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Data-Driven Sensor Scheduling for Remote
Estimation in Wireless Networks

Marcos M. Vasconcelos and Urbashi Mitra

Abstract—Sensor scheduling is a well-studied problem
in signal processing and control with numerous applica-
tions. Despite its successful history, most of the related
literature assumes the knowledge of the underlying prob-
abilistic model of the sensor measurements such as the
correlation structure or the entire joint probability density
function. Herein, a framework for sensor scheduling for
remote estimation is introduced in which the system design
and the scheduling decisions are based solely on observed
data. Unicast and broadcast networks and corresponding
receivers are considered. In both cases, the empirical risk
minimization can be posed as a difference-of-convex op-
timization problem, and locally optimal solutions are ob-
tained efficiently by applying the convex–concave proce-
dure. Our results are independent of the data’s probability
density function, correlation structure, and the number of
sensors.

Index Terms—Decision theory, estimation, networked
control systems, optimization, quantization, statistical
learning.

I. INTRODUCTION

S
ENSOR scheduling is a classical problem in signal pro-

cessing and control with a very rich history. The traditional

static sensor scheduling problem consists of selecting a subset of

k sensors among a group of n sensors such that the expected dis-

tortion between the random state-of-the-world and its estimate is

minimized [1]. This class of problems has many applications in

engineering, especially in sensor networks in which the number

of sensors allowed to communicate with a remote fusion center

is limited due to bandwidth constraints.

Consider the system described in the block diagram of Fig. 1,

where n sensor–estimator pairs share a wireless network, which

can operate either in unicast or broadcast modes. Each of the
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Fig. 1. Schematic diagram for the remote sensing system with n
sensor–estimator pairs over a bandwidth constrained wireless network.

n sensors observes a distinct random variable and reports it

to the scheduler. The scheduler selects a single random vari-

able according to a scheduling decision rule and transmits it

over the network. If the system is in unicast mode, only the

intended estimator receives the sensor’s observation, and the

remaining estimators observe an erasure symbol. If the system is

in broadcast mode, all the sensors receive the same transmitted

measurement. Upon seeing the network output, each receiver

forms its estimate according to an estimation policy. The system

designer’s goal is to select scheduling and estimation policies

such as to minimize the mean-squared error (MSE) between the

observations at the sensors and the estimates at the receivers.

This problem lies in the category of team decision problems

with a nonclassical information structure, which are, in general,

very difficult to solve due to coupling between the scheduling

and estimation policies known as signaling [2].

In addition to the classical applications of sensor scheduling,

the framework proposed here can be used to model real-time

communication between the Internet of Things (IoT) devices.

Due to the massive number of devices and the very high demand

for communication resources, the scheduler selects the pieces of

information that are most relevant for a given task and discard

the others, keeping the network data flow under control but at

the same time achieving excellent system performance. A more

specific application of interest is in systems known as wireless

body area networks for remote health care monitoring [3]–[5]. In

these systems, the sensors collect heterogeneous biometric data

and transmit them to a mobile phone, which acts as a scheduler.

To preserve battery life and meet bandwidth constraints, the

mobile phone selects one of them to transmit it to one or multiple

destinations.
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To the best of our knowledge, most of the literature in sensor

scheduling assumes that the joint probability density function

(PDF) of the random variables observed at the sensors is known

a priori to the system designer. However, this is a restrictive

assumption because, in most practical applications, this infor-

mation is typically not available. The main challenge we address

in this article is to design such a system in the absence of

knowledge of the joint PDF, but in the presence of a dataset

of independent and identically distributed (i.i.d.) samples, a

standard assumption in statistical learning theory [6]. The results

and algorithms presented here combine ideas from quantization

theory [7], modern techniques in nonconvex optimization the-

ory [8], [9], and classic results in stochastic programming [10]

into a new class of sensor scheduling problems. The findings

herein are meant to provide a guide to the art of designing such

complex data-driven scheduling for remote estimation systems.

The main contributions of this work are as follows.

1) We provide a systematic data-driven approach for the joint

design of scheduling and estimation rules for unicast and

broadcast networks.

2) Our algorithm exploits the decompositions of nonconvex

objectives as a difference-of-convex (DC) functions. It

uses the convex–concave procedure (CCP) to find locally

optimal solutions with a fast convergence rate.

3) Our algorithms are universal, working for any joint PDF

that generates the dataset, and for any number of sensors.

4) We establish a connection between our algorithms and

subgradient methods. The main advantage of our algo-

rithms is that we do not need to select a step size at every

iteration in an ad hoc manner. Our step sizes are constant

and arise naturally from the CCP.

A. Related Literature

With the pervasiveness of data in the design of modern

autonomous networked systems, we are experiencing the pro-

liferation of machine learning techniques in control and esti-

mation [11]. These emerging technologies have found applica-

tions in problems with unknown stochastic observations and

disturbances. Robust control and estimation theory has been

successful in designing systems to perform well under model

uncertainty [12]. However, the ability to collect and analyze

large datasets has allowed us to learn, with high probability, the

model parameters of neural networks used to implement optimal

policies without knowing the problem’s underlying probabilistic

model.

In the modern literature of sensor scheduling and control

over unknown wireless channels, many articles have tackled

the problem of determining an optimal scheduling policy when

the statistical model of the measurements is known, but the

wireless channel is uncertain [13]. Wu et al. [14] considered

the sequential scheduling of a single sensor over a channel

with unknown packet-drop probability. The strategy consists in

estimating the unknown parameter and adapting the scheduling

policy to the current estimate of the packet-drop probability.

Leong et al. [15] considered a similar setup of sensor scheduling

in a system with multiple sensors and a single estimator by

formulating the problem as a Markov decision process and

solving it using the deep Q-network technique. Li et al. [16]

studied decentralized scheduling in a remote estimation system

with multiple sensors and multiple estimators. They formulated

the problem as a Markov game and solved it using the concept

of Nash Q-learning.

Our problem formulation differs from the existing results in

the literature in a fundamental aspect. While the references above

consider an unknown channel and a known probabilistic model

for the sensor observations, we consider the reverse situation,

in which the channel is known, and the underlying statistics

of the observations are unknown. Another difference between

the works mentioned earlier is that they are sequential, and our

problem formulation is static. Static sensor scheduling problems

also play an important role in the literature, e.g., [1], [17] and

references therein, both of which assume complete knowledge

of the probability distributions.

