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Abstract—With the prevalence of deep learning (DL) in many
applications, researchers are investigating different ways of
optimizing FPGA architecture and CAD to achieve better quality-
of-results (QoR) on DL-based workloads. In this optimization
process, benchmark circuits are an essential component; the
QoR achieved on a set of benchmarks is the main driver
for architecture and CAD design choices. However, current
academic benchmark suites are inadequate, as they do not
capture any designs from the DL domain. This work presents
a new suite of DL acceleration benchmark circuits for FPGA
architecture and CAD research, called Koios. This suite of 19
circuits covers a wide variety of accelerated neural networks,
design sizes, implementation styles, abstraction levels, and nu-
merical precisions. These designs are larger, more data parallel,
more heterogeneous, more deeply pipelined, and utilize more
FPGA architectural features compared to existing open-source
benchmarks. This enables researchers to pin-point architectural
inefficiencies for this class of workloads and optimize CAD tools
on more realistic benchmarks that stress the CAD algorithms
in different ways. In this paper, we describe the designs in our
benchmark suite, present results of running them through the
Verilog-to-Routing (VTR) flow using a recent FPGA architecture
model, and identify key insights from the resulting metrics. On
average, our benchmarks have 3.7 x more netlist primitives, 1.8 x
and 4.7x higher DSP and BRAM densities, and 1.7x higher
frequency with 1.9x more near-critical paths compared to the
widely-used VTR suite. Finally, we present two example case
studies showing how architectural exploration for DL-optimized
FPGAs can be performed using our new benchmark suite.

I. INTRODUCTION

With compute and data intensive deep learning (DL) be-
coming a major component of many applications, specialized
hardware acceleration of such workloads has become a com-
monplace. More recently, field-programmable gate arrays (FP-
GAs) have been shown to deliver state-of-the-art performance
when accelerating different DL workloads because of their
massive parallelism, flexibility and energy efficiency [1], [2].
With new DL use cases emerging faster than ever, FPGAs are
also starting to adapt. This includes the emergence of DL-
optimized FPGA fabrics [3], the integration of FPGAs with
specialized DL accelerators [4], [5], and also tuning FPGA
CAD tools to the properties of these workloads [6].

In general, the development of novel FPGA architectures
and CAD algorithms depends mainly on a versatile frame-
work that consists of three main components: (1) a set of
benchmarks written in a hardware description language or
synthesized using high-level synthesis, (2) an architecture
model that captures the organization of FPGA blocks and

routing architecture as well as area/timing/power models from
circuit-level implementations, and (3) a CAD flow that syn-
thesizes the given benchmarks then implements them on a
given FPGA architecture [7]. Although most research efforts
in the FPGA community are focused on architecture and
CAD, benchmarks actually play a crucial role in this flow.
The quality-of-results (QoR) achieved on a specific set of
benchmarks is the main driver for architecture and CAD design
choices. As a result, it is essential that these benchmarks
capture the markets and application domains targeted by the
candidate FPGA architecture. Using an unrepresentative set of
benchmarks means optimizing for the wrong targets.

Among the existing open-source benchmark suites, which
we will discuss in a later section, none of them focus on (or
even capture any) benchmarks from the increasingly important
DL domain. Therefore, it becomes very tedious to evaluate
architecture and CAD optimizations for DL-targeted FPGAs,
since researchers have to first implement their own bench-
marks. This limits any research efforts in this direction to only
individual isolated ones, and makes it virtually impossible to
have meaningful comparisons between different ideas across
the FPGA research community. Our work addresses this by
presenting Koios!, an open-source benchmark suite of DL
acceleration benchmark circuits for FPGA architecture and
CAD research. This suite consists of 19 benchmarks that
capture a wide variety of accelerated neural networks, design
sizes, numerical precisions, and circuit characteristics. To
maximize the utility of these benchmarks, we made them
compatible with the Verilog-to-Routing (VTR) flow [8], which
is arguably the most widely-used FPGA architecture and CAD
research framework. Researchers can use these benchmarks
seamlessly with VTR and with minor modifications, can even
use them with other toolchains.

