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Abstract—In the big data domain, the visualization of graph
systems provides users more intuitive experiences, especially in
the field of social networks, transportation systems, and even
medical and biological domains. Processing-in-Memory (PIM)
has been a popular choice for deploying emerging applications
as a result of its high parallelism and low energy consumption.
Furthermore, memory cells of PIM platforms can serve as both
compute units and storage units, making PIM solutions able to
efficiently support visualizing graphs at different scales. In this
paper, we focus on using the PIM platform to accelerate the
Force-directed Graph Layout (FdGL) algorithm, which is one
of the most fundamental algorithms in the field of visualization.
We fully explore the parallelism inside the FdGL algorithm and
integrate an algorithm level optimization strategy into our PIM
system. In addition, we use programmable instruction sets to
achieve more flexibility in our PIM system. Our PIM architecture
can achieve 8.07× speedup compared with a GPU platform of
the same peak throughput. Compared with state-of-the-art CPU
and GPU platforms, our PIM system can achieve an average
of 13.33× and 2.14× performance speedup with 74.51× and
14.30× energy consumption reduction on six real world graphs.

I. INTRODUCTION

The big data era is changing and shaping all domains of
modern life including healthcare, retail and finance. Graph
systems are widely used to process big data [34], [24], [38],
[33]. To give a more intuitive illustration of graph systems and
allow users to better understand the data contained inside them,
visualization techniques are developed to draw graphs in a 2D
or 3D space. Graph visualization techniques have been widely
applied in different fields, such as transportation systems [10],
biology [11], and energy [31]. Fig. 1 gives examples of
visualizing road map systems and medical systems in graphs.
A more efficient hardware solution with high performance and
low energy consumption for graph visualization systems is
more desired nowadays, since navigation systems are usually
deployed in edge devices with computing power constraints,
and the latency is a key factor in medical visualization systems
for doctors making judgements during surgeries.

In the graph visualization system, each vertex of the graph
is allocated with specific coordinates, and connected with
other vertices by straight or curved lines. Force-directed Graph
Layout (FdGL), which we will focus on in this paper, is
one of the most fundamental graph layout algorithms. It uses
solid points to depict vertices and uses straight lines to depict
connections between vertices [25], [6], [35], [36]. A large
proportion of advanced visualization methods utilize the same
computation pattern as the FdGL and use curved edges or
group nearby vertices to show the graph in a more balanced
state [20], [18], [14], making it necessary to find a more
efficient way to accelerate FdGL.

(a) Road map system. [18] (b) Biology system. [11]

Fig. 1: Examples of visualization systems.

Due to high similarity between these advanced visualization
algorithms and the FdGL, they face the same performance
challenges. In visualization systems, to obtain a more intuitive
layout, the coordinates of each vertex have to be updated
frequently. As a result, the generated intermediate results, the
size of which scale with the size of the input graph, require
a huge amount of on-chip memory to store them considering
the scales of real world graphs (thousands and millions of
vertices and edges) [44], [17]. Data movement between on-
chip and off-chip memory is unavoidable due to the limited
on-chip memory capacity. Because of the large overhead of
data movement, accelerating these visualization applications
remain great challenges.

Prior works have proposed optimizations to accelerate FdGL
from different perspectives, including using simulated anneal-
ing to speed up the convergence of the algorithm [30] or
using tree based data structures to prune less useful com-
putations [36]. Since the coordinates of each vertex have to
be updated after each iteration until reaching equilibrium,
applying algorithm-level optimization focused on accelerating
convergence or reducing computation scale requires significant
control logic for data synchronization. As a result, hardware
accelerators which do not support irregular control flow may
not be able to apply these algorithm level optimizations effi-
ciently. In order to avoid the overhead of data synchronization,
prior GPU solutions only tried to adjust the dataflow and
computation sequence of FdGL to explore a higher degree of
parallelism [8], [39], but algorithm-level optimizations were
not considered. These two optimizations only focused on
decreasing the time complexity or exploring the parallelism
of FdGL, without paying so much attention to the tremendous
amount of intermediate data movement between on-chip and
off-chip memories. To solve these issues, we aim to integrate
algorithm-level optimizations into the design of a hardware
accelerator with high parallelism and low data movement.

In this paper, we propose a customized Processing-in-
Memory (PIM) system to speedup the algorithm-level opti-
mized FdGL with high parallelism and reduced data move-



ment. In our proposed PIM system, basic computational oper-
ations are abstracted as instructions and are decoded by control
logic inside the memory chip. This makes PIM systems more
flexible than GPUs and enables tree based data structures
implemented inside memory for computation pruning. We
achieve these advanced data structures with our software
defined instruction sets instead of specialized hardware units.
This makes our design suitable for graphs of different sizes
without loss of generality compared to GPU platforms. We
summarize the contributions of this paper as follows:
• We present a PIM design for the FdGL with minimal

additional hardware, and create a system that supports
datasets of different sizes and the quadtree/octree data
structure. Instruction sets are also included in the system.

• To our best knowledge, we are the first to deploy division
and trigonometric units in digital PIM. These units are not
fully explored in previous digital PIM researchs.

• We design an analytical model to analyze the perfor-
mance of CPU, GPU and PIM architectures in a uni-
form manner. We also introduce an iso-throughput GPU
platform providing the same maximum throughput as
PIM to reduce the architectural difference between the
platforms in comparison. Based on the calculated results,
our PIM architecture achieves a speedup 8.07× than the
iso-throughput GPU platform.

• We evaluate our PIM design with extensive experiments
on six real graphs of various sizes. Compared to state-
of-the-art CPU and GPU platforms, our PIM system
yields a performance increase 13.33× and 2.14× over a
state-of-the-art CPU (Xeon Platinum) and GPU (1080 Ti)
respectively, and energy savings of 74.51× and 14.30×
over these platforms after applying software level opti-
mizations.

II. BACKGROUND AND MOTIVATION

This section introduces the FdGL algorithm and popular
acceleration strategies. The performance bottlenecks of current
hardware solutions to accelerate FdGL will be discussed to
motivate our proposed design. Finally, we will also talk about
basics about PIM and illustrate why it is a better candidate
than other hardware platforms.

A. Introduction to Force-directed Graph Layout

The FdGL is one of the basic algorithms for visualizing
graphs in 2D or 3D spaces [6], [35], [36]. It evolved from
a VLSI technique called Force-directed placement [25]. It
uses points to represent vertices in graphs and straight lines
to represent edges. There are two kinds of forces in graphs,
which are repulsive forces and spring forces; the coordinates
of all vertices are adjusted iteratively to achieve equilibrium.
The repulsive force exists between each pair of vertices in the
graph, while the spring force only exists between each pair of
connected vertices.

The repulsive force is derived from Coulomb’s Law, it can
be written as:

Fr = C3/d
2 (1)

where C3 is a constant and d represents the distance between
two vertices. Secondly, the spring force was inspired by
Hooke’s Law, which is written as:

Fs = C1 ∗ log(d/C2) (2)
The aforementioned forces are useful in building graph

visualization models. Each node is initially assigned with
random coordinates. The system is usually not stable at first,
meaning that most of the vertices are not in a state of stress
equilibrium. We need to move the vertices step by step until
reaching a state of relative stress equilibrium.