Our problem formulation is related to the observation-driven

sensor scheduling framework introduced in [18], where the

underlying probabilistic model is Gaussian. The subsequent

work [19] considered a sequential problem formulation with an

energy-harvesting scheduler for sensors making independent ob-

servations distributed according to the general class of symmet-

ric and unimodal PDFs. In this work, we study the data-driven

version of [18] under minimal assumptions on the probabilistic

model, namely, finite first and second moments. Unlike [1],

[17]–[19], we do not make any assumptions on correlation,

symmetry, and modality of the observations. Our main goal is to

design systems suitable for any joint PDF without assumptions

on the sensor observations’ correlation structure. By relating the

remote estimation problem with statistical learning theory [6],

we provide a design framework for choosing a scheduler with

performance close to the optimal with high probability.

Our problem falls in the broad area of machine learning

for regression/estimation. The learning algorithm we use is a

particular form of (controlled) piece-wise linear regression. The

algorithm used to train the scheduler is the CCP, which we

can map into a stochastic subgradient method with a specific

constant step-size (or step-matrix, in the broadcast case). Our

iterative schemes converge to a local minimum of nonconvex,

nonsmooth objective functions. This is the first time the CCP is

used in a sensor scheduling problem.

II. PROBLEM FORMULATION

Consider the system depicted in Fig. 1 with n ≥ 2 sensor–

estimator pairs communicating via a constrained wireless net-

work. We assume that the data observed at the sensors are

realizations of the following continuous random vector

X
def
=(X1, X2, . . . , Xn) (1)

which is distributed according to an arbitrary joint PDF, fX .

We also assume that each Xi, i ∈ {1, . . . , n} has finite first and

second-order moments, which are the only assumptions on the

underlying probabilistic model of the problem.

The sensors communicate the measurements to a scheduler.

Due to bandwidth constraints, we assume that only one sensor
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measurement can be transmitted at a time. The scheduler’s role

is to choose which of the sensor measurements is transmitted

over the network to its destination. The scheduling decision, u ∈
{1, . . . , n}, is taken according to a policy µ : R

n → {1, . . . , n}
such that

u = µ(x1, . . . , xn). (2)

When a sensor is chosen by the scheduler, a communication

packet s containing its measurement and identification number

is sent over the network, i.e., if u = j, then

s = (j, xj). (3)

In this work, we will consider unicast and broadcast networks.

In the case of a unicast network, only the estimator associated

with the chosen sensor receives the transmitted measurement.

The remaining estimators receive a special erasure symbol de-

noted by ∅. In other words, if u = j, then

yi =

{

(j, xj), i = j

∅, i �= j.
(4)

When the scheduling policy is properly designed, the erasure

symbol also conveys valuable information about xi to its cor-

responding estimator. In the case of a broadcast network, the

packet transmitted by the scheduler is received by all the esti-

mators, i.e., if u = j, then

yi = (j, xj), i ∈ {1, . . . , n}. (5)

Upon receiving yi, the ith estimator uses a function δi to

compute an estimate of the ith measurement as follows:

x̂i = δi(yi), i ∈ {1, . . . , n}. (6)

We denote the collection of estimation functions by

δ
def
=(δ1, . . . , δn). (7)

Problem 1 (Observation-Driven Sensor Scheduling):

Given the joint PDF of the sensor data fX and the network

operation mode (unicast or broadcast), design the scheduling

and estimation policies µ and δ such that the following MSE

between observations and estimates is minimized:

J(µ, δ) = E

[
n∑

i=1

(Xi − X̂i)
2

]

. (8)

III. UNICAST NETWORK

In this setting, the wireless network behaves as independent

links between sensors and their corresponding receivers. How-

ever, due to bandwidth constraints, only one link may be active

at a time. The scheduler then selects which of the n links

to be active, and the remaining links are idle. However, the

observation of a silent symbol still conveys information about

the nontransmitted measurements.

Definition 1 (Estimation Policies for Estimation Over Uni-

cast Networks): An estimation policy for the ith estimator in

the unicast network case is a function parameterized by θi ∈ R

such that

δi(yi) =

{

xi if yi = (i, xi)

θi if y = ∅.
(9)

Therefore, the collection of estimation policies δ for Problem

1 is completely characterized by a vector θ ∈ R
n, where

θ
def
=(θ1, . . . , θn). (10)

Theorem 1 (Difference-of-Convex Decomposition—

Unicast Case): If the estimators in Problem 1 use policies of

the form in Definition 1, the objective function in (8) admits

the following decomposition as a difference of two convex

functions:

J(µ⋆
δ , δ) = E

[
n∑

i=1

(Xi − θi)
2

]

− E

[

max
j∈{1,...,n}

{
(Xj − θj)

2
}
]

(11)

where µ⋆
δ is the optimal scheduler for a fixed collection of

estimation policies δ, which is parameterized by the vector

θ ∈ R
n.

Proof: Using the estimators in 1 and the law of total expecta-

tion, the cost function in (8) can be expressed in integral form

as follows1:

J(µ, δ) =

n∑

j=1

∫

Rn

[
∑

i�=j

(xi − θi)
2

]

I (µ(x) = j) fX(x)dx

(12)

For a fixed δ, in other words, for a fixed θ ∈ R
n, the optimal

scheduler µ⋆
δ is determined by the following set of inequalities:

µ⋆
δ(x) = j ⇔ |xj − θj | ≥ |xℓ − θℓ|, ℓ ∈ {1, . . . , n}. (13)

This scheduler leads to the following objective function as a

function of δ:

J(µ⋆
δ , δ) = E

⎡

⎣ min
j∈{1,...,n}

⎧

⎨

⎩

∑

i�=j

(Xi − θi)
2

⎫

⎬

⎭

⎤

⎦
def
= J(θ). (14)

Themin{·} function in the argument of the expectation operator

may lead to a nonconvex objective function in (14). Also notice

that depending on the continuity of the density, the objective

function may also be nonsmooth. However, the identity holds

min
j

{
∑

i�=j

(xi − θi)
2

}

=

n∑

i=1

(xi − θi)
2 −max

j

{
(xj − θj)

2
}
.

(15)

The result follows from the linearity of the expectation

operator. �

The fact that the optimization problem admits a DC decompo-

sition is attractive because it allows efficient implementation of

the branch-and-bound method, which is guaranteed to converge

to a globally optimal solution [20]. However, the convergence

1The indicator function of a statement S is defined as

I (S)
def
=

{

1 if S is true

0 otherwise.
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of such algorithm is typically very slow for large-dimensional

optimization problems, which, in our case, would be prohibitive

for a systems with a large number of sensors. On the other hand,

the DC decomposition allows the use of a technique known as

CCP [8], [21], [22], which is guaranteed to converge to a locally

optimal solution [23], and often admits simple implementation

and fast convergence.

A. Convex–Concave Procedure

The CCP is an optimization technique used to find local min-

ima of nonconvex cost functions that admit a DC decomposition.

The advantage of using CCP over a subgradient method is that

the CCP makes use of the structure of the objective function,

which in certain cases lead to very efficient algorithms.

