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Distributed remote estimation over the collision

channel with and without local communication
Xu Zhang, Marcos M. Vasconcelos, Wei Cui, and Urbashi Mitra

Abstract—Internet of Things networks are large-scale dis-
tributed systems consisting of a massive number of simple devices
communicating, typically, over a shared wireless medium. This
new paradigm requires novel ways of coordinating access to lim-
ited communication resources without introducing unreasonable
delays. Herein, the optimal design of a remote estimation system
with n sensors communicating with a fusion center via a collision
channel of limited capacity k ≤ n is considered. In particular,
for independent and identically distributed observations with
a symmetric probability density function, we show that the
problem of minimizing the mean-squared error with respect
to a threshold strategy is quasi-convex. When coordination
among sensors via a local communication network is available,
the on-line learning of possibly unknown parameters of the
probabilistic model is possible, enabling each sensor to optimize
its own threshold autonomously. We propose two strategies for
remote estimation with local communication: One strategy swiftly
reaches the performance of the optimal decentralized threshold
policy, whereas a second strategy approaches the performance of
the optimal centralized scheme with a slower convergence rate.
A hybrid scheme that combines the best of both approaches is
proposed, offering fast convergence and excellent performance.

I. INTRODUCTION

Internet of Things (IoT) networks are systems comprised of

a large number of low-cost devices intermittently transmitting

small bundles of delay-sensitive data to access points or

neighboring devices [1]. Specific IoT applications suffer from

limited communication bandwidth. For instance, Low Power

Wide Area (LPWA) networks are a class of IoT systems

explicitly designed to enable machine-to-machine communica-

tions characterized by infrequent transmitting nodes operating

under strict low power, complexity, and bandwidth constraints.

[2]. LPWA communication protocols such as LoRa and Sig-

Fox are widely used to provide connectivity in static and

mobile sensor networks [3]. However, these systems operate

in unlicensed spectrum bands, which means that multiple

simultaneous transmissions may lead to undesirable packet

collisions and loss in performance.

Our goal is to develop new techniques for medium access

control for IoT systems resilient to packet collisions. We
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Fig. 1. System diagram for remote estimation over the collision channel.

consider the design of an LPWA network system for remote

monitoring where a large number of sensors communicate with

a base station/fusion center under a strict constraint on band-

width. For that purpose, we enable autonomous and distributed

optimal allocation of limited communication resources by

using event-triggered communication via a threshold strategy,

e.g. [4] and references therein. In the absence of local coordi-

nation among sensors, event-triggered communication strate-

gies improve the system performance by forcing the sensors

to transmit only their most informative measurements. When

local communication is available, by exchanging information

at most with their immediate neighbors, each sensor can tune

their thresholds to mitigate the negative effect of collisions

even under incomplete knowledge of their measurements’

underlying statistical model.

In this paper, we study the remote sensing system depicted

in Fig. 1, where n sensors observing independent and iden-

tically distributed continuous random variables communicate

with a fusion center over a collision channel. The channel can

only support the reliable transmission of at most k packets,

where k ≤ n. If the number of simultaneous transmissions

is larger than k, a collision occurs. We are interested in the

design of event-triggered transmission strategies to control

channel access in a distributed way with the goal of optimizing

estimation performance.

Our abstraction for a sensor network of multiple identical

sensors communicating with a fusion center over a finite

capacity collision channel using low complexity threshold

policies conforms with the requirements of LPWA networks.

The central insight here is that, in many sensing applications,

the communication of uninformative measurements can be

sacrificed without significant loss in performance, freeing

resources to the remaining sensors in the network. This

cooperation among sensors is the centerpiece of this article,

which seeks to lay the foundations of a new framework for
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distributed communication protocols under assumptions of the

observations’ probabilistic model.

The optimal design of remote estimation systems has been

of great interest in the past decade, and there exists a rich liter-

ature on these systems under different technical assumptions.

The optimization of transmission policies for a system involv-

ing a single sensor subject to a limited number of transmissions

over a finite horizon was studied in [5]. Instead of limiting

the number of transmissions, the authors of [6] considered

the problem of minimizing an objective function consisting

of the mean-squared error plus a transmission cost. Both

[5] and [6] showed that symmetric threshold strategies are

optimal under symmetry conditions of the probabilistic model

of the measurements. Those results were later generalized

in [7], which obtained similar structural results for a system

with an energy harvesting sensor. An in-depth comprehensive

survey of those and other earlier results can be found in [8].

More recently, connections between remote estimation and the

notion of Age of Information have been established in [9].

Unlike the works mentioned above, our paper considers the

system with multiple sensors under a limited number of simul-

taneous transmissions. Remote sensing systems with multiple

sensors sharing a collision channel were first considered in

[10], which showed that the optimal transmission policies for

symmetrically distributed observations were characterized by

asymmetric thresholds. A similar sensing system with discrete

observations was considered in [11]. Remote estimation of

autoregressive Markov processes over the collision channel has

also been considered in [12], in which symmetric threshold

policies are used in a random access scheme. Notably, [12]

also alludes to the connection between remote estimation and

Age of Information in a multi-sensor setting, thereby extending

[9]. Recent works in this area have incorporated reinforcement

learning into sensor scheduling and remote estimation, when

certain parameters of the system are unknown [13]–[15]. An-

other set of results considered other relevant issues concerning

privacy [16], adversarial jamming [17], packet drops [18], and

energy management [19], [20].

The system considered here is a multi-sensor system com-

municating over a collision channel of capacity k ≥ 1. Instead

of focusing on obtaining structural results, we concentrate on

designing optimal thresholds for a symmetric system, corre-

sponding to a symmetric team-decision problem. The sensors

observations have identical statistical properties, i.e., are drawn

according to the same distribution. The symmetry assumption

allows us to obtain a tractable quasi-convex optimization prob-

lem when the sensors observations are symmetric around its

mean. In contrast, asymmetric formulations inevitably would

lead to a non-convex problem for which optimal solutions

would be difficult to obtain. The performance of the optimal

decentralized system is compared against a centralized scheme

where only the sensors with the k most informative mea-

surements are allowed to transmit. This is a generalization of

the observation-driven scheduling problem for remote sensing

studied in [21], in which a scheduler collects the measurements

from all sensors, and chooses a single one to be transmitted

to the destination. For independent observations distributed

according to a symmetric probability density, [21] showed

that a person-by-person optimal policy consists of sending the

measurement with the largest magnitude to the fusion center.

Remarkably, the performance of the optimal decentralized

system without coordination for Gaussian observations is very

close to the performance of the centralized scheme, which

requires all the sensors to exchange their observations over a

local communication network.

