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ABSTRACT

Remote estimation over communication channels of limited
capacity is an area of research with applications spanning
many economically relevant areas, including cyber-physical
systems and the Internet of Things. One popular choice of
communication/scheduling policies used in remote estimation
is the class of event-triggered policies. Typically, an event-
triggering threshold is optimized assuming complete knowl-
edge of the system’s underlying probabilistic model. How-
ever, this information is seldom available in real-world ap-
plications. This paper addresses the learning of an optimal
threshold policy based on data samples collected at the sen-
sor. Leveraging symmetry, quasi-convexity, and the method
of Kernel density estimation, we propose a data-driven algo-
rithm, which is guaranteed to converge to a globally optimal
solution. Moreover, empirical evidence suggests that our al-
gorithm is more sample-efficient than traditional learning ap-
proaches based on empirical risk minimization.

Index Terms— Remote estimation, threshold policies,
collision channel, machine learning, optimization

1. INTRODUCTION

Remote estimation systems constitute a broad class of prob-
lems with applications in many important technological fields
such as cyber-physical systems and the Internet of Things
[1, 2]. For the most part, results either prove the optimal-
ity of threshold policies for a particular problem [3, 4], or
assume that the sensors use threshold policies and optimize
performance of the system with respect to the threshold [5].
In either case, the underlying probabilistic model is assumed
to be fully available to the system designer, which is often not
the case in practice. In this paper, we study a system where
each sensor learns the optimal threshold from independent
and identically distributed (IID) data samples drawn from an
unknown symmetric probability density function (PDF). To
the best of our knowledge, our approach is the first to estab-
lish a connection between a remote estimation problem and
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Fig. 1: System diagram for remote estimation over the colli-
sion channel.

the area of statistical learning theory [6]. In particular, we
provide a sample-efficient algorithm which learns the optimal
threshold with guaranteed convergence.

2. PROBLEM FORMULATION

Consider a system where multiple sensors make measure-
ments and communicate them to a remote fusion center. We
will focus on the case where sensors make IID observations
and decide whether to transmit them to the fusion center or
not. The communication medium is modeled by a collision
channel: If two or more nodes transmit in the same time
slot, then the packets interfere with each other and do not get
delivered at the receiver [1, 7].

There are n > 2 sensors, and at each time slot the ¢-th
sensor makes a measurement X; = x; and decides whether
to communicate it or not to the fusion center using an event-
triggered policy characterized by a single threshold 4, as fol-

lows:
5 {( )
S

The special symbol S denotes that the sensor remains silent.

We make three assumptions: 1. all the measurements are
identically distributed:

if [, —pl >0
otherwise.
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2. the PDF is symmetric around the mean:
fx(@—p) = fx(—2+p); €)
3. the PDF is supported on the real line:
fx(x)>0, zeR. 4)

The channel operates as follows: if two or more sensors
transmit at the same time, Y = C, (the “collision” symbol).
If only the i-th sensor transmits, Y = (¢, ;). If no sensors
transmit Y = S, (the “silence” symbol). Under the symme-
try assumption of the PDF and the transmission policy, the
optimal receiver is of the following form [5, 8]:

X, =
I

The goal is to choose a threshold § such that the following
normalized mean squared error is minimized

if Y =(i,2;)
otherwise.

®)
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Without loss of generality (and due to space constraints),
we will consider in this paper only the case in which y = 0
and n = 2. The general case will be considered in a forth-
coming journal publication.

Proposition 1 Under event-triggered policies characterized
by a threshold 5, the cost function' is given by:

J(8) = EIX? - EIX?1(X| = §)|E[L(IX| < 9)]. ()

In [5], it was shown that the objective function in Eq. (7)
satisfies the following important property.

Proposition 2 For any symmetric and continuous PDF sup-
ported on the real line, the objective function J (8) in Eq. (7)
is strictly quasi-convex.

Proposition 2 is very attractive because it guarantees the ex-
istence of a single globally optimal threshold, and that there
are simple numerical algorithms to compute it (e.g. stochastic
gradient descent).