Koios benchmarks are representative of modern DL work-
loads; many of them are re-created from prior works and some
are replicas of industrial architectures. In addition to being
more pipelined and DSP/BRAM intensive, these benchmarks
have higher usage of structures like wide busses, large reduc-
tion trees, hard block cascades and large fanouts. This makes
Koios benchmarks much better suited for DL-targeted FPGA
architecture exploration than any non-DL benchmark suite.

'Koios (also written as Coeus) is the Titan of intelligence in Greek
mythology. Unlike the Titan benchmarks, our suite focuses on deep learning.



All the benchmarks along with the FPGA architecture we
used for our experiments in this paper are open-sourced
as a part of VTR?. In this paper, we make the following
contributions:

« Introduce the Koios benchmarks and describe the different
characteristics of the constituent designs.

« Present the results of running our benchmarks through VTR
using an FPGA architecture description file that we develop
to capture complex DSP features typical of recent FPGAs.

o Compare circuit statistics to those of the VTR benchmarks
to highlight the added value of our new suite.

o Describe two example case studies that use these bench-
marks to explore architectural optimizations for DL.

II. RELATED WORK
A. FPGA Benchmark Suites

There are several benchmark suites that were used by FPGA
architecture and CAD researchers throughout the past three
decades. The classic MCNC20 benchmarks [9] are extremely
small and simple designs that do not use any FPGA hard
blocks. Therefore, they do not represent modern FPGA use-
cases and are rarely used for architecture or CAD studies
nowadays. The twenty largest circuits from this suite (often
referred to as the Toronto20 [10]) are provided in the input
format consumed by the Versatile Place and Route (VPR) tool
suite. The UMass RCG HDL Benchmark Collection [11] has
larger designs mostly representing DSP applications. However,
this suite does not target an open-source FPGA framework.
The Groundhog benchmarks [12] are shown to work with
academic toolflows and are targeted towards evaluation of
power consumption of FPGAs for mobile computing appli-
cations. ERCBench [13] is another suite consisting of hybrid
hardware/software applications. The designs in this suite rep-
resent designs from multimedia, wireless communications and
cryptography. They do not contain DL benchmarks, and do not
work with academic FPGA tools.

VTR [8] has a suite of benchmarks as well. These
VTR benchmarks vary from small (321 netlist primitives)
to medium-sized designs (165,809 primitives) and they cap-
ture a multitude of applications like image processing, soft
processors and arithmetic. The Titan benchmark suite [14]
contains modern heterogeneous large designs (90K to 1.8M
netlist primitives). However, they target a hybrid CAD flow
that is architecture-specific as logic synthesis is performed
using the Intel Quartus flow only for the Stratix IV archi-
tecture. In contrast to all existing suites, Koios is the only
one that provides large, heterogeneous, architecture-agnostic
benchmarks that work with a completely open-source flow
such as VTR, and focuses on the increasingly important DL
domain.

B. DL-Optimized FPGAs

Recently, FPGA vendors have released products with many
DL-targeted features to cater to the ever-growing demands of

Zhttps://tinyurl.com/vtrkoios

DL workloads. For example, the Xilinx Versal ACAP [15]
added specialized vector processors for DL acceleration, and
Intel’s Stratix 10 NX devices integrated in-fabric Al tensor
blocks [3]. In addition, the announced Achronix Speedster7t
FPGAs [16] will have embedded machine learning processor
(MLP) blocks that tightly couple memory and compute for DL,
and the FlexLogix nnMAX [17] inference IP also contains
tiles with hardened convolution logic. For their architecture
exploration, FPGA vendors typically use proprietary customer
designs or internal benchmarks that are not accessible to the
research community.

There have also been a number of academic research pro-
posals for optimizing FPGA architectures for DL. Eldafrawy
et al. [18] proposed several enhancements to the logic block
architecture to pack more arithmetic bits or add a shadow
multiplier in them for improved DL performance. They used
simple multipliers/MAC and 4x4 matrix multiplication mi-
crobenchmarks to evaluate their proposed ideas. In [19], [20],
the authors explored enhancing DSP blocks by efficiently
supporting low precision multiplications. For these studies, the
authors design their own benchmarks to evaluate their ideas.
Arora et al. [21] also proposed adding Tensor slices in FPGAs.
Again, they use their own designs, a TPU-like overlay and
several microbenchmarks, for their evaluation. We believe that
an open-source benchmark suite is needed to create a common
ground for evaluating and comparing such FPGA architectural
enhancements for DL.

