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Data-Driven Sensor Scheduling for Remote
Estimation in Wireless Networks

Marcos M. Vasconcelos

Abstract—Sensor scheduling is a well-studied problem
in signal processing and control with numerous applica-
tions. Despite its successful history, most of the related
literature assumes the knowledge of the underlying prob-
abilistic model of the sensor measurements such as the
correlation structure or the entire joint probability density
function. Herein, a framework for sensor scheduling for
remote estimation is introduced in which the system design
and the scheduling decisions are based solely on observed
data. Unicast and broadcast networks and corresponding
receivers are considered. In both cases, the empirical risk
minimization can be posed as a difference-of-convex op-
timization problem, and locally optimal solutions are ob-
tained efficiently by applying the convex—concave proce-
dure. Our results are independent of the data’s probability
density function, correlation structure, and the number of
sensors.

Index Terms—Decision theory, estimation, networked
control systems, optimization, quantization, statistical
learning.

[. INTRODUCTION

ENSOR scheduling is a classical problem in signal pro-
S cessing and control with a very rich history. The traditional
static sensor scheduling problem consists of selecting a subset of
k sensors among a group of n sensors such that the expected dis-
tortion between the random state-of-the-world and its estimate is
minimized [1]. This class of problems has many applications in
engineering, especially in sensor networks in which the number
of sensors allowed to communicate with a remote fusion center
is limited due to bandwidth constraints.
Consider the system described in the block diagram of Fig. 1,
where n sensor—estimator pairs share a wireless network, which
can operate either in unicast or broadcast modes. Each of the
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Fig. 1.  Schematic diagram for the remote sensing system with n

sensor—estimator pairs over a bandwidth constrained wireless network.

n sensors observes a distinct random variable and reports it
to the scheduler. The scheduler selects a single random vari-
able according to a scheduling decision rule and transmits it
over the network. If the system is in unicast mode, only the
intended estimator receives the sensor’s observation, and the
remaining estimators observe an erasure symbol. If the system is
in broadcast mode, all the sensors receive the same transmitted
measurement. Upon seeing the network output, each receiver
forms its estimate according to an estimation policy. The system
designer’s goal is to select scheduling and estimation policies
such as to minimize the mean-squared error (MSE) between the
observations at the sensors and the estimates at the receivers.
This problem lies in the category of team decision problems
with a nonclassical information structure, which are, in general,
very difficult to solve due to coupling between the scheduling
and estimation policies known as signaling [2].

In addition to the classical applications of sensor scheduling,
the framework proposed here can be used to model real-time
communication between the Internet of Things (IoT) devices.
Due to the massive number of devices and the very high demand
for communication resources, the scheduler selects the pieces of
information that are most relevant for a given task and discard
the others, keeping the network data flow under control but at
the same time achieving excellent system performance. A more
specific application of interest is in systems known as wireless
body area networks for remote health care monitoring [3]-[5]. In
these systems, the sensors collect heterogeneous biometric data
and transmit them to a mobile phone, which acts as a scheduler.
To preserve battery life and meet bandwidth constraints, the
mobile phone selects one of them to transmit it to one or multiple
destinations.
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To the best of our knowledge, most of the literature in sensor
scheduling assumes that the joint probability density function
(PDF) of the random variables observed at the sensors is known
a priori to the system designer. However, this is a restrictive
assumption because, in most practical applications, this infor-
mation is typically not available. The main challenge we address
in this article is to design such a system in the absence of
knowledge of the joint PDF, but in the presence of a dataset
of independent and identically distributed (i.i.d.) samples, a
standard assumption in statistical learning theory [6]. The results
and algorithms presented here combine ideas from quantization
theory [7], modern techniques in nonconvex optimization the-
ory [8], [9], and classic results in stochastic programming [10]
into a new class of sensor scheduling problems. The findings
herein are meant to provide a guide to the art of designing such
complex data-driven scheduling for remote estimation systems.

The main contributions of this work are as follows.

1) We provide a systematic data-driven approach for the joint
design of scheduling and estimation rules for unicast and
broadcast networks.

2) Our algorithm exploits the decompositions of nonconvex
objectives as a difference-of-convex (DC) functions. It
uses the convex—concave procedure (CCP) to find locally
optimal solutions with a fast convergence rate.

3) Our algorithms are universal, working for any joint PDF
that generates the dataset, and for any number of sensors.

4) We establish a connection between our algorithms and
subgradient methods. The main advantage of our algo-
rithms is that we do not need to select a step size at every
iteration in an ad hoc manner. Our step sizes are constant
and arise naturally from the CCP.

A. Related Literature

With the pervasiveness of data in the design of modern
autonomous networked systems, we are experiencing the pro-
liferation of machine learning techniques in control and esti-
mation [11]. These emerging technologies have found applica-
tions in problems with unknown stochastic observations and
disturbances. Robust control and estimation theory has been
successful in designing systems to perform well under model
uncertainty [12]. However, the ability to collect and analyze
large datasets has allowed us to learn, with high probability, the
model parameters of neural networks used to implement optimal
policies without knowing the problem’s underlying probabilistic
model.

In the modern literature of sensor scheduling and control
over unknown wireless channels, many articles have tackled
the problem of determining an optimal scheduling policy when
the statistical model of the measurements is known, but the
wireless channel is uncertain [13]. Wu et al. [14] considered
the sequential scheduling of a single sensor over a channel
with unknown packet-drop probability. The strategy consists in
estimating the unknown parameter and adapting the scheduling
policy to the current estimate of the packet-drop probability.
Leong et al. [15] considered a similar setup of sensor scheduling
in a system with multiple sensors and a single estimator by

formulating the problem as a Markov decision process and
solving it using the deep Q-network technique. Li ef al. [16]
studied decentralized scheduling in a remote estimation system
with multiple sensors and multiple estimators. They formulated
the problem as a Markov game and solved it using the concept
of Nash Q-learning.

Our problem formulation differs from the existing results in
the literature in a fundamental aspect. While the references above
consider an unknown channel and a known probabilistic model
for the sensor observations, we consider the reverse situation,
in which the channel is known, and the underlying statistics
of the observations are unknown. Another difference between
the works mentioned earlier is that they are sequential, and our
problem formulation is static. Static sensor scheduling problems
also play an important role in the literature, e.g., [1], [17] and
references therein, both of which assume complete knowledge
of the probability distributions.

