Virtual-Link: A Scalable Multi-Producer,
Multi-Consumer Message Queue Architecture for
Cross-Core Communication

Qinzhe Wu' Jonathan Beard”

Ashen Ekanayake'

Andreas Gerstlauer’ Lizy K. John'

qw2699 @utexas.edu jonathan.beard@arm.com ashen.ekanayake@utexas.edu gerstl@ece.utexas.edu ljohn@ece.utexas.edu

"The University of Texas at Austin, “Arm Inc.

Abstract—Cross-core communication is increasingly a bottle-
neck as the number of processing elements increase per system-
on-chip. Typical hardware solutions to cross-core communication
are often inflexible; while software solutions are flexible, they
have performance scaling limitations. A key problem, as we
will show, is that of shared state in software-based message
queue mechanisms. This paper proposes Virtual-Link (VL), a
novel light-weight communication mechanism with hardware
support to facilitate M:N lock-free data movement. VL reduces
the amount of coherent shared state, which is a bottleneck
for many approaches, to zero. VL provides further latency
benefit by keeping data on the fast path (i.e., within the on-
chip interconnect). VL enables directed cache-injection (stashing)
between PEs on the coherence bus, reducing the latency for core-
to-core communication. VL is particularly effective for fine-grain
tasks on streaming data. Evaluation on a full system simulator
with 7 benchmarks shows that VL achieves a 2.09x speedup
over state-of-the-art software-based communication mechanisms,
while reducing memory traffic by 61%.

I. INTRODUCTION

Frequency scaling [1] is no longer a practical option for
year-over-year performance increase. With the impending end
of lithography scaling [2], a world searching for performance
is left seeking more radical solutions [3]. Some architects
are building up and out, others are searching for domain
specific acceleration, or even re-configurable accelerators. Re-
gardless of the combination or modality chosen to continue
the march towards increasing performance, a key bottleneck
for both efficiency and performance remains: communication
cost [4]. In order for two or more threads of execution to
work together as a multi-threaded program, they must be able
to message each other, i.e., to communicate [5], [6]. The
cost of communication bounds the overall parallelism that
can be extracted [7]. Communication is required for both
initiating new parallel work and for data distribution. Extant
architectures are pushing 128-cores per SoC [8], yet with
current communication/synchronization mechanisms, they are
hard to fully utilize for a single application. Synchronization
overheads mount as the number of threads increase, a fact that
has certainly been noticed [9], [10]. Depending on the amount
of “compute” in each parallel kernel per “firing”, the benefits
of parallelization may disappear due to this overhead.

Many solutions for core-to-core communication exist, with
varying flexibility and hardware support. Hardware solutions

K []
9400001 © BLFQ o?
. . °
g ---- Single Cacheline Transfer oe®
9 30000 1 o
5)
€ 20000 1 oe®
9 °®
% 10000 o *
o0
% 'Y R b
c 0o ®ee
5 10 15 20 25 30

of producer threads

Fig. 1: Scaling of a Boost lock-free queue (BLFQ), varying
the count of producers sending data to a consumer. The dashed
line shows the latency observed for transmission of a single
cache line between cores without synchronization overheads.

abound, from direct register transfers [11]-[13] to active
message solutions [14]-[16]; these are generally fast but
inflexible. Flexible software solutions range from lock-based
synchronization over a critical section to the doubly linked-list
(LL) formulations of lock-free queues [17] (see § V). Software
queueing libraries often utilize convenient synchronization
primitives, e.g. locks. Locks can take many forms but share
one drawback, that of scalability [18]. Well-known software
solutions include the Boost Lock-Free Queue (BLFQ [19])
and ZeroMQ (ZMQ [20]). Figure 1 shows a comparison of
the BLFQ when scaling the number of producers blue data
points). If unsynchronized, a cache line can be transported
between processing elements (PE) in ~22ns to ~34ns green
dashed lines), but this is not achieved if that transfer must be
synchronized/coordinated. Time per push rises quickly as the
number of threads increases, far and above the dashed line.
This paper introduces Virtual-Link (VL) as a solution to
close this communication overhead gap. VL is nearly as
performant as many hardware-only solutions, while being as
flexible as the most modern software queue. Instead of having
threads access the shared queue state variables (i.e., head,
tail, or lock) atomically, VL provides configurable hardware
support for M:N communication, providing both data transfer
and synchronization. Unlike other hardware queue architec-
tures, VL reuses the existing cache coherence network and
delivers a virtualized channel as if there were a direct link
(or route) between two arbitrary PEs. VL facilitates efficient

40000

m

£ == cas == == mutex ticketlock
2 30000
=

o

&

S 20000
Q

K]

& 10000
o

g

= 0

10 20 30 40 50 60
#threads

Fig. 2: Comparison of execution time in ns of three dif-
ferent communications mechanisms using the lockhammer
benchmark [21] on Platform 1 from Table IV. Regardless
of synchronization mechanism, by the time 14 cores are
contending for the lock, ~1000ns consumed per lock.

synchronized data movement between M:N producers and
consumers with several benefits: (i) the number of sharers on
synchronization primitives is reduced to zero, eliminating a
primary bottleneck of traditional lock-free queues, (ii) memory
spills, snoops, and invalidations are reduced, (iii) data stays on
the fast path (inside the interconnect) a majority of the time.
The contributions of this work are:

1) We present a characterization of communication bot-
tlenecks existing in modern software queues based on
measurements.

2) We propose Virtual-Link, a hardware/software solution to
eliminate the overhead of synchronization, achieving effi-
cient synchronization between producers and consumers.

3) We perform evaluation on 7 benchmarks. VL synchroniza-
tion significantly improve the performance by 2.09x on
average over conventional synchronization.

In the next sections, we describe how extant solutions (both
lock-based and lock-free) scale on modern systems, identifying
the synchronization issues to solve (§ II), then elaborate the
design of VL (§ III) based on this defined problem space, and
present the implementation as well as evaluation (§ IV). At
the end, we compare VL with related architecture and software
solutions (§ V), and lastly draw conclusions (§ VI).

II. PROBLEM DESCRIPTION AND MOTIVATION

There are two integral parts in sending a message: atomicity
and condition synchronization [22]. There are various means
to achieve the latter (loosely ordered from complex to simple,
and by no means intended to be complete): Compare-And-
Swap (CAS), spin-locks, load-linked store-conditional, ticket-
locks, and so on. Building on each of these mechanisms,
programmers can guarantee exclusivity of access to a critical
section that constitutes a region for data communication.
Figure 2 shows a sweep of a CAS-based lock, a ticket-lock,
and a standard spin-lock on a Platform 1 from Table IV
using the open-source lockhammer [21] benchmark. Even for
a CAS-based lock, after a relatively small number of threads,
the overhead to acquire a lock becomes high enough to
ensure programmers who want to write efficient programs
stick to extremely coarse-grained parallel kernels to amortize
synchronization costs.

Cores Time

1) 2 (3

£@HEEID(D))IED))
s HL)HEYHED) (1))
s(QHCDS)HLD) CYHED)
£@®HCDAY DA)
SM_Wa) YEH(L3))

Fig. 3: Behavior of a single “lock” pointer on three cores.