III. THE KO10S BENCHMARK SUITE

Our collection of benchmark designs in the Koios suite
come from a multitude of applications within the DL. domain.
They cover a wide variety of different design sizes, implemen-
tation styles, target neural networks, acceleration paradigms,
numerical precisions, and circuit properties as summarized by
the overview in Table I, and detailed in this section.

o Design Size: The smallest design has 11,519 netlist prim-
itives while the largest has 1,085,877. Any latch, gate or
hard block resulting from logic synthesis counts as a netlist
primitive. Some benchmarks, such as clstm_like,
dla_like, tpu_like, have multiple size variants (i.e.
small, medium, large). In these cases, the size indicates the
parallelism factor used in the design. Bigger designs create
a more challenging optimization problem for the CAD tools,
while smaller ones have faster compilation time suitable for
early-stage architecture and CAD experiments.

o Implementation Style: Although all the designs in the
benchmark suite are provided to users in the form of Verilog
HDL implementations, some were originally implemented
in RTL while others were automatically generated from
higher level language descriptions using high-level synthesis
(HLS) tools. HLS-generated designs typically have specific
design characteristics that are not generally seen in hand-
coded RTL designs, such as widely distributed control
signals and complex state machines.

o Target Neural Network: Our benchmarks cover all major
classes of neural networks. These include: multi-layer per-



TABLE I: The Koios Benchmarks (in decreasing order of number of netlist primitives)
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clstm_like (S/M/L) CLSTM-like accelerator RTL RNN intl8 Overlay v iy [22] Circular compression
dla_like (S/M) Intel-DLA-like accelerator RTL CNN? int8/16 Overlay v V3 vt v (23] [24] Daisy chain
Istm LSTM engine RTL RNN intl6 Layer v v v Streaming dataflow
tpu_like (S/M) Google-TPU-v1-like accelerator RTL Any'? int8 Overlay v v v v [25] APB interface
bnn 4-layer binary neural network HLS MLP! binary Custom v [26] [27] intl6 act/norm
tiny_darknet_like = Accelerator for Tiny Darknet HLS CNN'2 fpl6 Custom el [28] Fused layer pairs
gemm_layer Matrix multiplication engine RTL MLP  bfloatl6  Layer v v v AXI interface
attention_layer Transformer self-attention layer RTL RNN intl6 Layer v V3V [29] GEMYV based
conv_layer GEMM based convolution RTL CNN intl6 Layer Vv v v v 3x3 filters
spmv Sparse matrix vector multiplication RTL MLP  int8 Layer v v v [30] [31] COO sparsity enc.
robot_rl Robot+maze application RTL RL int8/16/32 Custom v v v [32][33] Q-learning algo
reduction_layer Add/max/min reduction tree RTL Any intl6 Layer v v v Reduces 128 inputs
softmax Softmax classification layer RTL Any fpl6 Layer v v [34] LUT based exp/log
conv_layer_hls Sliding window convolution HLS CNN fpl6 Layer v v 1x1 filters
eltwise_layer Matrix elementwise add/sub/mult  RTL Any bfloatl6  Layer v v v Broadcast heavy

' Has Normalization layer ~ 2 Has pooling layer 3 Uses double buffering

ceptrons (MLPs), convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and reinforcement learn-
ing (RL). These different classes have different compute and
memory requirements, which reflects on the resource break-
down and routing patterns of their corresponding benchmark
circuits. Some designs are also generic and can be used to
accelerate any type of network.