Theorem 2: Consider the unconstrained nonconvex optimiza-

tion problem:

min
θ∈Rn

J(θ) = F (θ)−G(θ) (16)

where

F (θ)
def
= E

[
n∑

i=1

(Xi − θi)
2

]

(17)

and

G(θ)
def
= E

[

max
j∈{1,...,n}

{
(Xj − θj)

2
}
]

. (18)

Let g be any subgradient of the function G. The dynamical

system described by the recursion

θ(k+1) = 2−1g(θ(k)) + E[X] (19)

converges to a local minimum of J(θ).
Proof: We will apply the CCP to the optimization problem in

(16)–(18). The CCP consists of approximating the nonconvex

part of J , i.e., G, by its affine approximation at a given point

θ(k) ∈ R
n:

Gaffine(θ; θ
(k))

def
= G(θ(k)) + g(θ(k))T(θ − θ(k)) (20)

where g(θ(k)) is any subgradient2 of the function G at the point

θ(k). The next point in the sequence, θ(k+1), is found by solving

the following convex optimization problem:

θ(k+1) = arg min
θ∈Rn

{

F (θ)−Gaffine(θ; θ
(k))

}

. (21)

The unconstrained convex optimization problem in 21 can be

solved by using the first-order optimality condition:

∇(F (θ)−Gaffine(θ))
∣
∣
∣
θ=θ⋆

= 0 (22)

which, in this case, has a unique solution. Computing the gradi-

ent above at θ⋆ yields

2(θ⋆ − E[X])− g(θ(k)) = 0. (23)

2A vector g ∈ Rn is a subgradient of f : Rn → R at x ∈ dom f if for all
z ∈ dom f ,

f(z) ≥ f(x) + gT(z − x).

Finally, by solving for θ⋆, we obtain the following dynamical

system:

θ(k+1) = 2−1g(θ(k)) + E[X]. (24)

The sequence of the points generated according to the dynam-

ical system above is guaranteed to converge to one of the local

minima of J [23]. �

B. Relationship With Subgradient Methods

The dynamical system in (19) is related to subgradient meth-

ods of the form

θ(k+1) = θ(k) − αkj(θ
(k)) (25)

where j(θ(k)) is a subgradient of J at θ(k). Notice that con-

vergence results for such algorithms exist under the condition

that J is a convex function and the step sequence satisfies

certain summability conditions3 that typically imply a very slow

convergence rate to a global minimum. There are no guarantees

in general that a subgradient method like the one in (25) will

converge to a local minimum if the objective function is non-

convex.

One remarkable observation is that the dynamical system

from the CCP in (19) is equivalent to

x̂(k+1) = x̂(k) − 2−1j(x(k)) (26)

where

j(x(k))
def
= ∇F (x̂(k))− g(x̂(k)). (27)

The constant step size α = 0.5 is desirable because it yields

convergence rate of O(1/k) to a local minimum despite the fact

that the objective function is nonconvex. Furthermore, even for

convex objective functions, the constant step size only guaran-

tees convergence to a point within a fixed gap of the optimal

solution; and with variable step sizes satisfying the typical

summability conditions, the convergence rate is O(1/
√
k) [24].

C. Computing a Subgradient

The dynamical system in (19) relies on the fact that at every

time stepk, we are able to evaluate a subgradient g of the function

G defined in (18). The fact that only a subgradient is required

is important because the function max inside the expectation G
is nonsmooth, which may lead to a nonsmooth G depending on

the joint PDF fX . Next, we will use weak subgradient calculus

to compute a subgradient g.

For a fixed vector x ∈ R
n, define

G(θ;x)
def
= max

j∈{1,...,n}

{
(xj − θj)

2
}

(28)

and

Gj(θ;x)
def
=(xj − θj)

2, j ∈ {1, . . . , n}. (29)

3For example, if the step size sequence {αk} satisfies

∞∑

k=0

α2

k
< ∞ and

∞∑

k=0

αk = ∞.
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Algorithm 1: Computing a Subgradient of G(θ;x).

1: procedure subgrad(θ;x)
2: G⋆ ← −∞
3: j⋆ ← 0
4: for j ∈ {1, . . . , n} do ⊲ linear search

5: G ← Gj(θ;x)
6: if G ≥ G⋆ then

7: G⋆ ← G
8: j⋆ ← j
9: end if

10: end for

11: g ← ∇θGj⋆(θ;x)
12: return g ⊲ subgradient of G
13: end procedure

Therefore,

G(θ;x) = max
j∈{1,...,n}

Gj(θ;x). (30)

The gradient of each Gj(θ;x) is given by

∇θGj(θ;x) = −2(xj − θj)ej (31)

where ej is the jth canonical basis vector in R
n.

The computation of a subgradient for G(θ;x) is done via an

algorithmic procedure, which implements a linear search. For a

fixed pair of arguments (θ;x), the subgradient is computed as

follows:

g(θ;x) = subgrad(θ;x) (32)

where subgrad is given in the procedure in Algorithm 1.

Finally, weak subgradient calculus states that

g(θ)
def
= E [g(θ;X)] (33)

belongs to the subdifferential ∂G(θ), where the expectation is

taken with respect to the random vector X . Thus, (33) is a

subgradient of G at θ [25].

Remark 1: The computational procedure derived from the

CCP is simple, but still requires the computation of an n-

dimensional integral due to the expectation operator in (33). Two

things may occur: 1) We know the PDF of the measurement

vector X , and the dimension n is small enough to allow for

efficient numerical computation of the expectation; 2) we do

not have access to the PDF or the dimension n is prohibitively

large, but we have access to a (sufficiently large) dataset of

i.i.d. samples from fX . The latter scenario will be explored in

Section V.

D. Illustrative Example

In this example, we consider the exact computation of (33) for

a system with n = 2 with sensors. Each sensor observes a com-

ponent of a bivariate sourceX = (X1, X2). LetX be distributed

according to the following mixture of bivariate Gaussians:

X ∼ 3

4
N

([

0

0

]

,

[

1 0

0 1

])

+
1

4
N

([

4

2

]

,

[

1 0.4

0.4 1

])

.

(34)

Assuming that we did not know the number of local minima,

we used the algorithm in (19) with 1000 random initial condi-

tions θ(0) ∈ R
2, and retain the resulting θ⋆ with the best value.

In our case, we obtained

θ⋆ = (+0.0045,+1.5900) (35)

with an associated value of J(θ⋆) = 0.8065. Therefore, the

optimal scheduler is given by

µ⋆(x) =

{

1 if |x1 − 0.0045| ≥ |x2 − 1.5900|
2 otherwise.

