER Setting-error discrepancy at injection [A]
B:LINFRQ 60 Hz line frequency deviation [mHz]
B:VIMIN Compensated minimum GMPS current [A]
I:IB MI lower bend current [A]
I:MDAT40 MDAT measured MI current [A]

timestamps for Event0C, a broadcast accelerator control
event which is synchronized to the fitted minimum of the
periodically varying magnetic field in the gradient mag-
nets described in Sec. III. This control event serves as
a logical choice of reference time for GMPS-related pa-
rameters. Using Apache Spark-based [79] algorithms to
distribute data processing in parallel, we first calculated
the maximum interval between successive timestamps for
each device across all 176 days (necessarily excluding
the five-month gap between our two data-taking peri-
ods). We then used the corresponding largest observed
lag between recorded values within each device to place
the upper limit on a look-back window from an Event0c
timestamp, and took for every Event0C the most recent
device datum, whose timestamp was within that win-
dow for that device. For more details on the data pre-
processing decisions made in the creation of this dataset
please see our Data Descriptor [77].

V. MACHINE LEARNING METHODS

Machine Learning (ML) refers to the process by which
we adjust the randomly initialized parameters of generic
function approximators, termed “models,” so as to mini-
mize an appropriately chosen loss function, or conversely
to maximize a reward function. As used in ML, feed-
forward neural network model architectures specify ar-
rangements of “nodes,” usually co-evaluated in layers,
where each node calculates the weighted sum of the in-
puts and a bias term, and outputs the value of a non-
linear “activation function.” In the simple multilayer
perceptron (MLP) architecture, all nodes in each layer
send copies of their output values to all nodes in the
next layer. Layers not at the input or output are termed
“hidden” layers. There are useful variations on this sim-
ple layer stack architecture such as recurrent neural net-
works (RNN), wherein some outputs from a previous for-
ward inference are taken as inputs. Our work makes use
of both MLP and RNN architectures.

For a given architecture with its activation functions,
the weights and biases are the parameters being adjusted
in the optimization or “training.” The “learning rate”
sets the proportionality of parameter adjustment to gra-

48 Chapter 3: Finite Markov Decision Processes

these actions and presenting new situations to the agent.1 The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives some representation
of the environment’s state, St 2 S, and on that basis selects an action, At 2 A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 2 R ⇢ R, and finds itself in a new state, St+1.

4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite
number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s0 2 S and r 2 R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s0, r |s, a) .
= Pr{St=s0, Rt=r | St�1=s,At�1=a}, (3.2)

for all s0, s 2 S, r 2 R, and a 2 A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p : S⇥R⇥ S⇥A ! [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

FIG. 4. The agent-environment interaction in a Markov de-
cision process [11]. The agent executes a policy that selects
an action At given the current St, which results in a reward
Rt+1 and a new state St+1 of the environment.

dients of improved performance (based on lower loss or
higher reward), and the development of sophisticated op-
timization schemes is an active research area.

Reinforcement Learning (RL) is the subfield of AI
aimed at optimizing of control or planning of complex
tasks based on iterative feedback inputs from an envi-
ronment, as explained below. The main components of
RL are the environment and the agent, an ML model, as
illustrated in Fig. 4. RL trains an agent model over many
time steps, and the resulting agent model may then be
taken as fixed, to be deployed on new data. The agent
model may be expected to perform similarly on new data
as it did in training, provided the dynamics of the new
data were well represented in the training data. How-
ever RL extends naturally to continuous online learning,
which would allow our regulator to adapt to changing en-
vironmental dynamics such as seasonality or new modes
of accelerator complex operation, even though we would
initially deploy a static or infrequently updated model
out of prudence. We set out to use RL to train an opti-
mal regulation policy, which dictates an appropriate ac-
tion that the GMPS regulator should take for any given
state of the system. Of course, as was highlighted in Sec
II, methods other than neural network-based RL have
had success in control problems and practitioners should
assess and compare these approaches as well.

