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Abstract In general-purpose particle detectors, the particle-
flow algorithm may be used to reconstruct a comprehensive
particle-level view of the event by combining information
from the calorimeters and the trackers, significantly improv-
ing the detector resolution for jets and the missing trans-
verse momentum. In view of the planned high-luminosity
upgrade of the CERN Large Hadron Collider (LHC), it
is necessary to revisit existing reconstruction algorithms
and ensure that both the physics and computational perfor-
mance are sufficient in an environment with many simul-
taneous proton—proton interactions (pileup). Machine learn-
ing may offer a prospect for computationally efficient event
reconstruction that is well-suited to heterogeneous comput-
ing platforms, while significantly improving the reconstruc-
tion quality over rule-based algorithms for granular detec-
tors. We introduce MLPF, a novel, end-to-end trainable,
machine-learned particle-flow algorithm based on paralleliz-
able, computationally efficient, and scalable graph neural
network optimized using a multi-task objective on simu-
lated events. We report the physics and computational per-
formance of the MLPF algorithm on a Monte Carlo dataset
of top quark—antiquark pairs produced in proton—proton col-
lisions in conditions similar to those expected for the high-
luminosity LHC. The MLPF algorithm improves the physics
response with respect to a rule-based benchmark algo-
rithm and demonstrates computationally scalable particle-
flow reconstruction in a high-pileup environment.
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1 Introduction

Reconstruction algorithms at general-purpose high-energy
particle detectors aim to provide a holistic, well-calibrated
physics interpretation of the collision event. Variants of
the particle-flow (PF) algorithm have been used at the
CELLO [1], ALEPH [2], H1 [3], ZEUS [4,5], DELPHI [6],
CDF [7-9], DO [10], CMS [11] and ATLAS [12] experi-
ments to reconstruct a particle-level interpretation of high-
multiplicity hadron collision events, given individual detec-
tor elements such as tracks and calorimeter clusters from
a multi-layered, heterogeneous, irregular-geometry detector.
The PF algorithm generally correlates tracks and calorime-
ter clusters from detector layers such as the electromagnetic
calorimeter (ECAL), hadron calorimeter (HCAL) and oth-
ers to reconstruct charged and neutral hadron candidates as
well as photons, electrons, and muons with an optimized effi-
ciency and resolution. Existing PF reconstruction implemen-
tations are tuned using simulation for each specific experi-
ment because detailed detector characteristics and geometry
are critical for the best possible physics performance.
Recently, there has been significant interest in adapting
the PF reconstruction approach for future high-luminosity
experimental conditions at the CERN Large Hadron Collider
(LHC) [13], as well as for proposed future collider experi-
ments such as the Future Circular Collider (FCC) [14,15]. PF
reconstruction is also a key driver in the detector design for
future lepton colliders [16—18]. While reconstruction algo-
rithms are often based on an imperative, rule-based approach,
the use of supervised machine learning (ML) to define recon-
struction parametrically based on data and simulation sam-
ples may improve the physics reach of the experiments by
allowing a more detailed reconstruction to be deployed given
a fixed computing budget. Reconstruction algorithms based
on ML may be well-suited to irregular, high-granularity
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detector geometries and for novel signal models, where it
may not be feasible to encode the necessary granularity in the
ruleset. A fully probabilistic particle-level interpretation of
the event from an ML-based reconstruction may also improve
the physics performance of downstream algorithms such as
jet tagging with more granular inputs. At the same time, ML-
solutions for computationally intensive problems may offer
a modern computing solution that may scale better with the
expected progress on ML-specific computing infrastructures,
e.g., at high-performance computing centers.

ML-based reconstruction approaches using GNNs [19—

23] have been proposed for various tasks in particle physics [24],

including tracking [25-29], jet finding [30-32] and tag-
ging [33-36], calorimeter reconstruction [37], pileup miti-
gation [38], and PF reconstruction [39-41]. The clustering
of energy deposits in detectors with a realistic, irregular-
geometry detector using GNNs has been first proposed in
Ref. [37]. The ML-based reconstruction of overlapping sig-
nals without a regular grid was further developed in Ref. [39],
where an optimization scheme for reconstructing a variable
number of particles based on a potential function using an
object condensation approach was proposed. The clustering
of energy deposits from particle decays with potential over-
laps is an essential input to PF reconstruction. In Ref. [40],
various ML models including GNNs and computer-vision
models have been studied for reconstructing neutral hadrons
from multi-layered granular calorimeter images and track-
ing information. In particle gun samples, the ML-based
approaches achieved a significant improvement in neutral
hadron energy resolution over the default algorithm, which
is an important step towards a fully parametric, simulation-
driven reconstruction using ML.