WD =

Figure 3 depicts the behavior of a single “lock™ variable
being operated on atomically, as is the case with CAS, by
three cores. For each instance of time, (S) represents a “shared”
cache state, (E) an “exclusive” state, and (I) indicates that the
cache line is invalid. The (L-X) represents a lock while the
X indicates which core owns the lock. The arrows from Time
2 to Time 3 represent the invalidate-acknowledge traffic that
must occur before Core 1 can release the lock. It is this traffic,
and therefore the number of sharers that bound synchro-
nization performance. Figure 4 shows empirical performance
counter measurements from Platform 2 from Table IV (chosen
for counter availability) demonstrating that the number of
invalidation events and shared to exclusive coherence state
transitions increase proportionally with the number of shar-
ers (in this case the number of producer threads). With a
significant number of contending sharers, cores, and large
interconnect, the time to perform a CAS operation can be
sizeable. Thus, while data movement itself between cores in a
coherence network is quite fast [23], updates to widely shared
variables (e.g. a queue head pointer) can take a significant
amount of time. Based on this observation, VL adds hardware
support to manage the shared queue state, and assign unique
endpoints for each producer or consumer thread to operate free
of contention.

sh
8

w
=]

—— Invalidation
—F- 'S' to 'E' Transitions

P S A 33

events per pu
5 8

‘e—
-
-

T

1 2 3 4 5 6 7 8 9
of producer threads

Fig. 4: Cache events measured per Boost Lock-free Queue
push. The red line (top) represents the number of invalidations,
the blue line (bottom) the shared to exclusive transitions.

An efficient queue mechanism needs back-pressure: Real
systems experience some form of transient rate mismatch
between otherwise rate matched producer-consumer pairs caus-
ing “bursty” queue occupancy to be observed [24]. As such,
any solution must provide a low-overhead mechanism to
accommodate this behavior. Providing back-pressure when a
queue is full is necessary to prevent buffer spillage to memory
or overwriting of contents. Hence, we incorporate in VL a
low-overhead mechanism to produce back-pressure as needed,
ensuring data can stay within the cache coherence interconnect
(fast-path) when possible. Without the back-pressure, program-
mers must increase buffer size to accommodate “bursty” behav-

ior, increasing the probability of access to main memory (see
Little’s Law [25]). We will show that VL also reduces main
memory (DRAM) access, reducing communication latency
and increasing efficiency (DRAM access is Z 100x more
expensive in terms of energy than SRAM [26]). Likewise,
when arrival rates are greater than consumer service rates,
back-pressure enables software to perform adjustments such as
changing the PE configuration, or throttling compute kernels.

Smart cache line injection: Traditional software message
queues typically load data (or shared state variables) on
demand. At best, these queues rely on prefetching to ensure the
data is near vs. far. A design feature driving VL’s mechanism

is the ability to target and stash data to endpoints directly, e.g.

the local private L1 data cache. This should result in a latency
advantage (~ 2x faster [27]). Some injection mechanisms
must know the target core in order to target the last level
private cache (preferable [28]), other mechanisms that simply
target the system-level cache [29] do not require this. When
building systems that rely on knowing who the target physical
cores are ahead of time, yet another layer of synchronization
and complexity is added, e.g. if thread migration is allowed,
every producer would need to look-up consumer targets in a
shared table, likely demonstrating the same scaling shown in
Figure 2. Additionally, exposing the physical core-id can be
a security risk [30], e.g. a virtual-CPU typically has no idea
what CPU it is actually running on [31]. Our VL design must
not require the producers or the consumers to know about
each other, and VL should allow direct injection (to transfer
data and notify the consumer).

IIT. DESIGN

Virtual-Link (VL) accomplishes the movement of cache
lines from producers to consumers by attaching a routing
device (VLRD) to the coherence network as illustrated in
Figure 5. The VLRD is attached to the coherence network
like a tightly coupled accelerator or system cache slice, from
a port on the coherence network. This VLRD enables VL
to “link” unique “endpoints” together via a shared queue
identifier (SQI). Endpoints subscribe to a SQI to form a
M:N message channel Each SQI can support M producer
endpoints and N consumer endpoints. Each unique endpoint
for a SQI maintains its own local user-space buffer composed
of multiple coherence granules or cache lines. Messages from
each endpoint are received by the VLRD at a coherence
granularity, in a lock-free manner. In abstract, VL enables
a virtual linking of cache lines from each unique endpoint
subscribing to a SQI so that a producer can copy-over
data from its own cache lines directly into a requesting
consumer through a single level of indirection.

Multiple endpoints on a single SQI come together to form
a Virtual Queue (VQ). Figure 6 illustrates the ordering of
operations between two producer endpoints and a consumer
endpoint sharing a SQI. The VQ size is shown after each time
step. In Figure 6, the cache lines are moved atomically, that
is at time step 2, the blue producer cache line data appears
to be copied-over atomically (through the interconnect, not

Producer Consumer

Coherence Network

DRAM]

Fig. 5: A cache line moves from the producer at (1), at its own
unique address location, to an indirection layer in hardware
at (2). That indirection layer, the Routing Device, matches
the SQI at (3) based on consumer endpoint demand which is
registered by (4). The Routing Device forwards data to the
target consumer buffer on a totally different address at (5)

Key z £ 2
Thread 1 @ 8 E = g
Thread 2 @ Z & o ? 2 2
Thread 3 @ 22 &2 g2
Thread | 9 = O
. =
Time ® O ® 282 @)
0-—-endit —engfl --- [H[H =]
- =>f
1- - enqlk —- - - deq (W[l
2- - — - enqff - deq E-:- [N
3mmmmmm oo deq CICB —8
each of these is a cache line - [B

Fig. 6: Virtual Queue (VQ) per time step. 2 producer endpoints
(Threads 1, 2), 1 consumer endpoint (Thread 3), shares a SQI.

main memory) to the consumer endpoint buffer. This copy-
over operation leaves the producer cache line zeroed and in
an exclusive state, which can be used for subsequent enqueue
operations. After the copy-over operation, the data are shipped
to the consumer to dequeue, also in an exclusive state. At
no point does the consumer or producer access a shared
Physical Address (PA) or Virtual Address (VA) that could
cause coherence traffic (snoops). Instead, threads check the
endpoints owned by themselves and interact with the VLRD
for synchronization. The rest of this section presents the major
components of VL, namely, the VLRD, ISA extensions and
system software support.