Acceleration Paradigm: FPGAs are used for acceleration
of DL workloads in different ways. One way is to design
a flexible software-programmable overlay architecture that
can execute different DL models without the need to re-
program the FPGA with a new bitstream similar to the
Microsoft Brainwave [35] architecture. These designs tend
to have instruction decoders and more complicated control
logic to enable this level of flexibility. In other cases, a
custom network-specific architecture is mapped to an FPGA
to maximize efficiency similar to the approach used in [1].
The control logic of these circuits is usually hard-coded and
implemented as relatively simple state machines. Another
approach is to implement layer-specific accelerators that are
invoked by software running on the host CPU. These circuits
are mostly streaming-style datapaths with simple or even no
control paths. Our benchmark suite contains designs from
all three acceleration paradigms.

Numerical Precisions: One of the main advantages of using
FPGAs to accelerate DL workloads is the ability to design
hardware for custom numerical precisions, which is a com-
monly used technique in accelerating DL workloads [36].
The designs in our suite use various precisions, including:
binary (bin), different fixed point types int8/16/32,
brain floating point (bfloatl6) [37], and IEEE half-
precision floating point (£fp16). The diversity in the bench-
marks’ numerical precisions is useful for exploring new
reconfigurable DSP block architectures and different hard
arithmetic circuitry.

« Circuit Properties: Our benchmarks have varying circuit

4 Has DSP cascade chains

styles that can potentially exercise different components
of the CAD tools in different ways. For example, regular
structures like systolic arrays can be used for optimizing
placement algorithms, large reduction trees can form local
routing congestions that stress the routing algorithms, long
cascades of hard blocks impose harder placement con-
straints, etc. The benchmarks are also highly heterogeneous

(i.e. use different types of FPGA resources) with varying

degrees as will be discussed in Section V.

These benchmarks are implemented and compiled together
in this suite with the intention to be used for FPGA archi-
tecture exploration and CAD tool optimization. They aim to
accurately capture all these different circuit structures and
compositions, but should not be expected to be deployed as
standalone functional systems. We are confident that these
circuits are structurally correct and tried to verify their high-
level functionality to the best of our ability. However, full
functional verification on many different test cases is out of
the scope of this work.

1V. METHODOLOGY
A. Ensuring VIR Compatibility

The designs in the benchmark suite are implemented and
tested first using commercial FPGA tools from Xilinx and
Intel for ease of development and debugging. Then, we
performed several modifications to these designs to ensure
their compatibility with the VIR flow. VTR uses Odin II,
an academic open source synthesis tool, as its conventional
front-end. To work around the Verilog support limitations of
Odin IT and at the same time maintain the conventional fully
open-source VIR flow, we implemented several scripts to
help automate the process of replacing unsupported Verilog
constructs (e.g. signed, integer variables, generate
for loops, unpacked arrays, etc.) with alternative/unrolled
Verilog constructs that are supported by Odin II. In addition,
vendor-specific and architecture-specific IP cores (e.g. floating



point adders and multipliers, RAM macros) were replaced
with ones that are compatible with VTR and the FPGA
architecture file used for our experiments. This process was
especially challenging for the designs generated from HLS
tools which tend to be non-human-readable in many cases.
Several improvements to the language coverage and reported
error messages of Odin II are continuously being implemented
to mitigate such challenges for future research efforts.

B. Experimental Setup

We use the most-recent VTR 8.0 version [8] for all our
experiments in this paper. While running VTR, we provide
an SDC (Synopsys Design Constraints) file in which the
target clock frequency is set to 0 (i.e. VTR will optimize the
design for maximum clock frequency). We also disable timing
analysis for paths to/from the FPGA 10s. For all experiments,
we run VTR with auto layout enabled (meaning the grid size
expands based on the resources required by the design), the
default timing-driven routing option with a maximum of 150
routing iterations, and a fixed channel width of 300 wires.
All reported results are the average of runs using 3 different
seeds. For experiments in which we report VTR flow runtime
and peak memory usage, we use an Intel Xeon CPU E5-2430
running at 2.5 GHz with 64 GB of memory.