In this paper, we build on the previous ML-based recon-
struction approaches by extending the ML-based PF algo-
rithm to reconstruct particle candidates in events with a large
number of simultaneous pileup (PU) collisions. In Sect. 2,
we propose a benchmark dataset that has the main compo-
nents for a particle-level reconstruction of charged and neu-
tral hadrons with PU. In Sect. 3, we propose a GNN-based
machine-learned particle-flow (MLPF) algorithm where the
runtime scales approximately linearly with the input size.
Furthermore, in Sect. 4, we characterize the performance of
the MLPF model on the benchmark dataset in terms of hadron
reconstruction efficiency, fake rate and resolution, comparing
it to the baseline PF reconstruction, while also demonstrat-
ing using synthetic data that MLPF reconstruction can be
computationally efficient and scalable. Finally, in Sect. 5 we
discuss some potential issues and next steps for ML-based
PF reconstruction.

@ Springer

2 Physics simulation

We use PYTHIA 8 [42,43] and DELPHES 3 [44] from the
HepSim software repository [45] to generate a particle-level
dataset of 50,000 top quark—antiquark (tt) events produced
in proton—proton collisions at 14 Te V, overlaid with mini-
mum bias events corresponding to a PU of 200 on average.
The tt dataset is used for training the MLPF model. We addi-
tionally generate 5000 events composed uniquely of jets pro-
duced through the strong interaction, referred to as quantum
chromodynamics (QCD) multijet events, with the same PU
conditions for validation to evaluate the model in a different
physics regime from the training dataset. The dataset consists
of detector hits as the input, generator particles as the ground
truth and reconstructed particles from DELPHES for additional
validation. The QCD sample uses a minimum invariant pt of
20 Ge V, otherwise, the same generator settings are used as
for the tt sample. The DELPHES model corresponds to a CMS-
like detector with a multi-layered charged particle tracker, an
electromagnetic and hadron calorimeter. The full PYTHIA 8
and DELPHES data cards are available on Zenodo along with
the dataset [46].

Although this simplified simulation does not include
important physics effects such as pair production,
Brehmsstrahlung, nuclear interactions, electromagnetic show-
ering or a detailed detector simulation, it allows the study of
overall per-particle reconstruction properties for charged and
neutral hadrons in a high-PU environment. Different recon-
struction approaches can be developed and compared on
this simplified dataset, where the expected performance is
straightforward to assess, including from the aspect of com-
putational complexity.

The inputs to PF are charged particle tracks and calorime-
ter clusters. We use these high-level detector inputs (ele-
ments), rather than low-level tracker hits or unclustered
calorimeter hits to closely follow how PF is implemented in
existing reconstruction chains, where successive reconstruc-
tion steps are decoupled, such that each step can be optimized
and characterized individually. In this toy dataset, tracks are
characterized by transverse momentum (pr),! charge, and
the pseudorapidity and azimuthal angle coordinates (1, ¢),
including extrapolations to the tracker edge (nouter, Pouter)-

The track n and ¢ coordinates are additionally smeared
with a 1% Gaussian resolution to model a finite tracker res-
olution. Calorimeter clusters are characterized by electro-

! As common for collider physics, we use a Cartesian coordinate system
with the z axis oriented along the beam axis, the x axis on the horizontal
plane, and the y axis oriented upward. The x and y axes define the
transverse plane, while the z axis identifies the longitudinal direction.
The azimuthal angle ¢ is computed with respect to the x axis. The polar
angle 6 is used to compute the pseudorapidity n = — log(tan(6/2)). The
transverse momentum (pr) is the projection of the particle momentum
on the (x, y) plane. We fix units such thatc = A = 1.
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Fig. 1 A simulated tt event from the MLPF dataset with 200 PU inter-
actions. The input tracks are shown in gray, with the trajectory curvature
being defined by the inner and outer 7, ¢ coordinates. Electromagnetic
(hadron) calorimeter clusters are shown in blue (orange), with the size
corresponding to cluster energy for visualization purposes. We also
show the locations of the generator particles (all types) with red cross
markers. The radii and thus the x, y-coordinates of the tracker, ECAL
and HCAL surfaces are arbitrary for visualization purposes

magnetic or hadron energy E and 7, ¢ coordinates. In this
simulation, an event has N = (4.9 £ 0.3) x 103 detector
inputs on average.