B. Software Optimization

The time complexity of calculating the repulsive force and
spring force inside each iteration are O(|V |2) and O(|E|)
separately, where |V | represents the number of vertices and
|E| represents the number of edges. Most real graph and 3D
model datasets are sparse [44], making the repulsive force the
bottleneck of the whole system. To address this issue, prior
work tried to use the grid-variant algorithm [36], dividing the
screen into a grid of squares. Vertices in nearby squares of the
grid instead of the whole graph are considered when comput-
ing the repulsive force, since distant vertices contribute little
to the resultant repulsive force. Moreover, others tried to use
tree based data structures [45] to implement the grid-variant
algorithm. With tree based acceleration strategies, the time
complexity of repulsive force calculation can be decreased
to O(|V |log|V |). The overhead of introducing the tree based
data structure is inserting each tree node to the quadtree (in
2D space) or octree (in 3D space) at the beginning of each
iteration. The time complexity of inserting the |V | vertices into
the quadtree is O(|V |log|V |), which is the same as calculating
the repulsive force. In this way, the time complexity of each
iteration can be decreased from O(|V |2) to O(|V |log|V |) for
current graph datasets considering their sparsity.

C. Challenge of Current GPU Implementation

In this part, we will discuss the inefficiencies of utilizing
state-of-the-art GPU platforms implementing the FdGL, es-
pecially when tree based optimization strategies are applied.
To give a quantitative analysis, we implemented FdGL of
the graph [12] on Nvidia Tesla V100 GPU platform (results
in Fig. 2). We used nvprof [2] to get the kernel execution
time for better illustrate the potential bottleneck of the GPU
implementation.

When quadtree/octree based optimization is applied, the
computation of the repulsive force in each iteration cannot
start before reconstructing the quadtree/octree. Different from
computation of the forces, the update and reconstruction of
quadtree/octree contains less parallelism. Additionally, tree
nodes in the quadtree/octree have to be splitted into child
nodes when they reach the maximum tree node capacity,
so an atomic variable is needed for each tree node to store
the current size. Due to these synchronization events, the
intermediate results generated after each iteration have to be
transferred from the GPU to the CPU host for updating the
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Fig. 2: Limitations of FdGL GPU implementation.

quadtree/octree, and then sent back to the GPU for the next
iteration.

As shown in Fig. 2, the overhead of data movement was as
large as 71.57% of the overall GPU processing time, which
is 17,047K DRAM transactions (corresponding to tree node
size 1024). We notice that the overhead can be reduced as the
tree node size (the maximum number of vertices that can be
contained in one rectangular grid of the 2D space) decreases.
However, we cannot make the tree node size as small as we
desire. Each vertex is only affected by the repulsive force from
the vertices in the same tree node. As a result, smaller tree
node size means more vertices (which are relatively further
away from that vertex) will be neglected for the repulsive
force computation and will result in higher accuracy loss. To
accommodate these optimized tree based algorithms, a solution
with a high degree of parallelism but little data movement is
needed.

D. Other Possible Solutions

Although ASICs and FPGAs could appear to be good
candidates for deploying visualization systems because of the
possibility of maintaining the tree based data structure on chip,
there are other challenges.

The performance of ASIC platforms fluctuates between
large and small datasets. For the computation of repulsive
forces, the time complexity and scale of intermediate results
are highly dependent on the scale of graphs we choose. For
large datasets, to reduce the overhead of data movement, large
on-chip buffers for storing intermediate results are required.
Since each hardware unit has to be fixed in an ASIC platform
and cannot be reconfigured, small datasets might lead to
severe under-utilization of resources. This limits the average
performance of ASIC platforms.

FPGAs might perform well for graphs of diverse sizes
because of abundant on-chip logic resources, but visualization
systems are highly memory bounded applications. The coor-
dinates of each vertex have to be updated after each iteration,
and intermediate results are generated during the computation
of forces. The amount of on-chip memory currently in FPGA
platforms (Mb level) [46] is inadequate to handle large data
sets [44] without moving large amounts of data between on-
chip and off-chip memory. This makes FPGA platforms not
a suitable candidate for FdGL. A solution with large on-chip
memory capacity as well as abundant and flexible control logic
is desired.

… …… …
…

… … …

… … …

V0 GND

in1 in2 inn out…

(a) NOR in the row.

… …
A S’

…
(A+B)’ (B+C)’B SC Cout

(b) Addition in the row.
Fig. 3: PIM operations in rows.

E. Processing-in-memory Basics

PIM is becoming an alternative candidate for emerging
big data applications by reducing data movement between
processing units and memory units [9], [23]. In digital PIM
systems, the resistance of each memristor cell can switch
between RON and ROFF , which represents ’1’ and ’0’ in logic
separately, when different voltages are applied to the bitline
or wordline. This property can be exploited to implement a
NOR gate in the digital memory [26]. As shown in Fig. 3a,
the output memristor is initialized to RON . If one or more of
the n inputs switched from ’0’ to ’1’, the output memristor
will switch from RON to ROFF . This operation performs the
same functionality as a NOR gate, as shown is Fig. 3a. With
basic NOR units, arithmetic units including addition [7] can
be achieved by performing NOR operations sequentially. The
arithmetic addition can be expressed as:

Cout = ((A+B)′ + (B + C)′ + (C +A)′)′ (3a)
S = (((A′ +B′ + C ′)′ + ((A+B + C)′ + Cout)

′)′)′ (3b)

Where A,B represent the two input bits, C represents carry
in bit, Cout represents carry our bit, and S represents sum bit.
The logic for the addition operation is shown in Fig. 3b. Fur-
thermore, arithmetic multiplication units can also be achieved
in digital PIM systems in a similar way by performing
additions sequentially [7].

F. Advanced PIM Architecture

With the aforementioned arithmetic units, current PIM sys-
tems can be applied to deploy many kinds of applications
including machine learning [9], [23], [40], graph process-
ing [41], and even block chain [29]. However, there is a lot
more to be desired for PIM systems.

Prior PIM works highly relied on customized control logic
for specific parts of the application. Under this circumstance,
it is difficult for these prior PIM designs to find an one-fit-all
solution achieving the theoretical maximum performance. For
example, in machine learning systems, based on the roof-line
model, some network layers are memory intensive while others
are computing intensive [15]. Without dynamic configuration
of hardware units, PIM systems can only achieve the maxi-
mum throughput for either computation or memory bounded
layers. Furthermore, specialized hardware units make one PIM
architecture cannot be used to deploy multiple applications like
CPUs. For example, the Transaction Validation MU cannot
work as an EXP Translator [29], and the transposed inter block
data transmission was only used during the CNN training
process [23].

To improve the adaptability of current PIM systems, we pro-
pose to add several general purpose registers near the crossbar
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logic and use instruction sets to control the dataflow. All PIM
operations are abstracted as instructions, and one memristive
memory block can serve as multiple-function units. When
facing large datasets, more memory blocks can be assigned as
buffers to reduce the on-chip off-chip data movement. When
facing small datasets, higher throughput can be achieved by
assigning more memory blocks as computation units.

Additionally, in this paper instead of implementing the naive
FdGL implementation, we investigate acceleration strategies
for quadtree/octree based FdGL implementation. We propose
an Instruction Set Architecture (ISA) based general PIM
solution for achieving the quadtree/octree. The quadtree/octree
is widely applied in other visualization [45], high performance
computing [13], and even machine learning systems [28]. As
a result, our proposed PIM solutions can also be applied in
these applications.