The environment, usually formulated as a Markov de-
cision process, is represented by a time-independent, dis-
crete system with which the RL agent interacts (e.g.
the accelerator complex). For the regulation of the
GMPS current minimum, the environment includes the
time-varying power demands and outside electrical influ-
ences for which the GMPS regulator makes compensating
changes. At each time step t, the environment takes in
the control action At determined by the RL agent based
on the current state St, and provides the new system
state St+1 (e.g. settings and measured quantities) along
with an associated reward Rt+1. Optimizing the agent’s
policy actions is defined to mean maximizing the long-
term integrated reward, which is calculated over each
fixed episode. In this study, the reward is calculated
from the error in the minimum value of the GMPS cur-
rent, B:IMINER:

Rt = −|B:IMINER(t)| . (4)
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The larger the magnitude of B:IMINER, the lower the re-
ward. The possible actions At we consider correspond to
overriding the fixed setting of B:VIMIN, the lone control
variable, with small, compensating adjustments. This en-
ables the agent’s policy model to control B:IMINER with-
out the PID regulator’s input.

Recently, significant progress has been made in RL by
combining it with advances in deep learning. Deep learn-
ing models are well suited to representing complex poli-
cies for high-dimensional problems such as regulation in a
dynamically variable environment. The deep Q-network
(DQN) [80, 81] approach, which we adopt for this study,
involves using a deep neural network to learn the action-
value function, or Q-value, and is usually deployed in
environments that take discrete control actions. The op-
timal policy can then be derived by choosing the action
that maximizes the expected Q-value.

More formally, a policy π is used by an agent to decide
what actions At = π(St) to take given a state St at time
t. An optimal policy π∗ maximizes the Q-value,

Q(St, At) =

T∑
t′=t

E
[
γt

′−tR(St′ , At′)|St, At

]
, (5)

where E is the expectation value operator, Rt ≡
R(St, At) is the reward at time t, and γ is the dis-
count factor that de-emphasizes future rewards relative
to present ones. For this study, we used a value of
γ = 0.85. The Q-value is the sum of the expected dis-
counted rewards from the current time t up to the horizon
T . In practice, the optimal action-value function Q∗ is
not known a priori, but it can be approximated itera-
tively because it satisfies the Bellman equation [82],

Q∗(St, At) = E
[
Rt + γmax

At+1

Q∗(St+1, At+1)|St, At

]
.

(6)
In a DQN, the Q-value is approximated using a deep

neural network, or policy model, with parameters θ. In
particular, the loss function at a time t is given by the
mean squared error (MSE) in the Bellman equation,

Lt(θt) = E
[
(yt −Q(St, At; θt))

2
]
, (7)

where the (unknown) optimal target values are re-
placed by the approximate target values yt = Rt +
γmaxAt+1 Q(St+1, At+1; θ−t ) using parameters θ−t de-
rived from previous iterations.

Continuous action space environments, such as the
compensating adjustments of our GMPS current regu-
lator, can adopt the DQN algorithm by discretizing the
action space. To keep the DQN action space finite, we
discretize the change of control signal B:VIMIN using
steps of just a few different sizes, including the option
for zero-size change. By doing so, we explicitly limit
the control signal variation between time steps, while
helping to minimize the tuning and possible resonance
of the overall surrogate-RL training loop. Other RL
algorithms, such as deep deterministic policy gradient

(DDPG) [83], proximal policy optimization [84], and twin
delayed DDPG [85] can provide continuous control sug-
gestions which fit the GMPS regulator more naturally.
However, the sample efficiency and tuning stability of
these algorithms presents difficulties as discussed in var-
ious studies [86, 87].

The trial and error nature of RL training requires an
environment that accommodates offline iteration. As
mentioned in Sec. II, most real-world, complex systems
cannot afford such an approach due to the risk of sys-
tem failure. Therefore some level of offline training is
essential. To facilitate offline training of a control agent,
here we develop a surrogate model using the select col-
lection of historical measurements described in Sec. IV.
This surrogate captures the subset of the Booster acceler-
ator complex necessary to model the dynamics of GMPS
regulation in its environment.

In the following subsections, we discuss the workflow
employed to develop and use an offline policy optimiza-
tion, a prudent step prior to deploying the agent model
in the real system. Sec. V A details the surrogate model
that is developed to test the deep RL agent. Then, in
Sec. V B, we describe how the agent itself is trained.

A. Virtual Accelerator Complex Model

In order to train the RL policy model, we adopted a
long short-term memory (LSTM) [88] architecture for a
surrogate of the GMPS regulator in its operating environ-
ment using data which describe the GMPS current and
the Main Injector operation cycle. Its purpose is to pre-
dict the impact of changing the control variable B:VIMIN
on B:IMINER over the course of the RL episodes.