To close the existing gap in performance among the optimal

decentralized scheme and the centralized one, we must allow

for local communication. The additional gain in performance

comes at a price in communication delay, since the sensors

need to exchange messages locally to perform a distributed

quantile regression task [22]–[24]. For moderate to large

number of sensors, distributed quantile estimation requires

hundreds of local communication rounds, however, we propose

a smart initialization mechanism based on average consensus

[25], which improves the convergence time by orders of

magnitude, allowing us to close the optimality gap swiftly.

Moreover, we provide numerical evidence that our scheme

performs very well even when the density is symmetric

but unknown. Finally, we provide an upper bound on the

expected switching-time between the average-consensus and

the quantile-regression schemes.

In this paper, we assume that each sensor’s observations

are drawn from a distribution with a symmetric pdf fX . In

Sections II and III, full knowledge of fX is required. In Section

IV-A, we assume that fX belongs to a parametric class of

densities with unknown parameters, e.g., N (0, σ2). In Section

IV-B and C, we assume that fX is unknown.

Preliminary versions of Theorem 1 and Theorem 2 have

appeared in [26], which only considered the scheme without

local communication and contained partial proofs. In the

present paper, we present complete proofs of the previous

results, and additionally propose an exact centralized lower

bound to Problem 1 plus three decentralized schemes based

on local communication together with corresponding analysis

and simulations.

The main contributions of this paper are:

• In the absence of local communication, we study the

design of a globally optimal threshold communication

strategy under a symmetry assumption of the probabil-

ity distribution of the observations. We show that the

mean-squared error is a strictly quasi-convex function

of the threshold, which is amenable to low complexity

numerical optimization schemes. We provide numerical

evidence that this optimal threshold policy is robust to

perturbations of the underlying probabilistic model that

violate the symmetry assumption.

• In the presence of local communication, the sensors

can coordinate to learn a common threshold strategy

when the underlying probability distribution is not com-

pletely specified, or possibly completely unknown. We

propose a consensus-based scheme for zero-mean Gaus-

sian distributions and unknown variance, and a quantile

estimation scheme for unknown zero-mean distributions.

In the consensus-based scheme, each sensor estimates

the unknown variance and then computes its threshold

to determine locally whether to transmit or not. This
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scheme swiftly reaches the performance of the optimal

decentralized scheme. In the quantile estimation scheme,

each sensor estimates locally the k-th largest observation

among all observations and uses it as the threshold to de-

cide whether to transmit or not. This scheme approaches

the performance of the best known centralized scheme

albeit with a slow convergence rate.

• We propose a hybrid scheme that uses the consensus

scheme via a Gaussian approximation to bootstrap the

quantile estimation scheme. This scheme achieves both

fast convergence and asymptotic performance close to the

centralized policy. We provide a bound on the switching-

time between the two schemes, and an example which

shows that the scheme is robust to distribution mismatch.

II. PROBLEM FORMULATION

This section establishes the problem setup for a decentral-

ized, remote estimation system over a collision channel of

limited capacity. Consider the system diagram shown in Fig. 1.

There are n sensors and a fusion center E , which are connected

by a collision channel K. The i-th sensor observes a zero-mean

random variable Xi, i ∈ {1, · · · , n}. The random variables

{Xi}ni=1 are independent and identically distributed (i.i.d.),

and admit a probability density function (pdf) fX(x), such

that fX(x) > 0 for x ∈ R. Each sensor decides whether

to transmit its observed measurement to the fusion center or

remain silent according to a threshold strategy.

Definition 1 (Threshold strategy): Let Di ∈ {0, 1} be the

binary decision variable of the i-th sensor, where Di = 1
denotes that the sensor decides to transmit its measurement,

and Di = 0 denotes that the sensor decides to remain silent.

A threshold strategy for the i-th sensor is a function Di : R →
{0, 1} such that

Di(x)
def
=1(|x| ≥ T ), (1)

where T ∈ [0,+∞) denotes the threshold parameter and 1(S)
denotes the indicator function of the statement S.

Remark 1: This formulation is an instance of a symmetric

stochastic team [27]. This particular class of team decision

problems is often more tractable because the optimization is

over a single policy. It also allows to study the performance

and robustness of optimal strategies with respect to the number

of sensors. In some cases, it is possible to characterize the

system’s performance in the regime when the number of

sensors is infinite, a particularly relevant feature for IoT

applications.

After making a decision, each sensor produces a channel

input packet, Si, defined as follows:

Si
def
=

{
(i,Xi) if Di = 1
∅ if Di = 0

, i ∈ {1, . . . , n}. (2)

Remark 2: We assume that if a sensor decides to transmit,

its unique identification number i is transmitted along with its

measurement. This is done so that the receiver can identify

the origin of the successfully received communication packets

without ambiguity.

The collection of n sensors shares a collision channel K of

limited capacity k, defined as follows:

Definition 2 (Collision channel of capacity k): The collision

channel of capacity k allows the communication of at most

k ≤ n simultaneous packets. Let D
def
= {i | Di = 1} denote the

set of indices of all transmitting sensors. The output of the

collision channel Y is given by:

Y
def
=







∅ if |D| = 0
{
(i,Xi) | i ∈ D

}
if 1 ≤ |D| ≤ k

(C,D) otherwise.

(3)

The special symbol C denotes that a collision occurred and ∅

denotes that the channel is idle.

Assumption 1: When a collision occurs, we assume that

the fusion center can decode the indices of the transmitting

sensors.

Our purpose is to solve the following estimation problem

over the collision channel under the normalized mean squared

error (MSE) criterion.

Problem 1: Assuming that each sensor uses a threshold

strategy of the form of Eq. (1), given the number of sensors,

n, the pdf of the sensors’ observations, fX , and the capacity

of the collision channel, k; find a threshold T that minimizes

the normalized mean-squared error (NMSE):

Jn,k(T )
def
=

1

n
E

[
n∑

i=1

(

Xi − X̂i

)2
]

, (4)

where the estimates X̂i are given by:

X̂i
def
=E[Xi | Y ], i ∈ {1, · · · , n}. (5)

III. OPTIMAL DECENTRALIZED SCHEME WITHOUT LOCAL

COMMUNICATION

A. Quasi-convexity of Problem 1

Assuming that there is no local communication among

the sensors, and that the distribution of the observations is

symmetric, Problem 1 can be solved exactly. We begin by

deriving alternative expressions for Eqs. (4) and (5). We will

then show the quasi-convexity of Problem 1, which can thus

be solved using low complexity numerical procedures.

Lemma 1: Provided the pdf fX is symmetric; given set of

the decision variables D
def
= {i | Di = 1}, the output of the

estimator can be rewritten as

X̂i
w.p.1
=

{

Xi if |D| ≤ k and i ∈ D

0 otherwise,
i ∈ {1, · · · , n}. (6)

Proof: We will compute the conditional expectation in

Eq. (5) for every possible output of the collision channel.