A. Routing Device

The VLRD is tasked with matching incoming messages to a
SQI and stashing those messages to the subscribed consumers.
As Figure 7 shows, the VLRD is largely composed of three
structures, the Link Table (linkTab), the Producer Buffer
(prodBuf), and the Consumer Buffer (consBuf) (some control
logic is omitted for brevity). The linkTab keeps metadata (i.e.,
head, tail) for each SQI, one per row. The prodBuf and consBuf
are shared across multiple SQI entries, and buffer producer
data and consumer requests, respectively. Buffer slots are taken
in turn and shared by multiple SQIs, therefore these structures
cannot be used as contiguous FIFOs but instead are managed
as linked-lists (LL)s.

linkTab

prodHead prodTail consHead consTail

V] NULL NULL 2 2
V| NULL NULL NULL 1
v 2 4 NULL NULL
|
o
o
rodBuf v ° .k our consBuf
idx { sal data nextin ' nextL [‘mapped consTgt nextOut™ idx sal consTgt nextin nextL
1 [V 1 cacheline[503:0 2 _ NULL 1 $AddI[51:6] NULL POHR1 [V 1 $Addr[51:6] 2 _ NULL
2 [V 2 cacheline[503:0 3 = 4 _ NULL NULL NULL CITR—>{Vv 0 $Addr[51:6] NULL ¥ NULL
3 [V 1 cacheline[503:0 4 = NULL | NULL NULL NULL CIFR—>[|
PITR—>| V 2 cacheline[503:0 NULL® NULL® NULL NULL NULL roTR? [
PIFR—>{ | 5 [1
e J o e) o
PIHR—NULL o CIHR—NULL o

o

Fig. 7: Table and buffer structures in the VLRD. Cells having the same background color belong to the same SQI.

linkTab: The head/tail pointers in /inkTab each point to the
first and last entries in a hardware-managed inter-leaved LL
data structure, which enables hardware to determine whether
there is consumer demand on a specific SQI or data available
from a producer to send. The producer head (prodHead) is
updated if the current head is mapped and ready to be sent to a
consumer. For example in Figure 7 the green row, prodHead
points to index 2 (Row 2 in prodBuf). Once index 2 is mapped
with a green consumer request coming later, prodHead is
set to the next green entry (4 in this example). The linkTab is
addressed by the SQI field in prodBuf and consBuf.

consBuf: Whenever a consumer request arrives in the VLRD,
the port’s control logic checks Consumer Input Free Register
(CIFR) for a free buffer slot in order to buffer the consumer
request. A buffer slot is free if the valid bit is unset, and CIFR
always moves to the next free slot after a slot is taken, starting
over from the first free consBuf slot again after touching the
bottom. The consumer request is composed of two parts: 1)
the address of the target consumer cache line (the local user-
space buffer of a consumer endpoint) buffered in consTgt as
shown in Figure 7; and 2) the SQI of the VQ from which data
is requested. The former is the payload of the incoming packet,
and latter is encoded in the device-memory physical address
received through the coherence network (details in § III-C2).
The nextL field together with the consHead, consTail
in linkTab make LLs for SQIs. As mentioned before, the slots
in consBuf is not always used in order when multiple SQIs are
active. The next In field together with Consumer Input Head
Register (CIHR) and Consumer Input Tail Register (CITR)
forming a LL, so that consBuf can track the order to feed the
address mapping pipeline. Address mapping pipeline stages

are illustrated in Table I (explained later).
prodBuf: The Producer Buffer has three partitions, namely, IN,

LINK, OUT as shown in Figure 7. On cache line arrival to the
VLRD, the Producer Input Free Register (PIFR) is checked for
a free buffer entry. The Producer Input Head Register (PIHR),
and Producer Input Tail Register (PITR) point to the next, and

the last buffered producer push waiting for address mapping,
respectively. The IN partition plus the LINK partition are very
similar to the consBuf, except that the data field stores the
data enqueued by producers (§ III-D). The LINK partition is
a LL whose head is the oldest entry ready to be sent to a
consumer; the order in which producer data was received is
tracked by the LL; so data are sent to consumers in the same
order. The OUT partition is for registering mapped entries,
i.e., entries that have been assigned to a consumer target from
the process in Table 1. For example, the first blue entry in
the prodBuf is mapped to consBuf entry 1 as indicated by
Figure 7. The consTgt field in the OUT partition stores the
result of address mapping (i.e., a target consumer cache line
address), and mapped field recording an index to the mapped
consBuf slot. There are also two registers associated with this
partition, the Producer Output Head Register (POHR), and the
Producer Output Tail Register (POTR) to track the next, and
the last entry ready to send out, respectively. Each of the three
partitions is a separate SRAM block with its own read/write
ports, making each partition accessed independently.
Address mapping: A prodBuf entry with valid data or a
consBuf entry occupied by a consumer request will go through
a 3-stage pipeline illustrated in Table I, to map a producer push
with a consumer pull. At the first stage the control logic takes
SQI from the “head entry” (the entry pointed by either PIHR
or CIHR) to access the linkTab and get the head, tail pointers
of a corresponding queue. In Stage 2, a decision is made on
whether to map the “head entry” to a consumer request or
producer data buffered earlier. For example, in Cycle 1 the
first blue consumer request reads blue prodHead, which is
then checked in Cycle 2 Stage 2 in Table I. The blue request
has to append to blue consumer LL upon a miss. A hit occurs
in Cycle 4 Stage 2, when a blue data enters the pipeline and
hits the blue consumer request. The third stage performs writes,
updating table and buffers according to the mapping decision.
There are a few trade-offs making the VLRD design simpler
or more complex: 1) The multiple buffer partitions decouple

TABLE I: Address mapping pipeline actions per cycle. xxx, = the latch for xxx in Stage n

Cye.

Stage 1 reads linkTab (SQ/ — head, tail)

Stage 2 makes mapping decision (hit/miss)

Stage 3 updates tables and buffers

1

prodHead,, consTail; <— NULL, NULL
/* linkTab[consBuf[1].linkId], CIHR « 2 */

prodHead;, consTail; <~ NULL, NULL
/* linkTab[consBuf[2].linkId], CIHR < NULL */

miss: append to the linked list in consBuf
/* because prodHead;=NULL, no blue data */

consHead;, prodTail; < 1, 1 /* RAW */
/* linkTab[prodBuf[1].linkId], PIHR < 2 */

miss: append to the linked list in consBuf
/* because prodHead;=NULL, no orange data */

linkTab[1].cons{Head, Tail} « 1, 1 /* linkId,=1,
CIHR;=1, new consHead read by Stage 1 */

consHead;, prodTail; < NULL, NULL
/* linkTab[prodBuf[2].linkId], PIHR < 3 */

hit: read consBuf[1] for consTgt, nextL
/* consHead=1 */

linkTab[0].cons{Head, Tail} + 2, 2
/* linkId,=0, CIHR,=2 */

consHead; < NULL /*nextL, forwarded*/
prodTail; <~ NULL /*linkTab[prodBuf[3].linkId]*/

miss: append to the linked list in prodBuf
/* because consHead;=NULL, no green request */

linkTab[1].consHead <— NULL /* nextL, */
set prodBuf[1].0UT POHR, POTR « 1, 1

4

Virtual Link
Routing Device

[\\ / Coherence Network

(a) Hardware view

User Binary

Supervisor
3
2
SOI
Open Q 4
Producer Kernel Consumer
5a) Module
Sh
Input Q < & = Cmd Q
(MMIO Routing (MMIO
~ 2| Device | <@
) for i <N for i < N do:

g.enq ué(i)
User Buffer olI®

(b) Software view

1 «—qg.dequeue (), (2

User Buffer

/

Fig. 8: Flow of VL ISA, hardware, and software interaction. (Details in § III-B to § III-D).

the address mapping pipeline and bus I/O, so a burst of packets
can be buffered first then fed into the pipeline, otherwise the
VLRD just accepts one packet per clock cycle; 2) LL is chosen
over a bitvector to deal with the sparse buffer entry usage, that
is not only due to the consideration of FIFO property, but also
because the authors feel LL is more scalable for large VLRDs.
Additional trade-offs are discussed in § III-C2.