III. METHODOLOGY

In this section, we will elaborate on the design of the PIM
system for the tree based FdGL implementation. Additionally,
the dataflow of FdGL will be discussed. ISA and control logic
supporting our system will also be introduced.

A. System Architecture

The architecture of our digital PIM system is based on
memresitive memory cells with hierarchical control logic, as
shown in Fig. 4. In contrast to other PIM designs [9], [29],
[23], all memory blocks in our system are the same and the
function of each block can be switched between storage and
computation units flexibly. Software defined ISA is designed
to support this PIM architecture, assigning where to fetch
the data, which memory block will perform the arithmetic
operations, and where to store the generated results. Different
levels of control logic are responsible for instruction decoding,
data fetching, and dataflow routing.

To better illustrate the workflow of our design, we will give
an example of performing NOR operations in a row parallel
way as shown in Fig. 4. For example, setting the voltage of the
second and third column as V0, the fourth column as GND,
and leaving the voltage of other columns as Visolate, can make
the memory block perform NOR operations in each row of the
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second and third columns, and all of the generated results will
be stored in the fourth column. If we only want to operate on
the first row, the voltage of all other rows as Visolate should be
adjusted through the column driver, then out(0, 0) = in(0, 0)
XOR in(0, 1) can be achieved.

B. FdGL Dataflow

In this section, we will discuss the dataflow of our tree
based FdGL in the PIM system. We consider the FdGL as
a data driven application and use SDF (Synchronous Data
Flow [42]) graph to describe it. In traditional single PE
(Processing Engine) architectures like a CPU, all nodes of the
SDF graph will be mapped to one PE. After processing one
node of the SDF graph, intermediate results are generated by
this PE. These intermediate results will at first be transferred to
off-chip memory, and then loaded back to on-chip memory for
the computation of the next node in the SDF graph. Unlike
in single PE architectures, in multiple PE architectures like
systolic arrays and PIM systems, nodes of the SDF graph can
be mapped to different PE units. Each PE unit represents one
dependent state machine, so the intermediate results of each
node are sent to the next node of the SDF graph directly
without data movement between on-chip memory and off-
chip memory. As a result, the dataflow optimization space
in multiple PE architectures including PIM systems will be
larger than single PE architectures, which will be explored in
this section.

As shown in Fig. 5, we divide the whole SDF graph into
three major parts and divide our PIM system into correspond-
ing parts, which are the storage part, tree part and computing
part. The computing part is responsible for computing the two
kinds of forces and the updated coordinates of each vertex,
the tree part is designed for maintaining the tree based data
structure, and the storage part is reserved for storing vertex and
edge information. In Fig. 5, each rectangular box represents
one PE, and different PEs can work simultaneously. The basic
unit in our PIM system is the memory block, and one PE can
be consisted of one or multiple memory blocks. There will
be intermediate results generated by the previous PEs, which
are inputs for the subsequent PEs. We use letters between
rectangular boxes to represent data transmissions between each
PE.

To give a more intuitive view of the functionality of each
PE, we choose to describe FdGL [36] in a way that usually
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defines data driven applications (see algorithm 1). During
the execution of FdGL, input data are fetched from V ertex
and Edge blocks in the Storage part (A0, B), then inserted
into the QuadTree part based on the indexes calculated by
Index Generate blocks (A1). This is described as Line 1
in algorithm 1. After constructing the quadtree, data will be
sent to the Computing part (we use the same letter B since
these data transmission can happen at the same time, See Line
3-4 in algorithm 1). Then the repulsive force (Line 6-8 in
algorithm 1) and spring force (Line 10-13 in algorithm 1) will
be calculated by Force Calculation (C,D,E) blocks in the
Computing part. After calculating the two kinds of forces,
coordinates of each vertex will be updated by Coordinate
Update (F ) blocks and sent back to the Storage part (G)
(Line 15-16 in algorithm 1).

Algorithm 1 describes the dataflow of FdGL serially. But in
real PIM systems some of the operations inside this algorithm
can be processed in parallel. As Fig. 5 suggests, dataflow
with the same label can be processed at the same time. To
be more specific, Line 3 and Line 4 can be processed at
the same time, which means transferring data from storage
parts and tree node parts to computing parts can be done in
parallel, shown as B in Fig. 5. The distance list calculation
(Line 6 and Line 10), force calculation (Line 7 and Line 12),
and force decomposition (Line 8 and Line 13) can also be
processed in parallel, which is described as C,D,E in Fig. 5
respectively. After synchronizing two kinds of forces, F and
G are performed to calculate the resultant force and update
the coordinates.

To make full use of PIM resources, we also explored how
to compute forces of different vertices in parallel, instead of
just computing the forces acting on vertices one by one. To
be more specific, In the loop of the algorithm 1 (Line 4),
calculating forces acting on different vertices can be processed
in parallel since there is no data dependency between each
iteration of the loop. This data independence means the for
loop can be fully unrolled as long as it meets the PIM
resource requirement, and we define the unroll time as inter
vertex parallelism. Higher inter vertex parallelism means the
computing process of more vertices are done in parallel, which
requires more PIM resources. For the FdGL of small graphs
or other computing bounded applications, more PIM resources
can be reserved for the computing part for a higher inter vertex
parallelism. On the contrary, lower inter vertex parallelism is
required to make our PIM system reserve more memory blocks
for the intermediate results. With introducing the inter vertex
parallelism, our solution can scale to fit graphs of different
sizes onto our PIM systems.

C. Instruction Sets

In our system, we use two kinds of 64-bit instructions,
PIM instructions and Memory instructions, to process various
computing operations and memory operations in the FdGL
algorithm. As shown in Fig. 6, PIM instructions consist of 7
parts, and Memory instructions consist of 5 parts. Among the
64 bits, bit 63 is used for differentiating PIM instructions from

Algorithm 1 FdGL Dataflow on Digital PIM
Input: Coordinates of each Vertex; Edge information;
Output: Updated Coordinates of each Vertex; . RF stands for Repulsive

Force; SF stands for Spring Force
1: Reconstruct the quadtree T
2: for each tree node TN in T do
3: Retrieve all vertices v list r in TN ;
4: Retrieve all edges in the graph connecting to node TN ;
5: for each vertex v in v list r do
6: Calculate distance lists dx list r, dy list r (v – ∗ in v list r);
7: Calculate RF list f list r (v – ∗ in v list r);
8: Calculate decomposed RF list fx list r, fy list r;
9:

10: Calculate distance lists dx list s, dy list s (v – ∗ in v list s);
11: . v list s is the list of vertices having an edge connecting to v;
12: Calculate SF list f list s (v – ∗ in v list s);
13: Calculate decomposed SF lists fx list s, fy list s;
14:
15: Calculate the sum of RF and SF fx, fy;
16: Update the coordinate of v to (x, y);
17: end for
18: end for

Memory instructions. Bit 62 of the PIM instruction represents
the row/column flag, since operations inside PIM blocks can be
processed in either a row parallel or column parallel way [26].
As for the opcode, PIM instructions support basic logic
operations(e.g., NOR, NOT , SHIFT , etc.) and arithmetic
operations (e.g., addition, subtraction, multiplication, division,
etc.). Memory instructions support operations including read,
write, and data transfer between different memory blocks. The
Row/Col Address represents the index of the row or column
being operated on. Since each operation is processed in one
row/column, only one row/column index is needed to specify
that location. For memory instructions, to support data transfer
operations, we need to differ the source and destination index,
resulting in two row/column index fields in the instruction.
The last three parts of PIM instructions represent the offset of
first source operand, second source operand and destination
operand inside the row/column. The last part of memory
instructions represents the data size of the read, write and data
transfer operations.