One of the main motivations of this work is to compare
various properties of our Koios benchmarks with other existing
non-DL-targeted benchmarks that are commonly used to drive
FPGA architecture and CAD research. The most relevant suite
for comparison is the VTR benchmark suite, because these
are compatible with the same fully open source VTR flow.
Other existing suites are either too small and do not represent
realistic modern use cases of FPGAs or depend partially on
commercial CAD tools. For these comparative experiments,
we only use the VTR benchmarks with more than 10,000
netlist primitives, which is a common practice in CAD-related
studies [38]. Designs smaller than that are not representative
of realistic benchmarks and they cannot be used to derive any
reliable conclusions.

C. FPGA Architecture Description

We develop a new FPGA architecture description file to
capture some relevant features of modern FPGAs. This ar-
chitecture description file will be open sourced along with the
benchmark suite. The delays and areas of all the FPGA blocks,
including the DSP tiles, are obtained from COFFE [39] using
a 22nm technology node from PTM [40]. The circuits in this
architecture are optimized for area-delay product which leads
to relatively higher delays compared to performance-optimized
commercial FPGAs such as the Arria 10 family. The rest of
this subsection describes the details of the FPGA architecture
that we develop and use for all our experiments.

1) Floorplan: The FPGA contains columns of logic blocks,
DSPs and block RAMs (BRAMs). Both DSP and BRAM
columns repeat every 16 columns and are interleaved such
that every 8th column is a DSP or a BRAM. The DSP and

BRAM tiles are 4 and 2 rows high, respectively. IO pads are
arranged along the perimeter of the FPGA.

2) Routing Architecture: The architecture uses unidirec-
tional routing with wire segments of length 4 (260 out of 300
wires) and length 16 (40 out of 300 wires). The length 16 wires
do not directly connect to block pins and are only accessible
from the length 4 wires. Switches appear after every 4 blocks
on the length 16 wires. The switch blocks use a custom
switching pattern based on the Stratix-IV-like architecture used
in the Titan flow [14]. The input and output flexibility of
connection blocks are set to 0.15 and 0.1, respectively.

3) Logic Blocks: Each logic block (LB) contains 10 basic
logic elements (BLEs) similar to that in the Intel Stratix-10-
like architecture from [18]. Each block has 60 input pins, 40
output pins, and a 50% sparsely populated local input crossbar.
Each BLE has a 6-input LUT which can be fractured into
two S5-input LUTs. The BLE also has 2 flip-flops and 2 bits
of arithmetic with dedicated carry chains between LBs. Each
BLE has 8 inputs and 4 optionally registered outputs.

4) DSP Slices: This architecture has a complex DSP block
that supports most of the operating modes in the state-of-
the-art Intel Agilex DSP block [41]. Multiple fixed point
(9x9, 18x19, 27x27) and floating point (IEEE 32-bit (fp32),
IEEE 16-bit (fpl16) and Brain floating point (bfloatl16))
precisions are supported. In addition, the DSP block has
dedicated output chains for cascading several DSP blocks in
the same column for efficient dot product structures.

5) BRAMs: BRAM blocks have a capacity of 20 Kilobits
and have registered inputs and outputs. True and simple
dual port modes are supported. In the simple dual port
mode, a BRAM can be configured as: 512x40, 1024 x20 and
2048x 10, while in true dual port mode it can be configured
only as: 1024x20 and 2048 x10. The delays and areas of a
BRAM block are obtained by interpolation between the values
obtained from COFFE for a 16 Kilobit BRAM and a 32 Kilobit
BRAM.

Some benchmarks in Koios use advanced DSP features that
are available in this FPGA architecture by instantiating DSP
macros to implement native £pl6 multiplications or use the
hard dedicated chains. These modes are architecture-specific;
however, users can simply replace the macro instantiations
in our benchmarks with their equivalents for different archi-
tectures. In addition, we also include alternative versions of
the benchmarks (using “ifdef. . endif) implementing the
same functionality with behavioral Verilog that is automati-
cally mapped to the FPGA soft logic when an architecture
without the required macro definitions is used.

Koios benchmarks can be used to explore FPGA archi-
tectural modifications involving adding new hard blocks to
FPGAs, similar to some recent DL-optimized FPGAs [3] [21].
This can be done by: (1) modifying the synthesis engine to
extract specific patterns from the Verilog design and map
them to the new blocks, or (2) modifying the benchmarks to
instantiate these new blocks (defined in the VTR architecture
file).