The targets for PF reconstruction are stable generator-level
particles that are associated to at least one detector element,
as particles that leave no detector hits are generally not recon-
structable. Generator particles are characterized by a particle
identification (PID) which may take one of the following
categorical values: charged hadron, neutral hadron, photon,
electron, or muon. In case multiple generator particles all
deposit their energy completely to a single calorimeter clus-
ter, we treat them as reconstructable only in aggregate. In
this case, the generator particles are merged by adding the
momenta and assigning it the PID of the highest-energy sub-
particle. In addition, charged hadrons are indistinguishable
outside the tracker acceptance from neutral hadrons, there-
fore we label generated charged hadrons with || > 2.5 to
neutral hadrons. We also set a lower energy threshold on
reconstructable neutral hadrons to E > 9.0 Ge V based on
the DELPHES rule-based PF reconstruction, ignoring neutral
hadrons that do not pass this threshold. A single event from
the dataset is visualized in Fig. 1, demonstrating the input
multiplicity and particle distribution in the event. The dif-
ferential distributions of the generator-level particles in the
simulated dataset are shown in Fig. 2.

We also store the PF candidates reconstructed by DELPHES
for comparison purposes. The DELPHES rule-based PF algo-
rithm is described in detail in Ref. [44]. Charged and neutral
hadrons are identified based on track and hadron calorime-

100777
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Fig. 2 The pr (upper) and n (lower) distributions of the generator
particles in the simulated tt dataset with PU, split by particle type

ter cluster overlaps and energy subtraction. Photons are
identified based on electromagnetic calorimeter clusters not
matched to tracks. In addition, we note that electrons and
muons are identified by DELPHES based on the generator par-
ticle associated to the corresponding track, therefore, for elec-
tron and muon tracks we add the corresponding generator-
level identification as an input feature to the MLPF training to
demonstrate that given the appropriate detector inputs, these
less common particles can also be identified by the algorithm.

Each event is now fully characterized by the set of gen-
erator particles Y = {y;} (target vectors), the set of detector
inputs X = {x;} (input vectors), with

vj =[PID, pt, E, n, ¢, q], (D
x; = [type, pt, EgcaL, EHCAL, 1, @, Nouters Pouters 41,

2
PID € {charged hadron, neutral hadron, y, et, ut) 3)
type € {track, cluster} . “4)

@ Springer
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For input tracks, only the type, pT, 1, @, Nouter> Pouter> and g
features are filled. Similarly, for input clusters, only the type,
EgcaL, EucaL, 1 and ¢ entries are filled. Unfilled features
for both tracks and clusters are set to zero. In future iterations
of MLPF, it may be beneficial to represent input elements of
different types with separate data matrices to improve the
computational efficiency of the model. Precomputing addi-
tional features such as track trajectory intersection points
with the calorimeters may further improve the performance
of PF reconstruction based on machine learning.

Functionally, the detector is modelled in simulation by a
function S(Y) = X that produces a set of detector signals
from the generator-level inputs for an event. Reconstruc-
tion imperfectly approximates the inverse of that function
R ~ S~ (X) = Y. In the following section, we approximate
the reconstruction as set-to-set translation and implement a
baseline MLPF reconstruction using GNNs.

3 ML-based PF reconstruction

For a given set of detector inputs X, we want to predict a set
of particle candidates Y’ that closely approximates the target
generator particle set Y. The target and predicted sets may
have a different number of elements, depending on the quality
of the prediction. For use in ML using gradient descent, this
requires a computationally efficient, differentiable set-to-set
metric ||Y — Y’|| € R to be used as the loss function.