The compilation process for converting applications into our
proposed ISA can be divided into two parts, precompilation
and just-in-time compilation. When implementing FdGL, since
the computation pattern is fixed and the graph information
can be regarded as a preliminary, most of instructions are
generated before the execution starts. After precompilation,
the PIM system will start processing the input graph data.
Just-in-time compilation happens during the execution. It will
only be triggered during updating the quadtree/octree, since the
tree nodes will be splitted only when reaching the maximum
capacity. The additional ISA support for updating the tree
based data structures will be discussed in Section III-E.

D. Control System

In this part, we will detail the functionality of each level
of control logic in Fig. 4. 1 is the chip level controller,
the functionality of which is decoding instructions, distributes
instructions to the destination tiles, and transfers data across
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chips. 2 is the tile level controller, which performs receiving
instructions from the chip level controller and assigns it to the
corresponding memory block. 3 represents the switching
boxes, which interconnect blocks in the same tile and enables
inter block data transmission. 4 is the last-level controller,
which exists in every block. The function of 4 is to issue
instructions at the last level of our memory system, which can
be achieved by altering the voltage of the row and column
driver. The row/column driver is denoted as 5 in Fig. 4.

The last level controller requires four additional general
purpose registers for our tree based visualization system. In
order to support operations run in a parallel way, controller

4 will not issue any instruction immediately after receiving
it, and will wait for the next instruction to come and check if
it is the same type. If they are the same type, the controller
will just alter one more unit of the column or row driver.
If they are not the same type, these accumulated previous
instructions of the same type will be issued and performed
as the vector processing. To support such batch processing,
one register is required to store the current instruction type.
Besides the instruction type register, three more registers are
required for implementing tree based data structures. This will
be discussed in Section III-E.

E. Tree Based Data Structure in the PIM System

As aforementioned, we discussed the ISA and control
logic supporting the FdGL. But to implement the tree based
optimized solution, additional hardware support is required to
maintain the quadtree/octree data structure. This additional
hardware support needs to have the ability to decide in
which tree node each vertex should be inserted and detect
if the tree node reaches the maximum capacity. To implement
these functionalities, we propose to add three general purpose
registers inside each memory block, which does not affect
the generality of these tree blocks. In other words, these tree
memory blocks can also be used for other functionalities if
needed.

Before talking about the additional registers, we will show
how to represent vertices and the quadtree/octree data struc-
tures in memory cells. As shown in Fig. 7, the length of each
vertex is 128 bits. Bits 64-127 are used to represent the X-
axis and Y-axis coordinates of each vertex in the 2D space.
In the quadtree, each parent tree node has four child nodes,
dividing the 2D space of that parent node into four sub parts.
Bits 48-63 will be used to represent the index of each child
node in the quadtree, and each level index requires two bits.
The last bits 0-47 act as padding bits to make the total length
of each vertex be a power of 2, and it can also act as reserved
bits for the Z-axis coordinates when implementing an octree
data structure, which can visualize graphs in a 3D space.

X Coordinate Index
6396127 6495

Y Coordinate IndexIndex … Reserved
6162 5960 5758 4748 0

Fig. 7: Quadtree/Octree data structure format.

When implementing quadtree in PIM systems, we map each
tree node to one physical memory block of the memristive
chip. The information of each vertex in the same tree node is
stored in the same memory block. Under this circumstance,
inserting one vertex into the quadtree is similar to moving the
128-bit content from one memory block to another. However,
there is still some difference between the “insert“ instruction
and “move“ instruction. Based on our proposed instruction
sets, the destination address of the “move“ operation is part of
the instruction, which means the routing of data transmission
is decided by the “move“ instruction itself. But for the “insert“
operation, the final destination address cannot be determined
merely by the instruction. The destination address has to be
calculated during runtime. If the capacity of the destination
tree node does not reach the maximum volume, the destination
address is exactly the same as the value assigned by the
“insert“ instruction. Instead, the destination address has to be
calculated during runtime and sent to the child nodes.

To make destination address able to be calculated at runtime,
we split the “insert“ instruction into 3 steps I0, I1, and I2.
I0 is used to calculate the child node index of each level,
which makes the final destination address calculation able
to be achieved by simple addition and shift operations at
runtime. After I0 is finished, instruction I1 can be issued and
sent to the index generation block, then the padded 128-bit
vertex information will be sent to the assigned tree node block
referring to the destination address assigned by the instruction
itself. There is one return bit of instruction I1 to indicate if
the capacity of that tree node reaches the maximum volume.
If it is 1, the next instruction should be I2, which is splitting
that tree node and sending all vertices to the child tree node
blocks.

To achieve these three steps, we need three more register
R1, R2, and R3, as shown in Fig. 8. After inserting one
vertex into the assigned tree node, the counter register R2

will be increased by 1. If it reaches the maximum volume,
the status bit register R3 will be set to 1, and returned to the
host. Then the host will issue the I2 instruction and set the
valid bit register R1 to 0. When transferring data from the tree
node blocks to computing blocks, it will check the valid bit
first, and only tree nodes with a valid bit 1 can send data to
the computing nodes for the force calculations and coordinate
updates.

Quadtree and octree can be implemented in our system
because memristive cells can serve as both computation and
storage units. However, since updating the quadtree is one part
of the FdGL dataflow, we have to take the additional overhead
of the “insert“ instruction into consideration. There is a lot of
interaction between the host device and the PIM chip when
the three steps of the “insert“ instruction are introduced. To
amortise this overhead, we choose to use the double buffer
technique, and to achieve this we deployed two quadtrees in

6



Host

Switch
Box

I2I2

I2I2

I1 I2

I1

I0 I2Re_I1

R0: instruction type   R1: counter   R2: valid bit                         R3: full bit
I0: index generate      I1: insert        Re_I1: return reg status    I2: split tree node

PIM 

I1

Xn2 (3 2), Yn2 (3 2), 0 (2), 2 (2)Xn2 (3 2), Yn2 (3 2), 0 (2), 2 (2)Xn2 (3 2), Yn2 (3 2), 0 (2), 2 (2)

X00 (3 2), Y00 (3 2), 0 (2), 0 (2)

X11 (3 2), Y11 (3 2), 0 (2), 1 (2)…

Level 0, Node 0

R0R0R0 R1R1R1 R2R2R2 R3R3R3

Xn3 (3 2), Yn3 (3 2), 0 (2), 3 (2)Xn3 (3 2), Yn3 (3 2), 0 (2), 3 (2)Xn3 (3 2), Yn3 (3 2), 0 (2), 3 (2)

X03 (3 2), Y03 (3 2), 0 (2), 3 (2)

X13 (3 2), Y13 (3 2), 0 (2), 3 (2)…

Level 1, Node 3

R0R0R0 R1R1R1 R2R2R2 R3R3R3

Xn2 (3 2), Yn2 (3 2), 0 (2), 2 (2)Xn2 (3 2), Yn2 (3 2), 0 (2), 2 (2)Xn2 (3 2), Yn2 (3 2), 0 (2), 2 (2)