B. Instruction Set Extensions

To allow software to express the role of producer/consumer
explicitly, VL adds three new instructions for vl_select,
vl_push and vl_fetch operations. Technically they are
“data cache” maintenance instructions with a dc nomenclature;
we simply refer to them by their named function.
vl_select Rt: The vl_select identifies a specific cache
line by a VA in the operand register Rt. As the name suggests,
v1_select “selects” a cache line addressed by VA, so that a
follow-on v1_push or v1_fetch instruction can perform its
operation on the “selected” cache line. Through v1_select,
the VA of the cache line is translated, and the PA gets latched
into a system register (not part of context state) only accessible
by v1_push or vl_fetch. Similar to load-linked store-
conditional (LLSC), where a load-link always precedes a store-
conditional, there is a dependency between a v1_select
instruction and a v1_push or vl_fetch instruction, al-
though v1_fetch itself can be executed speculatively and
out-of-order with respect to instructions other than v1_push
or v1_fetch. In the case the cache line to select has been
evicted into memory, v1_select generates a cache miss and
brings the cache line back to L1 data cache (LID), just as any
store would, in an “exclusive” cache state. On context swap
or page migration, the latched PA is cleared.
vl_push Rs, Rt: The v1_push instruction takes the
cache line from v1_select and conditionally writes it from
cacheable memory to a VLRD memory target Rt (provided
as a VA). This VA in Rt is assigned to the VLRD by the
scheme described in § I1I-C2. The operand register Rs receives
the result of zero for success or nonzero upon failure of a

v1_push operation. On completion, the selection of the cache
line ends (i.e., PA in the system register set by vl_select
is zeroed). There are a few scenarios the v1_push operation
could fail. First, a v1_push being called without a previous
v1_select call results in a non-zero value written back to
Rs. The second, is the most expected failure case where the
VLRD has no buffering capacity or consumer demand which
also returns a non-zero to Rs. A system register counting
v1_push instructions on-the-fly ensures no context swap or
interrupt can occur before a Rs receives a result. The VLRD
must make forward progress in a fixed interval, i.e. bounded by
the time it takes to get to the VLRD, which is approximately 14
cycles in our implementation. v1_push is a device memory
write on the coherence network, as such, the write is non-
snooping and it cannot be merged with other writes.

vl_fetch Rs, Rt: The v1_fetch has the effect of pulling
data from a VLRD memory location (the VA from Rt) into
the calling core’s private cache at the location specified by
the paired v1_select call. Like v1_push, vl_fetch
clears cache line selection on execution. If data is available
on a given SQI (see § II-C2 for VA to VLRD and SQI
mapping), then the VLRD sends a data injection to the user
buffer location specified by v1_select immediately. If data
is not available, the request is conditionally registered with
the VLRD, conditional on buffering capacity for requests in
the VLRD. A successful request results in a zero value being
stored in Rs. Once data is available for the requested SQI then
data is conditionally injected. v1_fetch sets a “pushable”
bit within the calling core’s private caches, this facilitates
asynchronous (and speculative) conditional data injection by
the VLRD while ensuring data still in-use is not overwritten
by the VLRD. If there is a context swap, thread migration
following a v1_fetch, or the line is evicted, the injection
attempt is rejected, because the “pushable” cache flag is unset
before any of those scenarios occur, and the data remain with
the VLRD. The system register set by v1_select is cleared
by v1_fetch as well. On being scheduled the programmer
is expected to check the line to see if new data has arrived (e.g.

examine control region from § III-D), to re-issue the request
which sets the cache tag as “pusheable” again.

The ISA described adds a single bit to the cache tag array
of each private cache, and adds conditional write and push
commands to support the signalling. VL uses an otherwise
standard coherence network with non-snooping directed data
transfer, the width of that network remains unchanged.

C. User-space and System Software

Using an existing queuing framework such as BLFQ or
ZMQ with VL is simply a matter of mapping the ISA from
§ II-B corresponding to enqueue/dequeue semantics to the
existing software queue application program interface. There
are a few additional allocation constraints, such as specific
alignment requirements and VLRD setup. Hence, we develop
a library to ease the programmer burden.

In Figure 8b, a user binary starts by requesting a SQI (equiv-
alent to a file handle) at (1) and (2). At (3) the programmer
maps this SQI into a process accessible VA through a system
call at (4), that sets up the VLRD with the SQI at (5c¢) and
returns a mapped VA into user-space at (5a) and (Sb).

1) SQI allocation & release: M:N endpoints assigned to
a SQI are allowed to communicate. This is akin to “shared
memory” Inter-Process-Communication (/PC) with the SQI
being analogous to a file descriptor and following similar rules
with similar supervisor/OS protections [32]. The SQI can be
used to open endpoints from user-space, granting the calling
thread access to map this SQI channel into its address space.
Listing 1 is what is executed at (1) of Figure 8b, resulting
in the SQI at (2). SQI closing and ordering semantics are
identical to those of “shared” memory POSIX file handles,
simplifying the programming interface.

2) Endpoint creation: As shown in Figure 8b, once a SQI
is obtained, the programmer must “open” the queue (3) then
map that descriptor to a VA to address the assigned VLRD.
This SQI is mapped to a VA using mmap [32] (via a kernel
module wrapper at (5a) and (Sb)) as shown in Code snippet 2
using the addressing scheme described shortly.

A user-space library can subdivide the device-memory-
mapped VA page further to make multiple non-overlapping
(64 B-aligned) addresses for the same SQI within a single

const int SQI =
shm_open ("queue_name",

VL_QUEUE / *+*

O_RDWR,

flag for queue x*/)

Listing 1: Example of calling a POSIX compliant shm_open
with the string handle “queue_name”, with a read and write
mode, and a VI_QUEUE flag that tells the supervisor that this
is to be a VL shared memory operation.

void *X =
mmap (nullptr, QPAGE_SIZE, PROT,
VL_QUEUE /##* flag for queue x*+/,
SQI, 0x0)

Listing 2: Example of obtaining a VA mapping for the SQI
from user-space. The VA returned is to a device memory
location which maps the VA to the PA of the VLRD.

51 J+1]J
PA Space

N+1|N 18|17 12]11 0
VLRD N Pages/SQI | 64B offsets

J:0
Fig. 9: Device-memory PA bit fields addressing the VLRD

address space. Our implementation maps a 4 KiB page to each
page-aligned MMIO address on the VLRD. A bit-vector within
the user-space wrapper around mmap is maintained to quickly
find an unused, 64 B-aligned offset to return. If PROT_WRITE
is given the library call returns a producer page mapping,
likewise if PROT_READ is given, a consumer page returned.
Removing a user-space VA mapping for an endpoint is through
the munmap command [32].