Obviously, any algorithm used to compute such globally
optimal threshold must rely on the full knowledge of fx.
Instead, we are interested in the case where the PDF is un-
known, and each sensor needs to learn its threshold using a
finite data set of IID samples drawn from the PDF fx avail-
able to it, D; = {xlk}ﬁil The threshold design is decen-
tralized, i.e., the data is not exchanged among sensors. This
is due to both practicality and privacy constraints. The pur-
pose of this paper is to provide a sample efficient data-driven
algorithm that can be used to learn the optimal threshold 6*
without exchanging data among sensors.

!The function 1(&) denotes the indicator function of the statement .

3. MAIN RESULTS

One data-driven approach to computing an estimate of the op-
timal threshold is to use the data set D; to construct an approx-
imate Jp, (¢), and optimize it with respect to 9, i.e.,

0p, = arg min Ip, (). (8)

The most natural approach is to replace the expectations in
the cost function by their empirical means, this is called sam-
ple average approximation (SAA) [9] or empirical risk mini-
mization (ERM) [10]. However, the cost function in Eq. (7)
involves the product of expectations, which requires a slightly
modified SAA in order to guarantee that the approximate ob-
jective function is an unbiased estimate of the expected cost.
The following is an unbiased estimate of the objective func-
tion based on empirical means [11]:

| M 9 M; /2
Toi0) = =Y ain— v ¥ wl(|zikl > 0)]
M; M;
k=1 k=1
2
i .
]:M,;/2+1

Remark 1 Notice that the SAA in Eq. (9) is inefficient be-
cause the data set must be partitioned into disjoint sets to ap-
proximate each of the expectations in the product term. More-
over, Fig. 2 shows that Eq. (9) is non-smooth, and in some
cases, may not be quasi-convex, which is the feature that en-
ables efficient numerical algorithms.

T T v
—— Empirical risk
—— Expected cost

Fig. 2: Objective function and its sample average approxima-
tion using 500 data samples drawn from the density fx :=

NV (=5,1) + N(0,2) + N(5,1)).

This approach works well if the data set is sufficiently
large, but fails in the finite data regime for two reasons: the
first is the lack of smoothness, which prevents the use of any
first order methods such as stochastic gradient descent. The
second is that the function also ceases to be quasi-concave,
which leads to multiple local minima. Therefore, the global
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minimum must be found by exhaustive search over the entire
real line. On the other hand, we propose an approach which
is data-driven but retains the smoothness and quasi-convexity
of the objective function for data sets of any size such that a
first-order method that is guaranteed to converge to the glob-
ally optimal solution can be efficiently implemented.

Theorem 1 Let D = {z}}1L, denote a the data set of M 1ID
samples drawn from symmetric PDF fx. Let fp(x) denote a
PDF that approximates fx constructed from D. Let Jp(5)
be defined as:

Ip(d) == /RﬁfD(x)d:r— [/Rx21(|x\ > 5)fp(w)dx} %
[/R L(j2| < 6)fp(w)dz| (10)

and 8%, where

8% := argmin Jp(4). (11)
Then,
55 Y2 5 M — oo, (12)

where 0* is the global minimizer of Eq. (7).

Proof.  The proof can be found in [12]. O

The approach we propose is to approximate the PDF fx
from data using a non-parametric method called Kernel den-
stity estimation (KDE) [13]. The main difference between
KDE and empirical risk minimization is that while the em-
pirical risk approach is a nonsmooth unbiased estimate of the
objective function, KDE yields a smooth biased estimate of
the PDF, which in turns implies in a biased estimate of the
objective function, which allows for first-order optimization
methods. additionally, if we use the knowledge of the PDF’s
symmetry, KDE preserves the quasi-concavity of the objec-
tive function for any realization of the data set.

The KDE approximation for a symmetric PDF is given
by the following expression [14]: Let D = {x} }2L,, where
x ~ fx, with fx symmetric. Then,

Jote) = e 32 [0 () (SR

k=1

where K is the Gaussian kernel given by K(z) := \/% exp (—

””—22), and the parameter hjs is the so-called bandwidth pa-
rameter and must be appropriately chosen. Typically, hjs is
chosen according to the so-called Normal reference rule [13]

as follows:

/Zn 2 Q
hy i =1.06- M mm{ 1 1.34}, (14)

where ()p is the data’s interquartile range, which is defined
as the difference between the 75th and 25th percentiles. Fig-
ure 3 shows the KDE based approximation based on a data

I

xr
Fig. 3: Illustrative KDE approximation based on M = 500
samples from a symmetric Gaussian mixture PDF fx :=

FV(=5,1) + N(0,2) + N (5,1)).

set of M = 500 samples from a symmetric Gaussian mix-
ture PDF. Given an approximation of the density computed
using KDE, we can compute the approximate optimal thresh-
old from data using the bissection method used to compute
the unique solution of the first order optimality condition:

VJp(6) =0. (15)

Theorem 2 The global minimizer 07, is the unique solution
of Fp(0) = 0, where

T 2 1 - 2
Fo(0) =hi; + 57 ;xk
11 1 /a4 012
— a2 T e =) en( - 5 (5-))

k=1

= har - (@ 49) 'exp( - %(m;;]\—{é)?)