X02 (3 2), Y02 (3 2), 0 (2), 2 (2)

X12 (3 2), Y12 (3 2), 0 (2), 2 (2)…

Level 1, Node 2

R0R0R0 R1R1R1 R2R2R2 R3R3R3

Xn1 (3 2), Yn1 (3 2), 0 (2), 1 (2)Xn1 (3 2), Yn1 (3 2), 0 (2), 1 (2)Xn1 (3 2), Yn1 (3 2), 0 (2), 1 (2)

X01 (3 2), Y01 (3 2), 0 (2), 1 (2)

X11 (3 2), Y11 (3 2), 0 (2), 1 (2)…

Level 1, Node 1

R0R0R0 R1R1R1 R2R2R2 R3R3R3

Xn0 (3 2), Yn0 (3 2), 0 (2), 0 (2)Xn0 (3 2), Yn0 (3 2), 0 (2), 0 (2)Xn0 (3 2), Yn0 (3 2), 0 (2), 0 (2)

X00 (3 2), Y00 (3 2), 0 (2), 0 (2)

X10 (3 2), Y10 (3 2), 0 (2), 0 (2)…

Level 1, Node 0

R0R0R0 R1R1R1 R2R2R2 R3R3R3

Xn, YnXn, Yn

X0, Y0

X1, Y1…

Index Generator

R0R0 R1R1 R2R2 R3R3

X0, Y0, 0, 0

X0, Y0, 0, 0

X0, Y0, 0, 0

…

Xn, Yn

X0, Y0

X1, Y1…

Index Generator

R0 R1 R2 R3

X0, Y0, 0, 0

X0, Y0, 0, 0

X0, Y0, 0, 0

…

Xn, Yn

X0, Y0

X1, Y1…

Index Generator

R0 R1 R2 R3

X0, Y0, 0, 0

X0, Y0, 0, 0

X0, Y0, 0, 0

…

Fig. 8: QuadTree implementation.

our PIM system. One Vertex can be inserted to the quadtree for
the next iteration as soon as its coordinates have been updated
in the previous iteration. The prerequisite of the double buffer
technique is that processing and updating the quadtree never
becomes the bottleneck of the SDF graph. To prove this, we
designed experiments in the evaluation part for measuring the
processing time of each part.

IV. IMPLEMENTATION OF REQUIRED ARITHMETIC UNITS

In this part, we will talk about the implementation of the
arithmetic operations in FdGL, especially the division units.
Moreover, natural log units and trigonometric units are also
required for calculating spring forces and implementing force
decomposition. All of these arithmetic units are implemented
in 32-bit fixed point data precision, since the implementation
of floating point addition requires additional hardware sup-
port [23], and the accuracy of the fixed point implementation
is enough for our visualization system.

A. Division Units

Basic arithmetic units (addition and multiplication) are not
enough to calculate the repulsive force. To do this, division
units are also needed. In this part, we will show how to
build division units efficiently on the PIM system. Based on
the design of fixed-point multiplication units on PIM [7],
we modify the division designs in CMOS platform [16] and
propose the solution to achieve N fixed-point division in
Algorithm 2. This implementation avoids involving too much
control logic which is hard to be achieved in a row parallel
way on PIM. Since the sign bit of the dividend and divisor
can be easily calculated by XORing the sign bits of the
dividend and divisor, we only consider the division of unsigned
datatype in this situation. We assign the first N cells for the
dividend, the next N cells for the divisor, and we reserve
2N cells for storing the quotient. Among the N bits, the first

Algorithm 2 Unsigned fixed-point division on digital PIM
Input: Total bits N , Integer bits NI , Decimal bits ND ; Location of Dividend A

M0∼N−1, Divisor B MN∼2N−1; . Mi denotes for the ith memory cell in the
operated memory row

Output: Quotient is stored in location M2N∼4N−1;
1: M5N∼6N−1 ←M0∼N−1;
2: M8N∼9N−1 ←MN∼2N−1;
3: M7N+1∼8N−1 ←M8N∼9N−1;
4: for each i ∈ [0, 2N − 1] do
5: M10N∼13N−1 ← SUB(M4N∼7N−1,M7N∼10N−1);
6: update dividend(i);
7: M2N+i ←M ′10N ;
8: M7N+1∼8N−1 ←M7N+1+i∼8N+i;
9: end for

10:
11: function UPDATE DIVIDEND(i): . Version 1
12: if M10N == 0 then
13: M4N∼7N−1 ←M10N∼13N−1;
14: else
15: M4N∼7N−1 ←M4N∼7N−1;
16: end if
17: end function
18:
19: function UPDATE DIVIDEND(i): . Version 2
20: for each j ∈ [0, 3N − 1] do
21: M13N+j ←M ′10N ;
22: M16N+j ←M10N ;
23: end for
24: M4∼7N−1 ← (M4∼7N−1&M13∼16N−1)‖(M10∼13N−1&M16∼19N−1);
25: end function

NI bits are integer bits and the other ND bits are decimal
bits. Our proposed algorithm 2 is defined by the equation

Dividend = Divisor ·
N−1∑
i=−N

(2i · Quotienti) + Reminder,

which will get the quotient bit by bit and can be achieved in
a row parallel way.

First, we make a copy of the dividend and divisor (Line
1-2) for iterative subtraction, and reserve 3N bits for left and
right shifting. The division unit will calculate the quotients
from the highest to the lowest bit, and start left-shifting the
divisor by N − 1 bits (Line 3). Then the value of Divisor is
updated to 2N−1 · Divisor, which will be used to compare
with the dividend to decide whether the highest bit of the
quotient is 1 or 0. The other 2N − 1 bits of the quotient
are calculated by right shifting the divisor bit by bit (Line 4-
9). If the quotient bit is 1 instead of 0, the dividend will be
updated to Dividend−Divisor (Line 11-17). If the divisor is
larger than the dividend, which means the quotient bit is 0, the
dividend will not be updated. To avoid comparison operations
inside the memristive cells, we propose to use logic operations
(Version 2 of function Update dividend) instead of conditional
branches (Version 1 of function Update dividend) to update
the dividend.

B. Implementation of Other Arithmetic Units

In addition to the division units supporting repulsive forces,
natural log units are required to implement the spring force.
Currently, there are many efficient hardware solutions for
natural log units [32], [37], and most of them are based on
Taylor Series. The Taylor Series of lnx on x = 1 can be
described as equation 4a. The prerequisite of the equation is
x ∈ (1, 2), but we need to extend it to the whole real number
domain. Note that each real number val can be expressed in
the form of val = 2exp · (1.mantissa), in which exp is an
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Fig. 9: Force decomposition.
integer, and each (1.mantissa) can represent any real number
in the range of (1, 2). In this way, the natural log value of
each real number val can be expressed as equation 4b. The
implementation of ln 2 ·exp relies on multiplication units, and
the value of ln(1.mantissa) is obtained by equation 4a. All of
these arithmetic operations can be processed in a row parallel
way, so the natural log units can be implemented efficiently
in the PIM system.

lnx =
∞∑

n=1

(−1)n−1(x− 1)n

n
(1 < x < 2) (4a)

ln(val) = ln 2 · exp+ ln(1.mantissa) (4b)

To obtain the resultant forces, we need to decompose each
repulsive force and spring force and calculate the component
of the X and Y axes, which requires trigonometric units or
other equivalent units. As shown in Fig. 9, the force F (node
V1 acts on V0) can be decomposed to Fx and Fy , in which
Fx = F · cosα, Fy = F · sinα. sinα can be expressed as
sinα = sin arctan y1−y0

x1−x0
, so the force decomposition units

can be calculated with a combination of arctan units, sin
units, and cos units. To obtain a more flexible and efficient
design, we choose to use Taylor Series for implementing these
trigonometric units in a similar way as the natural log units.