Our problem formulation is related to the observation-driven
sensor scheduling framework introduced in [18], where the
underlying probabilistic model is Gaussian. The subsequent
work [19] considered a sequential problem formulation with an
energy-harvesting scheduler for sensors making independent ob-
servations distributed according to the general class of symmet-
ric and unimodal PDFs. In this work, we study the data-driven
version of [18] under minimal assumptions on the probabilistic
model, namely, finite first and second moments. Unlike [1],
[17]-[19], we do not make any assumptions on correlation,
symmetry, and modality of the observations. Our main goal is to
design systems suitable for any joint PDF without assumptions
on the sensor observations’ correlation structure. By relating the
remote estimation problem with statistical learning theory [6],
we provide a design framework for choosing a scheduler with
performance close to the optimal with high probability.

Our problem falls in the broad area of machine learning
for regression/estimation. The learning algorithm we use is a
particular form of (controlled) piece-wise linear regression. The
algorithm used to train the scheduler is the CCP, which we
can map into a stochastic subgradient method with a specific
constant step-size (or step-matrix, in the broadcast case). Our
iterative schemes converge to a local minimum of nonconvex,
nonsmooth objective functions. This is the first time the CCP is
used in a sensor scheduling problem.

[I. PROBLEM FORMULATION

Consider the system depicted in Fig. 1 with n > 2 sensor—
estimator pairs communicating via a constrained wireless net-
work. We assume that the data observed at the sensors are
realizations of the following continuous random vector

def

X:(X17X27"'aXn) (1)

which is distributed according to an arbitrary joint PDF, fx.
We also assume that each X;, i € {1,...,n} has finite first and
second-order moments, which are the only assumptions on the
underlying probabilistic model of the problem.

The sensors communicate the measurements to a scheduler.
Due to bandwidth constraints, we assume that only one sensor
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measurement can be transmitted at a time. The scheduler’s role
is to choose which of the sensor measurements is transmitted
over the network to its destination. The scheduling decision, u €
{1,...,n},is taken according to a policy 1 : R™ — {1,...,n}
such that

-y Tp). @)

When a sensor is chosen by the scheduler, a communication
packet s containing its measurement and identification number
is sent over the network, i.e., if u = 7, then

Sz(jvxj)' (3)

In this work, we will consider unicast and broadcast networks.
In the case of a unicast network, only the estimator associated
with the chosen sensor receives the transmitted measurement.
The remaining estimators receive a special erasure symbol de-
noted by &. In other words, if © = j, then

(.] 5 xj)a 1= j
Yi = { 2, i “)
When the scheduling policy is properly designed, the erasure
symbol also conveys valuable information about x; to its cor-
responding estimator. In the case of a broadcast network, the
packet transmitted by the scheduler is received by all the esti-
mators, i.e., if u = j, then

yi = (J,75), 1€{L,...,n}. o)

Upon receiving y;, the ith estimator uses a function J; to
compute an estimate of the ith measurement as follows:

ie{l,....n}. (6)

u=p(x,..

& = 0i(yi),
We denote the collection of estimation functions by

def

55y, .. 60). 7

Problem 1 (Observation-Driven Sensor Scheduling):
Given the joint PDF of the sensor data fx and the network
operation mode (unicast or broadcast), design the scheduling
and estimation policies p and § such that the following MSE
between observations and estimates is minimized:

J(p,0) = E li(Xz - X1)2] : ()

i=1

I1l. UNICAST NETWORK

In this setting, the wireless network behaves as independent
links between sensors and their corresponding receivers. How-
ever, due to bandwidth constraints, only one link may be active
at a time. The scheduler then selects which of the n links
to be active, and the remaining links are idle. However, the
observation of a silent symbol still conveys information about
the nontransmitted measurements.

Definition 1 (Estimation Policies for Estimation Over Uni-
cast Networks): An estimation policy for the ith estimator in
the unicast network case is a function parameterized by 6; € R

such that

x; if y; = (i,2)
0i(yi) = ) 9
(i) {Hi if y=0o. ©

Therefore, the collection of estimation policies d for Problem
1 is completely characterized by a vector § € R™, where

7077,)'

Theorem 1 (Difference-of-Convex Decomposition—
Unicast Case): If the estimators in Problem 1 use policies of
the form in Definition 1, the objective function in (8) admits
the following decomposition as a difference of two convex
functions:

def

0%, ... (10)

J(u5,0) =E

) max
je{l,...,n

) {(x; -0,)%}
(1D
where p is the optimal scheduler for a fixed collection of
estimation policies &, which is parameterized by the vector
0 e R™
Proof: Using the estimators in 1 and the law of total expecta-
tion, the cost function in (8) can be expressed in integral form

as follows':

N [Zm - 9»2] 1 (u(x) = ) fx(2)de

(12)
For a fixed ¢, in other words, for a fixed 6 € R, the optimal
scheduler 4} is determined by the following set of inequalities:

13)

En:(Xi - 92-)21 ~E [

i=1

pi() = & lo; — 03] > ae — 0al, L€ {L,...,n}.

This scheduler leads to the following objective function as a
function of §:

~ min
je{l,...,n

J(u3.8) = E DX =00 | S I0).

ij

(14)

The min{-} function in the argument of the expectation operator
may lead to a nonconvex objective function in (14). Also notice
that depending on the continuity of the density, the objective
function may also be nonsmooth. However, the identity holds

min { > (@i - 01-)2} = zn:(xi —0;)% — max {(x; —0;)%}.

J

i#j i=1
5)
The result follows from the linearity of the expectation
operator. ]

The fact that the optimization problem admits a DC decompo-
sition is attractive because it allows efficient implementation of
the branch-and-bound method, which is guaranteed to converge
to a globally optimal solution [20]. However, the convergence

I"The indicator function of a statement & is defined as

def | 1 if & istrue
I1(6)=
(6) {O otherwise.
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of such algorithm is typically very slow for large-dimensional
optimization problems, which, in our case, would be prohibitive
for a systems with a large number of sensors. On the other hand,
the DC decomposition allows the use of a technique known as
CCP [8], [21], [22], which is guaranteed to converge to a locally
optimal solution [23], and often admits simple implementation
and fast convergence.