An LSTM model is a specific type of recurrent neural
network (RNN), which is appropriate for modeling se-
quential data such as our accelerator data. The key fea-
ture of an RNN is the network recursion, which enables
it to describe the dynamic performance of systems over
sequential time steps. One difficulty of training RNNs is
the vanishing gradient problem [89, 90], which is a result
of the gradient at a recursion step k being dominated by
the product of partial derivatives of hidden-state vectors

h,
∏R−1

j=k ∂hj+1/∂hj ∝ wR−k−1, where R is the number
of recursions and w is a recurring weight. If w < 1, then
this product tends to zero for large R. The design of
the LSTM includes an internal memory state, which ef-
fectively mitigates the vanishing gradient problem, and
allows the network to retain a longer memory of past in-
puts [88]. Given the complexity of the GMPS regulation
environment, we selected the LSTM architecture in order
to capture the multiple frequency modalities observed in
the data.

The details of the surrogate model’s architecture are
given in Table V A. At each time step, the input to the
Booster ML surrogate model is the most recent 150 time
steps (equivalent to 10 seconds of data) from the five in-
put variables selected in Sec. IV A: B:VIMIN, B:IMINER,
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TABLE II. Fermilab Booster surrogate model, which learns
to reproduce the environment in terms of the three time-
series variables, one of which determines the reward as given
in Eq. 4. The input LSTM layer receives five values, de-
scribing the current state B:IMINER, B:LINFRQ, B:VIMIN, I:IB,
and I:MDAT40. The output layer is a prediction of B:IMINER,
B:LINFRQ, B:VIMIN.

Layer Layer Type Outputs Activation Parameters

1 LSTM 256 tanh 416,768

2 LSTM 256 tanh 525,312

3 LSTM 256 tanh 525,312

4 dense 3 linear 771

Total · · · · · · · · · 1,468,163

B:LINFRQ, I:IB, and I:MDAT40, and the output is a
prediction for the values of B:IMINER, B:LINFRQ, and
B:VIMIN at the next time step. While the latter two val-
ues are not included in the environment state propagated
to the RL agent, the additional output structure helps to
regularize the training process and validate performance.
The LSTM model uses this 150-step look-back window
to “recall” the historical patterns of the time-series data,
and thus achieve high accuracy in prediction.

The LSTM surrogate model was developed and imple-
mented using the Keras library [91]. We used the Adam
optimizer [92] and a cost function of the mean squared
error (MSE) of the predictions. The total number of data
samples used for the analysis of the LSTM surrogate was
250,000 time steps from March 10, 2020, which we split
into two non-overlapping data sets composed of 175,000
time steps for training and 75,000 time steps for testing.
These data sets were then processed to allow 150 time
step look-back, 1 time step look-forward as mentioned
above.

The training samples were then further split using a
K-fold cross-validation method: we defined five cross-
validation folds that split the training and validation in a
80%/20% split. This technique was used in order to esti-
mate how the surrogate model is expected to perform in
general as well as to monitor over-fitting. While this sort
of cross-validation was performed on the same segment of
data in this implementation, we plan to cross-validate on
different data samples when training the surrogate model
in the future, at a larger scale. The loss values from the
validation sample were used to determine if the learn-
ing rate should be reduced or if the surrogate model had
stopped learning, as shown in Figure 5. After more than
300 training epochs, the figure shows a bifurcation be-
tween the values of training loss and validation loss, sug-
gesting some over-fitting. Therefore, we used the values
of model parameters prior to this bifurcation as the pa-
rameters of our surrogate model. On separate test data,
the loss value for this surrogate model was determined
to be 9× 10−4 which is consistent with the training data
set prior to the bifurcation.

FIG. 5. Loss function as a function of the number of training
epochs for the Booster LSTM surrogate model. The blue line
gives the loss values for training sample and the orange line
is the calculated loss using validation samples.
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FIG. 6. Selected test data (blue) versus prediction values
(orange) from the Booster LSTM surrogate model. New data
is fed into the trained surrogate model at each time step.