When there is no collision and Xi was transmitted, i.e.,

|D| ≤ k and Di = 1, we have (i,Xi) ∈ Y , which implies

that

X̂i = E[Xi | Y ]
w.p.1
= Xi. (7)

When a collision occurs and Xi was transmitted, i.e.,

|D| > k and Di = 1, we have Y = (C,D) and know i ∈ D.

Assumption 1 implies that

X̂i
(a)
= E[Xi | Di = 1] = E[Xi | |Xi| ≥ T ]

(b)
= 0, (8)
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where (a) is due to {X}ni=1 being a collection of independent

random variables, and (b) is due to the symmetry of fX .

When Xi is not transmitted the index i does not appear in

the channel output Y , which implies that Di = 0. In this case,

X̂i = E[Xi | Di = 0] = E[Xi | |Xi| < T ]
(c)
= 0, (9)

where (c) is due to the symmetry of the pdf fX .

Lemma 2: Let {Xi}ni=1 be an i.i.d. sequence distributed

according to a symmetric pdf fX . The objective function in

Problem 1 can be expressed as:

Jn,k(T ) = E
[
X2

]
−E

[
X2

1(|X| ≥ T )
]
Fn,k(T ), (10)

where

Fn,k(T )
def
=

k−1∑

ℓ=0

(
n− 1

ℓ

)
(
1− q(T )

)ℓ
q(T )n−1−ℓ, (11)

and

q(T )
def
=P(|X| < T ). (12)

Proof: See Appendix A.

Theorem 1: The cost function Jn,k(T ) in Eq. (10) is strictly

quasi-convex and admits a unique optimal threshold T ⋆ such

that

T ⋆ = argmin
T≥0

Jn,k(T ). (13)

Proof: See Appendix B.

Remark 3: Theorem 1 holds for any symmetric pdf, regard-

less of the number of modes of the distribution. We highlight

that proving quasi-convexity is typically a non-trivial task,

and existing methods rely on composition rules of operations

that preserve quasi-convexity, which are not available in our

case. From an algorithmic standpoint, quasi-convexity is a

property as desirable as convexity. Although a closed-form

expression to T ⋆ is unlikely to exist, we can compute it via

iterative numerical methods. Due to the continuity and quasi-

convexity of Jn,k(T ) (established in Appendix B), we can use

disciplined quasi-convex programming to compute the optimal

threshold [28].

When using numerical optimization solvers, it is important

to properly initialize the interval to be searched, especially

when the support of the pdf fX is unbounded. Next, we will

provide an interval initialization by analyzing the 0− 1 phase

transition property of Fn,k. By inspection of Eq. (10), when T
is such that Fn,k(T ) ≈ 0, the cost is Jn,k(T ) ≈ E[X2]; when

T is such that Fn,k(T ) ≈ 1, then Jn,k(T ) ≈ E
[
X2

1
(
|X| <

T
)]
, which is non-decreasing in T . Therefore, the optimal T ⋆

occurs in the interval when Fn,k transitions from 0 to 1.

Lemma 3: Let T ⋆ be the optimal threshold for the cost

function Jn,k(T ) in Eq. (10). Then

T ⋆ ≥ q−1

(

1− k

n

)

. (14)

Proof: See Appendix C.

Lemma 4: Let d > 0. Then the following inequality holds:

For T > q−1(ζ),

Fn,k(T ) ≥ 1− 10−d, (15)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Fig. 2. Cost function Jn,k(T ) as a function of the threshold T with
n = 1000 sensors and a collision channel with capacity k = 100 packets
for Gaussian observations of different variances. The dashed horizontal
lines represent the corresponding centralized lower bounds JL

n,k
given in

Section III-B.
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Fig. 3. Optimal cost Jn,k(T
⋆) and the lower bound JL

n,k
as functions of the

capacity of the collision channel k (performance of the optimal decentralized
and centralized schemes) with n = 1000. The observations at the sensors are
i.i.d. according to a standard Gaussian distribution, X ∼ N (0, 1).

where ζ is the unique zero of

gn,k,d(q)
def
= k − (n− 1)(1− q)− k ln

(
k

n− 1

)

+ k ln (1− q) + d ln 10, (16)

in the interval
(
1− k/(n− 1), 1

]
.

Proof: See Appendix D.

Theorem 2: There exists ζ̄ > 0 such that:

q−1

(

1− k

n

)

≤ T ⋆ ≤ q−1
(
ζ̄
)
. (17)

Proof: The proof follows from Lemmas 3 and 4 and the

fact that one can always set d as large as necessary to guarantee

that the upper bound includes the optimal threshold.

Remark 4: Theorem 2 provides an interval that is guaranteed

to contain the optimal solution. Typically, d = 2 or 3 will

suffice. The significance of Theorem 2 is that it let us avoid

initializing a numerical solver where Jn,k(T ) is flat, which

may lead to falsely declaring that a local minimum has
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TABLE I
SEARCH INTERVAL FOR GAUSSIAN OBSERVATIONS. THE UPPER BOUND

ON T ⋆ IS FOUND USING LEMMA 4 WITH d = 3.

σ2 n = 10, k = 1 n = 100, k = 10 n = 1000, k = 100

1 [1.64, 07.27] [1.64, 4.01] [1.64, 3.24]
2 [2.33, 10.28] [2.33, 5.68] [2.33, 4.59]
3 [2.85, 12.59] [2.85, 6.95] [2.85, 5.62]
4 [3.29, 14.54] [3.29, 8.03] [3.29, 6.48]
5 [3.68, 16.26] [3.68, 8.98] [3.68, 7.25]

been found, and failing to find the unique global minimum

guaranteed by Theorem 1.

B. A centralized lower bound to Problem 1

When the goal is to minimize the MSE of zero-mean

independent variables such as in Problem 1, the best known

centralized strategy consists of transmitting the k largest

measurements in magnitude to the fusion center [21]. The

performance of this strategy serves as a lower bound to decen-

tralized communication strategies over the collision channel

with capacity k. For the “top-k” strategy, the value of the cost

function is given by

J L
n,k

def
=

1

n

n∑

i=k+1

E
[
Z2
(i)

]
(18)

where Zi
def
= |Xi|, and Z(i) is defined as the i-th largest value

in {Zℓ}nℓ=1 such that:

Z(n) ≤ Z(n−1) ≤ · · · ≤ Z(1). (19)

From results on ordered statistics [29], the second moment

of Z(i) is given by:

E
[
Z2
(i)

]
=

∫∞

0
z2FZ(z)

n−i
(
1− FZ(z)

)i−1
fZ(z)dz

B(n− i+ 1, i)
, (20)

where fZ and FZ are the pdf and cdf of Z, respectively, and

B(·, ·) denotes the beta function. Since Z = |X|, we have:

FZ(z) = 2FX(z)− 1, z ≥ 0, (21)

and

fZ(z) = 2fX(z), z ≥ 0. (22)

This lower bound is used as benchmark in the examples

shown in this paper. The gap between the performance of the

optimal threshold policy and the value of J L
n,k corresponds to

the loss due to decentralization.