A. Convex—Concave Procedure

The CCP is an optimization technique used to find local min-
ima of nonconvex cost functions that admit a DC decomposition.
The advantage of using CCP over a subgradient method is that
the CCP makes use of the structure of the objective function,
which in certain cases lead to very efficient algorithms.

Theorem 2: Consider the unconstrained nonconvex optimiza-
tion problem:

min J(0) = F(0) — G(0) (16)
9cRn
where
FO)ZE |y (X - W] (17)
=1
and
def 0.2
GO)=E Le?ll?.}.(,n} {(x;-9)) }] : (18)

Let g be any subgradient of the function GG. The dynamical
system described by the recursion

O+ = 2719y L E[X] (19)

converges to a local minimum of .J ().

Proof: We will apply the CCP to the optimization problem in
(16)—(18). The CCP consists of approximating the nonconvex
part of J, i.e., G, by its affine approximation at a given point
o) € R™:

Gaine(0;0F) L G(6P) + g(0")T (9 — 6P)  (20)

where g(#(*)) is any subgradient? of the function G at the point
(%) The next point in the sequence, #**1) is found by solving
the following convex optimization problem:

60+D) — arg min {F(e) — Glaine (6; 0<’€>)} .@n

9eR™
The unconstrained convex optimization problem in 21 can be
solved by using the first-order optimality condition:

=0

V(E(B) ~ Game®))| .

(22)

which, in this case, has a unique solution. Computing the gradi-
ent above at 0* yields

200" —E[X]) — g(6*)) = 0. (23)

2A vector g € R™ is a subgradient of f : R” — R at 2 € dom f if for all
z € dom f,

f(2) > f(@)+g"(z - z).

Finally, by solving for §*, we obtain the following dynamical
system:

o+ = 27 1(pR)) L E[X]. (24)

The sequence of the points generated according to the dynam-
ical system above is guaranteed to converge to one of the local
minima of J [23]. |

B. Relationship With Subgradient Methods

The dynamical system in (19) is related to subgradient meth-
ods of the form

O+ — k) _ ¢ 5(0%)) (25)

where j(0(®)) is a subgradient of .J at (%), Notice that con-
vergence results for such algorithms exist under the condition
that J is a convex function and the step sequence satisfies
certain summability conditions? that typically imply a very slow
convergence rate to a global minimum. There are no guarantees
in general that a subgradient method like the one in (25) will
converge to a local minimum if the objective function is non-
convex.

One remarkable observation is that the dynamical system
from the CCP in (19) is equivalent to

gD = (k) _ 9155 (k)) (26)

where
i@® ) = VRE®) - g(@®).

The constant step size o = 0.5 is desirable because it yields
convergence rate of O(1/k) to a local minimum despite the fact
that the objective function is nonconvex. Furthermore, even for
convex objective functions, the constant step size only guaran-
tees convergence to a point within a fixed gap of the optimal
solution; and with variable step sizes satisfying the typical
summability conditions, the convergence rate is O(1/+v/k) [24].

27)

C. Computing a Subgradient

The dynamical system in (19) relies on the fact that at every
time step k, we are able to evaluate a subgradient g of the function
G defined in (18). The fact that only a subgradient is required
is important because the function max inside the expectation G
is nonsmooth, which may lead to a nonsmooth G depending on
the joint PDF fx. Next, we will use weak subgradient calculus
to compute a subgradient g.

For a fixed vector x € R", define

el (s = 80

def

G0;2) = (28)

and

Gi(0;2) S (x; —0,)%, je{l,....n}. (29)

3For example, if the step size sequence {cy, } satisfies

o0 o0
E : 2 2 :

aj, < oo and Qp = 00.
k=0 k=0
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Algorithm 1: Computing a Subgradient of G(0; ).

1: procedure subgrad(f; z)
2: G* < —o0

3: 77«0

4: forj € {1,...,n} do o> linear search

5 G+ G;(0;2)

6: if G > G* then

7 G+~ G

8: R

9: end if

10: end for

11: g+ VeGj«(6;2)

12: return g > subgradient of G

13:  end procedure

Therefore,
G(0;z) = jegl’%%n} G;(0; ). (30)
The gradient of each G;(6; z) is given by
VoG,;(0;2) = =2(x; —0,))e, 31

where e; is the jth canonical basis vector in R".

The computation of a subgradient for G(0; z) is done via an
algorithmic procedure, which implements a linear search. For a
fixed pair of arguments (6; x), the subgradient is computed as
follows:

9(0; ) = subgrad(f; ) (32)
where subgrad is given in the procedure in Algorithm 1.
Finally, weak subgradient calculus states that
def
9(0) = E [g(0; X)] (33)

belongs to the subdifferential G (6), where the expectation is
taken with respect to the random vector X. Thus, (33) is a
subgradient of G at 6 [25].

Remark 1: The computational procedure derived from the
CCP is simple, but still requires the computation of an n-
dimensional integral due to the expectation operator in (33). Two
things may occur: 1) We know the PDF of the measurement
vector X, and the dimension n is small enough to allow for
efficient numerical computation of the expectation; 2) we do
not have access to the PDF or the dimension n is prohibitively
large, but we have access to a (sufficiently large) dataset of
i.i.d. samples from fx. The latter scenario will be explored in
Section V.

D. lllustrative Example

In this example, we consider the exact computation of (33) for
a system with n = 2 with sensors. Each sensor observes a com-
ponent of a bivariate source X = (X7, X5).Let X be distributed

according to the following mixture of bivariate Gaussians:

e (B ) Bl )

Assuming that we did not know the number of local minima,
we used the algorithm in (19) with 1000 random initial condi-
tions (°) € R?, and retain the resulting #* with the best value.
In our case, we obtained

6* = (+0.0045, +1.5900) (35)

with an associated value of J(6*) = 0.8065. Therefore, the
optimal scheduler is given by

w(z) = (36)

1 if o1 — 0.0045| > |zo — 1.5900|
2 otherwise.