TABLE 1II: VTR results of the Koios benchmarks.

Benchmark Netlist Logic Used Used Used Used Max. Routed  Elapsed Peak

Primitives Depth 10s LBs DSPs BRAMs Freq. Wirelength Time Memory
clstm_like (L) 1,085,877 3 1,159 25,995 962 1,161 110.2 5,534,505 1,171.4 12,658.4
clstm_like (M) 745,829 3 871 17,641 662 784 1154 3,612,133 560.6 8,091.1
dla_like (M) 609,180 5 411 11,359 400 1,008 125.9 3,349,783 260.7 6,009.7
clstm_like (S) 405,776 3 583 9,309 362 407 127.6 1,744,947 152.8 4,679.1
dla_like (S) 269,040 5 207 5,545 128 828 147.7 1,475,558 86.1 4,304.7
Istm 249,841 7 36 6,626 610 305 121.6 1,828,974 308.2 5,892.8
tpu_like (M) 244,884 5 1,188 4,255 1,064 26 98.62 2,412,297 156.1 9,163.1
bnn 204,601 3 382 5,695 63 0 126.8 1,233,543 20.9 2,153.1
tiny_darknet_like 154,096 6 46 7417 106 3,978 63.9 3,033,846 571.1 16,253.5
tpu_like (S) 67,086 5 644 1,134 276 14 124.8 579,437 31.9 2,507.5
gemm_layer 64,792 4 1,779 1,989 200 0 308.1 717,412 254 1,982.2
attention_layer 45,342 7 1,074 1,248 105 161 132.2 370,030 16.7 1,152.3
conv_layer 45,039 4 156 1,185 84 56 166.1 293,011 9.4 876.3
spmv 28,505 6 19 885 32 257 167.9 275,500 14.5 1,492.8
robot_rl 28,080 15 387 1,324 18 96 83.6 228,378 9.1 549.5
reduction_layer 18,323 6 54 805 0 52 141.7 183,739 22 363.2
softmax 13,189 10 552 518 53 0 112.2 127,704 2.5 513.3
conv_layer_hls 12,093 3 3,299 1,715 12 21 164.7 112,362 19.2 8,929.1
eltwise_layer 11,519 4 249 348 48 72 174.9 170,857 2.1 480.9

Frequency is in MHz, Routed Wirelength is in units of length 1 segments, Elapsed Time is in minutes, and Peak Memory is in MBs.

V. BENCHMARK RESULTS

A. Properties of Koios benchmarks

Table II shows the main VTR results for the Koios bench-
marks when running them with the FPGA architecture de-
scribed in Section IV-C.

The results show that these designs, with sizes ranging from
11K to 1M netlist primitives, are deeply-pipelined with 12
out of the 19 benchmarks having critical paths with 5 or less
logic levels on them. The benchmarks are also highly diverse
in heterogeneity, with varying circuit compositions between
soft logic, DSPs, and BRAMs. For example, some designs
do not utilize any BRAMs since they either implement only
the workload datapath (e.g. gemm_layer and softmax)
or use distributed registers for storage (e.g. bnn). On the
other hand, there are other BRAM-intensive designs such
as tiny_darknet_like with close to 4,000 BRAMs
utilized. Similarly with DSPs, there are some designs that use
very few or no DSPs (e.g. bnn and reduction_layer) as
they mostly implement other non-multiplication operations in
DL workloads such as pop-count or max/min/add reduction.
Other designs are DSP-intensive (e.g. large c1stm_like and
medium tpu_1like) with around 1,000 DSP blocks. Table
IT also shows that different types of resources are the grid-
size limiting factor for different benchmarks in our suite. The
majority of the designs are bound by hard blocks, as indicated
by the bold entries in the table, which emphasizes that these
benchmarks can be useful for exploring new DSP and BRAM
architectures.