The allocated endpoint VA from mmap is the means by
which v1_push is able to target the VLRD, and the PA
(translated from the VA) is the means by which the VLRD can
determine the SQI. Figure 9, describes the bit fields of the PA
with VL information encoded. A VLRD simply takes N : 18
as the SQI, while bits J : N+ 1 could distinguish different
VLRDs if more than one VLRD are implemented to serve
different VQs independently. Multiple pages may be used, e.g.
to map into differing address spaces, or more than 64 endpoints
are needed. This is what bits 17 : 12 used for, allowing up
to thirty two 4 KiB pages. This memory mapping process
is repeated for the consumer endpoints. A downside of this
process is physical address space is used, e.g. with 1-VLRD,
and 16-SQIs then N < 22 and J < 26 which would use up
67 MiB of address space (not physical memory). An alternative
addressing scheme that we explored adds an address table to
the VLRD (populated on mmap) to map to arbitrary addresses,
however, at the cost of an extra cycle to the pipeline § III-A
and content addressable memory for the routing table.

3) User-space buffer creation: VL enables both producers
and consumers to use any page-aligned cacheable memory
as the user-space buffer for local endpoints (e.g. the data
source at (1) from Figure 5). The memory could be ob-
tained from any generic memory allocation functions (e.g.
posix_memalign). The capacity of these buffers can be
adjusted in user-space without impacting VL to accommodate
bursty behavior or non-stationary queue traffic distributions. It
is these user-space memory buffers that are used in subsequent
enqueue and dequeue operations (§ III-D). The user-space
buffer for each endpoint is used as a circular buffer for sending
lines to the VLRD, as such it will typically be kept cache-local.
Once a line from the user-space buffer is pushed to the VLRD,
it is marked as cleaned, (e.g. reset control region as discribed
in § III-D), so that it is ready for follow-on enqueue operations.

D. Enqueue and dequeue

Figure 6 shows the queue order per single SQI atomically
pushing a 64B cache line size messages from M:N pro-
ducer/consumer pairs. Messages larger than a cache line can be
incorporated via indirect buffers as pointers. While not demon-
strated in this paper, it is trivial to incorporate an existing
indirect buffer format such as VirtIO 1.1 [33], injection could
be accelerated in this case by [34]. To facilitate small message

transfer, we embed cache line local queue state into the line
itself (see Figure 10). This consists of a 2 B control region at
the Most Significant Byte (MSB) of each VL transported cache
line. the remaining 62 B are user-data/payload. Valid data fills
the data region from higher address towards Least Significant
Byte (LSB). Within the control region, 2b encodes for size,
e.g., byte, half word, word, double word. 6b encodes a cache
line relative offset/head pointer. The remaining 1 B is reserved.

511 MSB 1503 501 495 |7 LSB 0
T T /\/
RSVD : Sz : Ptr data
[<&——— Control Region ———P>|<&——— 62-Byte Data Region ———]

Fig. 10: Control region and data region in a 64 B cache line.

enqueue: With respect to Figure 8a, the enqueue operation
calls vl_select at (P1) on an allocated user-space buffer
(Y). The user-space cacheable memory transitions to a ‘“‘se-
lected” state at (H1) that causes this cache line’s VA to be
translated and latched. The follow-on v1_push instruction
at (P2) causes the cache line at the aforementioned latched
PA from v1_select (Y) to be stored to the mapped VLRD
device-memory address (X). Assuming the conditional store
was successful, the original cache-able user-space memory
from Y is owned by the VLRD. This order of events is
necessary to prevent a single instruction from requiring two
address generations simultaneously. If the enqueue succeeds,
the cache line is zeroed, otherwise the return register (see
§ HI-B) is set appropriately so that the programmer can retry
pushing the same data at some future point.

dequeue: Dequeue operations for VL are essentially opera-
tions that set a cache line as “pushable” while also notify-
ing the VLRD that 64 B of data is requested at a specific
cacheable-memory VA. With respect to Figure 8a, the de-
queue operation calls vl_select at (C2) on an allocated
user-space consumer buffer, after determining at (C1) that
no more data is available (e.g. by inspecting the control
region). Calling v1_select at (C2) sets that VA and latches
the PA of that line for a follow-on v1_fetch instruction
(§ III-B). As described in § III-B, v1_ fetch sets a “pushable”
flag at (C3) for the cache line addressed by the previous
v1_select statement. Following the setting of the “push-
able” flag, v1_fetch causes the target PA and core-id to be
registered with the VLRD at (C4). That registered PA is used
when data becomes available for a given SQI for a follow-on
injection of data to the requester at (CS).

IV. EVALUATION
A. Experimental Methodology

We evaluate Virtual-Link with 7 benchmarks listed in
Table II. To capture a wide range of communication and
synchronization patterns, we chose to evaluate several ker-
nels from the Ember [35] benchmark suite: ping-pong, halo,
sweep, and incast. FIR is a typical digital signal processing
workload that pipelines data through several filter stages. The
overhead of fine-grained pipelining for FIR has spawned
several field programmable gate array implementations [36].

Bitonic sorting algorithm [37] is a good candidate for fine-
grained parallelization. The pipeline [38] benchmark emulates
network package processing and has a mix of different queue
patterns. All benchmarks are compiled using gcc-8.2.0 and
optimization level ‘~03’. For all experiments, affinity is set
to reduce unnecessary noise from thread migration. A state-
of-the-art software queue implementation, Boost Lock Free
Queue (BLFQ version 1.63) is set as the baseline. We also
compare VL to ZMQ (version 4.2.1), another popular software
queue implementation.

All the experiments, unless noted, are performed us-
ing gem5 [39], with VL hardware support implemented
as extensions to an AArch64 architecture (available online:
https://github.com/UT-LCA/near-data-sim.git). Table III sum-
marizes key simulator settings.

TABLE II: Benchmarks.

Benchmark Description, (M:N)xk £ producer:c x cl 1
ping-pong [35] data back and forth between two threads (1:1)x2

halo [35] exchange data with neighboring threads (1:1)x48

sweep [35] data sweeps through a grid of threads corner to corner (1:1)x48
incast [35] all threads sending data to the master thread (15:1)x1

FIR data streams through 32-stage FIR filter (1:1)x31

bitonic [37] bitonic sort with varying number of threads (1:N)x1+(M:1)x1
pipeline [38] 4-stage pipeline with middle stages multi-threaded

(1) x1+(@ 4 x 1+ D x 1+ (1:1)x1

TABLE III: gem5 Simulator Hardware Configuration.

Cores 16 x AArch64 OoO CPU @ 2GHz
Caches 32KiB private 2-way L1D, 48 KiB private 3-way L1I
1 MiB shared 16-way mostly-inclusive L2
Memory 8 GiB 2400 MHz DDR4
VLRD 64 entries per prodBuf, consBuf, and linkTab (about 5 KiB in total)
TABLE IV: Hardware platforms

Platform Processor Memory oS
1 AMD 2990WX 32-Core @ 3.2GHz 128 GiB DDR4-3200 Linux
2 Intel E5-2690v3 12-Core dual socket @ 2.6GHz 64 GiB DDR4-2133 54

B. Results and Analysis

In Figure 11, we compare VL with two state-of-the-art
software queues, BLFQ as baseline and ZMQ. In addition to
this, we add VL(ideal) which has infinity queue capacity and
zero-latency cache line transfers in order to show that those
hardware limitations do not put much overhead on VL. Each
VL run is given with 64 buffer entries, and denoted as VL64.