To compare the performance of the observation-driven sched-
uler, consider a “blind” scheduler, ;"™ which does not make
use of the observations. Herein, p*" gives channel access to
the sensor with the largest variance. The corresponding blind-
estimators d°" output the expected value of the unobserved
random variable, i.e.,

pPid(z) = arg max Var(X;) 37)
ic{1,2}
and
i i if y; = (4, 2
gy = 7w ) (38)

In this example, the performance of the blind scheduler is

J(pPind | §0indy — min{4,1.75} = 1.75. (39)

Notice that the performance of the observation-driven scheduler
in this case is approximately 54% better than the blind-scheduler.

Remark 2: Due to the lack of convexity of the optimization
problem, we cannot guarantee that the solution obtained via the
CCP is globally optimal. In our numerical results, we generate
many candidate solutions from uniformly distributed random
initial conditions and pick the one with the best value of the
objective function. Since the CCP converges quickly due to its
constant step size, we can do this efficiently.

IV. BROADCAST NETWORK

When the wireless network is of the broadcast type, all the
estimators receive the same signal. This signal is then used as
side information to estimate the nonreceived observations. Given
that U = j, the received signals at the estimators are

yi = (4,z;), i €{l,...,n}. (40)

In this case, X; serves as side information for the estimates Xi,
1 # 7. This must be the case even if the sensors make mutually
independent observations.

Proposition 1: Consider Problem 1 over a broadcast network.
Let 4,5 € {1,...,n} such that ¢ # j. For a fixed scheduling
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policy i, the optimal estimator 4}, ; is of the following form:
T yi = (i, ;)
5;*“(531) = {

. 41)
Yi = (-77 :ij)

135 (25)
where 7);; are functions that depend implicitly on .

Proof: For a fixed scheduling policy p, the MSE objective
function implies that the optimal estimator is the conditional

mean of the measurement given the channel output, i.e., for
U=y,

07 uUhwy) =E[X; | w(X) =5, X; =a;].  (42)

If i = j, then
E[X; | wX)=14X;, =1 =u. (43)

If ¢ # j, then
EX | n(X) = 4. X =) Sny(ay). @4)
|

Remark 3: Without making any assumptions on the prob-
abilistic model or the scheduler, there is nothing we can say
about the structure of the optimal representation functions 7);;.
In fact, even if the observations are jointly Gaussian, the optimal
representation functions may be nonlinear [18]. To obtain a
tractable finite-dimensional optimization problem over a broad-
cast network, we will constrain the estimators to the class of
piece-wise affine functions.

Definition 2 (Policies for Estimation Over Broadcast Net-
works): An estimation policy for the ith estimator in the broad-
cast network case is a function parameterized by weights w;; €
R and biases b;; € R, such that

Sily) =4 Fo=(m) )
wijxy + b if y; = (4,x;) and j # 4.

We are trading off optimality for tractability by constraining
the class of estimators to be piece-wise affine, and performing
the optimization within that class. The total number of opti-
mization variables in this version of Problem 1 is equal to the
number of parameters used to describe all the estimators. In
this case, this number is d = 2n(n — 1). Therefore, the number
of variables scales quadratically with the number of sensors, as
opposed to the the linear number of variables in the unicast case.
Nevertheless, the number of variables in our algorithm scales
polynomially in the number of sensors, and it is still manageable
for applications with a large number of sensors. Therefore, the
collection of estimation policies § for Problem 1 is characterized

by 6 € R¢
wig| ., .
M

(46)

Theorem 3 (Difference-of-Convex Decomposition—
Broadcast Case): If the estimators in Problem 1 use policies
of the form in Definition 2, the objective function in (8) admits
the following decomposition as a difference of two convex

gL vec(1,...,0,), where 0; L Vee ({

functions:

n

J(us,6) =E Z Z(Xi — (wie Xy + bir))?

0=1 i£L

— max
je{l,...,n

} DD (X — (wie Xy +bi))®
0£5 e
47
Proof: For a fixed collection of estimation policies of the form
given in Definition 2, i.e., for a fixed vector 6 € R?, and using the

law of total expectation, the cost function in (8) can be expressed
in integral form as follows:

J<u,6>=i[/m

j=1

Z (zi — (wijz; — bz‘j))Q
i#j

x I(p(z) = j)fx(x)dx] : (48)

The optimal scheduling policy s5(x) = j if and only if the
following set of inequalities are satisfied:

Z (zi—(wij:cj + bij))Q < Z (Ii — (w,-ng + bq;g))z iy 75 7
ij il
(49)
Using this scheduler, we may rewrite the optimization prob-
lem as a function of the parameters of the estimators, 6. Thus,

J(us,0) =E

~ min
Je{l,...,n}

D (Xi = (wig X+ bi))?
i#]
def

= J(0). (50)

The following identity holds:

min Y (z; — (wijw; + b)) =Y Y (@i—(wieze + bir))?

=1 i#l

_ mJaxZ Z (x; — (wipxp + big))Q . (51)
|
Remark 4: Notice that the DC decomposition in the broadcast

case is not as neat as in the unicast case. The reason is that

for each received (7, z;), the ith estimator uses a different pair
of parameters w;j,b;;. However, as we will show next, the
decomposition in Theorem 3 is just as useful as the one in

Theorem 1. Furthermore, the optimization problem obtained for

the unicast case is a particular instance of the one obtained for

the broadcast case (if we assume that the weights w;; = 0, for

all 7 and j.).

A. Convex—Concave Procedure

For the remainder of this section, we will assume that n = 2.
The equations for n > 2 are presented in Appendix A.
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The parameter vector # which specifies the affine estimators

01 and 65 is
0 = (w1, ba1, wiz, b12). (52)

Theorem 4: Consider the unconstrained nonconvex optimiza-
tion problem:

min J(8) = F(6) — G(6) (53)
OcR4
where
F(O)CE [(X1— (w12 X5 4 b12))*+ (X2 — (w21 X1 + b21))?]
(54)
and
G(Q) défE {max {(X1 - (’UJ12X2 + blg))2 ,
(X9 — (w1 X1 + b21))2H . (55)

Let g be any subgradient of the function G. One such subgra-
dient is given in eq. (56) shown at the bottom of this page. Let
A and b be defined as

[E[X?] E[Xi] 0 0
AdéfQ ]E[Xﬂ 1 0 0 (57)
0 0 E[X3] E[X
0 0 E[X5] 1
[E[X71X5]
piery | ElXa] (58)
E[X1X5]
L E[Xi]
The dynamical system described by the recursion
g+ — A1 (g(e(k>) + b) (59)

converges to a local minimum of .J(6).