We simplify the problem numerically by first zero-
padding the target set Y such that |Y| = |X|. This turns
the problem of predicting a variable number of particles into
a multi-classification prediction by adding an additional “no
particle” to the classes already defined by the target PID and
is based on Ref. [39]. Furthermore, for PF reconstruction, the
target generator particles are often geometrically and ener-
getically close to well-identifiable detector inputs. In physics
terms, a charged hadron is reconstructed based on a track,
while a neutral hadron candidate can always be associated to
at least one primary source cluster, with additional correc-
tions taken from other nearby detector inputs. Therefore, we
choose to preprocess the inputs such that for a given arbitrary
ordering of the detectorinputs X = [..., x;, ... ] (setsof vec-
tors are represented as matrices with some arbitrary order-
ing for ML training), the target set Y is arranged such that
if a target particle can be associated to a detector input, it is
arranged to be in the same location in the sequence. This data
preprocessing step speeds up model convergence, but does
not introduce any additional assumptions to the model. Since
the target set now has a predefined size, we may compute
the loss function which approximates reconstruction quality
element-by-element:

@ Springer

Y =Y'll= > L;.y), ()
Jjeevent

L(y;, ¥;) = CLS(cj, ¢}) + «REG(pj, p) , (6)

where the target values and predictions y; = [c;; p;] are

decomposed such that the multi-classification is encapsu-
lated in the scores and one-hot encoded classes c;, while
the momentum and charge regression values in p;. We
use CLS to denote the multi-classification loss, while REG
denotes the regression loss for the momentum components
weighted appropriately by a coefficient «. This combined
per-particle loss function serves as a baseline optimization
target for the ML training. Further physics improvements
may be reached by extending the loss to take into account
event-level quantities, either by using an energy flow dis-
tance as proposed in Refs. [47-49], or using a particle-
based [50-53] generative adversarial network (GAN) [54]
to optimize the reconstruction network in tandem with an
adversarial classifier that is trained to distinguish between
the target and reconstructed events, given the detector
inputs.

3.1 Graph neural network implementation

Given the set of detector inputs for the event X = {x;}, we
adopt a message passing approach for reconstructing the PF
candidates ¥ = {y;}. First, we need to construct a train-
able graph adjacency matrix F(X|w) = A for the given
set of input elements, represented with the graph building
block in Fig. 3. The input set is heterogeneous, containing
elements of different type (tracks, ECAL clusters, HCAL
clusters) in different feature spaces. Therefore, defining a
static neighborhood graph in the feature space in advance is
not straightforward. A generic approach to learnable graph
construction using kNN in an embedding space, known as
GravNet, has been proposed in Ref. [37], where the authors
demonstrated that a learnable, dynamically-generated graph
structure significantly improves the physics performance of
an ML-based reconstruction algorithm for calorimeter clus-
tering. Similar dynamic graph approaches have also been
proposed in Ref. [23].

However, naive kNN graph implementations in com-
mon ML packages such as TENSORFLOW or PYTORCH-
GEOMETRIC have O(n?) time complexity: for each set ele-
ment out of n = | X|, we must order the other n — 1 elements
by distance and pick the k closest. More efficient KNN graph
construction is possible with, for example, k-dimensional
trees [55], but so far, we are not aware of an implementa-
tion that interfaces with common, differentiable ML tools.
For reconstruction, given equivalent physics performance,
both computational efficiency (a low overall runtime) and
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Fig. 3 Functional overview of
the end-to-end trainable MLPF

Event as input set

X={x
setup with GNNs. The event is {xi)
represented as a set of detector °
elements x;. The set is [ J

transformed into a graph by the

graph building step, which is ()
implemented here using an

locality sensitive hashing (LSH) Y
approximation of kKNN. The
graph nodes are then encoded
using a message passing step,
implemented using graph
convolutional nets. The encoded
elements are decoded to the
output feature vectors y; using
elementwise feedforward
networks

Target set ¥ = {yj}

X = [typev P> EECAL’ EHCAL’ 1, ¢’ Mouter ¢outer’ q, -
.J, PID € {none, charged hadron, neutral hadron, y,

yl = [PID,pT9E9’7a ¢7 Q9 ..

scalability (subquadratic time and memory scaling with the
input size) are desirable.

We build on the GravNet approach [37] by using an
approximate kNN graph construction algorithm based on
locality sensitive hashing (LSH) to improve the time com-
plexity of the graph building algorithm. The LSH approach
has been recently proposed [56] for approximating and thus
speeding up ML models that take into account element-to-
element relations using an optimizable n x n matrix known
as self-attention [57]. The method divides the input into bins
using a hash function, such that nearby elements are likely
to be assigned to the same bin. The bins contain only a small
number of elements, such that constructing a KNN graph in
the bin is significantly faster than for the full set of elements,
and thus not strongly affected by the quadratic scaling of the
kNN algorithm.