(36)

To compare the performance of the observation-driven sched-

uler, consider a “blind” scheduler, µblind, which does not make

use of the observations. Herein, µblind gives channel access to

the sensor with the largest variance. The corresponding blind-

estimators δblind output the expected value of the unobserved

random variable, i.e.,

µblind(x) = arg max
i∈{1,2}

Var(Xi) (37)

and

δblind
i (yi) =

{

xi if yi = (i, xi)

E[Xi] if yi = ∅.
(38)

In this example, the performance of the blind scheduler is

J(µblind, δblind) = min{4, 1.75} = 1.75. (39)

Notice that the performance of the observation-driven scheduler

in this case is approximately 54% better than the blind-scheduler.

Remark 2: Due to the lack of convexity of the optimization

problem, we cannot guarantee that the solution obtained via the

CCP is globally optimal. In our numerical results, we generate

many candidate solutions from uniformly distributed random

initial conditions and pick the one with the best value of the

objective function. Since the CCP converges quickly due to its

constant step size, we can do this efficiently.

IV. BROADCAST NETWORK

When the wireless network is of the broadcast type, all the

estimators receive the same signal. This signal is then used as

side information to estimate the nonreceived observations. Given

that U = j, the received signals at the estimators are

yi = (j, xj), i ∈ {1, . . . , n}. (40)

In this case, Xj serves as side information for the estimates X̂i,

i �= j. This must be the case even if the sensors make mutually

independent observations.

Proposition 1: Consider Problem 1 over a broadcast network.

Let i, j ∈ {1, . . . , n} such that i �= j. For a fixed scheduling
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policy µ, the optimal estimator δ⋆µ,i is of the following form:

δ⋆µ,i(xi) =

{

xi yi = (i, xi)

ηij(xj) yj = (j, xj)
(41)

where ηij are functions that depend implicitly on µ.

Proof: For a fixed scheduling policy µ, the MSE objective

function implies that the optimal estimator is the conditional

mean of the measurement given the channel output, i.e., for

U = j,

δ⋆i,µ(j, xj) = E [Xi | µ(X) = j,Xj = xj ] . (42)

If i = j, then

E [Xi | µ(X) = i,Xi = xi] = xi. (43)

If i �= j, then

E [Xi | µ(X) = j,Xj = xj ]
def
= ηij(xj). (44)

�

Remark 3: Without making any assumptions on the prob-

abilistic model or the scheduler, there is nothing we can say

about the structure of the optimal representation functions ηij .

In fact, even if the observations are jointly Gaussian, the optimal

representation functions may be nonlinear [18]. To obtain a

tractable finite-dimensional optimization problem over a broad-

cast network, we will constrain the estimators to the class of

piece-wise affine functions.

Definition 2 (Policies for Estimation Over Broadcast Net-

works): An estimation policy for the ith estimator in the broad-

cast network case is a function parameterized by weights wij ∈
R and biases bij ∈ R, such that

δi(yi) =

{

xi if yi = (i, xi)

wijxj + bij if yi = (j, xj) and j �= i.
(45)

We are trading off optimality for tractability by constraining

the class of estimators to be piece-wise affine, and performing

the optimization within that class. The total number of opti-

mization variables in this version of Problem 1 is equal to the

number of parameters used to describe all the estimators. In

this case, this number is d = 2n(n− 1). Therefore, the number

of variables scales quadratically with the number of sensors, as

opposed to the the linear number of variables in the unicast case.

Nevertheless, the number of variables in our algorithm scales

polynomially in the number of sensors, and it is still manageable

for applications with a large number of sensors. Therefore, the

collection of estimation policies δ for Problem 1 is characterized

by θ ∈ R
d

θ
def
= vec(θ1, . . . , θn), where θj

def
= vec

({[

wij

bij

]

, i �= j

})

.

(46)

Theorem 3 (Difference-of-Convex Decomposition—

Broadcast Case): If the estimators in Problem 1 use policies

of the form in Definition 2, the objective function in (8) admits

the following decomposition as a difference of two convex

functions:

J(µ⋆
δ , δ) = E

[
n∑

ℓ=1

∑

i�=ℓ

(Xi − (wiℓXℓ + biℓ))
2

− max
j∈{1,...,n}

⎧

⎨

⎩

∑

ℓ �=j

∑

i�=ℓ

(Xi − (wiℓXℓ + biℓ))
2

]

.

(47)

Proof: For a fixed collection of estimation policies of the form

given in Definition 2, i.e., for a fixed vector θ ∈ R
d, and using the

law of total expectation, the cost function in (8) can be expressed

in integral form as follows:

J(µ, δ) =

n∑

j=1

[
∫

Rn

⎛

⎝
∑

i�=j

(xi − (wijxj − bij))
2

⎞

⎠

× I(µ(x) = j)fX(x)dx

]

. (48)

The optimal scheduling policy µ⋆
δ(x) = j if and only if the

following set of inequalities are satisfied:

∑

i�=j

(xi−(wijxj + bij))
2 <

∑

i�=ℓ

(xi − (wiℓxj + biℓ))
2 , ℓ �= j.

(49)

Using this scheduler, we may rewrite the optimization prob-

lem as a function of the parameters of the estimators, θ. Thus,

J(µ⋆
δ , δ) = E

[

min
j∈{1,...,n}

⎧

⎨

⎩

∑

i�=j

(Xi − (wijXj + bij))
2

⎫

⎬

⎭

]

def
= J(θ). (50)

The following identity holds:

min
j

∑

i�=j

(xi − (wijxj + bij))
2=

n∑

ℓ=1

∑

i�=ℓ

(xi−(wiℓxℓ + biℓ))
2

−max
j

∑

ℓ �=j

∑

i�=ℓ

(xi − (wiℓxℓ + biℓ))
2 . (51)

�

Remark 4: Notice that the DC decomposition in the broadcast

case is not as neat as in the unicast case. The reason is that

for each received (j, xj), the ith estimator uses a different pair

of parameters wij , bij . However, as we will show next, the

decomposition in Theorem 3 is just as useful as the one in

Theorem 1. Furthermore, the optimization problem obtained for

the unicast case is a particular instance of the one obtained for

the broadcast case (if we assume that the weights wij = 0, for

all i and j.).

A. Convex–Concave Procedure

For the remainder of this section, we will assume that n = 2.