Overlaid time series from the data and from LSTM pre-
dictions for a selected time window are shown in Fig. 6.
Based on the great similarity of these results, the surro-
gate model was deemed adequate to use for initial train-
ing of the RL agent policy model.
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B. Reinforcement Learning for GMPS Control

For this study, we formulated the problem as an
episodic Markov decision process, where every episode
contains 50 time steps. As in all Q-learning, the agent
learns to maximize the reward within the time horizon of
an episode. We developed our RL workflow based on a
variant of DQN, the double DQN algorithm [80, 93, 94],
using Keras [91] to optimize B:VIMIN settings dynam-
ically to minimize GMPS error B:IMINER. The double
DQN explicitly decouples the target model, which is used
to evaluate actions, from the policy model, which is used
to select actions, although they take the same form.

We used the OpenAI Gym package [95] to develop the
environment that serves as a wrapper around the virtual
accelerator complex model described above in Sec. V A
to interact with the RL agent. The observation state
space is simply the aforementioned five variables in the
surrogate model section above, shown to causally relate
to the measure of regulation error, B:IMINER. The action
state space only contains one free parameter of control:
adjustments to B:VIMIN. The seven discrete control op-
tions relative to the previous B:VIMIN are 0 (no change),
±0.0001, ±0.005, and ±0.001. The choice of these values
was based on the actual distribution of the changes in
B:VIMIN observed in the data.

At the start of each episode, 150 time steps from the
data are used to initialize the system state, as is required
for the environment surrogate model. The 150th step de-
fines the system state used by the agent. For each step
thereafter, the agent provides a new action by specifying
a change to B:VIMIN, and the system state is updated.
The new system state is then used by the surrogate model
to predict the resulting value of B:IMINER. After the pre-
diction the system state is incremented to the next time
step. The current state, reward, and status for each step
is passed to the agent to be used for training the DQN
policy model. RL algorithms learn from the reward pro-
vided by the environment, which in this study is given
by Eqn. 4.

During training, event samples are placed into a buffer
before calculating the loss. This memory buffer is sam-
pled randomly in a process called experience replay [80]
in order to remove instabilities found to arise from train-
ing on time-ordered samples. Once the memory buffer
has sufficient experiences (32 experiences for this study)
the active policy model begins training and continuously
updating. We use the ε-greedy [96] method to control
the agent’s trade-off between exploration (random choice
of action) and exploitation (deterministic action dictated
by the current policy), in which the optimal action ac-
cording to the current policy is chosen with probability
1 − ε, while a random action is selected with probabil-
ity ε. At the beginning of the training session we set
ε = 1 with a decay factor of 0.9995, applied multiplica-
tively whenever an exploration action is selected, until
a minimum value of ε = 0.0025 is reached. For this
study, we use a multilayer perceptron (MLP) as the pol-

icy model (and target model) architecture, and rectified
linear unit (ReLU) activation functions [97], as summa-
rized in Table III. The active policy model is continuously
updated during training by using randomly selected ex-
periences from the memory buffer. At each training step
the weights of the target model θtarget are incrementally
updated to reflect the weights of the active policy model
θpolicy,

θtarget 7→ θtarget(1− τ) + τθpolicy, (8)

where we set τ = 0.5 [83].
The result of the DQN MLP training, in terms of a

rolling average of the total reward over 10 episodes versus
the number of episodes, is shown in Fig. 7 (top). Here
we show the results of consecutive batch initialization
within a restricted region of 4,000 consecutive samples.
These samples fell within the first 250,000 samples that
the surrogate model was trained on. This was done to
ensure that the environment would still reliably respond
to the action. Note that in the training, there is addi-
tional randomness introduced due to the epsilon-greedy
approach.

Additionally, in Fig. 7 (bottom), we display the results
of testing (no rolling average taken) versus the number
of episodes. Likewise, the testing start points were gen-
erated via consecutive batch initialization within an or-
thogonal region of 1,000 samples that still fell within the
region the surrogate model was trained on.