In the kKNN+LSH approach, the n input elements x; are
projected into a d g -dimensional embedding space by a train-
able, elementwise feed-forward network FFN (x;|w) = z; €
RI . As in Ref. [56], we now assign each element into
one of dp bins indexed by integers b; using h(z;) = b; €
[1, ..., dg], where h(x) is ahash function that assigns nearby
x to the same bin with a high probability. We define the
hash function as h(x) = arg max[x P; —x P] where [u; v]
denotes the concatenation of two vectors # and v and P is a
random projection matrix of size [dk , dp /2] drawn from the
normal distribution at initialization.

We now build dp kNN graphs based on the embedded
elements z; in each of the LSH bins, such that the full sparse
graph adjacency A;; in the inputs set X is defined by the sum
of the subgraphs. The embedding function can be optimized

Graph building
L Eomd LSH+kNN
FX|w) =

Elementwise loss L(y;, y;)
classification & regression
——

Event as graph

Transformed inputs

H = {h;}
Message passing g

I

G A|w) =

Output set V' = {yj’} l
Decoding

elementwise
FFN
!

.], type € {track, cluster}
e*, u*}
h € R256

Trainable neural networks: &, &, 9
® - track,
- target (predicted) particle,

- calorimeter cluster, M - encoded element
- no target (predicted) particle

with backpropagation and gradient descent using the values
of the nonzero elements of A;;. Overall, this graph build-
ing approach has O(n logn) time complexity and does not
require the allocation of an n” matrix at any point. The LSH
step generates dp disjoint subgraphs in the full event graph.
This is motivated by physics, as we expect subregions of the
detector to be reconstructable approximately independently.
The existing PF algorithm in the CMS detector employs a
similar approach by producing disjoint PF blocks as an inter-
mediate step of the algorithm [11].

Having built the graph dynamically, we now use a variant
of message passing [20,22,58,59] to create hidden encoded
states G(x;, A;j|lw) = h; of the input elements taking into
account the graph structure. As a first baseline, we use a
variant of graph convolutional network (GCN) that combines
local and global node-level information [60-62]. This choice
is motivated by implementation and evaluation efficiency in
establishing a baseline. This message passing step is repre-
sented in Fig. 3 by the GCN block. Finally, we decode the
encoded nodes H = {h;} to the target outputs with an ele-
mentwise feed-forward network that combines the hidden
state with the original input element D(x;, h;|w) = y; using
a skip connection.

We have a joint graph building, but separate graph convo-
lution and decoding layers for the multi-classification and the
momentum and charge regression subtasks. This allows each
subtask to be retrained separately in addition to a combined
end-to-end training should the need arise. The classification
and regression losses are combined with constant empirical
weights such that they have an approximately equal con-
tribution to the full training loss. We use categorical cross-

@ Springer
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Fig. 4 The MLPF reconstruction compared to the truth-level p distri-
bution for the QCD validation sample and the tt sample used for training.
The differences between the MLPF and truth distributions are a mea-
sure of the prediction error. Charged hadrons, electrons, and muons are
identified based on tracks with no misidentification or loss of efficiency,

entropy for the classification loss, which measures the simi-
larity between the true label distribution ¢; and the predicted
labels c/j. For the regression loss, we use componentwise
mean-squared error between the true and predicted momenta,
where the losses for the individual momentum components
(pt1, 1, sing, cos ¢, E) are scaled by normalization factors
such that the components have approximately equal contri-
butions to the total loss. It may be beneficial to use specific
multi-task training strategies such as gradient surgery [63]
to further improve the performance across all subtasks and
to reduce the reliance on ad-hoc scale factors between the
losses in a multi-task setup.

The multi-classification prediction outputs for each node
are converted to particle probabilities with the softmax oper-
ation. We choose the PID with the highest probability for
the reconstructed particle candidate, while ensuring that the
probability meets a threshold that matches a fake rate work-
ing point defined by the baseline DELPHESPF reconstruction
algorithm.

@ Springer

hence the prediction error is negligible for both samples. For neutral
hadrons and photons, the tail is reconstructed at a lower efficiency for
tt as compared to QCD, which could arise from overrepresentation of
low- pr particles in the unweighted tt training sample

The predicted graph structure is an intermediate step in
the model and is not used in the loss function explicitly — we
only optimize the model with respect to reconstruction qual-
ity. However, using the graph structure in the loss function
when a known ground truth is available may further improve
the optimization process. In addition, access to the predicted
graph structure may be helpful in evaluating the interpretabil-
ity of the model.