In Figure 11a we see that VL is on average 2.09x faster
than software solutions, ranging from 11.36x faster for ping-
pong to 1.10x faster for sweep. ZMQ falls somewhere in
between on all benchmarks, though notably being slower
on halo and bitonic, which both favor low-latency small
message traffic. However, on incast and FIR, BLFQ builds
up a long queue spilling to memory (many more memory
transactions in Figure 11c), ZMQ and VL both have a back-
pressure mechanism so get better performance. Figure 11b
shows the relative magnitude of snoop transactions initiated
per benchmark and with queue schemes. VL has fewer snoops
than either of the two software queues (BLFQ and ZMQ).
The only exception FIR has two threads per core creating
many context switches, which lead to more frequent failures

9 Y
wld Mo M I AR EN
ol A AN ANR s By iR
I =Ft O I\l I\ S (N
IO ==l B e T N N
I P I 2 N N2

pingpong hal sweep incast fir bltr':nic
(a) Execution time (ns) normalized to BLFQ
12 1.8 2.2 2.5 4.9 1.7 1.3
N
il ml gl al & ol
o gl\ gl: ;It glﬁ ;I: p Elt
R NI\ - \CTRE O
SOV (VR e v O O N
SO |\ (N o B N
ol INEE UMY NNK ENAY DNER IR
pingpong halo sweep incast fir bitonic
(b) Snoop traffic normalized to BLFQ
10.6 25.6 3.0 13.9
\ \ \ \
N -
1.04 m 5] om N © : © — o, :
] Sf NF 2 @ e 3
o iz A d £
N[E O (N |\ N
JBERE L BB

sweep incast fir bitonic

(c) Memory transactions normalized to BLFQ

Fig. 11: Comparison between different queues.

for VLRD’s attempts to deliver cache lines. Software queues
suffer from more snoop transactions due to cache coherence
(as discussed in § II), while Virtual-Link reduces the snoop
traffic to a minimum as it reduces the cache coherent state
shared between communicating threads. Figure 11c compares
the amount of memory transactions between queues. Overall,
VL has the fewest memory transactions among the queuing
schemes. VL and ZMQ are significantly lower on incast and
FIR with the help of the back-pressure mechanism. On ping-
pong and bitonic, VL also achieves about 20% reduction com-
pared to BLFQ, while ZMQ has more memory transactions. VL
has more memory transactions on halo, and sweep, because
the benchmarks double buffer the communication channels
and not all the buffers are managed by our provided queuing
libraries, but by the application.

Scalability: Bitonic has a fixed workload divided among a
varying number of worker threads. Figure 12 presents the scal-
ability of bitonic with various queue implementations as the
number of worker threads are changed (1, 3, 7, and 15 worker
threads plus one master thread dispatching tasks to worker
threads). Initially, ZMQ performs better than BLFQ with small
numbers of threads (i.e., 2, 4), but ZMQ’s performance drops
after 8 threads. The high overhead to maintain cache coherence
(as shown in Figure 13) degrades the performance of ZMQ.
Because BLFQ does CAS operations, it scales slightly better

B BLFQ A ZMQ VL (ideal)

X VL64

Speedup
- N w > [3,]

23,357,484 ns
2 4 6 8 10 20

Total Number of Threads

Fig. 12: The scalability of bitonic.

== snoop(BLFQ) == snoop(ZMQ) == snoop(ideal) == snoop(VL64)
B upgrade(BLFQ) A upgrade(ZMQ) “* upgrade(ideal) > upgrade(VL64)
2.5E47 A ——F--F==o== —a 4.0E+5

=]

2.0E47
15E47
"

1.0E+7

Upgrade events

5.0E+6

Snoop transactions

0.0E+0

2 4 6 8 10 12 14 16
Total Number of Threads

Fig. 13: Snoop and upgrade events as bifonic scales.

1.5

B alone
141 N =38 BLFQ
N <3 zMQ
131 752 VL64
12] 8 [N E 3
1.0 4 § NS g : E = S
HLHENR BENK BENE HERR
time(ns) snoop mem cpy_bw(MB/s)

Fig. 14: Performance impact of message channels on a mem-
ory intensive application (STREAM [40]). Each bar represents,
STREAM (alone), STREAM with ping-pong (BLFQ/ZMQ/VL).

than ZMQ, however, neither scale as well as VL. BLFQ stops
scaling by 4 threads. In contrast, VL is still able to gain
speedup moving from 4 threads to 8 threads. At 8 threads,
the computation part of the single master thread dominates the
execution time and become the bottleneck; that is why none of
the queuing mechanisms can help any more. In Figure 13, we
present one big difference between VL and the other software
queues at a microarchitecture level, to better understand why
they scale differently. Both the BLFQ and ZMQ software
implementations have more cache line upgrade events than
VL, and the rate of snoop traffic synchronization goes more
rapidly. VL has very few upgrades and snoops, therefore it is
able to scale better than BLFQ and ZMQ (see Figure 3).

Coherence traffic interference: VL channels use the coher-
ence network to move data between cores. This could impact
the coherence traffic patterns and hurt the performance of
other applications that do not use VL. To study the impact,
we ran the STREAM benchmark [40] concurrently with ping-
pong using each queue implementation (BLFQ, ZMQ, VL).
STREAM was chosen as it is known to stress the memory
hierarchy. Figure 14 shows that the execution time for each
queue implementation (BLFQ, ZMQ, VL) varied by 2% or less
when compared to STREAM executing alone. The other three
bar groups report the system snoop and memory traffic. The

snoop traffic introduced by VL is comparable to that of BLFQ,
and significantly lower than that of ZMQ.

Area estimation: We developed RTL code for the VLRD
(control logic + buffers), synthesized it using the Synopsys
Design Compiler with the FreePDK 45nm library [41], and
scaled the design to 16 nm [42] for comparison. The resulting
VLRD area is 0.142 mm? for buffers and 0.155mm? in total
including control logic. To put this into perspective, an Arm
A-72 core at 16FF is ~1.15mm? [43]; our design is 13%
of the single-core area, however, each VLRD is meant to
serve N cores. A 16-core Arm A-72 configuration (like our
simulation), excluding L2 caches and wire overhead, would be
approximately 18.4 mm?. Based on this estimation, our VLRD
shared by 16 cores, would occupy less than 1% of overall SoC
area (adding L2 and wire area would only improve this ratio).

1.2

10] 69,263,134 CAF 4,323,366

0.8 1 571 viLea [R—

0.4 R RK]

0.2 > 930,002

00 0% %% I 94%%%
pingpong pipeline

Fig. 15: Performance comparison between CAF [38] and VL.

Comparison with CAF: CAF [38] is a state-of-the-art hard-
ware queue proposal similar to VL with a couple of differ-
ences: i. CAF divides buffers between queues and applies
advanced credit management for QoS, while buffers in VLRD
are shared by all queues; ii. CAF transferes 64-bit values
between registers and Queue Management Device, whereas
VL exploits cache lines as local buffer and as such lowers the
frequency of performing relatively more costly data movement
through the cache hierarchy. We compare VL with CAF on
two benchmarks used in CAF paper, ping-pong and pipeline:
ping-pong passes data through the queue, while pipeline uses
the queue for pointers to 2 KiB network packet payloads. As
shown in Figure 15, VL achieves 2.40x speedup over CAF on
ping-pong, and 1.22x speedup on pipeline.