C. Numerical results

Figure 2 shows the normalized MSE Jn,k(T ) for a system

with n = 1000 sensors and a collision channel of capac-

ity k = 100 making Gaussian observations with different

variances. We can observe the quasi-convexity property, and

compare the performance of the optimal decentralized scheme

Jn,k(T ) to the centralized lower bound J L
n,k. From this figure,

we can also observe that Jn,k(T ) is flat at regions away

from the optimal threshold T ⋆. This observation reinforces the

need for Theorem 2 and proper initialization of the numerical

solvers used to compute T ⋆. Table I shows the search intervals

Fig. 4. Monte-Carlo Simulation for the remote estimation system for
random perturbations on the mean µi ∼ U [−ǫ, ǫ] as a function of ǫ with
n = 10, 100, 1000 sensors and capacity k = 1, 10, 100.

computed using Theorem 2 with d = 3, assuming Gaussian

observations N (0, σ2).

For a system with n = 1000 sensors, Fig. 3 displays the

dependency of the optimal MSE Jn,k(T
⋆) and the lower

bound J L
n,k as function of the capacity of the collision channel

k for standard Gaussian observations, Xi ∼ N (0, 1). As

the capacity k increases, more measurements are successfully

received at the fusion center, and the normalized MSE de-

creases. We can also observe that the optimal choice for the

threshold successfully mitigates the occurrence of collisions.

Consequently, the decentralized scheme performs remarkably

close to the centralized scheme. The gap between the solid

(decentralized) and the dotted (centralized) curves is the per-

formance loss due to decentralization.

The pdf’s symmetry, identical distributions and known

means are assumptions required to obtain our technical re-

sults. However, our optimal symmetric threshold policies are

surprisingly robust in the absence of all three conditions

mentioned above. Consider the following numerical example

where each sensor makes observations distributed according

Xi ∼ N (µi, 1), where µi ∈ [−ǫ,+ǫ]. We simulate the remote

estimation system for 100 sample paths. For each sample path,

a vector d, where each component di is uniformly distributed

over the interval [−1, 1] is independently generated and kept

fixed. Then, the mean µi = ǫdi is computed. The value of

the mean is unknown to the sensors and the estimator, which

use a strategy designed under the assumption that µi = 0,

i ∈ {1, · · · , n}. In this case, the observations are statistically

independent; however, the pdfs are neither symmetric nor

identically distributed. Adjusting the constant ǫ from 0 to 1,

we can vary the degree of asymmetry.

We measure the normalized mean squared error using a

Monte Carlo simulation for each point of each sample path,

using 104 observation samples for each of the n sensors. In

Fig. 4, we see that the performance of the system employing

a symmetric threshold strategy designed for a nominal sym-

metric and i.i.d. system is robust to variations in the mean for

ǫ ≤ 0.25. That robustness is consistent across systems with a
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broad range of number of sensors. Clearly, when ǫ increases,

the performance of the system degrades. The purpose of

this simulation is to show that the system can be used, in

practice, under moderate perturbations in the symmetry of the

probabilistic model.

IV. DECENTRALIZED SCHEMES WITH LOCAL

COMMUNICATION

Consider a connected undirected graph G = (N,E) with n
nodes, each node represents a sensor observing an independent

random variable as before. Here, N = {1, . . . , n} denotes

the set of sensors and E ⊂ N × N denotes the set of edges

between nodes. Let Ni denote the set of neighbors of the i-

th sensor, and di
def
= |Ni|. By local communication, we mean

that if (i, j) ∈ E, sensors i and j can communicate with

each other for a given number of rounds before making their

final decisions on whether to attempt a transmission to the

fusion center or not. Each round of local communication

has short range and represents one unit of accrued delay in

communication between the sensors and fusion center.

A. Average consensus-based decentralized scheme

In many scenarios, we may not have access to one or

more parameters of the pdf fX although we know that the

distribution is of a certain type, e.g. we may know that

the distribution is Gaussian, but its mean and/or variance

is unknown. By means of local communication among the

sensors, we enable them to estimate the unavailable parameters

such that the optimal threshold T ⋆ may be computed in a

decentralized way. This is done at the expense of some delay

in communication with the fusion center. Using a distributed

averaging algorithm, we describe how the method works in

the Gaussian case. A similar procedure would also work for

other symmetric densities such as Laplace, Uniform, Cauchy,

and Logistic, among others.

Assume that the sensors make i.i.d. observations drawn

from a zero-mean Gaussian distribution with known mean and

unknown variance, e.g. N (0, σ2). The observation from sensor

i is denoted xi. An unbiased estimator σ̂n for the variance

of a data set {x1, · · · , xn} is given by σ̂n
def
=n−1

∑

i x
2
i . The

general case with a non-zero mean can also be easily handled,

but requires an additional estimator for the sample mean at

each sensor, and that each sensor transmits its sample mean

estimate to the estimator.

Let yi(t) denote the local estimate of the sample variance

at the i-th sensor after the t-th round of local communication.

We initialize the local estimates by setting yi(0)
def
=x2

i , i =
{1, · · · , n}. Using a distributed averaging scheme, each sensor

estimates ȳ
def
=n−1

∑n
i yi(0) = σ̂n. On the t-th round of local

communication each sensor performs the following steps:

1) Distributed variance estimation: Each node updates

its local estimate based on the local estimates of its

neighbors according to the Metropolis1 update rule [30]:

1Any other averaging scheme would be equally applicable, but possibly
leading to different convergence rates.

Fig. 5. The top figure shows the empirical performance of our scheme based
on average consensus for 100 sample paths JC

(

x,u(t)
)

as a function of
time t for a system with n = 100 sensors and channel capacity k = 10. The
figure in the bottom shows the corresponding total number of transmitting
sensors at a given time t.

yi(t+ 1) = yi(t) +
∑

j∈Ni

1

max{di, dj}
(
yj(t)− yi(t)

)
,

(23)

for i ∈ {1, · · · , n}.
2) Threshold computation. Using the techniques intro-

duced in Section III and assuming that X ∼ N
(
0, yi(t)

)
,

each node solves:

T ⋆
i (t)

def
= argmin

T≥0
Jn,k(T ), (24)

where Jn,k(T ) is given by Eq. (10).

If at time t the sensors use the thresholds {T ⋆
i (t)}ni=1, the

decision variables ui(t) are computed as:

ui(t) = 1
(
|xi| ≥ T ⋆

i (t)
)
. (25)

The instantaneous performance of this approximate scheme is

given by

Jπ

(
x,u(t)

)def
=







1
n

n∑

i=1

x2
i

(
1− ui(t)

)
, if

n∑

i=1

ui(t) ≤ k,

1
n

n∑

i=1

x2
i , if

n∑

i=1

ui(t) > k,

(26)

where the notation π = C is used to denote that the sensors

are using a consensus-based scheme.