; ﬁ 6+ ) [t (2 ) (2 )
M —
_522}\4’; {erf(hi/[—:/g) —erf(h;\/;)]. (16)

Proof.  The proof can be found in~ [12]. O
To find the unique solution of Fp can be computed using
the following algorithm:

« Initialization: Set Q(O) = 0, and 6© := L, where L
is any constant such that Fp(L) < 0

¢ At the k-th iteration:
1. Set 51 := 0.5(5%) 4 5(k))

2. If Fp (6+D)) > 0, set g*FD = g(kt1)
3. If Fr (6FD) < 0, set 5+ .= §(k+1)
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« Stopping criterion: §(*+1) — (-1 ~ ¢

This algorithm converges to the optimal solution. Setting the
desired accuracy € > 0 in the beginning of the algorithm im-
plies that we achieve a solution within € of the optimal one
in O(log(1/¢)) iterations. Figure 4 illustrates the conver-
gence of the approximate function Fp (0) to the true function

F(0) :=VF(0)/2fx(0) as M — cc.

F@

Fig. 4: Convergence of the approximate functions Fp to the
true F as the data set size M increases.

A real world implementation of this remote estimation
system would be as follows: Each sensor would have a finite
memory buffer M;, at time k each sensor has a threshold esti-
mate J; (k—1) and acquires a new data sample z; (k). Then the
sensor updates its data set by dropping the oldest sample and
adding the new one, i.e., D;(k) = {zi(£)};__,, 1 Based
on this new data set, the sensor updates its threshold by com-
puting: ¢, (k) = arg min jDi(k) (6). Finally, for a system with
two sensors, we need 1 extra round of communication used
for the sensors to agree on a single threshold. Let 4, j € {1,2}
and i # j: 6;(k) + 1[6;(k) + 6;(k)]. In a more general
setup with a network of n > 2 sensors, a few rounds of local
communications implementing a consensus/gossip algorithm
would be required [8].

4. NUMERICAL RESULTS

We compare our algorithm based on KDE with the approach
based on empirical risk minimization. Simulating the re-
mote estimation system with sensors of data buffers of size
M for 1000 sample paths with data samples drawn from
fx = $(N(=5,1) + N(0,2) + N(5,1)), we observe in
Fig. 5 that as M increases the threshold converges to the
true optimal solution in both cases. In fact, for M > 100,
the average threshold (Fig. 5) and associated average per-
formance (Fig. 6), are essentially the same. However, the
shaded regions, which display the empirical variance of the
simulations, show that the ERM scheme is much noisier than
the scheme based on KDE. This stems from the fact that the

ERM scheme minimizes a non-smooth, non-convex func-
tion as opposed to our algorithm which minimizes a smooth,
quasi-convex function.

65
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Fig. 5: Approximate threshold computed from data sets of
increasing size M for the ERM and KDE approaches.
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Fig. 6: True performance of thresholds computed from data
sets of increasing size M for the ERM and KDE approaches.

Comparing the performance of both schemes in Figs. 5
and 6, we see that to achieve the same level of confidence on
the learned threshold we need approximately 10 times more
data samples in the ERM scheme. Therefore, we can state
with confidence that our algorithm based on KDE is much
more sample efficient than ERM.

5. CONCLUSIONS AND FUTURE WORK

This paper contains an algorithm based on KDE that can be
used to learn an optimal threshold from data in remote estima-
tion systems characterized by an unknown symmetric PDF.
One promising future research direction is to come up with
online threshold learning schemes. Another future research
topic is to optimize the bandwidth (hj;) selection method
with respect to the performance of the remote estimation sys-
tem. Finally, we would like to generalize our results to asym-
metric unknown densities.
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