The set of networks for graph building, message passing
and decoding has been implemented with TENSORFLOW 2.3
and can be trained end-to-end using gradient descent. The
inputs are zero-padded to n = 6400 elements. Additional
elements beyond 6400 are truncated for efficient training and
performance evaluation, amounting to about 0.007% of the
total number of elements in the tt simulation sample. The
truncated elements are always calorimeter towers as the order
of the elements is set by the DELPHES simulation. For infer-
ence during data taking, truncation should be avoided. The
LSH bin size chosen to be 128 such that the number of bins
dp = 50 and the number of nearest neighbors k = 16. We
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Fig. 5 True and predicted particle multiplicity for MLPF and
DELPHESPF for charged (upper) and neutral hadrons (lower) in simu-
lated QCD multijet events with PU. Both models show a high degree of
correlation () between the generated and predicted particle multiplicity,
with the MLPF model reconstructing the neutral particle multiplicities
with improved resolution (o) and a lower bias (1)

use two hidden layers for each encoding and decoding net
with 256 units each, with two successive graph convolutions
between the encoding and decoding steps. Exponential lin-
ear activations (ELU) [64] are used for the hidden layers and
linear activations are used for the outputs. Overall, the model
has approximately 1.5 million trainable weights and 25,000
constant weights for the random projections. For optimiza-
tion, we use the Adam [65] algorithm with a learning rate of
5 x 107° for 300 epochs, training over 4 X 10* events, with
10* events used for testing. The events are processed in mini-
batches of five simultaneous events per graphics processing
unit (GPU), we train for approximately 48 h using five RTX
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Fig. 6 Particle identification confusion matrices in simulated QCD
multijet events with PU, with gen-level particles as the ground truth,
showing the baseline rule-based DELPHESPF (upper) and the MLPF
(lower) outputs. The rows have been normalized to unit probability,
corresponding to normalizing the dataset according to the generated
PID

2070S GPUs using data parallelism on 40,000 simulated tt
events. We report the results of the multi-task learning prob-
lem in the next section. The code and dataset to reproduce the
training are made available on the Zenodo platform [46,66].

4 Results
In Fig. 4, we show the pr distributions for the MLPF recon-

struction and generator-level truth for both simulated QCD
multijet and tt events. Although the MLPF model was trained
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Fig. 7 The efficiency of reconstructing charged hadron candidates as
a function of the generator particle pseudorapidity » in simulated QCD
multijet events with PU. Since the simulation does not contain fake
tracks, the charged hadron reconstruction is driven entirely by tracking
efficiency and is the same for MLPF and the rule-based PF

on tt, we observe a slight underprediction at high transverse
momentum for photons and neutral hadrons, which could
arise from the much greater numbers of low- p particles rel-
ative to high- pt particles in this unweighted sample. Further
work is needed to improve the performance in the high-pr
tail of the distribution. We find that the model generalizes
well to the QCD sample that was not used in the training,
demonstrating that the MLPF-based reconstruction is trans-
ferable across different physics samples.

For the following results, we focus on the charged and neu-
tral hadron performance in QCD events, as hadrons make
up the bulk of the energy content of the jets and thus are
the primary target for PF reconstruction. We do not report
detailed performance characteristics for photons, electrons,
and muons at this time because of the limitations of the
DELPHES dataset and the rule-based PF algorithm. A real-
istic study of photon and electron disambiguation, in par-
ticular, requires a more detailed dataset that includes addi-
tional physics effects, as discussed in Sect. 2. In Fig. 5, we
present the charged and neutral hadron multiplicities from
both the baseline rule-based PF and MLPF algorithms as a
function of the target multiplicities. The particle multiplici-
ties from the MLPF model correlate better with the generator-
level target than the rule-based PF algorithm, demonstrat-
ing that the multi-classification model successfully recon-
structs variable-multiplicity events. In general, we do not
observe significant differences in the physics performance
of the MLPF algorithm between the QCD and tt samples in
the phase space where we have validated it.