The equations for n > 2 are presented in Appendix A.
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The parameter vector θ which specifies the affine estimators

δ1 and δ2 is

θ = (w21, b21, w12, b12). (52)

Theorem 4: Consider the unconstrained nonconvex optimiza-

tion problem:

min
θ∈R4

J(θ) = F (θ)−G(θ) (53)

where

F (θ)
def
= E

[
(X1−(w12X2 + b12))

2+(X2 − (w21X1 + b21))
2
]

(54)

and

G(θ)
def
= E

[

max
{

(X1 − (w12X2 + b12))
2 ,

(X2 − (w21X1 + b21))
2
}]

. (55)

Let g be any subgradient of the function G. One such subgra-

dient is given in eq. (56) shown at the bottom of this page. Let

A and b be defined as

A
def
= 2

⎡

⎢
⎢
⎢
⎣

E[X2
1 ] E[X1] 0 0

E[X1] 1 0 0

0 0 E[X2
2 ] E[X2]

0 0 E[X2] 1

⎤

⎥
⎥
⎥
⎦

(57)

b
def
= 2

⎡

⎢
⎢
⎢
⎣

E[X1X2]

E[X2]

E[X1X2]

E[X1]

⎤

⎥
⎥
⎥
⎦
. (58)

The dynamical system described by the recursion

θ(k+1) = A
−1

(

g(θ(k)) + b

)

(59)

converges to a local minimum of J(θ).
Remark 5: Under the assumption that the observations at the

sensors X1 and X2 are (non-deterministic) random variables

with finite first and second moments, matrix A is always invert-

ible.

Proof: Using the CCP to the minimization problem in (53)–

(55), we have

θ(k+1) = arg min
θ∈R4

{

F (θ)−Gaffine(θ; θ
(k))

}

(60)

where Gaffine is defined in (20). The unconstrained convex opti-

mization problem in (60) can be solved by using the first-order

optimality condition, which in this case has a unique solution.

Computing the gradient at θ⋆ yields

Aθ⋆ − b− g(θ(k)) = 0. (61)

Solving for θ⋆ yields the dynamical system in (59). The conver-

gence to a local minimum is guaranteed by the CCP. �

Remark 6: The computational bottleneck in our algorithm

comes from the fact it requires the computation of two-

dimensional integrals with arguments that involve indicator

functions. These are numerically hard to deal with and may lead

to slow convergence rates. Often, the integral may not converge

at all, leading to poor performance. The situation is further

complicated when the number of sensor-estimator pairs is large.

However, the most crucial observation is that the algorithm’s

overall structure does not depend on the distribution of the data.

B. Relationship With Subgradient Methods

The algorithm of (56) can also be put in a form that resembles

a subgradient method as follows:

θ(k+1) = θ(k) −A
−1j(θ(k)). (62)

As opposed to the algorithm obtained for unicast networks,

there is not a scalar step size. The subgradient j(θ(k)) is instead

multiplied by the matrix A
−1. Therefore, the “step size” corre-

sponds to the spectral radius of A−1, which is still a constant.

However, the inspection of A suggests that the rate at which

the algorithm converges to a local minimum depends on the

variances of X1, . . . , Xn. The larger the variances, the slower

the convergence rate.

Corollary 1: The step size α of the algorithm in (56) is the

spectral radius of the inverse of A defined in (57): α
def
= ρ(A−1).

C. Illustrative Example

Consider the observation-driven scheduling in a system with

n = 2 sensors over a broadcast network. Each sensor observes

a component of a bivariate source X = (X1, X2). Let X be

distributed according to the same mixture of bivariate Gaussians

of (34). Running the recursion in (59) for 1000 random initial

conditions, θ(0), and retaining the solution with the best value,

we obtain

θ⋆ = (0.4238, 0.2151, −0.2390, 0.0624) (63)

with J(θ⋆) = 0.5276. Therefore, the optimal scheduler is given

by

µ⋆(x) =

⎧

⎪⎨

⎪⎩

1 if |x1 + 0.2390x2 − 0.0624|
≥ |x2 − 0.4238x1 − 0.2151|

2 otherwise.

(64)

Comparing the performance of the optimal scheme obtained

for a unicast network with the one obtained here for the broadcast

network, we observe an improvement of 34.58%. This is possible

due to the additional side information provided by the broadcast

g(θ) = −2E

⎡

⎢
⎢
⎢
⎣

X1(X2 − w21X1 − b21)1(|X1 − w12X2 − b12| < |X2 − w21X1 − b21|)
(X2 − w21X1 − b21)1(|X1 − w12X2 − b12| < |X2 − w21X1 − b21|)

X2(X1 − w12X2 − b12)1(|X1 − w12X2 − b12| ≥ |X2 − w21X1 − b21|)
(X1 − w12X2 − b12)1(|X1 − w12X2 − b12| ≥ |X2 − w21X1 − b21|)

⎤

⎥
⎥
⎥
⎦

(56)
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channel to all the estimators at every transmission. However,

this comes at the price of a more complex optimization problem

involving a larger number of optimization variables.

V. DATA-DRIVEN SENSOR SCHEDULING

The main challenge in using the techniques developed in

Sections III and IV is that, in practice, we often do not have

access to the PDF fX . Even when the PDF is available, the

exact numerical computation of n-dimensional integrals con-

strains the techniques to small values of n. The examples in

the previous section for n = 2 were chosen to provide insight

on the techniques, and ease the visualization of the landscape of

the loss function in the unicast case, as well as allowing for exact

computation of the required expectations. In this section, we do

not assume any knowledge on fX . We assume that a dataset

D is available with N i.i.d. samples of the PDF fX . Instead of

solving Problem 1, we solve a version of the problem where

the expectations are replaced by their empirical means. We shall

refer to this approximation as the empirical risk minimization

(ERM) problem [26].

A. Convergence Results

Consider the expected cost

J(θ)
def
= E [J(θ,X)] (65)

and its associated empirical mean approximation

JD(θ)
def
=

1

N

N∑

k=1

J(θ, x(k)) (66)

where D = {x(k)}Nk=1 are i.i.d. samples from fX . From

here on, the functions J(θ, x) are called sample functions. When

the size N of the dataset D is large, we would like the optimal

value of the approximated function JN to converge to that of

the true objective function J . The critical condition for this

convergence is a uniform version of the strong law of large

numbers (ULLN), which we state below:

sup
θ∈Θ

|JD(θ)− J(θ)| a.s.−→ 0, N → ∞ (67)

where Θ = dom J .

To determine if the empirical mean approximation is appro-

priate, we need to prove that the objective functions in Section III

and IV satisfy the ULLN.

Definition 3: The function J(θ, x), θ ∈ Θ, is dominated by

an integrable function if there exists a non-negative valued mea-

surable function T (x) such that E[T (X)] < +∞ and for every

θ ∈ Θ the inequality |J(θ, x)| ≤ T (x) holds with probability

one.

Proposition 2 (Proposition 7, p. 363 in [10]): Let Θ be a

nonempty compact subset of R
d and suppose that

1) J(θ, x) is continuous on Θ for almost every x ∈ R
n;

2) J(θ, x), θ ∈ Θ, is dominated by an integrable function;

3) D = {x(k)}Nk=1 is i.i.d. according to the PDF fX .