Remark 5: Under the assumption that the observations at the
sensors X7 and X5 are (non-deterministic) random variables
with finite first and second moments, matrix A is always invert-
ible.

Proof: Using the CCP to the minimization problem in (53)-
(55), we have

g+ = arg min {F(Q) — Glafine (0; 9(’“))} (60)
HcR4

where G e 18 defined in (20). The unconstrained convex opti-

mization problem in (60) can be solved by using the first-order

optimality condition, which in this case has a unique solution.

Computing the gradient at 0* yields

AG* —b— g(6™)) = 0. (61)

Solving for 6* yields the dynamical system in (59). The conver-
gence to a local minimum is guaranteed by the CCP. ]

Remark 6: The computational bottleneck in our algorithm
comes from the fact it requires the computation of two-
dimensional integrals with arguments that involve indicator
functions. These are numerically hard to deal with and may lead
to slow convergence rates. Often, the integral may not converge
at all, leading to poor performance. The situation is further
complicated when the number of sensor-estimator pairs is large.
However, the most crucial observation is that the algorithm’s
overall structure does not depend on the distribution of the data.

B. Relationship With Subgradient Methods

The algorithm of (56) can also be put in a form that resembles
a subgradient method as follows:

pUFD — gtk) — A=15(9R), (62)

As opposed to the algorithm obtained for unicast networks,
there is not a scalar step size. The subgradient j(#(*)) is instead
multiplied by the matrix A ~!. Therefore, the “step size” corre-
sponds to the spectral radius of A~!, which is still a constant.
However, the inspection of A suggests that the rate at which
the algorithm converges to a local minimum depends on the
variances of X1,...,X,. The larger the variances, the slower
the convergence rate.

Corollary 1: The step size « of the algorithm in (56) is the

spectral radius of the inverse of A defined in (57): « o p(A~1).

C. lllustrative Example

Consider the observation-driven scheduling in a system with
n = 2 sensors over a broadcast network. Each sensor observes
a component of a bivariate source X = (X7, Xs). Let X be
distributed according to the same mixture of bivariate Gaussians
of (34). Running the recursion in (59) for 1000 random initial
conditions, 0(0), and retaining the solution with the best value,
we obtain

0* = (0.4238, 0.2151, —0.2390, 0.0624) (63)
with J(0*) = 0.5276. Therefore, the optimal scheduler is given
by

1 if o1 4+ 0.2390z2 — 0.0624|
> |zg — 0.4238z1 — 0.2151]
2 otherwise.

w(z) = (64)

Comparing the performance of the optimal scheme obtained
for aunicast network with the one obtained here for the broadcast
network, we observe an improvement of 34.58%. This is possible
due to the additional side information provided by the broadcast

X1 (
(X2 — w1 Xy —bo1)l

g(0) = —2E
(©) Xo(X1 —wi2Xs — bi2)1

(
(
(
(

Xo — w1 X7 — b21)1(| X7 — w12 Xa — b1a| < | X2 — wo1 X1 — by |
| X1 — w12 Xo — bia| < [Xp — w21 X1 — bay
| X1 — w12 X — bia| > [ X2 — w21 X1 — bay
(X1 — w12 Xo — b12)1(| X1 — w12 Xo — bia| > [Xo — wo1 Xy — boy |

)
)
) (56)
)



732 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 8, NO. 2, JUNE 2021

channel to all the estimators at every transmission. However,
this comes at the price of a more complex optimization problem
involving a larger number of optimization variables.

V. DATA-DRIVEN SENSOR SCHEDULING

The main challenge in using the techniques developed in
Sections III and IV is that, in practice, we often do not have
access to the PDF fx. Even when the PDF is available, the
exact numerical computation of n-dimensional integrals con-
strains the techniques to small values of n. The examples in
the previous section for n = 2 were chosen to provide insight
on the techniques, and ease the visualization of the landscape of
the loss function in the unicast case, as well as allowing for exact
computation of the required expectations. In this section, we do
not assume any knowledge on fx. We assume that a dataset
D is available with NV i.i.d. samples of the PDF fx. Instead of
solving Problem 1, we solve a version of the problem where
the expectations are replaced by their empirical means. We shall
refer to this approximation as the empirical risk minimization
(ERM) problem [26].

A. Convergence Results

Consider the expected cost

J(6) € (0. X)] (65)
and its associated empirical mean approximation
N
)£ Z (66)

where D = {z(k)}_, are ii.d. samples from fx. From
here on, the functions J (6, =) are called sample functions. When
the size IV of the dataset D is large, we would like the optimal
value of the approximated function Jy to converge to that of
the true objective function J. The critical condition for this
convergence is a uniform version of the strong law of large
numbers (ULLN), which we state below:

J(O) 50, N = oo

sup |Jp(0) — 67)
e

where © = dom J.

To determine if the empirical mean approximation is appro-
priate, we need to prove that the objective functions in Section IIT
and IV satisfy the ULLN.

Definition 3: The function J(6,x), § € ©, is dominated by
an integrable function if there exists a non-negative valued mea-
surable function 7'(z) such that E[T(X)] < +o0 and for every
0 € O the inequality |J(0,z)| < T'(x) holds with probability
one.

Proposition 2 (Proposition 7, p. 363 in [10]): Let © be a
nonempty compact subset of R? and suppose that

1) J(0, ) is continuous on O for almost every z € R™;
2) J(0,x), 0 € O, is dominated by an integrable function;
3) D = {x(k)}}_, isiid. according to the PDF fx.