Most of the designs in the Koios suite can achieve reason-
ably high operating frequencies up to 308 MHz and an average
of 137 MHz. The FPGA architecture used for our experiments
is not very fast. The delays in the architecture are based on
area-delay-optimized PTM models (with raw delays similar to
40 nm Stratix-IV). Changing the delays of FPGA resources to
those typical of a high-speed (<14 nm) device would increase
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Fig. 1: VTR runtime for the Koios benchmarks.

the frequency by >2x. The t iny_darknet_like designis
a clear outlier with a frequency of 63.9 MHz since the grid size
required to implement this circuit was significantly expanded
due to the large number of BRAMs needed. This resulted in
some very long paths between BRAMs and soft logic flip-
flops (FFs). The total routed wirelength of the benchmarks
are largely correlated with the circuit size and ranges from
171K up to 5.5M units of length 1 wire segments. Fig. 1 plots
the VTR flow runtime for each of the Koios benchmarks as
listed in Table II. It shows that the runtime grows quadratically
with the number of netlist primitives in the circuits.

B. Comparison to the VIR Benchmarks

Fig. 2a shows a scatter plot of the DSP and BRAM to LB
ratios for both Koios (red) and VTR (blue) benchmarks as
metrics for their DSP and memory density. The individual
ratios for each of the benchmarks are shown by (x) symbols
while the average across the whole benchmark suite is marked
by the stars. The figure shows that, on average, the Koios
benchmarks are more DSP and memory rich than the VTR
benchmarks. The Koios suite has a 1.8 and 4.7 x higher DSP
to LB and BRAM to LB ratios, respectively. The individual
benchmarks of the Koios suite are also more scattered and
varying across the spectrum of DSP and BRAM compositions.
More importantly, it shows that most of the VTR benchmarks
have very low DSP and BRAM densities (except for the only
stereovision2 outlier circuit), making them inadequate
for evaluating any DSP or BRAM architecture modifications.
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Fig. 2b has a similar plot for FF and single-bit adder to LUT
ratios. It shows that the Koios suite has 1.17x higher ratio
between FFs and LUTs which reflects their deeply-pipelined
nature, and 30% lower adder to LUT ratio compared to the
VTR suite. However, the average adder to LUT ratio of the
VTR suite is significantly skewed by a single benchmark
(stereovision?2) which has 60,753 1-bit adders and only
29,541 LUTs. If we exclude this outlier, the Koios suite has
a 1.2x higher average adder to LUT ratio.

Fig. 3 illustrates averages and ranges of key metrics for
both Koios and VTR benchmark suites. Fig. 3a-d show that
the Koios benchmarks have 3.7x more netlist primitives,
6.5x larger non-global fanouts, 1.9 more near (top 10%)
critical connections, and 1.7 higher frequencies on average
compared to the VTR benchmarks. The Koios benchmarks are
also scattered across a much wider range of values for each
of those metrics. Fig. 3e shows that the Koios designs have an
average of 5 logic levels on the critical path, compared to 30
levels for the VIR benchmarks. This also reflects the deeply-
pipelined nature of our benchmarks which is a key property of
modern FPGA designs. Fig. 3f shows that the two benchmark
suites have similar average routed wirelength per tile, with
the most wiring dense circuit in Koios having 12% higher
wirelength per tile compared to the most-wiring dense circuit
in the VTR suite.
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Fig. 4: FPGA layouts the architectures used in our case studies.
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Fig. 5: Effect of varying the density of DSPs and BRAMs on Koios
and VTR benchmark suites.

VI. ARCHITECTURE EXPLORATION CASE STUDIES

Our Koios benchmark suite is architecture-agnostic and does
not depend on any commercial tools for any portion of the
FPGA CAD flow. Thus, it enables the use of these benchmarks
to perform flexible FPGA architecture exploration using the
fully-open-source VIR flow. In this section, we perform two
example case studies to demonstrate that.