Then, the expected cost function J(θ) is finite valued and

continuous on Θ. Moreover,

P

(

sup
θ∈Θ

|JD(θ)− J(θ)| → 0

)

= 1. (68)

Remark 7: Although both optimization problems are uncon-

strained, they can always be constrained to a compact Θ. For

example, we may let Θ = {θ ∈ R
d | ‖θ‖2 ≤ C}, with a very

large C < +∞.
Theorem 5: Let the objective function J(θ) be defined as in

(14). Let the sample function be defined as follows:

J(θ, x)
def
= ‖x− θ‖22 − ‖x− θ‖2∞. (69)

If the moments of first and second order of the random vector

X ∼ fX are finite, then the ULLN in (67) is satisfied.

Proof: The function (14) can be expressed as

J(θ) = E[J(θ,X)], where J(θ, x) is given in (69). The

sample function J(θ, x) is the difference of the squares of

the 2-norm and the ∞-norm, each of which is continuous.

Therefore, the sample function J(θ, x) is continuous in θ.

Furthermore,

J(θ, x) ≤ ‖x− θ‖22. (70)

Let Θ
def
= {θ ∈ R

n | ‖θ‖2 ≤ C}, where C < +∞. From the tri-

angle inequality applied to the right-hand side of (70), we have

J(θ, x) ≤ (‖x‖2 + C)2
def
= T (x). (71)

Under the assumption that the moments of first and second order

of the random vector X ∼ fX are finite, we have E[T (X)] <
+∞. Therefore, under the i.i.d. assumption on the dataset D,

Proposition 2 implies that ULLN holds. �

Theorem 6: Let the objective function J(θ) be defined as in

(50). Let the sample function be defined as

J(θ, x)
def
=

n∑

ℓ=1

∑

i�=ℓ

(xi − (wijxℓ + biℓ))
2

− max
j∈{1,...,n}

∑

ℓ �=j

∑

i�=ℓ

(xi − (wijxℓ + biℓ))
2 , (72)

where {wiℓ, biℓ} are components of the parameter vector θ ∈ R
d

defined in (46). If the moments of first and second order of the

random vector X ∼ fX are finite, then the ULLN in (67) is

satisfied.

Proof: The continuity of the sample function (72) can be

established by expressing J(θ, x) as the difference of squares of

a Frobenius norm and the ∞-norm of a particular linear map,

and their respective continuities. We omit this step for brevity.

Define wℓℓ = 1 and bℓℓ = 0, ℓ = {1, . . . , n}. Then,

J(θ, x) ≤ ‖x · 1T −
(
W ◦ (1 · xT) +B

)
‖2F (73)
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where the operation ◦ denotes the Schur product between two

matrices, and

W
def
=

⎡

⎢
⎢
⎣

w11 · · · w1n

...
. . .

...

wn1 · · · wnn

⎤

⎥
⎥
⎦

, B
def
=

⎡

⎢
⎢
⎣

b11 · · · b1n
...

. . .
...

bn1 · · · bnn

⎤

⎥
⎥
⎦
. (74)

Bounding the right-hand side of (73) using the triangle inequality

twice, we have

J(θ, x) ≤
(
‖x · 1T‖+ ‖W ◦ (1 · xT)‖F + ‖B‖F

)2
. (75)

The following inequality for the Schur product of two matrices

holds [27, Fact: 9.14.33, p. 675]:

‖W ◦ (1 · xT)‖F ≤ ‖W‖F · ‖1 · xT‖F . (76)

Suppose that Θ
def
= {θ ∈ R

d | ‖W‖F ≤ C1, ‖B‖F ≤ C2}, with

C1, C2 < +∞. Then,

J(θ, x) ≤ (n(1 + C1)‖X‖2 + C2)
2 def
= T (X). (77)

From the assumption on the moments of first and second order of

the random vector X ∼ fX , we have E[T (X)] < +∞. There-

fore, under the i.i.d. assumption on the dataset D, Proposition 2

implies that ULLN holds. �

Remark 8 (Sample complexity): Theorems 5 and 6 are im-

portant because they allow us to estimate the optimal solution to

Problem 1 using the solutions to the approximate problem when

the number of samples in the datasetN is large enough. An ERM

problem solved to δ-optimality gives the ǫ-optimal solution to

the corresponding true problem with probability at least 1− α
if the sample size N satisfies the following inequality [10]:

N ≥ 12σ2

(ǫ− δ)2

(

d log

(
2DL

ǫ− δ

)

− logα

)

(78)

where D is the diameter of set Θ, δ < ǫ, the objective func-

tion J(θ) is assumed to be L-Lipschitz continuous on Θ, d
is the dimension of the parameter vector θ, and σ2 is the

maximal variance of certain differences between values of the

approximate objective function JD(θ). This sample complexity

bound is overly conservative because it holds under very general

assumptions on the cost function, and does not yield practical

values of N . Under very modest values of ǫ and δ (e.g. ǫ ≈ 10−3

and δ ≈ 10−4), the right-hand side of (78) could easily reach

the hundreds of millions samples. Moreover, estimating the

Lipschitz constant of J and the variance σ2 is a challenging

problem on their own right. However, we empirically observed

in Section V-D that very good approximate solutions can be

found using relatively small training datasets.

B. Approximate CCP

Consider a dataset D where

D = {x1(k), . . . , xn(k)}Nk=1 (79)

with N i.i.d. samples from an unknown PDF fX . Define the

ERM problem:

minimize
θ∈Θ

JD(θ)
def
=

1

N

N∑

k=1

J (θ, x(k)) (80)

where

J(θ, x) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

‖x− θ‖22 − ‖x− θ‖2∞ (unicast)
n∑

ℓ=1

∑

i�=ℓ

(xi − (wijxℓ + biℓ))
2 −

max
j∈{1,...,n}

∑

ℓ �=j

∑

i�=ℓ

(xi − (wijxℓ + biℓ))
2

(broadcast).

(81)

When applied to the ERM problem, the CCP operates exactly

the same as before, but with the advantage that computing

a subgradient involves evaluating empirical means instead of

computing n-dimensional integrals. The approximate CCP re-

cursions become

θ(k+1) =

⎧

⎨

⎩

1
2gD(θ

(k)) + 1
N

N∑

k=1

x(k) (unicast)

A
−1
D

(
gD(θ(k)) + bD

)
(broadcast).

(82)

In the 2-D broadcast case, the matrix AD and vector bD are

given by

AD =
2

N

N∑

k=1

⎡

⎢
⎢
⎢
⎣

x2
1(k) x1(k) 0 0

x1(k) 1 0 0

0 0 x2
2(k) x2

2(k)

0 0 x2(k) 1

⎤

⎥
⎥
⎥
⎦

(83)

bD =
2

N

N∑

k=1

⎡

⎢
⎢
⎢
⎣

x1(k)x2(k)

x2(k)

x1(k)x2(k)

x1(k)

⎤

⎥
⎥
⎥
⎦
. (84)

The expressions for the n-dimensional case are given in Ap-

pendix A. Finally, gD is a subgradient of appropriateGD (unicast

or broadcast) computed as follows:

gD(θ) =
1

N

N∑

k=1

subgrad (θ;x(k)) . (85)

The algorithm above converges to a local minimum θ̄D of

the ERM objective function JD, and not of the original cost J .