For both the training and testing reward plots, the
current controller reward, the black dashed line, was
determined using the data by summing the values of
Rt = −|B:IMINER(t)| throughout each 50 step episode.
The DQN MLP controller reward, the solid red line,
shows improvement over the current system by approx-
imately a factor of 2 in both the training and testing
sets. The downward reward spikes in both the training
and testing correspond to occurrences of a relatively rare
but regular operation: the 6 s resonant extraction from
the Main Injector at 120 GeV, sending beam through a
long beam transport line, which requires certain large
power supplies to operate at high current for the dura-
tion, strongly influencing the electrical environment of
the GMPS. The RL policy is expected to learn to treat
this appropriately once trained on more data. As is ev-
ident here, only experiencing these events four times is
not enough for the RL policy to perfectly accommodate
this circumstance. Nevertheless the RL policy outper-
forms the current PID implementation in this context.
It would be interesting to see the corresponding improve-
ment to injection losses and Booster efficiency for a con-
troller regulating GMPS with this RL policy, because
these improvements are not thought to be linearly re-
lated to the size of the regulation error.

Additionally, we quantified the step by step difference
between the RL agent’s actions and the current PID’s his-
torical actions (defined as the change in B:VIMIN) over
the same data during the test set. The distribution of dif-
ferences in action is approximately normal and has mean
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FIG. 7. Top: Total rolling reward per episode versus number
of training episodes for the DQN MLP algorithm (solid red
line) at top. During training, the 10-episode rolling window
determines the first entry at the 10th episode on the plot.
Bottom: The corresponding testing results (without a rolling
average) are shown below.

0.0006±5.769×10−5 and standard deviation 0.0129, giv-
ing us confidence that the learned RL approach is reason-
able. We expect that future development work focused
on finetuning the discretization of the action space will
decrease this standard deviation.

VI. IMPLEMENTATION IN FAST
ELECTRONICS

Fast GMPS control electronics are required to col-
lect information from the Booster environment, decide
whether to apply a corrective action, and distribute the

corresponding control signal, all with the low latency re-
quirement set by the Booster’s 15 Hz cycle. An FPGA
is a natural choice to implement the corresponding cir-
cuit, accommodating latencies far below those achievable
with a CPU or GPU while allowing reconfigurability im-
possible in a custom application-specific integrated cir-
cuit (ASIC) solution. The DQN MLP GMPS regulation
model proposed in Sec V B requires an efficient, but ad-
justable, implementation of NN algorithms, strongly sug-
gesting an FPGA-based implementation. As a prelimi-
nary step, we take the offline-trained DQN MLP with
weights fixed and deploy it in an FPGA.

The following subsections review the computational
steps required for a single NN inference (§VI A); describe
the basic elements of an FPGA and how a deep NN cal-
culation can be efficiently mapped to a corresponding
circuit (§VI B); present an implementation of the DQN
MLP described above in Sec V and the impact of var-
ious design choices (§VI C); and lastly discuss possible
extensions of the implementation to accommodate more
complex algorithms which are of interest (§VI D).

A. Elements of NN Inference

The structure of an MLP is a series of alternating lin-
ear and nonlinear transformations (layers), with the ith
layer mapping a set of inputs xi (features) to a discrete
list of outputs yi. In the present application, the fea-
tures may include any measurements of the GMPS en-
vironment, such as digitized traces from the reference
magnet system, line voltage frequency, and equipment
gallery temperature. For the DQN MLP, the outputs
yi are scores associated to a discrete set of possible ac-
tions, with the highest-scoring action being the one taken
by the controller. An MLP layer f yielding m outputs
may be written in terms of its action on a set of inputs
{xi}i=1,...,n as

f : xi → σ

(∑
i

wijxi + bj

)
, (9)

where wij (the n × m weight matrix) and bj (the m-
dimensional bias vector) are configurable parameters of
the linear translation and σ is an m-to-m nonlinear acti-
vation function. For each layer, the activation function is
prescribed as a part of the model architecture while opti-
mal values for the weights and biases are found through
a training procedure. The DQN MLP utilizes the linear
(identity) ReLU(xi) = max(xi, 0) activation functions.
The complete, k-layer NN is specified by an ordered com-
position of layers y = f (1)f (2) . . . f (k)(x). While the in-
put and output dimensions are fixed by the set of fea-
tures and actions, the dimensionality of intermediate lay-
ers is arbitrary. Table III describes the architecture of the
DQN MLP, in addition to the number of configurable pa-
rameters and total multiply-and-accumulate (MAC) op-
erations required.
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TABLE III. Implemented DQN MLP model architecture. The
first NN layer receives five input values.