Then, the expected cost function J(#) is finite valued and
continuous on ©. Moreover,

P <sup |Jp(0) — (68)

JO)| — 0) =
0cO

Remark 7: Although both optimization problems are uncon-
strained, they can always be constrained to a compact ©. For
example, we may let © = {# € R? | |02 < C}, with a very
large C' < +o0.

Theorem 5: Let the objective function J(6) be defined as in
(14). Let the sample function be defined as follows:

J(0,2) < |z = 0]13 — |l — 0] (69)
If the moments of first and second order of the random vector
X ~ fx are finite, then the ULLN in (67) is satisfied.

Proof: The function (14) can be expressed as
J(0) =E[J(0,X)], where J(#,x) is given in (69). The
sample function J(0,z) is the difference of the squares of
the 2-norm and the oo-norm, each of which is continuous.
Therefore, the sample function .J(#,z) is continuous in 6.
Furthermore,

J(0,2) < |lz— 0|3 (70)

Le t@def{g € R™ | ||0]]2 < C}, where C' < 4o00. From the tri-

angle inequality applied to the right-hand side of (70), we have

J(0,2) < (|lz]l2 + ©)* = T(x). (71
Under the assumption that the moments of first and second order
of the random vector X ~ fx are finite, we have E[T'(X)] <
+o00. Therefore, under the i.i.d. assumption on the dataset D,
Proposition 2 implies that ULLN holds. |

Theorem 6: Let the objective function J () be defined as in

(50). Let the sample function be defined as

wuxé + sz))

PYMC

U#£7 i#L

9 .Z‘ defzz

=1 i£l

— max

1 bl b
je(l,..on) (wijze + )

(72)

where {w;y, b; } are components of the parameter vector 6 € R
defined in (46). If the moments of first and second order of the
random vector X ~ fx are finite, then the ULLN in (67) is
satisfied.

Proof: The continuity of the sample function (72) can be
established by expressing .J (6, ) as the difference of squares of
a Frobenius norm and the oo-norm of a particular linear map,
and their respective continuities. We omit this step for brevity.
Define wyy = 1 and by = 0, ¢ = {1,...,n}. Then,

J0,z) <|jz-1T - (Wo(1

a2 )+B) 7 (73
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where the operation o denotes the Schur product between two
matrices, and

with N i.i.d. samples from an unknown PDF fyx. Define the
ERM problem:

N
w11 Win b1 bin i def 1
minimize Jp(0) = — Z J (0, x(k)) (80)
w ,BY | (74) 0c6 Ni=
Wn1 Wnn bnl bnn where
. . } . . : : |z — 0|3 — ||z — 0]|% (unicast)
Bounding the right-hand side of (73) using the triangle inequality n )
twice, we h _ (i — (wijwe + big))” —
wice, we have J(0,z) = e;z;&ze J
2 (s )2
JO,2) < (o 17|+ [Wo (1-2)|r+[Blr) . (79 jomax gj % (i — (wijwe + bir))”  (broadcast).
(81)

The following inequality for the Schur product of two matrices
holds [27, Fact: 9.14.33, p. 675]:

IWo (1 ah)|r < |[Wr-|[1-2T|p. (76)
Suppose that © {9 € RY | |[W || < C1, | B < Ca}, with
C1,C5 < +00. Then,

J(0,2) < (n(1+ C)|X |2 + C2)* ET(X).  (77)
From the assumption on the moments of first and second order of
the random vector X ~ fx, we have E[T'(X)] < +o00. There-
fore, under the i.i.d. assumption on the dataset D, Proposition 2
implies that ULLN holds. |

Remark 8 (Sample complexity): Theorems 5 and 6 are im-
portant because they allow us to estimate the optimal solution to
Problem 1 using the solutions to the approximate problem when
the number of samples in the dataset IV is large enough. An ERM
problem solved to d-optimality gives the e-optimal solution to
the corresponding true problem with probability at least 1 — «
if the sample size IV satisfies the following inequality [10]:

1202

2DL
—5)2 (dlog (ﬁ) — log a> (78)

N >
= le=

where D is the diameter of set ©, § < ¢, the objective func-
tion J(#) is assumed to be L-Lipschitz continuous on ©, d
is the dimension of the parameter vector 6, and o2 is the
maximal variance of certain differences between values of the
approximate objective function Jp(6). This sample complexity
bound is overly conservative because it holds under very general
assumptions on the cost function, and does not yield practical
values of N. Under very modest values of € and § (e.g. € ~ 1073
and § ~ 10~%), the right-hand side of (78) could easily reach
the hundreds of millions samples. Moreover, estimating the
Lipschitz constant of J and the variance o is a challenging
problem on their own right. However, we empirically observed
in Section V-D that very good approximate solutions can be
found using relatively small training datasets.

B. Approximate CCP

Consider a dataset D where

D= {z1(k),...,zn(k)}r_; (79)

When applied to the ERM problem, the CCP operates exactly
the same as before, but with the advantage that computing
a subgradient involves evaluating empirical means instead of
computing n-dimensional integrals. The approximate CCP re-
cursions become

N
Lan(9k) 1 k icast
gU+1) — 59p(0") + & kzlx( ) (unicast) @2

A (gp(0%)) + bp)

In the 2-D broadcast case, the matrix Ap and vector bp are
given by

(broadcast).

Ap =

M=

2
N

>
Il

1

[21(K)z2(k)
za(k)

1 (k)2 (k)
1 (k)

The expressions for the n-dimensional case are given in Ap-

pendix A. Finally, gp is a subgradient of appropriate Gp (unicast
or broadcast) computed as follows:

bp = (84)

N
k=1

2w

N

gp(0) = % Z subgrad (0;z(k)) .
k=1

(85)

The algorithm above converges to a local minimum fp of
the ERM objective function Jp, and not of the original cost .J.
However, due to the ULLN proved in Theorems 5 and 6, when
N is sufficiently large, Jp is approximately equal to .J, and the
point fp will be a good estimate of a locally optimal solution to
the original problem.

C. Learning Framework

The approximate CCP algorithm described in the previous
section is a heuristic, i.e., since the sample functions are non-
convex in ¢, we cannot guarantee that a given candidate solution
Op for Problem 1 is a global minimizer. However, it is possible to
produce a confidence interval on the optimality gap with respect
to any candidate solution by solving instances of the ERM prob-
lem using global optimization solvers. For sample functions that
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admit a DC decomposition, the branch-and-bound method [28]
can be used to solve the ERM problem to a prescribed accuracy.