V. RELATED WORK

Software IPC ranges from POSIX standard IPC (e.g.
mkfifo [32]) to user-space libraries such as the BLFQ [19]
(a more complete survey can be found in [44]). Instead of fo-
cusing on improving the algorithms, VL focuses on hardware-
software codesign, arriving at a solution that combines the
flexibility of software with hardware acceleration.

IPC is closely related, even synonymous, to message-
passing (including MPI), data-flow, stream-processing, and
many other topics. MPI, generically, is a topic of constant
research, recent works [45]-[47] in particular focus on reduc-
ing core-to-core latency. These works expose very low-level
tuning knobs to the programmer assuming the programmer can
better tune an application. Our work on the other hand focuses
on maintaining the same programming semantics expected by
even novice parallel programmers while reducing Dataflow
processing, is closely related to systolic array processing,
stream processing, and Coarse-grained Reconfigurable Array

(CGRA) processing. Loosely, the aforementioned topics are
collected together as they all aim to allow maximum exploita-
tion of spatial communication patterns, allowing each PE to
send data directly to down-stream dataflow targets [48], [49].
Dataflow connections forming communications links are often
direct register-to-register transfers mediated by a common bus
(e.g., [11]-[13] and many others summarized by [50], [51]).
Systolic arrays are also a form of dataflow, although with a
fixed spatial communication pattern, e.g. [52]-[54]. Closely
related to the above are CGRAs [55]. Each work differs slightly
in the amount of reconfiguration permitted, from the least
flexible systolic array to the most flexible CGRA. Unlike these,
VL can exploit spatial locality of data streams while having
dynamic software configurable connectivity.

Modern core-to-core communication concepts, occupy a
spectrum from direct memory transfer instructions to vari-
ous hardware-software schemes. Network processing cores
such as TILE64 [14], DSP-like processors such as the IBM
Cell [15], and the Freescale DPAA [16] provide channel
operators or primitives to send data from PE-to-PE. Works
such as HAQu [56] which uses two new structures per-core,
including a Queue Local Table, whereas with VL, the logic
is simpler and located within the interconnect, enabling any
type of device to theoretically connect and use VL. HAQu
decentrialized head and tail pointers to each core, by doing so
it made M:N communications difficult to implement. CAF [38]
and Intel DLB [57], went in a different direction, centralizing
the queue management enabling M:N. VL goes in a different
direction entirely, focusing on minimalism in implementation
while enabling M:N. Other works, (e.g. [58]) focus on specific
use-cases in Android, whereas VL intends to be more generic.

VI. CONCLUSION

In this paper, we presented Virtual-Link (VL) a cross-core
communication mechanism for fine-grained multi-threaded
applications. VL is immune to cache contention for synchro-
nization, provides back-pressure to reduce memory spills, and
achieves low-latency cache injection by directly stashing the
line into consumer LID cache. This novel cross-core synchro-
nization mechanism is similar to software queue mechanisms
in flexibility but has the performance and efficiency of hard-
ware solutions. Our full-system gem5 simulation illustrated
that we can obtain a 2.09x speedup and 61% average reduc-
tion in memory traffic over state-of-the-art software solutions
across a variety of communications patterns and benchmarks.
Acknowledgement: This research was supported in part by
NSF grant numbers 1725743, 1745813, and 1763848, and
funding from Arm. Any opinions, findings, conclusions or
recommendations are those of the authors and not of the
National Science Foundation or other sponsors.

REFERENCES

[1] R. H. Dennard, F. H. Gaensslen et al., “Design of ion-implanted
MOSFET’s with very small physical dimensions,” IEEE Journal of Solid-
State Circuits, vol. 9, no. 5, pp. 256-268, 1974.

[2] L. B. Kish, “End of moore’s law: thermal (noise) death of integration
in micro and nano electronics,” Physics Letters A, vol. 305, no. 3-4, pp.
144-149, 2002.

[3]

[5]
[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]

[27]

(28]

[29]

[30]

[31]

J. S. Vetter, R. Brightwell et al., “Extreme heterogeneity 2018-productive
computational science in the era of extreme heterogeneity: Report for
doe ascr workshop on extreme heterogeneity,” USDOE Office of Science
(SC), Washington, DC (United States), Tech. Rep., 2018.

A. Kleen, “Linux multi-core scalability,” in Proceedings of Linux
Kongress, 2009.

E. W. Dijkstra, “A solution of a problem in concurrent programming
control,” September 1965.

L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess progranm,” [EEE transactions on computers,
no. 9, pp. 690-691, 1979.

D. C. Arvind and G. Maa, “Assessing the benefits of fine-grain
parallelism in dataflow programs,” International Journal of High-
performance Computing Applications, vol. 2, no. 3, 1988.

“Ampere reveals “quicksilver” altra lineup, 128-core “mystique” kicker,
https://bit.ly/2Hiqj3D, accessed: 2020-07-21.

D. Pasetto, M. Meneghin et al., “Performance evaluation of in-
terthread communication mechanisms on multicore/multithreaded archi-
tectures,” in Proceedings of the 21st international symposium on High-
Performance Parallel and Distributed Computing, 2012, pp. 131-132.
H. Akkan, M. Lang et al., “Hpc runtime support for fast and power
efficient locking and synchronization,” in 2013 IEEE International
Conference on Cluster Computing. 1EEE, 2013, pp. 1-7.

V. G. Grafe, G. S. Davidson et al., “The epsilon dataflow processor,
ACM SIGARCH Computer Architecture News, vol. 17, no. 3, pp. 3645,
1989.

G. M. Papadopoulos and D. E. Culler, “Monsoon: an explicit token-store
architecture,” in ACM SIGARCH Computer Architecture News, vol. 18,
no. 2SI. ACM, 1990, pp. 82-91.

M. D. Noakes, D. A. Wallach et al., “The j-machine multicomputer: An
architectural evaluation,” ACM SIGARCH Computer Architecture News,
vol. 21, no. 2, pp. 224-235, 1993.

S. Bell, B. Edwards et al., “Tile64 - processor: A 64-core soc with
mesh interconnect,” in 2008 IEEE International Solid-State Circuits
Conference - Digest of Technical Papers, Feb 2008, pp. 88-598.

T. Chen, R. Raghavan et al., “Cell broadband engine architecture and
its first implementation—a performance view,” IBM Journal of Research
and Development, vol. 51, no. 5, pp. 559-572, 2007.

D. QorIQ, “Primer for software architecture,” Technical report, Freescale
Semiconductor Inc, Tech. Rep., 2012.

E. Ladan-Mozes and N. Shavit, “An optimistic approach to lock-free
fifo queues,” in International Symposium on Distributed Computing.
Springer, 2004, pp. 117-131.

O. Michel, J. Sonchack et al., “Packet-level analytics in software without
compromises,” in 10th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 18), 2018.

“Class template queue,” https://bit.ly/37ThAMH]J, accessed: 2020-08-19.
P. Hintjens, “Zeromq: the guide,” URL http://zeromq. org, 2010.
“lockhammer,” https://bit.ly/3kbvz7N, accessed: 2020-07-21.

M. L. Scott, “Shared-memory synchronization,” Synthesis Lectures on
Computer Architecture, vol. 8, no. 2, pp. 1-221, 2013.