V. ANALYTICAL ESTIMATION

In this section, we conduct a preliminary analytical evalu-
ation of CPUs, GPUs, and the proposed PIM architecture. At
first, we quantify the arithmetic operations and data movement
inside the workload. Then we calculate the performance on
CPU, GPU and PIM systems in a uniform manner based on the
maximum parallelism and memory bandwidth of each system.

A. Workload Analysis

In this paper, we are using six real graphs as benchmarks
shown in table II, and we set the constant parameters to
C1 = 2, C2 = 1, C3 = 1, iteration time = 100 [6].
We use prior work [6] as the naive FdGL implementation
(Implementation I), and use work [36] as the quadtree based
optimized implementation (Implementation II). To better un-
derstand the arithmetic operation reduction on quadtree based
implementation and additional overhead introduced by the
quadtree, we breakdown the FdGL into four parts, and show
the results in table III.

We consider one addition or multiplication as one arithmetic
operation, and the square root, log unit arithmetic operation
is referred from prior works [43], [27]. In the quadtree based
implementation II, the arithmetic operation reduction comes
from the repulsive force, and the arithmetic operations for
spring force and coordinate update remains the same. Note that

based on different algorithm implementations, the arithmetic
operations can be slightly different, but in general the time
complexity remains the same.

To model the generated intermediate results and calculate
the required memory bandwidth, we divide the intermediate
results into three parts, intra-loop data, inter-loop data, and
external data. Intra-loop data are usually the results of pre-
vious arithmetic operations and will be the operands for the
subsequent operations. The intra-loop data have no temporal
locality, so they are stored in registers. Inter-loop data will be
used in next loops, so we use cache to store them. External data
are intermediate results that have to be moved between on-
chip and off-chip memory, like data movement when updating
quadtree. The overhead of the quadtree based implementation
comes from the additional inter-loop and external data.

B. Hardware Configuration

We will evaluate the performance of FdGL on one CPU plat-
form (Xeon(R) Platinum 8160), two GPU platforms (Nvidia
GTX 1080Ti and Tesla V100), and our proposed PIM architec-
ture. We use an additional GPU IT platform which provides
the same throughput as the PIM platform for calculating
the potential performance provided by PIM architecture. The
memory bandwidth on the GPU IT platform is also adjusted
based on the ratio of throughput to memory bandwidth on
Tesla V100. The hardware configuration details are shown
in table I. For the theoretical maximum throughput of the
CPU platform, we assume all cores run at the maximum
frequency with a perfect pipeline design, which means each
arithmetic operation only takes one clock cycle on average.
The maximum throughput for the two GPU platforms are
referred from Nvidia white books [5], [4]. For the PIM
architecture, we choose 1,024 bit as the raw size corresponding
to the 32-bit operands [7], [23]. The throughput for our PIM
architecture is calculated based on the maximum parallelism
(8GB/1, 024b = 64M ) and arithmetic operation latency from
prior work [7].

C. Performance Estimation

In this part, we will calculate the theoretical performance
on CPU, GPU and PIM platforms, showing the potential
throughput improvement provided by PIM architecture. The
overall execution time can be divided into two parts, one
is the time for arithmetic operations, the other is the time
for data movement between off-chip and on-chip memory.
The execution time for arithmetic operations is decided by
the number of arithmetic operations and throughput of the
hardware platforms, which can be calculated directly with the
data in table I, II, and III. However, in real cases CPUs and
GPUs cannot achieve the maximum throughput due to the
limited register capacity. We define the variable coefficient
of utilization to represent the ratio of real throughput to
maximum throughput. This ratio is decided by the amount
of intra-loop data and register capacity. The execution time
for data movement is decide by the scale of generated inter-
loop and external data and the DRAM bandwidth. With the
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TABLE I: Hardware configurations.

Platform CPU GPU GPU PIM

Name Xeon(R) 
Platinum 8160 GTX 1080Ti Tesla V100 N/A

1GB per chip
256Mb per tile
1Mb per block

Platform CPU GPU GPU Hyper PIM

Name Xeon(R) 
Platinum 8160 GTX 1080Ti Tesla V100 N/A N/A

Frequency 3,700MHz 1,530MHz 1,582MHz N/A 800 MHz

L1 1536KB Reg 7168 KB Reg 20480 KB N/A

L2 24MB
L3 33MB

1GB per chip

256Mb per 
tile

1Mb per 
block

DRAM 
Bandwidth 250GB/s 484GB/s 900GB/s 55.49GB/s N/A

(CUDA) Cores 24 3,584 5,120 N/A N/A
Throuphput 178 GFLOPS 11.3 TFLOPS 15.7 TFLOPS 968 GFLOPS 968 GFLOPS

Platform CPU GPU GPU GPU PIM

Name Xeon(R) 
Platinum 8160 GTX 1080Ti Tesla V100 Iso-Throuhput 

(IT) N/A

Frequency 3,700MHz 1,530MHz 1,582MHz 816MHz 800 MHz

L1 1536KB Reg 7168 KB Reg 20480 KB Reg 20480 KB

L2 24MB
L3 33MB

Memory 192GB GDDR4 11GB GDDR5X 16GB HBM2 16GB HBM2 8GB
DRAM 

Bandwidth 250GB/s 484GB/s 900GB/s 477GB/s N/A

(CUDA) Cores 24 3,584 5,120 5,120 N/A
Throuphput 178 GFLOPS 11.3 TFLOPS 15.7 TFLOPS 8.1 TFLOPS 8.1 TFLOPS

Cache N/A
L2 2816 KB L2 6144 KB L2 6144 KB

192GB GDDR4Memory 16GB GDDR5 16GB GDDR5

Cache
L2 6144 KBL2 2816 KB

N/A
N/A

N/AMemory 192GB GDDR4 11GB GDDR5X 16GB HBM2

TABLE II: Benchmarks.
Musae- Musae- Musae- Musae- Email- Musae-

Twitch-PT Twitch-RU Twitch-EN Facebook Enron Github
Abbreviation PT RU EN FB Enron Git
# of Nodes 1,912 4,385 7,126 22,470 36,692 37,700
# of Edges 31,299 37,304 35,324 171,002 183,831 289,003

Density 0.017 0.004 0.002 0.001 0.001 0.001

Benchmark

help of cache on CPU and GPU platforms, not all of the
inter-loop data have to be transferred between off-chip and on-
chip memory. Under this circumstance, we introduce another
variable cache miss rate to model the data movement time.