Figure 5 (top) shows the empirical performance of the

system obtained by generating 100 independent sample

paths (one for each realization of the observation vector

x
def
=(x1, · · · , xn)). The mean and the standard deviation of the

data JC(x,u(t)) are plotted. The underlying local communi-

cation graph G is sampled from the ensemble of geometric

graphs with connectivity radius r =
√

log2 n/n, which is

known to result in a connected graph with high probability

[31]. One key observation here is that the mean of the sample

paths converges to a value below the performance of the

optimal scheme J ⋆
n,k. The reason behind this is that the thresh-

olds are adapted to the observed data x, which is the same
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data used to compute the empirical performance, resulting in

a downward biased estimation of the true optimal solution

J ⋆
n,k [32]. Another observation is the fact that this strategy

is conservative in terms of average number of transmissions

relative to the channel capacity. Figure 5 (bottom) shows that

the average number of transmissions converges to 6.2, which is

approximately 38% less than the maximum available capacity

of k = 10. Moreover, the maximum number of simultaneous

transmissions in the sample paths that are within the standard

deviation (shown in the shaded green region) is 8, from which

we conclude that the occurrence of collisions is effectively

mitigated while achieving empirical performance very close

to the theoretical optimal. We conjecture that this additional

gap observed between the maximum number of simultaneous

transmissions and the capacity is responsible for the robustness

observed in Fig. 4.

B. Top-k strategy based on decentralized quantile estimation

When local communication among sensors is available,

nothing prevents the sensors to coordinate and attempt to im-

plement the centralized top-k scheme outlined in Section III-B.

Therefore, one possibility consists of each sensor exchanging

messages to compute a local estimate of the k-th ordered

statistics z(k) as defined in Eq. (19) and use it as a threshold.

Ideally, if the estimates are perfect, only the sensors holding

the measurements within the top-k largest magnitudes will

transmit. This strategy seeks to maximally exploit the available

communication resources to achieve the best performance.

We will use a distributed subgradient method to estimate the

sample quantile corresponding to the k-th ordered statistics.

Let zi
def
= |xi|, i ∈ {1, · · · , n} and the p-th sample quantile be

defined as

θp
def
= inf

{

ξ | 1
n

n∑

i=1

1(zi ≤ ξ) ≥ p
}

. (27)

Proposition 1 (Relationship between sample quantiles and

ordered statistics): Let {zi}ni=1 be a sequence of realizations of

the i.i.d. sequence of continuous random variables {Zi}ni=1 and

its corresponding non-increasing reordering {z(i)}ni=1. Then,

p ∈
(n− k

n
,
n− k + 1

n

)

⇒ θp = z(k). (28)

Proof: The proof of this result relies on the fact that

{zi}ni=1 are realizations of continuous random variables, and

therefore are distinct with probability 1. Setting p in the

interval of Eq. (28) guarantees that the minimum data point ξ
such that

∑n
i=1 1(zi ≤ ξ) ≥ np holds is exactly z(k).

Let wi(t) denote the estimate of z(k) for the i-th sensor at

t-th iteration and set wi(0)
def
= zi, i ∈ {1, · · · , n}. Let η(t) be

a deterministic step-size sequence, which is chosen as η(t) =
α/tτ , where α > 0 and τ ∈ (0.5, 1].

On the t-th round of local communication we perform the

following iteration:

wi(t+ 1) = wi(t) +
∑

j∈Ni

1

max{di, dj}
(wj(t)− wi(t))

− η(t)si
(
zi, wi(t)

)
, (29)

where

si
(
zi, wi(t)

)def
=

{

1− p zi < wi(t)

−p zi ≥ wi(t).
(30)

If at time t the i-th sensor uses its quantile estimate wi(t)
as a threshold, the decision variables ui(t) are computed as:

ui(t) = 1
(
|xi| ≥ wi(t)

)
. (31)

The instantaneous performance of this scheme is computed

according to Eq. (26) with π = Q denoting the fact that the

sensors are using the quantile-based scheme.

Theorem 3: Let p ∈
(
(n−k)/n, (n−k+1)/n

)
. If the local

communication graph G is connected, then

lim
t→+∞

wi(t) = z(k), i ∈ {1, . . . , n}. (32)

Proof: From [22, Section 1.3, pp. 7–9], we know that

θp = argmin
ξ∈R

n∑

i=1

ρp
(
zi − ξ

)
, (33)

where

ρp(x)
def
=

{

(p− 1)x x < 0

px x ≥ 0.
(34)

Equation (33) is a non-smooth convex optimization problem,

which can be distributed assuming that zi is the local variable

available only to sensor i. Therefore, the optimal solution can

be obtained by interleaving the subgradient method with an

average-consensus iteration [33]. Consider the iteration given

by:

wi(t+ 1) =
∑

j∈Ni

aijwj(t)− η(t)si
(
zi, wi(t)

)
, (35)

where aij are the averaging coefficients, and si
(
zi, wi(t)

)
is

a subgradient of ρp (zi − ξ) with respect to ξ at wi(t), e.g.,

si
(
zi, wi(t)

)def
=

{

1− p zi < wi(t)

−p zi ≥ wi(t).
(36)

Let aij be the Metropolis averaging coefficients [34]. Under

the assumptions that the step-size η(t) is square-summable,

but not summable, and that the local communication graph G

is connected, Eq. (35) is guaranteed to converge to the optimal

solution [30], i.e., θp, which, from Proposition 1, is equal to

z(k) for p ∈
(
(n− k)/n, (n− k + 1)/n

)
.

One consequence of Theorem 3 is that for a large enough

delay in communication, the performance of the scheme

based on sample quantile estimation converges to the bounded

interval, which is specified by the following result.