Layer Outputs Activation Parameters MACs

1 128 ReLU 768 640

2 128 ReLU 16 512 16 384

3 128 ReLU 16 512 16 384

4 7 Linear 903 896

Total · · · · · · 34 695 34 304

B. NN Inference on FPGAs

An FPGA consists of an array of logic gates that may
be programmed to emulate any circuit (up to the physi-
cal resource constraints of the specific hardware device).
This allows FPGA designs to profit from the many ad-
vantages of custom ASICs including massive paralleliza-
tion and low power consumption while maintaining re-
configurability. However, a significant advantage of the
FPGA architecture lies in the fact that it is not sim-
ply a homogeneous fabric of low-level gates (e.g. NAND
gates). Rather, modern FPGAs are heterogeneous struc-
tures including more complex logical blocks, each spe-
cialized for a dedicated task, repeated many times. In
this way, FPGA designs can simultaneously exploit both
the flexibility of a programmable architecture and the
performance of a dedicated printed circuit.

An efficient implementation of the NN model in
firmware requires a design that exploits the FPGA’s spe-
cialized computational units to perform each step of the
NN calculation. Digital signal processor (DSP) slices are
flexible circuits for addition, multiplication, wide-array
bitwise logical operations, and more. DSPs may be fur-
ther chained to accommodate more complex operations.
In the Intel Arria 10 FPGA, to be deployed in the GMPS
control system, DSP blocks may be configured to multi-
ply and accumulate fixed-point numbers up to 27 bits,
providing a solution for the linear component of Equa-
tion 9. The affine map from m to n dimensions requires
mn scalar multiplications and sums that, in a fully par-
allelized design, may be accomplished with mn cascad-
ing DSPs. To evaluate an arbitrarily complex activation
function in FPGAs, it is more efficient to store a pre-
computed table of values than to re-calculate the func-
tion many times per inference. This may be accomplished
using block RAM (BRAM), embedded memory that is
configurable for read/write access. BRAMs are available
in segments of 20 kb in the Arria 10 to store, for exam-
ple, a bank of 1024 function values at 20-bit precision.
Registers are groups of flip flops used to record tempo-
rary numerical values or internal states, and to facilitate
signal routing across the major computational blocks of
the design. Finally, ALMs are lightweight, configurable
modules of combinational logic elements, used through-
out designs for basic operations such as simple arithmetic

and logical operations.

C. Implementation of the GMPS Regulator Model

The GMPS regulator model described in Sec V must
be converted to firmware in a manner that takes full ad-
vantage of the FPGA’s architectural features described
in Sec VI B. This is accomplished through the translation
of the Keras description of the NN function into high-
level synthesis (HLS) code using the hls4ml [58] toolkit,
whose functionality has been recently extended to Intel
FPGAs [98]. The HLS design is converted to firmware us-
ing Intel Quartus [99]. The use of hls4ml brings the
significant advantage of enabling a fast development cycle
from model prototyping to implementation in firmware.
Thus, the present work has focused not only on achiev-
ing an optimal design for the benchmark ML algorithm
proposed in Sec V B but also on more generic design-
space exploration. Establishing scalable strategies such
as FPGA implementation is critical for scaling up to more
complex ML models that will inevitably become neces-
sary as larger data sets allow for increasingly nuanced
treatments of the control problem.

The conversion of the Keras model to firmware re-
quires a number of design choices. Chief among these
are the numerical precision to which the calculation is
carried out and the degree of parallelism incorporated
into the design. Fixed-point values with a specified num-
ber of total and integer bits are used to represent model
inputs, weights, and all intermediate results of the calcu-
lation. To determine the range of values to encode in the
fixed-point representation, the number of integer bits is
set to be at least as large as the maximum weight value.
The number of total bits, which sets the number of bits
used to encode the fractional component of the weight
(once the integer part is specified), is set to minimize the
impact of quantization.

Figure 8 displays a histogram of the weight values for
the trained DQN MLP model. The total number of
bits retained for each weight is selected by comparing
the floating-point model inference with that of the fixed-
point model for a range of bit widths, scanning over a
representative sample of input test data. Figure 9 shows
that using 14 bits to encode the fractional component of
all operands is sufficient to replicate the decision taken by
the floating-point model for over 99.5% of the test data.
This performance comparison of fixed and floating-point
models shows that while nine fractional bits are suffi-
ciently precise to represent the weights, additional preci-
sion in the representation of the intermediate sums in the
NN calculation is necessary to achieve full performance.
Following this, comparisons were performed using a 20-
bit representation for all internal fixed-point parameters
(5 integer bits, 14 fractional bits, and a sign bit) where
not explicitly varied.