However, due to the ULLN proved in Theorems 5 and 6, when

N is sufficiently large, JD is approximately equal to J , and the

point θ̄D will be a good estimate of a locally optimal solution to

the original problem.

C. Learning Framework

The approximate CCP algorithm described in the previous

section is a heuristic, i.e., since the sample functions are non-

convex in θ, we cannot guarantee that a given candidate solution

θ̄D for Problem 1 is a global minimizer. However, it is possible to

produce a confidence interval on the optimality gap with respect

to any candidate solution by solving instances of the ERM prob-

lem using global optimization solvers. For sample functions that



734 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 8, NO. 2, JUNE 2021

admit a DC decomposition, the branch-and-bound method [28]

can be used to solve the ERM problem to a prescribed accuracy.

Suppose that we have access to a training dataset D and M
validation datasets T m, m = {1, . . . ,M}, each with N i.i.d.

samples from fX . From the training dataset D, we compute a

candidate solution θ̄D using the CCP on the ERM problem in

(80). Let the optimality gap be defined as

gap(θ̄D)
def
= E[J(θ̄D, X)]− J⋆ (86)

where J⋆ is the unknown global minimum of Problem 1. Mak

et al. [29] have shown that

gap(θ̄) ≤ E

[
1

N

N∑

k=1

J
(
θ̄D, X(k)

)
−min

θ

1

N

N∑

k=1

J (θ,X(k))

]

(87)

where X(k) are i.i.d. random variables with density fX .

Define the random variable UN as a function of {X(k)}Nk=1

as follows:

UN
def
=

1

N

N∑

k=1

J
(
θ̄D, X(k)

)
−min

θ

1

N

N∑

k=1

J (θ,X(k)) . (88)

From M i.i.d. batches of data T m = {xm(k)}Nk=1, where

m = {1, . . . ,M}, we form an estimate of the upper bound to

optimality gap as follows:

ûM
N =

1

M

M∑

m=1

um
N (89)

where

um
N

def
=

1

N

N∑

k=1

J
(
θ̄D, x

m(k)
)
−min

θ

1

N

N∑

k=1

J (θ, xm(k)) .

(90)

From the Central Limit Theorem, we have

√
M

(
ûM
N − E[UN ]

) d−→ N (0, σ2
U ), as M → ∞ (91)

where σ2
U = Var(UN ). Based on the asymptotic normality of

the estimator ûM
N , we have the following high probability upper

bound on the optimality gap:

P

(

gap(θ̄D) ≤ ûM
N +

tM−1,α · σ̂U√
M

)

≥ 1− α (92)

where tM−1,α is the α-critical value of the t-distribution with

M − 1 degrees of freedom, and σ̂U is the sample variance

estimator computed based on {um
N}Mm=1.

To validate the solution θ̄D, we first choose a confidence level

α, then we must solve M global optimization problems

J⋆
τm = min

θ

1

N

N∑

k=1

J (θ, xm(k)) , m = {1, . . . ,M}. (93)

Computing the value of each of the empirical mean approximate

objective functions at θ̄D, we have

Jτm(θ̄D) =
1

N

N∑

k=1

J
(
θ̄D, x

m(k)
)
, m = {1, . . . ,M}. (94)

TABLE I
TRAINING AND VALIDATION RESULTS FOR THE EMPIRICAL RISK

MINIMIZATION FROM N SAMPLES FOR UNICAST NETWORKS

TABLE II
TRAINING AND VALIDATION RESULTS FOR THE EMPIRICAL RISK

MINIMIZATION FROM N SAMPLES FOR BROADCAST NETWORKS

Finally, we compute the upper bound on the optimality gap

ûM
N +

tM−1,α · σ̂U√
M

. (95)

If this upper bound is within a target margin of error tolerance,

we declare θ̄D as the learned the optimal parameter for Problem

1, and use them to recover the jointly optimal scheduler and

estimators. Otherwise, we must increase N or decrease α,

and repeat the process. However, the necessity of solving M
global optimization problems for nonconvex, nonsmooth ERM

problems, limits our ability to increase N due to computational

complexity issues.

D. Illustrative Examples

1) Synthetic Data: Consider a dataset D consisting of N
i.i.d. samples from the bivariate Gaussian mixture model of (34).

We use the approximate CCP to compute candidate solutions to

Problem 1 in the unicast and the broadcast cases. Then, we use

the validation framework described in the previous section to

compute the probabilistic bound on the optimality gap between

the candidate solution found using CCP, and the unknown exact

optimal solution to Problem 1.4 We have chosen α = 0.05. Our

numerical results are shown in Tables I and II. For each row

of the tables, we have used M = 100 validation datasets. We

recorded the time in seconds to train via the CCP in Tt, and the

average time to validate (globally solving the ERM based on

the validation sets T m, m = {1, . . . ,M}), via the generalized

pattern search method [30] in Tv.

2) Real Data: In this example, we use our algorithms and

learning framework to solve Problem 1 using a real dataset

containing measurements of temperature and humidity sensors

collected by a wireless sensor network of a smart-home. This

dataset is publicly available,5 and more details and analysis can

4The code used to obtain the results in this section is available at https://
github.com/mullervasconcelos/DDSS.

5The complete dataset can be dowloaded from https://github.com/LuisM78/
Appliances-energy-prediction-data.

https://github.com/mullervasconcelos/DDSS
https://github.com/LuisM78/Appliances-energy-prediction-data
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Fig. 2. Empirical distribution and correlation analysis of the tempera-
ture and relative humidity in rooms 1 and 2 of the dataset in [31].

be found in [31]. The relevant portion of the dataset to our article

consists of n = 16 variables corresponding to the temperature

(in Celsius) and relative humidity in each of the home’s eight

rooms. The empirical distribution and the correlation structure

of the observations, and the fact that the dimension of the

dataset is of moderate size, provide a more realistic application

scenario than the previous example. Fig. 2 shows the empirical

distributions and correlations for the temperature and relative

humidity in rooms 1 and 2. In this dataset, there is a total of

19 735 samples, which we randomly permuted and split into

21 batches of N = 936 samples. One batch is used for training,

and M = 20 batches are used for the validation analysis. It is

noted that the data was collected as a time-series and the samples

are not i.i.d.; however, since our problem is akin to a one-shot

regression, the temporal dependence does not play a significant

role. The random permutation used before the batch splitting

allows each batch to have approximately the same empirical

distribution.