Corollary 1: Let p ∈
(
(n − k)/n, (n − k + 1)/n

)
. Then

exists a number M > 0 such that for t ≥ M ,

1

n

n∑

i=k+1

Z2
(i) ≤ JQ

(
X,U(t)

)
≤ 1

n

n∑

i=k

Z2
(i) (37)

Proof: From Theorem 3, we have:

lim
t→+∞

wi(t) = z(k), i ∈ {1, . . . , n}. (38)

From the definition of limit, there exists a positive number

ε
def
= min

{
z(k−1) − z(k), z(k) − z(k+1)

}
, (39)
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Fig. 6. The top figure shows the empirical performance of our scheme based
on quantile estimation for 100 sample paths JQ

(

x,u(t)
)

as a function of
time t for a system with n = 100 sensors and channel capacity k = 10. The
figure in the bottom shows the corresponding total number of transmitting
sensors at a given time t.

and a sufficiently large number M such that
∣
∣wi(t)− z(k)

∣
∣ < ε, t ≥ M. (40)

This implies that after M rounds of local communication,

the thresholds wi(t) will lie in (z(k+1), z(k−1)) for all i ∈
{1, · · · , n}. Furthermore, for t ≥ M , the number of trans-

missions will be either k or k − 1. Therefore, either the top

k or k − 1 largest measurements will be sent to the remote

estimator, resulting in the following inequality:

1

n

n∑

i=k+1

z2(i) ≤ JQ

(
x,u(t)

)
≤ 1

n

n∑

i=k

z2(i). (41)

Figure 6 illustrates the performance of the distributed quan-

tile estimation scheme by computing the mean of 100 sample

paths JQ(x,u(t)). The underlying graph is the same used in

the simulation results in Section IV-A and the observations

are standard Gaussian random variables. The chosen step-size

sequence is η(t) = 1/t0.51. Comparing Figs. 5 and 6, the

asymptotic performance of the quantile estimation scheme is

superior to the performance of the average consensus-based

decentralized scheme. However, the convergence rate of the

quantile estimation scheme is considerably slower than the

consensus-based system. There is a simple, intuitive argument

for these performance differences: The quantile estimation

scheme’s asymptotic performance is essentially the centralized

method’s performance. The sensors must exchange much more

information at this performance level than what is needed

to estimate the distribution’s variance via average consensus.

Moreover, the quantile estimation scheme seeks to eliminate

the occurrence of collisions in the long run while at the same

time approaching the channel’s capacity. Notice that through

quantile estimation, we operate at approximately 95% of the

channel capacity. The average consensus-based strategy is

conservative and works at 62% of the capacity limit. Hence,

the existence of a performance gap.

C. Fast quantile estimation decentralized scheme

In this section, we introduce a hybrid scheme with a faster

convergence rate and better or equal performance than both

schemes presented so far. We will only assume that the pdf of

the sensors’ observations is zero-mean and symmetric, but is

otherwise unknown. Let R be an integer such that when t < R,

we use the consensus-based method in Section IV-A, which

has a faster convergence rate; when t = R, each node uses

the threshold computed by solving the optimization problem

in Eq. (24) to initialize the quantile estimation scheme, i.e.,

wi(R) = T ⋆
i (R), i ∈ {1, · · · , n}. (42)

After that, we use the quantile-based scheme as described in

Section IV-B. which converges to a lower asymptotic cost. The

instantaneous cost is given by JF

(
x,u(t)

)
defined as:

JF

(
x,u(t)

)def
=

{
JC

(
x,u(t)

)
, if t < R,

JQ

(
x,u(t)

)
, if t ≥ R.

(43)

The switching-time R is chosen as the time when all of

the local thresholds at the sensors T ⋆
i (t) are close to the

threshold computed with access to entire data set T̄ ⋆. Since

the convergence-time depends on the data, which is random,

we define the expected threshold agreement time.

Definition 3: Let δ > 0, the expected threshold agreement

time is defined as

R(δ)
def
=E

[
min{t ∈ Z≥0 | max

i∈{1,··· ,n}
|T ⋆

i (t)− T̄ ⋆| < δ }
]
,

(44)

where the expectation is taken over the sensors’ observations

X1, · · · , Xn.

Intuitively, the threshold agreement time R(δ) is a function

of the graph’s connectivity (through the averaging matrix

A), the cost function J and the probability distribution of

X1, · · · , Xn. The next result provides a useful upper bound

to the expected threshold agreement time, which can be also

used as a switching-time.

Theorem 4: Let A be the averaging matrix used along

with the local communication graph G, the vector Y (0) =
vec(X2

1 , · · · , X2
n), and the function τ : R → R be defined as

τ(σ2)
def
= argmin

T≥0
Jn,k(T ), (45)

assuming that Xi ∼ N (0, σ2), i ∈ {1, · · · , n}. Then the

following upper bound to the expected threshold agreement

time holds:

R(δ) ≤ E

[

min
{

t ∈ Z≥0

∣
∣
∣

∥
∥
∥

(

A
t − 1

n
11

T
)

Y (0)
∥
∥
∥
∞

<
δ

|τ ′
(
n−11TY (0)

)
|
}]

, (46)

where τ ′ is the derivative of Eq. (45) with respect to σ2 (i.e. the

sensitivity function), and the expectation is taken with respect

to X1, · · · , Xn.
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Proof: Consider the function τ(σ2) defined in Eq. (45),

which is continuously differentiable and concave on (0,+∞)
(cf. Lemma 6 in Appendix E), the following holds for all

i ∈ {1, · · · , n}:

|T ⋆
i (t)− T̄ ⋆| = |τ

(
yi(t)

)
− τ(ȳ)| ≤ |τ ′(ȳ)| · |yi(t)− ȳ|, (47)

where ȳ = n−1
∑

yi(0), and yi(t) is the i-th sensor’s estimate

of ȳ at time t. Thus,

max
i∈{1,··· ,n}

|T ⋆
i (t)− T̄ ⋆| ≤ |τ ′(ȳ)| · ‖y(t)− 1ȳ‖∞

= |τ ′(ȳ)| ·
∥
∥
∥

(

A
t − 1

n
11

T
)

y(0)
∥
∥
∥
∞
. (48)

Let S(δ) and C(δ) be defined as

S(δ)
def
=
{
t ∈ Z≥0

∣
∣

∥
∥
∥

(

A
t − 1

n
11

T
)

y(0)
∥
∥
∥
∞

< δ/|τ ′(ȳ)|
}

(49)

and

C(δ)
def
=
{
t ∈ Z≥0

∣
∣ max

i∈{1,··· ,n}
|T ⋆

i (t)− T̄ ⋆| < δ
}
. (50)

Notice that S(δ) ⊆ C(δ) ⇒ minC(δ) ≤ min S(δ). Taking the

expectation with respect to X1, · · · , Xn yields

R(δ) ≤ E
[
min S(δ)

]def
= R̄(δ). (51)

For the graphs that we have been using in our numerical

results, we have computed switching-times based on the upper-

bound of Theorem 4. Table II contains the switching-times

R̄n,k corresponding to different values of δ for systems with

n sensors and channel capacity k. The underlying graphs G

are random Geometric graphs with n = 10, 100 and 1000
nodes and are fixed2. The expectation in the upper-bound is

approximated using 1000 Monte-Carlo simulations, for which

the mean and its 95% confidence interval are provided.