Fig. 10 shows the average normalized execution time of
the six graphs on CPU and GPU platforms under different
coefficient of utilization and cache miss rates. We use CPU I,
GTX I, V100 I, and GPU IT I to represent the results of
implementation I on different hardware platforms, and we use
CPU II, GTX II, V100 II, and GPU IT II to represent the
results of implementation II. CPU cannot perform as well
as GPU and PIM platform due to the limited parallelism.
Because GPU platforms have higher arithmetic IPC (instruc-
tions per cycle) than PIM, our proposed PIM architecture can
only achieve a 1.44× and 1.03× throughput on arithmetic
operations as GTX II and V100 II when the coefficient of
utilization is 0.5. However, the advantage of PIM system is the
removal of data movement. When the coefficient of utilization
and cache miss rates are 0.3 and 0.7, our PIM architecture
can achieve a 11.38×, 6.56× and 8.07× throughput as the
GTX II, V100 II, and GPU IT II solution respectively.
D. Limitations of the Analytical Model

Based on our calculation, the PIM architecture can achieve
at most 11.38× throughput as the GPU platform. However,
this result is based on our assumptions of the coefficient of
utilization and cache miss rates. In real platforms, the coeffi-
cient of utilization rate is also affected by thread contention
and data synchronization, which cannot be obtained based on
calculation. As for the data movement, the maximum memory
bandwidth can only be achieved when transferring data from
contiguous DRAM address to on-chip memory. In addition, we
did not consider the data movement between different levels
of cache in CPU and GPU platforms, and the data movement
between different memory blocks in PIM systems. To obtain
more accurate results, we will design experiments on real CPU
and GPU platforms and a cycle-accurate PIM simulator in
Section VI.

VI. EXPERIMENTAL EVALUATION

In this section, we will evaluate the efficacy of our proposed
PIM architecture. We run the FdGL on real CPU, GPU

TABLE III: Breakdown of FdGL operations.
Implementation I Implementation II (Quadtree based)

Arithmetic Operations 20 * (|V|-1) * |V|  / 2 * N (20 * (T-1) * |V| / 2 + 4 * H * |V|) * N
Intra-Loop Data 13 * (|V|-1) * |V|  / 2 * N 13 * (T-1) * |V| / 2 * N
Inter-Loop Data 2 * |V| * N (T * |V| + 2 * |V|) * N

External Data 2 * |V| 0
Arithmetic Operations 23 * |E| * N 23 * |E| * N

Intra-Loop Data 17 * |E| * N 17 * |E| * N
Inter-Loop Data 0 0

External Data 0 0
Arithmetic Operations 4 * |V| * N 4 * |V| * N

Intra-Loop Data 2 * |V| * N 2 * |V| * N
Inter-Loop Data 2 * |V| * N 2 * |V| * N

External Data 2 * |V| 2 * |V|
Arithmetic Operations N/A 4 * H * |V| * N

Intra-Loop Data N/A 2 * H * |V| * N
Inter-Loop Data N/A 2 * 4H-1 * T * N

External Data N/A 4 * |V| * N

Repulsive Force

Spring Force

Coordinate Update

Quadtree Update

|V |, |E| represents number of Vertices, Edges. T,H,N represents tree
node volume, tree height, number of iterations.
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Fig. 10: Analytical estimation of speedups.

platforms and a cycle-accurate PIM simulator to justify the
performance improvement on PIM systems. We also evaluate
the energy consumption reduction on PIM systems and the
scalability of our design. The accuracy loss introduced by PIM
systems will also be discussed in this section.

A. Evaluation Setup

We evaluate our design utilizing the experimental methodol-
ogy in [23] after enhancing the FloatPIM simulator to include
division and natural log units. We choose the same PIM
configuration as the FloatPIM [23]. The capacity of the PIM
chip is 8Gb, consisting of 32 memory tiles. Each memory
tile consists of 256 crossbar memory blocks, both the column
and row size of which are 1,024. Various circuit parameters
are referenced from FloatPIM [23] and Pipelayer [21]. The
latency and energy consumption of the basic logic operation
are 1.1ns and 0.29fJ, and the read/write latency and read/write
energy are 29.31ns/50.88ns and 1.08pJ/3.91nJ, respectively.
We keep the Switches and Controller of the FloatPIM design,
and the power of them are 0.42mW and 0.65mW. Unlike
in FloatPIM, we discard the Shifter and Max Pool, since
they are designed for floating-point addition operations and
pooling layers in CNNs. To support our proposed ISA, We
add additional decode logic inside the block-level controllers.

We use Intel’s RAPL [19] tool and Nvidia-SMI [3] tool to
collect the energy consumption on CPU and GPU platforms.
We use Synopsys PrimeTime [1] to measure the power of
our decoder logic, which is 0.26mW. We also add 4 general
purpose registers inside each memory block to support our
quadtree data structures. The overhead of introducing addi-
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Fig. 11: Speedups obtained from simulation&measurement.

tional registers is measured using the same methodology as
the PIM operations in our simulator because these 4 general
purpose registers can be implemented by memristive cells.

B. Performance Comparison with CPU&GPU Platforms

We compare the performance of our PIM design to the
CPU and GPU platform designs, and the results are shown
in Fig. 11. Our PIM system achieves a 346.18× performance
improvement compared to the CPU Implementation I and
13.33× performance improvement over the CPU Implemen-
tation II. Additionally, our PIM design performs as well as
the optimized GPU design, obtaining an average performance
increase of 2.14× over the Nvidia GTX 1080Ti platform, and
1.37× over the Tesla V100 platform, which are two of the
most powerful commercial GPU platforms.

We present the execution time of arithmetic operations
and data movement in real hardware platforms in Table IV.
Different from our analytical model, the data movement in
real platforms consists of inter-platform and intra-platform
data movement. Inter-platform data movement represents the
data movement between host device and GPU or PIM on-chip
memory. For the GPU Implementation II, in which quadtree
is introduced to prune the computation, the update process of
quadtree tree on host device is also considered as one part of
data movement overhead. For both GPU and PIM platforms,
there is still data movement inside the platform itself. For
example, in GPU platform data have to be transferred between
each block for synchronization, while in PIM platform data
are transferred from one memory block to the other acting
as the a synchronous dataflow. Such kinds of data movement
contribute to intra-platform data movement.

Compared with GPU Implementation I, our PIM solution
performs better due to the reduction of computation. When
quadtree is introduced, a huge proportion of the computation
is pruned, and the time complexity is decreased from O(|V |2)
to O(|V | log |V |). Our PIM solution achieves better perfor-
mance than GPU Implementation II because of the removal of
inter-platform data movement overhead. In GTX II, the data
movement contributes 93.19% to the overall executing time,
and in V100 II the ratio is 95.09%.

C. Energy Comparison with CPU&GPU Platforms

In this section, we discuss the energy savings of our PIM
platform over CPU and GPU platforms and show results in
Fig. 12. Due to its high generality and complicated control
logic, the energy consumption of the CPU Implementation I is
1931.05× higher than the PIM platform. Even though the time

TABLE IV: GPU&PIM experimental time breakdown.
Platform Breakdown (ms) PT RU EN FB Enron Git

Arith Oper Time 185.65 171.42 188.50 199.10 202.77 204.28
Data Move Time 774.35 1398.58 2331.50 13550.90 32927.23 34685.72
Arith Oper Time 143.98 149.97 156.15 277.69 469.06 420.91
Data Move Time 856.02 1530.03 2093.85 6792.31 12560.94 13309.09
Arith Oper Time 140.41 158.87 168.59 211.17 225.14 219.85
Data Move Time 269.59 531.13 941.41 3978.83 9124.86 9510.15
Arith Oper Time 49.62 62.42 48.26 70.19 182.09 276.98
Data Move Time 390.38 817.58 1301.74 4229.81 7447.91 7623.02
Arith Oper Time 96.22 313.66 371.63 1388.52 2250.22 2267.97
Data Move Time 209.38 237.02 681.12 1626.37 4541.95 4871.17
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Fig. 12: Energy comparison of PIM with CPU & GPU.

complexity is decreased from O(|V |2) to O(|V | log |V |), the
energy of CPU Implementation II is still 74.51× higher than
our PIM system. The computational power of the the GPU
platforms will also result in higher energy consumption. In
this situation, our design achieved 30.18× and 6.55× energy
savings over GPU Implementation I, and 14.30×, and 12.16×
energy savings over the quadtree based GPU Implementation
II on the 1080Ti and V100 platforms respectively.