In Fig. 6, we compare the per-particle multi-classification
confusion matrix for both reconstruction methods. We
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Fig. 8 The efficiency (upper) and fake rate (lower) of reconstructing
neutral hadron candidates as a function of the generator particle energy
in simulated QCD multijet events with PU. The MLPF model shows
comparable performance to the DELPHESPF benchmark, with a some-
what lower fake rate at a similar efficiency

see overall a similar classification performance for both
approaches. The charged hadron identification performance
is driven by track efficiency and is the same for MLPF and the
rule-based PF. The neutral hadron identification efficiency
is slightly higher for MLPF (0.91 vs 0.88), since hadron
calorimeter cluster energies that are not matched to tracks
must be determined algorithmically for neutral hadron recon-
struction. The electron—photon misidentification is driven
by the parametrized tracking efficiency, as electromagnetic
calorimeter clusters without an associated track are recon-
structed as photons. Electron and muon identification per-
formance is shown simply for completeness, as it is driven
by the use of generator-level PID values for those tracks.
Improved Monte Carlo generation, subsampling, or weight-
ing may further improve reconstruction performance for par-
ticles or kinematic configurations that occur rarely in a phys-
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Table 1 Particle reconstruction efficiency and fake rate, multiplicity N, pt (E) and 7 resolutions for charged (neutral) hadrons, comparing the
rule-based PF baseline and the proposed MLPF method. Bolded values indicate better performance

Metric Charged hadrons Neutral hadrons
Rule-based PF MLPF Rule-based PF MLPF
Efficiency 0.953 0.953 0.883 0.908
Fake rate 0.000 0.000 0.071 0.068
pt (E) resolution 0.213 0.137 0.350 0.323
7 resolution 0.240 0.245 0.050 0.058
N resolution 0.004 0.004 0.014 0.013
@ ‘ T T T T 1010
3 QCD, 14 TeV, PU200 4 | ‘ ‘ ‘
T ch ’ dh d, © QCD, 14 TeV, PU200
c‘E arged hadrons = Neutral hadrons
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Fig. 9 The pr and n resolution of the DELPHESPF benchmark and the
MLPF model for charged hadrons in simulated QCD multijet events
with PU. The pr resolution is comparable for both algorithms, with
the angular resolution being driven by the smearing of the track (1, ¢)

coordinates

n resolution, (0" -n)/n

n resolution, (0 -n)/n

Fig. 10 The energy and n resolution of the DELPHESPF benchmark and
the MLPF model for neutral hadrons in simulated QCD multijet events
with PU. Both reconstruction algorithms show comparable performance
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Fig. 11 Average runtime of the MLPF GNN model with a varying
input event size (upper) and the relative inference time when varying
the number of events evaluated simultaneously, i.e. batch size (lower),
normalized to batch size 1. For a simulated event equivalent to 200 PU
collisions, we see a runtime of around 50 ms, which scales approx-
imately linearly with respect to the input event size. We see a weak
dependence on batch size, with batching having a minor positive effect
for low-pileup events. The runtime for each event size is averaged over
100 randomly generated events over three independent runs. The tim-
ing tests were done using an Nvidia RTX 2060S GPU and an Intel
i7-10700@2.9GHz CPU. We assume a linear scaling between PU and
the number of detector elements

ical simulation. In this set of results, we apply no weighting
on the events or particles in the event.

In Fig. 7, we see that the n-dependent charged hadron effi-
ciency (true positive rate) for the MLPF model is somewhat
higher than for the rule-based PF baseline, while the fake
rate (false positive rate) is equivalently zero, as the DELPHES
simulation includes no fake tracks. From Fig. 8, we observe
a similar result for the energy-dependent efficiency and fake
rate of neutral hadrons. Both algorithms exhibit a turn-on
at low energies and show a constant behaviour at high ener-
gies, with MLPF being comparable or slightly better than the
rule-based PF baseline.

Furthermore, we see on Figs. 9 and 10 that the energy,
energy (pr) and angular resolution of the MLPF algorithm

@ Springer

are generally comparable to the baseline for neutral (charged)
hadrons.

Overall, these results demonstrate that formulating PF
reconstruction as a multi-task ML problem of simultane-
ously identifying charged and neutral hadrons in a high-PU
environment and predicting their momentum may offer com-
parable or improved physics performance over hand-written
algorithms in the presence of sufficient simulation samples
and careful optimization. The performance characteristics for
the baseline and the proposed MLPF model are summarized
in Table 1.