M. M. Martin, M. D. Hill et al., “Why on-chip cache coherence is here
to stay,” Communications of the ACM, vol. 55, no. 7, pp. 78-89, 2012.
M. Harchol-Balter, Performance modeling and design of computer
systems: queueing theory in action. Cambridge University Press, 2013.
D. Bertsimas and D. Nakazato, “The distributional little’s law and its
applications,” Operations Research, vol. 43, no. 2, pp. 298-310, 1995.
H. Jiang, X. Peng et al., “Cimat: A compute-in-memory architecture for
on-chip training based on transpose sram arrays,” IEEE Transactions on
Computers, 2020.

E. A. Ledn, R. Riesen et al., “Cache injection for parallel applications,
in Proceedings of the 20th international symposium on High perfor-
mance distributed computing, 2011, pp. 15-26.

A. AMBA, “Amba-5 architecture specification,” https://bit.ly/356Sjjf,
2020, accessed: 2020-10-13.

A. Farshin, A. Roozbeh et al., “Reexamining direct cache access to
optimize i/o intensive applications for multi-hundred-gigabit networks,
in 2020 USENIX Annual Technical Conference, 2020, pp. 673-689.

Z. Huang, “A comparative study on the performance isolation of
virtualization technologies,” Ph.D. dissertation, Arizona State University,
2019.

J. Rao, K. Wang ef al., “Optimizing virtual machine scheduling in numa
multicore systems,” in 2013 IEEE 19th International Symposium on
High Performance Computer Architecture. 1EEE, 2013, pp. 306-317.

>

>

>

>

10

(32]

(33]
(34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]
[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

The open group base specifications issue 7, 2018 edition ieee std
1003.1-2017 (revision of ieee std 1003.1-2008). https://bit.ly/2HfwwOw.
Accessed October 2020.

Virtual /0 Device (VIRTIO) Version 1.1. https://bit.ly/3jaEqWf. Ac-
cessed October 2019.

Revere-AMU System Architecture, Arm Limited, September 2019.
[Online]. Available: https://bit.ly/3kajJuQ

“Ember communication pattern library,” https://bit.ly/3k9egUV, ac-
cessed: 2020-10-13.

J. B. Evans, “Efficient fir filter architectures suitable for fpga imple-
mentation,” [EEE Transactions on Circuits and Systems 1I: Analog and
Digital Signal Processing, vol. 41, no. 7, pp. 490-493, 1994.

K. E. Batcher, “Sorting networks and their applications,” in Proceedings
of the April 30-May 2, 1968, spring joint computer conference, 1968,
pp. 307-314.

Y. Wang, R. Wang et al., “Caf: Core to core communication acceleration
framework,” in 2016 International Conference on Parallel Architecture
and Compilation Techniques (PACT). 1EEE, 2016, pp. 351-362.

N. Binkert, B. Beckmann et al., “The gem5 simulator,” SIGARCH
Comput. Archit. News, vol. 39, no. 2, p. 1-7, Aug. 2011. [Online].
Available: https://doi.org/10.1145/2024716.2024718

J. D. McCalpin et al., “Memory bandwidth and machine balance in
current high performance computers,” IEEE computer society technical
committee on computer architecture newsletter, vol. 2, no. 19-25, 1995.
J. E. Stine, L. Castellanos et al., “Freepdk: An open-source variation-
aware design kit,” in 2007 IEEE International Conference on Micro-
electronic Systems Education (MSE’07), 2007, pp. 173-174.

A. Stillmaker and B. Baas, “Scaling equations for the accurate
prediction of cmos device performance from 180nm to 7nm,”
Integration, vol. 58, pp. 74 - 81, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167926017300755
“Inside ARM’s Cortex-A72 microarchitecture,” https://bit.ly/3sf0a%h, ac-
cessed: 2021-01-09.

M. Herlihy, N. Shavit et al., The art of multiprocessor programming.
Newnes, 2020.

J. Jose, M. Luo et al., “Unifying upc and mpi runtimes: experience
with mvapich,” in Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model, 2010, pp. 1-10.

N. Hjelm, “An evaluation of the one-sided performance in open mpi,”
in Proceedings of the 23rd European MPI Users’ Group Meeting, 2016,
pp. 184-187.

H. P. Pritchard Jr, T. Naughton ef al., “Getting it right with open mpi:
Best practices for deployment and tuning of open mpi,” Los Alamos
National Lab.(LANL), Los Alamos, NM (US), Tech. Rep., 2020.

J. B. Dennis, “Data flow supercomputers,” Computer, no. 11, pp. 48-56,
1980.

A. Arvind and K. P. Gostelow, “The u-interpreter,” Computer, no. 2, pp.
42-49, 1982.

B. Lee and A. R. Hurson, “Issues in dataflow computing,” in Advances
in computers. Elsevier, 1993, vol. 37, pp. 285-333.

A. R. Hurson and K. M. Kavi, “Dataflow computers: Their history
and future,” Wiley Encyclopedia of Computer Science and Engineering,
2007.

D. A. Pomerleau, G. L. Gusciora et al., “Neural network simulation at
warp speed: How we got 17 million connections per second,” CMU,
Tech. Rep., 1988.

W. J. Dally, F. Labonte et al., “Merrimac: Supercomputing with streams,”
in Proceedings of the 2003 ACM/IEEE conference on Supercomputing.
IEEE, 2003, pp. 35-35.

N. Jouppi, C. Young et al., “Motivation for and evaluation of the first
tensor processing unit,” IEEE Micro, vol. 38, no. 3, pp. 10-19, 2018.
J. Gray and T. Kean, “Configurable hardware: a new paradigm for
computation,” in Proceedings, 10th Cultech. Conference on VLSI, 1993,
pp. 279-295.

S. Lee, D. Tiwari et al., “Haqu: Hardware-accelerated queueing for
fine-grained threading on a chip multiprocessor,” in 2011 IEEE 17th
International Symposium on High Performance Computer Architecture.
IEEE, 2011, pp. 99-110.

“Queue Management and Load Balancing on Intel® Architecture,”
https://intel.ly/3hY0Zy8, accessed: 2021-01-09.

D. Du, Z. Hua et al., “XPC: architectural support for secure and efficient
cross process call,” in Proceedings of the 46th International Symposium
on Computer Architecture, 2019, pp. 671-684.

https://bit.ly/2Hiqj3D
https://bit.ly/37hAMHJ
https://bit.ly/3kbvz7N
https://bit.ly/356Sjjf
https://bit.ly/2Hfww0w
https://bit.ly/3jaEqWf
https://bit.ly/3kajJuQ
https://bit.ly/3k9egUV
https://doi.org/10.1145/2024716.2024718
http://www.sciencedirect.com/science/article/pii/S0167926017300755
https://bit.ly/3sf0a9h
https://intel.ly/3hY0Zy8

	Introduction
	Problem Description and Motivation
	Design
	Routing Device
	Instruction Set Extensions
	User-space and System Software
	SQI allocation & release
	Endpoint creation
	User-space buffer creation

	Enqueue and dequeue

	Evaluation
	Experimental Methodology
	Results and Analysis

	Related Work
	Conclusion
	References