For the training phase, we used the recursion in (82) of the

CPP for the unicast and broadcast networks. In both cases,

we have initialized the CCP at θ(0) = (0, . . . , 0). The conver-

gence criterion used is the function tolerance ∆ = 10−4, where

∆
def
= JD(θ(k))− JD(θ(k+1)).
Unicast: In the unicast case, the dimension of the parameter

vector is d = n = 16. The CCP was used to train our model

based on the training data batch D, and we obtained a tentative

solution θ̄D in Tt = 0.41 s, with an associated cost of JD(θ̄D) =
143.44. The blind strategy consists of transmitting the data from

the sensor whose observations have the largest sample variance,

which has a cost of Jblind
D = 167.45. Our observation-driven

scheduling and estimation strategy provides a gain of 14.34%

over the blind strategy. More importantly, the dimension d = 16
allows us to compute the following high probability bound on

the optimality gap: P
(
gap(θ̄D) ≤ 0.5573

)
≥ 0.95. This bound

was computed using the procedure described in the previous

section. To compute the upper bound, we used Matlab’s global

optimization functionpatternsearch, which can efficiently

handle nonsmooth objective functions. The average validation

time is Tv = 11.81 s, with a standard deviation of 1.07 s. Based

on the optimality gap above, we claim that we have effectively

learned the optimal parameters for Problem 1 in the unicast case.

Broadcast: In the broadcast case, we used the CCP to obtain a

tentative solution θ̄D with a value JD(θ̄D) = 31.2196. The total

training time was Tt = 180 s. Note that the dimension of the

broadcast problem is d = 2× 16× 15 = 480, and that this is

a nonconvex, nonsmooth unconstrained optimization problem.

The number of variables renders the optimization with any of

the built-in global optimization solvers in Matlab, such as the

Genetic Algorithm, Simulated Annealing, and Pattern Search,

infeasible. Therefore, it is currently impossible to implement the

validation analysis in this case. We propose to use θ̄D as a warm

start to the CCPs on JT m , m ∈ {1, . . . ,M}. If each θ̄T m is a

global minimum, we have the following high-confidence upper

bound on the optimality gap: P
(
gap(θ̄D) ≤ 5.3172

)
≥ 0.95.

Notice that JD(θ̄D) = 31.22 corresponds to a gain of ap-

proximately 81% over blind scheduling, and 78% relative to

the performance over the unicast network. This large gain is

due to the high correlation among temperatures and humidity

in different rooms. Obviously, the performance gain comes at

the price in computational complexity, and the current inability

of performing a proper validation analysis using global opti-

mization solvers on nonconvex, nonsmooth large-scale objective

functions. The average validation time using the CCP heuristics

is Tv = 131 s. The recursion converges faster in this case due to

the warm start at θ̄D.

VI. CONCLUSION

This article aimed at establishing the foundations for schedul-

ing and estimation of sensor measurements when information

about the probabilistic model of the problem is imprecise, miss-

ing, or incomplete. We considered the design of observation-

driven schedulers for a remote sensing system for which the

random measurements at the sensors were jointly distributed

according to an unknown PDF. Such situations occur in many

practical applications where the probabilistic model is not

known a priori or whose underlying physical processes that

generate the data are difficult to obtain. We first derived results

and accompanying algorithms that hold for an arbitrary joint

PDF, and later we used them in a data-driven framework where

training and test datasets were available to design the parameters

of a scheduler with performance close to the optimal ones with

high probability.

The framework proposed herein assumed that the wireless

network can be of two types: unicast or broadcast. For each

case, we showed that the optimization problem is nonconvex,

but admits a useful DC decomposition, which allowed us to use

the CCP to obtain very efficient descent algorithms that were

guaranteed to converge to a local minimum of the objective func-

tion. The structure of both algorithms was independent of the

measurements’ joint PDF and can be approximated using data

by replacing expectations with their corresponding empirical

means. We proved that the two empirical mean approximations

converge to the expected costs uniformly almost surely, which is

the critical condition for learning the optimal model parameters
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from data. Moreover, both algorithms can be interpreted as

subgradient methods with constant step sizes with guaranteed

convergence properties. Such methods are not necessarily con-

vergent if used on nonconvex objective functions.

There are many opportunities for future research that branch

out from this work. One possible problem is to devise an online

learning scheme where the data becomes available one sample

at a time to the system designer, which adaptively reconfigures

the scheduling and estimation decision rules over time, instead

of using batches of data as it was done here. In the online setting,

important research questions arise from the possible lack of

synchronization and different timescales across system com-

ponents. It would also be interesting to assume other classes of

parametrizable nonlinear estimators for the optimization prob-

lem over broadcast networks. For example, we are interested in

the following question: can we train neural networks to serve as

estimation policies at the estimators? Moreover, can we find neu-

ral network architectures that will preserve a DC decomposition

and take advantage of the CCP? The problem of scheduling k
out of n sensors can also be posed and solved by augmenting the

objective function with a regularizer which enforces k-sparsity.

Remarkably, such regularizers admit a DC decomposition [9].

Finally, we suggest an entirely new framework where data is

used in a distributionally robust framework, where a set of PDFs

consistent with the observed data is constructed and a minimax

optimization problem is solved as in [32]. We are particularly

interested in using techniques from robust sample average ap-

proximation [33], which has both finite sample and asymptotic

performance guarantees for a broad class of problems.

APPENDIX A

GENERAL BROADCAST CASE

The results in Section IV hold for an arbitrary number of

sensors. In this Appendix, we show the structure of the matrices

and vectors that defines the CCP algorithm in the general case.

Recall that θ(k+1) = A
−1(g(θ(k)) + b), where

A = 2 · diag(A1, . . . ,A1
︸ ︷︷ ︸

n−1

, . . . ,An, . . . ,An
︸ ︷︷ ︸

n−1

) (98)

where

Aj =

[

E[X2
j ] E[Xj ]

E[Xj ] 1

]

and b = vec(b1, . . . ,bn) (99)

with

bj = 2 · vec
({[

E[XiXj ]

E[Xi]

]

, i �= j

})

. (100)

The subgradient g(θ) is computed by g(θ) = E[g(θ;X)],
where g(θ;x) can be computed using Algorithm 1 as g(θ;x) =
subgrad(θ;x) by substituting ∇θGj(θ;x) with

∇θGj(θ;x) = vec(k1, . . . ,kj−1,0,kj+1, . . . ,kn) (101)

where

kℓ = −2 · vec
({[

xℓ(xi − (wiℓxℓ + biℓ))

(xi − (wiℓxℓ + biℓ))

]

, i �= ℓ

})

.

(102)
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