TABLE II
SWITCHING-TIME R̄n,k FOR DIFFERENT VALUES OF δ

δ R̄10,1 R̄100,10 R̄1000,100

10−1 15.35± 0.39 21.84± 0.47 41.39± 1.16
10−2 34.86± 0.51 63.85± 0.92 218.28± 3.09
10−3 56.34± 0.57 112.38± 1.17 441.94± 3.62
10−4 76.73± 0.59 162.10± 1.34 668.71± 4.01
10−5 97.21± 0.53 213.10± 1.43 903.29± 4.07

D. Mistmatched distributions and illustrative example

To broaden our schemes’ applicability, consider the case

when the distribution is not necessarily Gaussian. Still, we use

a Gaussian approximation, i.e., we perform the local threshold

design, assuming that the measurements are drawn from a

Gaussian distribution with unknown variance. In this “mis-

matched” distribution scenario, we use consensus to estimate

the variance of the distribution. At each iteration, each sensor

solves Eq. (13) assuming the distribution is N
(
0, yi(t)

)
. At

2All data and code discussed in this paper is available at GitHub https:
//github.com/mullervasconcelos/collision-quantile.git

Fig. 7. Performance of the quantile estimation scheme and its accelerated
counterpart. The observations are i.i.d. according to a Laplacian distribution,
Xi ∼ L(0, 1), i ∈ {1, · · · , n}. The number of sensors is n = 100, and
capacity is k = 10.

a certain point t = R, we initialize the quantile estimation

scheme using Eq. (42).

The parameter δ used in the fast quantile estimation scheme

is chosen to be 10−1, which implies in a switching time

R = 22. Assuming the measurements are drawn from a

Laplacian distribution, Xi ∼ L(0, 1), i ∈ {1, · · · , n}, we

compare the performance of the regular quantile estimation

scheme with its accelerated counterpart. The numerical results

shown in Fig. 7 show that the fast quantile estimation scheme

is approximately 2 orders of magnitude faster, even when the

design is done based on mismatched distributions. The reason

why the hybrid scheme is so effective, is that the consensus

scheme quickly synchronizes the local estimates at the sensors

to a threshold close to the k-th ordered statistics, accelerating

the overall convergence of the quantile-based scheme. This

synchronization also leads to smoother sample paths, whereas

the sample paths of the pure quantile estimation scheme

display large oscillations when different local estimates are

approaching the k-th ordered statistics (cf. shaded regions

in Fig. 7). Finally, since the quantile estimation scheme is

independent of the distributions, the asymptotic performance

is unaffected by the mismatch. That is the reason why the

hybrid scheme is able to achieve the desirable features of both

schemes.

V. CONCLUSIONS

In the first part of the paper, we have studied the design of

threshold strategies for a remote estimation system over the

collision channel without local communication. We showed

that when the observations across sensors are i.i.d. and the

pdf is symmetric, there exists a unique optimal threshold for

the normalized MSE criterion. Our numerical results show that

the optimal threshold strategy has a performance reasonably

close to a clairvoyant centralized lower bound and is robust

to moderate perturbations on the symmetry assumptions.

https://github.com/mullervasconcelos/collision-quantile.git
https://github.com/mullervasconcelos/collision-quantile.git
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In the second part of the paper, we assume the measure-

ments are i.i.d. according to symmetric probability distribution

belonging to a parametric class with unknown parameters.

Under this partial distribution knowledge, local communica-

tion among sensors enables distributed learning of the optimal

thresholds. We presented three schemes:

1) A fast converging consensus-based design where each

sensor estimates missing distribution parameters from

data and then solve a local optimization problem.

2) A distributed quantile estimation strategy that implements

the optimal centralized policy at the price of a slower

convergence rate.

3) A hybrid scheme with fast convergence and excellent

performance.

Many open questions stem from this work. One of them

is the characterization of the system robustness concerning

perturbations of the probabilistic model. For example, we

would like to characterize the system’s performance loss when

the imperfect local parameter estimates are used instead of the

nominal values. Another important open question pertains to

the possibility of correlation among sensors’ observations and

properties of the objective function, existence, and uniqueness

of optimal solutions. More importantly, whether the use of

asymmetric threshold strategies would imply substantial gains

in performance. Finally, the convergence rate analysis of

the consensus and quantile-based schemes and their network

scaling properties are still open questions.

APPENDIX A

PROOF OF LEMMA 2

We begin by defining the event Ei,k
def
= {∑ℓ6=i Dℓ ≤ k−1}.

Using the law of total expectation, the objective function in

Eq. (4) becomes

Jn,k(T ) =
1

n

n∑

i=1

[

E[(Xi − X̂i)
2
∣
∣ Di = 0]P(Di = 0)

+E[(Xi − X̂i)
2
∣
∣ Di = 1, |D| > k]P(Di = 1, |D| > k)

+E[(Xi − X̂i)
2
∣
∣ Di = 1, |D| ≤ k]P(Di = 1, |D| ≤ k)

]

.

(52)

The independence of Di and {Dℓ}ℓ6=i yields

Jn,k(T ) =
1

n

n∑

i=1

[

E[(Xi − X̂i)
2
∣
∣ Di = 0]P(Di = 0)

+E[(Xi − X̂i)
2
∣
∣ Di = 1,Ec

i,k]P(Di = 1)P(Ec
i,k)

+E[(Xi − X̂i)
2
∣
∣ Di = 1,Ei,k]P(Di = 1)P(Ei,k)

]

. (53)

Substituting Eq. (6) in Eq. (53), the cost function becomes

Jn,k(T ) =
1

n

n∑

i=1

[

E
[
X2

i

]
−E

[
X2

i 1 (Di = 1)
]
P(Ei,k)

]

.

(54)

Since {Xi}ni=1 are i.i.d., after some algebra we have:

Jn,k(T ) = E[X2]−E[X2
1(|X| ≥ T )]Fn,k(T ). (55)

APPENDIX B

PROOF OF THEOREM 1

From [29], the derivative of Fn,k(T ) is

F ′
n,k(T ) = 2k

(
n− 1

k

)

q(T )n−1−k
(
1− q(T )

)k−1
fX(T ).

(56)

We shall show that there is a unique T ⋆ such that the

derivative J ′
n,k(T ) is zero for T > 0, where

J ′
n,k(T ) = 2T 2fX(T )Fn,k(T )−E

[
X2

1(|X| ≥ T )
]
F ′
n,k(T ).

(57)

Due to the fact that fX(T ) > 0 for T > 0, Eq. (56) implies

that F ′
n,k(T ) > 0 for T > 0. So we have that

J ′
n,k(T )

F ′
n,k(T )

=

[

2T 2fX(T )Fn,k(T )

F ′
n,k(T )

−E
[
X2

1(|X| ≥ T )
]

]

︸ ︷︷ ︸
def
= h(T )

.

(58)

Incorporating Eq. (11) and Eq. (56) into h(T ) yields

h(T ) = T 2q(T )
k−1∑

j=0

(k − 1)!(n− 1− k)!

j!(n− 1− j)!