We also characterize the computational performance of
the GNN-based MLPF algorithm. In Fig. 11, we see that
the average inference time scales roughly linearly with the
input size, which is necessary for scalable reconstruction at
high PU. We also note that the GNN-based MLPF algo-
rithm runs natively on a GPU, with the current runtime at
around 50 ms/event on a consumer-grade GPU for a full
200 PU event. The algorithm is simple to port to comput-
ing architectures that support common ML frameworks like
TENSORFLOW without significant investment. This includes
GPUs and potentially even field-programmable gate arrays
(FPGAs) or ML-specific processors such as the GraphCore
intelligence processing units (IPUs) [67] through specialized
ML compilers [68—70]. These coprocessing accelerators can
be integrated into existing CPU-based experimental software
frameworks as a scalable service that grows to meet the tran-
sient demand [71-73].

5 Discussion and outlook

We have developed a ML algorithm for PF reconstruction in a
high-pileup environment for a general-purpose multilayered
particle detector based on transforming input sets of detec-
tor elements to the output set of reconstructed particles. The
MLPF implementation with GNNSs is based on graph build-
ing with a LSH approximation for kNN, dubbed LSH+kNN,
and message passing using graph convolutions. Based on
benchmark particle-level tt and QCD multijet datasets gen-
erated using PYTHIA 8 and DELPHES 3, the MLPF GNN
reconstruction offers comparable performance to the base-
line rule-based PF algorithm in DELPHES, demonstrating that
a purely parametric ML-based PF reconstruction can reach
or exceed the physics performance of existing reconstruc-
tion algorithms, while allowing for greater portability across
various computing architectures at a possibly reduced cost.
The inference time empirically scales approximately linearly
with the input size, which is useful for efficient evaluation
in the high-luminosity phase of the LHC. In addition, the
ML-based reconstruction model may offer useful features
for downstream physics analysis like per-particle probabil-
ities for different reconstruction interpretations, uncertainty
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estimates, and optimizable particle-level reconstruction for
rare processes including displaced signatures.

The MLPF model can be further improved with a more
physics-motivated optimization criterion, i.e. a loss function
that takes into account event-level, in addition to particle-
level differences. While we have shown that a per-particle
loss function already converges to an adequate physics per-
formance overall, improved event-based losses such as the
object condensation approach or energy flow may be use-
ful. In addition, an event-based loss may be defined using an
adversarial classifier that is trained to distinguish the target
particles from the reconstructed particles.

Reconstruction algorithms need to adapt to changing
experimental conditions — this may be addressed in MLPF by
a periodic retraining on simulation that includes up-to-date
running condition data such as the beam-spot location, dead
channels, and latest calibrations. In a realistic MLPF training,
care must be taken that the reconstruction qualities of rare
particles and particles in the low-probability tails of distribu-
tions are not adversely affected and that the reconstruction
performance remains uniform. This may be addressed with
detailed simulations and weighting schemes. In addition, for
a reliable physics result, the interpretability of the recon-
struction is essential. The reconstructed graph structure can
provide information about causal relations between the input
detector elements and the reconstructed particle candidates.

In order to develop a usable ML-based PF reconstruc-
tion algorithm, a realistic high-pileup simulated dataset that
includes detailed interactions with the detector material
needs to be used for the ML model optimization. The model
should be optimized and validated on a mix of realistic high-
PU events to learn global properties of reconstruction, as
well as on a set of particle gun samples to ensure that local
properties of particle reconstruction are learned in a gen-
eralizable way. To evaluate the reconstruction performance,
efficiencies, fake rates, and resolutions for all particle types
need to be studied in detail as a function of particle kinemat-
ics and detector conditions. Furthermore, high-level derived
quantities such as pileup-dependent jet and missing trans-
verse momentum resolutions must be assessed for a more
complete characterization of the reconstruction performance.
With ongoing work in ML-based track and calorimeter clus-
ter reconstruction upstream of PF [26,29,52,74-76] and ML-
based reconstruction of high-level objects including jets and
jet classification probabilities downstream of PF [33-35,77—
81], care must be taken that the various steps are optimized
and interfaced coherently.

Finally, the MLPF algorithm is inherently parallelizable
and can take advantage of hardware acceleration of GNNs via
graphics processing units (GPUs), field-programmable gate
arrays (FPGAs) or emerging ML-specific processors. Cur-
rent experimental software frameworks can easily integrate
coprocessing accelerators as a scalable service. By harness-

ing heterogeneous computing and parallelizable, efficient
ML, the burgeoning computing demand for event reconstruc-
tion tasks in the high-luminosity LHC era can be met while
maintaining or even surpassing the current physics perfor-
mance.
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