A. Case Study 1: Hard Blocks to Soft Logic Ratio

As shown in Table II, our DL-focused circuits are highly
heterogeneous (i.e. DSP and BRAM intensive). Thus, in our
first case study, we vary the density of these hard blocks
with respect to soft logic. We experiment with 3 different
density levels, as shown in Fig. 4a, with 1:7, 1:3, and 1:1 ratio
between hard block and soft logic columns for the baseline,
denser, and densest architecture variations, respectively. We
evaluate all three architecture variations using both the Koios
and VTR benchmarks. Fig. 5 shows the geomean frequency
and total routed wirelength for both suites. For the DL-oriented
Koios benchmarks, the frequency increases and wirelength
decreases as the density of hard blocks increases. Since
these benchmarks heavily utilize these blocks, increasing their
density in the FPGA grid brings them closer to each other,
which in turn reduces the critical paths and total length of
used wires. The densest architecture variation results in 8%
increase in frequency and 17% reduction in total wirelength
on average across all benchmarks in the Koios suite. For the
VTR benchmarks, both frequency and wirelength are slightly
improved for the denser variation (1% higher frequency and
3% lower wirelength), before getting worse for the densest
architecture. These results show that a higher density of DSPs
and BRAMs is favorable for building DL-optimized FPGAs,
at the cost of a slight or no degradation in QoR for the general
VTR benchmarks (in the densest and denser architecture
variations respectively).



TABLE III: Effect of varying the FPGA’s DSP to BRAM ratio.
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. Geo- DSP-heavy = BRAM-heavy
Metric Arch. mean tpu_like(M) tiny_darknet_like
Baseline 141.2 141.1 94.1
Freq.  DSP-heavy 141.9 153.3 86.8
BRAM-heavy 140.8 120.4 101.1
Baseline 622,189 1,460,366 2,076,993
WL DSP-heavy 623,777 1,325,930 2,313,599
BRAM-heavy 641,263 1,661,778 1,944,531
Baseline 84 x84 134x134 180%x 180
Grid  DSP-heavy 85x85  116x116 220%220
BRAM-heavy 88x88 164x 164 156 x 156

Frequency is in MHz, Wirelength (WL) is in units of length 1 wires.

B. Case Study 2: DSP to BRAM Ratio

In our first case study, we varied the ratio of hard blocks
to soft logic while keeping a fixed 1:1 DSP to BRAM ratio.
For the second case study, we carry over the best architecture
variation for DL benchmarks from the first case study (i.e.
densest). However, we vary the DSP to BRAM ratio between
2:1 and 1:2 to create DSP-heavy and BRAM-heavy variations
respectively (in addition to the baseline with 1:1 ratio), as
shown in Fig. 4b. Table III presents the results of this experi-
ment. It shows the geomean frequency, routed wirelength, and
FPGA grid size for the whole Koios suite, as well as the results
for a DSP-intensive benchmark (medium tpu_like ) and a
BRAM-intensive benchmark (tiny_darknet_1like). The
geomean results do not show a strong trend that clearly favors
a specific architecture. However, we observe that the DSP-
heavy tpu_like design has 8.6% higher frequency, 9.3%
lower wirelength, and requires a 25% smaller chip when
implemented on the DSP-heavy architecture compared to the
baseline. It also performs considerably worse on all metrics
when implemented on a BRAM-heavy architecture. Similarly
the BRAM-heavy tiny_darknet_like benchmark has
7.5% higher frequency, 6.4% lower wirelength, and requires
a 25% smaller chip when implemented on the BRAM-heavy
architecture compared to the baseline. These experiments high-
light that Koios strikes a good balance between different circuit
compositions and can be reliably used for DL-optimized
FPGA architecture exploration.

VII. CONCLUSION

In this paper, we presented Koios, a DL-focused benchmark
suite for FPGA architecture and CAD research. This suite is a
diverse collection of 19 curated benchmarks covering various
facets of the DL acceleration landscape. We first introduce the
different benchmarks in the suite and highlight their diversity.
We then present results of running these benchmarks through
the VTR flow and compare them to the existing non-DL VTR
benchmarks. Finally, we present two example case studies
for DL-optimized FPGA architecture exploration using these
benchmarks. The Koios suite is open-sourced as a part of VTR
and we highly encourage the FPGA community to contribute
to this benchmark suite to help build a better and bigger set
of DL benchmarks that can guide the design of future FPGA
architectures and CAD algorithms.
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