D. Breakdown of the FdGL SDF graph

Our PIM platform achieves better performance and lower
energy consumption than the CPU and GPU platforms because
of our advanced scheduling system for the FdGL dataflow.
This section breaks down the processing time of each node
in the FdGL SDF graph to investigate a more efficient degree
of inter vertex parallelism as well as a more suitable memory
capacity parameter for our system.

As aforementioned, to utilize the PIM resources more
efficiently, in addition to fully unroll the force computation
of one vertex (Line 5-7, 9-11 in Algorithm 1), the inter vertex
parallelism is also supposed to be taken into consideration.
This refers to the unrolling time of the Loop (Line 4 in
Algorithm 1). Allocating more hardware resources to increase
the parallelism of the force computation will result in a better
performance. As for the cost, the data transfer bandwidth re-
quirement inside the PIM chip will also increase, and because
of this we cannot assign hardware resources arbitrarily and
have to investigate the appropriate level of parallelism. Our
goal is to balance the processing time of each node of the
SDF graph in Fig. 5, in order to balance the data transfer
bandwidth with the inter vertex parallelism requirement.

In Fig. 13, we show the proportion of the processing time of
each node in the FdGL SDF graph, and we select 32, 64, 128,
and 256 as the degree of inter vertex parallelism. A represents
updating the quadtree. In all cases the processing time of stage
A is not the most time consuming, making the double buffer
technique mentioned in Section III-E realistic. Stages C, F ,
and G perform most of the data synchronization and vertex
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Fig. 13: Breakdown of the SDF Dataflow.

coordinate update jobs, which are not computing intensive,
and consume less processing time and hardware resources
than force computation. For the other three nodes, when the
degree of inter vertex parallelism is low, E which performs
force computation contributes most of the processing time.
As parallelism increases from 32 to 256, the processing time
of B, D which perform data transfer will contribute more
to the overall processing time. To avoid making data transfer
bandwidth inside PIM chips the bottleneck of our system, we
choose not to increase parallelism and set 256 as the optimal
solution. A lower degree of inter vertex parallelism means a
lower memory capacity requirement, allowing our PIM system
to support memristive chips with smaller capacity. Higher inter
vertex parallelism means the 8Gb memory capacity can be
fully utilized, achieving a better performance.

E. Accuracy

Our PIM design brings a significant performance improve-
ment and energy reduction over CPU and GPU implementa-
tions, but there is still a small accuracy loss caused by our
fixed point or approximate implementation of arithmetic units
and the introduce of quadtree.

1) Definition of Accuracy: The accuracy loss of our system
comes from two different sources, one is from the algorithm
level, while the other is from the hardware implementation.
Because of the introduction of quadtree, only vertices in the
same tree node exert the repulsive force on each other instead
of vertices in the whole graph, which results in an accuracy
loss. At the hardware level, the fixed point data precision
will also contribute to a small amount accuracy loss. For
the implementation of trigonometric and natural log units, we
choose to use Taylor Series, which computes the approximate
rather than the exact values of trigonometric functions and will
also contribute to the accuracy loss.

We choose the Implementation I on the CPU platform with
32-bit floating point data precision as the baseline. We use the
absolute error instead of relative error to calculate the accuracy
loss. We are visualizing the six benchmarks in a 2D space
of (range, range). The coordinates of each vertex have no
real meaning other than location. In other words, one vertex
moving from (1, 1) to (2, 2) will contribute equally to the
total accuracy loss as another vertex moving from (100, 100)
to (101, 101). We define the global accuracy loss as: loss =∑n

i=1

√
(
−
xi−xi)

2

+(
−
y i−yi)

2

n∗range , where n represents the number of

vertices, (
−
xi,
−
y i) represents the final coordinate of vertex i of
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Fig. 14: Accuracy loss of different polynomial items.
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Fig. 15: Processing time of different polynomial items.

the CPU baseline, and (xi, yi) represents the final coordinate
of vertex i of our PIM implementation.

2) Trade-off between Accuracy and Performance: As dis-
cussed in Section IV, we choose to use Taylor Series to im-
plement the trigonometric and log units. To balance accuracy
and throughput, we have to choose the appropriate number
of non-zero items in our Taylor Series. If only a few items
are applied, the accuracy loss might be unacceptable, however
if we apply too many items, the overall performance can be
affected.

As Fig. 14 suggests, the accuracy of the six benchmarks
follow the same trend. The more non-zero elements in the
polynomial, the more accurate results our PIM design can
obtain. More non-zero terms in our polynomial also result in
a longer processing time (shown in Fig. 15). When increasing
the number of non-zero terms from 2 to 3, processing time
increases by 22.27% while accuracy increases by 0.31%.
However from 3 to 4, processing time increases by 1.08%
while accuracy only increases by 0.04%. When the number of
non-zero terms is larger than 3, the marginal accuracy gain of
additional polynomial terms is insignificant. Thus, we choose
to use top 3 non-zero terms to implement our Taylor Series
for the trigonometric and log units.

3) Overall Accuracy Loss: Aside from the accuracy loss
introduced by trigonometric and log units, the fixed point data
precision [22] and quadtree based acceleration strategy [45]
could also contribute to the accuracy loss. As Fig. 16 shows,
the average accuracy loss of the six graphs is 0.65%. There
is a accuracy loss discrepancy between each graph, and the
reason is that we are visualizing the six graphs with a different
number of vertices and edges in the same 2D space. If a
large graph is visualized in a small space, it will result in a
closer average distance between each vertex. Once the distance
between two vertices approaches zero, the repulsive force and
spring force between them will be infinity. As a result, being
closer to infinity means more accuracy loss. In real cases, the
range of 2D or 3D spaces for visualizing graphs should be
proportional to the scale of the graphs. Thus, the little accuracy
discrepancy in our experiments will be eliminated.
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VII. CONCLUSION

In this paper, we propose a novel PIM architecture to
accelerate a graph visualization algorithm. We design in-
struction sets as well as logic for implementing arithmetic
operations and maintaining a tree based data structure; the
flexible ISA that we created make our PIM system fit for
datasets of different sizes. Moreover, we fully explore the
dataflow of the algorithm and develop a synchronous dataflow
based PIM system to deploy it. Analytical estimation shows
an 8.07× performance improvement if our proposed PIM
architecture have the same maximum throughput as GPU
platforms. Experimental results of 6 real graph datasets show
that our PIM solution significantly outperforms state-of-the-art
CPU and GPU systems, yielding 13.33× and 2.14× speedups,
74.51×, and 14.30× energy savings over optimized CPU and
GPU solutions, respectively.
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