The degree of design parallelization can be motivated
by the number of operations required for each NN infer-
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FIG. 9. The fraction of decisions that the quantized NN im-
plementation shares with the floating-point calculation across
a set of representative input Booster data is shown as a func-
tion of the fixed-point precision. Here the number of bits to
encode the integer part is fixed to five plus a sign bit, while
the number of bits encoding the fractional part is varied. The
inset shows the same measurements, highlighting the region
where the shared action fraction is over 90%. At very low
precision, statistical fluctuations are observed that depend on
the specific model weights and rounding conventions.

ence in comparison with the total available resources on
the target FPGA. One constraint comes from the MAC
operations that are efficiently computed in a single clock
cycle using dedicated DSP slices for each operation. As
discussed in Sec VI A, the MLP agent requires 34 304
MACs per inference, compared to the 1518 DSP slices
available in the Arria 10 FPGA. The approach taken to
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FIG. 10. FPGA resources required for the implementation
of the DQN MLP are shown as a function of the fixed-point
precision utilized for internal NN operations. All resources
are normalized to the total available in a benchmark Arria 10
device (see Table IV). Results are shown for implementations
with reuse factors of 128 (solid lines) and 2048 (dashed lines).

address this is to assign a reuse factor to each NN layer,
specifying the number of operations each physical MAC
unit may contribute to the set of necessary computations
required by that layer. Larger reuse factors will result in
a design utilizing fewer FPGA resources at the expense of
longer inference latency. For simplicity a single, model-
level reuse factor is considered in the following, where
the per-layer reuse factor is given by the greatest com-
mon divisor of the reuse factor and the product of input
and output multiplicity.

Figure 10 demonstrates how the resources required to
implement the NN algorithm are affected by the precision
to which internal calculations are carried out, and the
degree of parallelization specified by the selected reuse
factor. In general, the required low-level resources such
as ALMs and registers scale linearly with precision to
accommodate the widths of increasing data paths. Con-
versely, a single DSP slice can accommodate a range of
operand bit-widths, up to the limit of the design spec-
ification at which point a second DSP must be used
per calculation. In the case of reuse factor of 128, the
largest burden on FPGA resources comes from the re-
quired DSPs (either 4 or 8% of the Arria 10 total, de-
pending on the necessary precision), while ALMs are the
limiting factor (3–8%) in the case of reuse factor of 1568,
where the design parallelization is at most a factor of four
in each NN layer. While inference latency depends on the
degree of parallelism directly through the reuse factor, it
is essentially invariant under changes to the operand pre-
cision.

Table IV compares several implementations for con-
stant precision (20 total bits) and various reuse factors.
In general the algorithm latency increases as a function
of increasing reuse factor while the numbers of DSPs and
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TABLE IV. The required FPGA resources and correspond-
ing latency for the NN algorithm are shown for three possi-
ble implementations corresponding to various reuse factors.
In addition to design parameters, the maximum available re-
sources are shown for an Intel Arria 10 benchmark FPGA.
Memory logic array blocks (MLABs) are configured from ten
ALMs and hence no device maximum is shown.

reuse factor DSP BRAM MLAB ALM Register Latency

128 534 238 672 43.3 k 92.6 k 3.9µs

256 274 231 642 48.9 k 112.3 k 7.3µs

512 144 195 7467 152.6 k 252.0 k 13.6µs

1024 68 171 4088 111.7 k 202.4 k 24.6µs

2048 36 173 1960 75.6 k 149.1 k 39.3µs

Available 1518 2713 · · · 427 k 1.7 M · · ·

BRAMs required are inversely proportional to the reuse
factor. Variations in the required registers and ALMs
are generally not significant by comparison. These re-
sults demonstrate a range of feasible firmware imple-
mentations of the algorithm that fit comfortably within
the available resources of the GMPS control board and
1/15 sec (66.7 ms) latency budget. The ability to tune
resource usage provides significant flexibility to accom-
modate future scenarios where the NN algorithm may
significantly grow in complexity and, further, must coex-
ist on a single FPGA with additional control logic that
may present inflexible resource constraints of its own.