Suppose that we have access to a training dataset D and M
validation datasets 7™, m = {1,..., M}, each with N i.i.d.
samples from fx. From the training dataset D, we compute a
candidate solution #p using the CCP on the ERM problem in
(80). Let the optimality gap be defined as

gap(fp) < E[J (6p, X)] — J* (86)

where J* is the unknown global minimum of Problem 1. Mak
et al. [29] have shown that

ap(0) < B| 55 27 (I, X(0) ~ mjn 5 -7 0. X(0) |
k=1 k=1

87
where X (k) are i.i.d. random variables with density fx.
Define the random variable Uy as a function of {X (k)}_,
as follows:
w1l N | X
Uv'= 5 D7 (0, X (k) —min = > T (0, X (k). (88)
k=1 k=1
From M i.id. batches of data 7™ = {z™(k)}}_,, where
m ={1,..., M}, we form an estimate of the upper bound to
optimality gap as follows:

| M
adl = i > uR (89)
m=1
where
w1 & B 1N
ul = N Z J (bp,z™ (k) — Inein N Z J(0,2™(k)).
k=1 k=1
(90)
From the Central Limit Theorem, we have
VM (6} —E[Uy]) <5 N(0,0%), as M =00 (91)

where o7, = Var(Uy). Based on the asymptotic normality of
the estimator @4/, we have the following high probability upper
bound on the optimality gap:

_ A1 0
P (gap(@D) ga%uM) >1-a (92

vM
where ty;_1 o is the a-critical value of the ¢-distribution with
M — 1 degrees of freedom, and &y is the sample variance
estimator computed based on {u}M_,.

To validate the solution fp, we first choose a confidence level
a, then we must solve M global optimization problems

N
* : 1 m
JTmzngn]—nglJ(G,m (k)), m={1,....M}. (93)

Computing the value of each of the empirical mean approximate
objective functions at 6p, we have

2

J (Op,a™(k)), m={1,...,M}. (94)

TABLE |
TRAINING AND VALIDATION RESULTS FOR THE EMPIRICAL RISK
MINIMIZATION FROM N SAMPLES FOR UNICAST NETWORKS

N 01 0> Jp(0) gap() Ti(s) Tu(s)

102 —0.1343 +1.6010 0.7915 4.4 x 102 0.08 0.08

102 40.1507 +1.6322 0.7824 1.3x10"2 0.33  0.51

104 +0.0076 +1.5964 0.8059 3.6 x 10~* 280 6.45

105  +0.0068 +1.5623 0.8057 2.1 x10~* 26.4 583
TABLE Il

TRAINING AND VALIDATION RESULTS FOR THE EMPIRICAL RISK
MINIMIZATION FROM N SAMPLES FOR BROADCAST NETWORKS

N 2! 02 Jp(0)  gap(0)  Ti(s) Tv(s)
107 [l | rooae| 04354 9.9x 1072 011 0.27
10% -18:3382- -:8:811333- 0.5603 1.1x 1072 0.63 1.65
10 -18:3(2)22- -;8:33;3- 0.5387 6.5x107% 3.93 13.9
10° -igéé‘g igﬁggg- 0.5304 6.9 x10~*% 30.2 168.0

Finally, we compute the upper bound on the optimality gap

thii—1,0 - OU
—

If this upper bound is within a target margin of error tolerance,
we declare fp as the learned the optimal parameter for Problem
1, and use them to recover the jointly optimal scheduler and
estimators. Otherwise, we must increase N or decrease o,
and repeat the process. However, the necessity of solving M
global optimization problems for nonconvex, nonsmooth ERM
problems, limits our ability to increase N due to computational
complexity issues.

ad + (95)

D. lllustrative Examples

1) Synthetic Data: Consider a dataset D consisting of NV
i.i.d. samples from the bivariate Gaussian mixture model of (34).
We use the approximate CCP to compute candidate solutions to
Problem 1 in the unicast and the broadcast cases. Then, we use
the validation framework described in the previous section to
compute the probabilistic bound on the optimality gap between
the candidate solution found using CCP, and the unknown exact
optimal solution to Problem 1.* We have chosen o = 0.05. Our
numerical results are shown in Tables I and II. For each row
of the tables, we have used M = 100 validation datasets. We
recorded the time in seconds to train via the CCP in 7}, and the
average time to validate (globally solving the ERM based on
the validation sets 7™, m = {1,..., M }), via the generalized
pattern search method [30] in 75.

2) Real Data: In this example, we use our algorithms and
learning framework to solve Problem 1 using a real dataset
containing measurements of temperature and humidity sensors
collected by a wireless sensor network of a smart-home. This
dataset is publicly available,” and more details and analysis can

4The code used to obtain the results in this section is available at https://
github.com/mullervasconcelos/DDSS.

5The complete dataset can be dowloaded from https://github.com/LuisM78/
Appliances-energy-prediction-data.
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Fig. 2. Empirical distribution and correlation analysis of the tempera-
ture and relative humidity in rooms 1 and 2 of the dataset in [31].

be found in [31]. The relevant portion of the dataset to our article
consists of n = 16 variables corresponding to the temperature
(in Celsius) and relative humidity in each of the home’s eight
rooms. The empirical distribution and the correlation structure
of the observations, and the fact that the dimension of the
dataset is of moderate size, provide a more realistic application
scenario than the previous example. Fig. 2 shows the empirical
distributions and correlations for the temperature and relative
humidity in rooms 1 and 2. In this dataset, there is a total of
19 735 samples, which we randomly permuted and split into
21 batches of N = 936 samples. One batch is used for training,
and M = 20 batches are used for the validation analysis. It is
noted that the data was collected as a time-series and the samples
are not i.i.d.; however, since our problem is akin to a one-shot
regression, the temporal dependence does not play a significant
role. The random permutation used before the batch splitting
allows each batch to have approximately the same empirical
distribution.