(
q(T )

1− q(T )

)k−j−1

−E
[
X2

1(|X| ≥ T )
]
. (59)

Since q(T ) ∈ (0, 1) is strictly increasing for T > 0,

1/(1 − q(T )) ∈ (0,∞) is also strictly increasing for T > 0.

The product of two positive and strictly increasing functions

is a positive strictly increasing function, which implies that

q(T )/(1− q(T )) ∈ (0,+∞) is a strictly increasing function.

Since k − j − 1 ≥ 0 for j ∈ {0, · · · , k − 1}, we obtain

that [q(T )/(1− q(T ))]
k−j−1 ∈ (0,+∞) is a non-decreasing

function. The sum of non-decreasing functions is a non-

decreasing function, which implies that

k−1∑

j=0

[

(k − 1)!(n− 1− k)!

j!(n− 1− j)!

(
q(T )

1− q(T )

)k−j−1
]

(60)

is a positive non-decreasing function. Using the fact that the

product of a positive strictly increasing and a positive non-

decreasing function is a strictly increasing function, we get

T 2q(T )
k−1∑

j=0

[

(k − 1)!(n− 1− k)!

j!(n− 1− j)!

(
q(T )

1− q(T )

)k−j−1
]

,

(61)

which is a positive strictly increasing function.

Combining with the fact that −E
[
X2

1(|X| ≥ T )
]

is

strictly increasing continuous function for T > 0, we conclude

h(T ) is a strictly increasing continuous function of T for

T > 0. When T → 0+, we have E
[
X2

1(|X| ≥ T )
]
> 0 and

q(T ) → 0, which implies infT h(T ) = limT→0+ h(T ) < 0.
When T → +∞, we have E

[
X2

1(|X| ≥ T )
]

→ 0 and

q(T ) → 1, which implies supT h(T ) = limT→+∞ h(T ) > 0.
Therefore, there exists only one T ⋆ ∈ (0,+∞) such that

h(T ⋆) = 0. Since fn,k(T ) > 0 and J ′
n,k(T ) = fn,k(T )h(T ),

there is a unique T ⋆ that minimizes Jn,k(T ) for T ∈ (0,+∞).
Combining with the fact that Jn,k(T ) is a continuous function,

T ⋆ is the optimal threshold.
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APPENDIX C

PROOF OF LEMMA 3

Recall that h(T ) in Eq. (59) is a strictly increasing con-

tinuous function of T , establishing the inequality T ⋆ > Tc

is equivalent to showing that h (Tc) < h(T ⋆) = 0, where

Tc
def
= q−1 (1− k/n) . Using Eq. (59) yields

h (Tc) =
T 2
c

n

k−1∑

j=0

k!(n− 1− k)!

j!(n− 1− j)!

(
n− k

k

)k−j

−E
[
X2

1(|X| ≥ Tc)
]

(62)

<
T 2
c

n

k−1∑

j=0

k!(n− 1− k)!

j!(n− 1− j)!

(
n− k

k

)k−j

− kT 2
c

n
≤ 0, (63)

where the first inequality follows from

E
[
X2

1(|X| ≥ Tc)
]
=

∫ +∞

Tc

x2fZ(x)dx (64)

> T 2
c (1− FZ(Tc)) =

kT 2
c

n
, (65)

and the last inequality follows from

k−1∑

j=0

k!(n− 1− k)!

j!(n− 1− j)!

(
n− k

k

)k−j

≤ k. (66)

APPENDIX D

PROOF OF LEMMA 4

Lemma 5 (Chernoff bound [35]): Let D1, . . . , Dn be inde-

pendent Bernoulli random variables such that P(Di = 1) =
1−qi. Let Sn =

∑n
i=1 Di and µ = E[Sn]. Then the following

inequality holds: For δ > 0,

P
(
Sn ≥ (1 + δ)µ

)
≤

(
eδ

(1 + δ)(1+δ)

)µ

. (67)

We begin to prove Lemma 4. Since {Di} is an i.i.d.

sequence of Bernoulli random variables with probability

P (Di = 1) = 1 − q(T ), we have µ = (n − 1)
(
1 − q(T )

)
.

Let δ = k
µ
− 1, and notice that

δ > 0 ⇔ q(T ) > 1− k/(n− 1). (68)

Then, the following holds

Fn,k(T ) = 1−P

(
n−1∑

i=1

Di ≥ k

)
(a)

≥ 1−
(

eδ

(1 + δ)(1+δ)

)µ

,

(69)

where (a) follows from Lemma 5.

Let d > 0. We would like to find T̄ such that Fn,k(T ) ≥
1− 10−d, for T ≥ T̄ . Therefore, we would like to solve:

(
eδ

(1 + δ)(1+δ)

)µ

= 10−d, (70)

which is equivalent to finding a zero of gn,k,d(q) defined in

Eq. (16). We will show that gn,k,d(q) always admits a unique

zero in the interval
(
1− k/(n− 1), 1

]
.

Since gn,k,d(q) is differentiable, we have

g′n,k,d(q) = (n− 1)− k

1− q
< 0, (71)

which means that gn,k,d(q) is strictly decreasing on the interval
(
1 − k/(n − 1), 1

)
. Moreover, when q → 1 − k/(n − 1),

we have gn,k,d(q) → d ln 10 > 0. When q → 1, we have

gn,k,d(q) → −∞. Thus, since gn,k,d(q) is continuous and

strictly decreasing on
(
1 − k/(n − 1), 1

)
, there is a unique

zero ζ in the interval
(
1− k/(n− 1), 1

]
. Let T̄

def
= q−1(ζ).

APPENDIX E

Lemma 6: Assuming that X ∼ N (0, σ2), define the function

τ : R≥0 → R as in Eq. (45). The function τ is concave. More

specifically: There exists a constant c > 0 such that

τ(σ2) = c
√
2σ2. (72)

Proof: Recalling that τ(σ2) satisfies h(τ(σ2)) = 0, where

h is given by Eq. (59). Define the function r : R≥0 → R as

r(x) = x2v1(x)
k−1∑

j=0

(k − 1)!(n− 1− k)!

j!(n− 1− j)!

(
v1(x)

1− v1(x)

)k−j−1

− v2(x), (73)

where

v1(x)
def
=

2√
π

∫ x

0

e−u2

du and v2(x)
def
=

2√
π

∫ +∞

x

u2e−u2

du.

(74)

We can show that r(x) is a strictly increasing continuous

function of x and there exists a unique constant c > 0 such

that r(c) = 0. Moreover, for X ∼ N (0, σ2), we have

r

(
τ(σ2)√
2σ2

)

=
h(τ(σ2))

2σ2
= 0. (75)

Since there is a unique zero c such that r(c) = 0, we have

τ(σ2) = c
√
2σ2.
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