D. Extensions to More Complex Algorithms

Up to this point, the discussion of the hardware im-
plementation has centered around the three-hidden-layer
MLP architecture found to be performant for the GMPS
control problem in the context of RL studies described in
Sec V. However, the conclusions of the studies described
above may be extended to more complex NN algorithms
providing improved GMPS performance in tandem with
the experience gained through future data-taking cam-
paigns.

The simplest extension to the single MLP solution,
well-motivated in the context of RL studies, is to run
inference with an ensemble of multiple copies of the net-
work in parallel on the FPGA, to improve robustness
of performance. Each NN may be programmed with a
unique set of weights, allowing for disagreement among
the models, where additional voter logic determines the
final action to be taken by the control system. This is
straightforward to achieve for models with similar com-
plexity to the one studied in Sec VI C. Achieving designs
that consume ≤6% of all available resources suggests that
an ensemble of O(10) models is feasible.

Alternatively, instead of an ensemble of relatively sim-
ple models, more complex networks can be pursued. The
MLP architecture studied can be extended to additional

layers and larger numbers of nodes per layer maintain-
ing an acceptable footprint through corresponding ad-
justment of the reuse factor. The theoretical scaling be-
havior was shown in the calculations of Sec VI A and
observed in the implementation using Quartus HLS. As
an illustrative example, one could consider a refinement
of the baseline architecture where the number of nodes
per layer is uniformly increased by a scaling factor s. In
this case, the number of required multipliers may be kept
constant by simultaneously increasing the reuse factor by
a factor of s2, at the expense of a small corresponding
increase in algorithm latency. This strategy would allow
more powerful solutions with similar footprint to take
advantage of the full latency budget of ≈ 66 ms. More
sophisticated architectures such as convolutional and re-
current NNs may also be considered, taking advantage of
their representations as compositions of multiple dense
sub-layers. A detailed study of such possibilities is left
to future work.

VII. SUMMARY AND OUTLOOK

In this paper, we have described a method for con-
trolling the gradient magnet power supply (GMPS), an
important subsystem of the Fermilab Booster accelera-
tor, using machine learning models and demonstrated
the feasibility of embedding such a model on a field-
programmable gate array (FPGA) for a high-uptime,
low-latency implementation. We first developed a surro-
gate LSTM model, based on a recurrent neural network,
to reproduce the behaviors of the real GMPS system in
the context of the accelerator complex, establishing a
safe environment for training reinforcement learning al-
gorithms. Within this environment, we trained a deep
Q-network, based on a multilayer perceptron, to choose
an optimal action (adjustment of one control knob) to
maximize the long-term reward, taken from the negative
absolute value of the regulation error (difference between
the set and observed values of the minimum GMPS cur-
rent). We found this surrogate-trained network achieved
a factor of 2 improvement over the existing controller in
terms of the achieved rewards. Finally, we implemented
this network on an Intel Arria 10 FPGA and found it re-
produces the CPU-based model, consumes less than 6%
of the total FPGA resources, and executes with a latency
as low as 2.8µs, which bodes well for future extensions.

Real-time and operations-hardened solutions will be
critical for deploying this technology in an accelerator
control context, but we believe a large number of other
application spaces will be able to benefit from reinforce-
ment learning on embedded systems. Surrogate models
appear promising for supplying the large training data
volumes required by reinforcement learning agents. This
is particularly important for accelerator facilities where
large-scale simulations of the entire complex are absent.
Although many open questions remain, this proof-of-
principle provides confidence to test our proposed con-
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cept on “live” hardware. The next steps of this work,
including mechanisms for online training and model up-
dates for systems operating with a running accelerator,
will be the subject of a future report.

In general, the future for machine learning algorithms
in accelerator control is bright. The proliferation of
shared tools and open datasets like the one developed
for and used in this paper will doubtlessly enable rapid
progress. We note that Ref. [33] also adopted the Ope-
nAI Gym [95] as a programming interface for training
reinforcement learning agents for use in an accelerator
complex. Adoption of common tools will make it easy
for researchers in this space to share code and especially
to share access to datasets. This should allow multi-
institution collaboration to prosper and greatly enhance
the pace of progress in the field of artificial intelligence
for accelerator applications.
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