For the training phase, we used the recursion in (82) of the
CPP for the unicast and broadcast networks. In both cases,
we have initialized the CCP at #(°) = (0,...,0). The conver-
gence criterion used is the function tolerance A = 10~%, where
A T (00)) — Jp(pt+D),

Unicast: In the unicast case, the dimension of the parameter
vector is d = n = 16. The CCP was used to train our model
based on the training data batch D, and we obtained a tentative
solution fp in T}, = 0.41 s, with an associated cost of Jp(fp) =
143.44. The blind strategy consists of transmitting the data from
the sensor whose observations have the largest sample variance,
which has a cost of J5"d = 167.45. Our observation-driven
scheduling and estimation strategy provides a gain of 14.34%
over the blind strategy. More importantly, the dimension d = 16
allows us to compute the following high probability bound on
the optimality gap: P (gap(fp) < 0.5573) > 0.95. This bound
was computed using the procedure described in the previous
section. To compute the upper bound, we used Matlab’s global
optimization function pat ternsearch, which can efficiently
handle nonsmooth objective functions. The average validation

time is 7, = 11.81 s, with a standard deviation of 1.07 s. Based
on the optimality gap above, we claim that we have effectively
learned the optimal parameters for Problem 1 in the unicast case.

Broadcast: In the broadcast case, we used the CCP to obtain a
tentative solution fp with a value Jp(p) = 31.2196. The total
training time was 7; = 180 s. Note that the dimension of the
broadcast problem is d = 2 x 16 x 15 = 480, and that this is
a nonconvex, nonsmooth unconstrained optimization problem.
The number of variables renders the optimization with any of
the built-in global optimization solvers in Matlab, such as the
Genetic Algorithm, Simulated Annealing, and Pattern Search,
infeasible. Therefore, it is currently impossible to implement the
validation analysis in this case. We propose to use fp as a warm
start to the CCPs on Jym, m € {1,..., M}. If each O7n is a
global minimum, we have the following high-confidence upper
bound on the optimality gap: P (gap(fp) < 5.3172) > 0.95.

Notice that Jp(6p) = 31.22 corresponds to a gain of ap-
proximately 81% over blind scheduling, and 78% relative to
the performance over the unicast network. This large gain is
due to the high correlation among temperatures and humidity
in different rooms. Obviously, the performance gain comes at
the price in computational complexity, and the current inability
of performing a proper validation analysis using global opti-
mization solvers on nonconvex, nonsmooth large-scale objective
functions. The average validation time using the CCP heuristics
is Ty, = 131 s. The recursion converges faster in this case due to
the warm start at 6.

VI. CONCLUSION

This article aimed at establishing the foundations for schedul-
ing and estimation of sensor measurements when information
about the probabilistic model of the problem is imprecise, miss-
ing, or incomplete. We considered the design of observation-
driven schedulers for a remote sensing system for which the
random measurements at the sensors were jointly distributed
according to an unknown PDF. Such situations occur in many
practical applications where the probabilistic model is not
known a priori or whose underlying physical processes that
generate the data are difficult to obtain. We first derived results
and accompanying algorithms that hold for an arbitrary joint
PDF, and later we used them in a data-driven framework where
training and test datasets were available to design the parameters
of a scheduler with performance close to the optimal ones with
high probability.

The framework proposed herein assumed that the wireless
network can be of two types: unicast or broadcast. For each
case, we showed that the optimization problem is nonconvex,
but admits a useful DC decomposition, which allowed us to use
the CCP to obtain very efficient descent algorithms that were
guaranteed to converge to a local minimum of the objective func-
tion. The structure of both algorithms was independent of the
measurements’ joint PDF and can be approximated using data
by replacing expectations with their corresponding empirical
means. We proved that the two empirical mean approximations
converge to the expected costs uniformly almost surely, which is
the critical condition for learning the optimal model parameters
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from data. Moreover, both algorithms can be interpreted as
subgradient methods with constant step sizes with guaranteed
convergence properties. Such methods are not necessarily con-
vergent if used on nonconvex objective functions.

There are many opportunities for future research that branch
out from this work. One possible problem is to devise an online
learning scheme where the data becomes available one sample
at a time to the system designer, which adaptively reconfigures
the scheduling and estimation decision rules over time, instead
of using batches of data as it was done here. In the online setting,
important research questions arise from the possible lack of
synchronization and different timescales across system com-
ponents. It would also be interesting to assume other classes of
parametrizable nonlinear estimators for the optimization prob-
lem over broadcast networks. For example, we are interested in
the following question: can we train neural networks to serve as
estimation policies at the estimators? Moreover, can we find neu-
ral network architectures that will preserve a DC decomposition
and take advantage of the CCP? The problem of scheduling k
out of n sensors can also be posed and solved by augmenting the
objective function with a regularizer which enforces k-sparsity.
Remarkably, such regularizers admit a DC decomposition [9].
Finally, we suggest an entirely new framework where data is
used in a distributionally robust framework, where a set of PDFs
consistent with the observed data is constructed and a minimax
optimization problem is solved as in [32]. We are particularly
interested in using techniques from robust sample average ap-
proximation [33], which has both finite sample and asymptotic
performance guarantees for a broad class of problems.

APPENDIX A
GENERAL BROADCAST CASE

The results in Section IV hold for an arbitrary number of
sensors. In this Appendix, we show the structure of the matrices
and vectors that defines the CCP algorithm in the general case.
Recall that §*+1) = A=1(g(6¥)) + b), where

A =2 diag(A1,...,A1,...,An,...,A) (98
n—1 n—1
where
E[X?] E
A= 5] X5 and b =vec(by,...,b,) (99)
E[X;]
with
EX:X,]]
b; =2 vec E[Xi]J i g (100)
The subgradient g(#) is computed by g(6) = E[g(6; X)],

where g(0; ) can be computed using Algorithm 1 as g(6; ) =
subgrad(f; z) by substituting VoG (6; ) with

VQGJ(G, {E) = VeC(kl, ce. 7kjfla 0, kj+1, ey kn) (101)

where

xg(ﬂ?i - (wifxé + bif))

) A~V
(21 — (wgpze + b)) |7

k), = —2-vec
(102)
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