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Distributed remote estimation over the collision
channel with and without local communication
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Abstract—Internet of Things networks are large-scale dis-
tributed systems consisting of a massive number of simple devices
communicating, typically, over a shared wireless medium. This
new paradigm requires novel ways of coordinating access to lim-
ited communication resources without introducing unreasonable
delays. Herein, the optimal design of a remote estimation system
with n sensors communicating with a fusion center via a collision
channel of limited capacity £ < n is considered. In particular,
for independent and identically distributed observations with
a symmetric probability density function, we show that the
problem of minimizing the mean-squared error with respect
to a threshold strategy is quasi-convex. When coordination
among sensors via a local communication network is available,
the on-line learning of possibly unknown parameters of the
probabilistic model is possible, enabling each sensor to optimize
its own threshold autonomously. We propose two strategies for
remote estimation with local communication: One strategy swiftly
reaches the performance of the optimal decentralized threshold
policy, whereas a second strategy approaches the performance of
the optimal centralized scheme with a slower convergence rate.
A hybrid scheme that combines the best of both approaches is
proposed, offering fast convergence and excellent performance.

I. INTRODUCTION

Internet of Things (IoT) networks are systems comprised of
a large number of low-cost devices intermittently transmitting
small bundles of delay-sensitive data to access points or
neighboring devices [1]. Specific IoT applications suffer from
limited communication bandwidth. For instance, Low Power
Wide Area (LPWA) networks are a class of IoT systems
explicitly designed to enable machine-to-machine communica-
tions characterized by infrequent transmitting nodes operating
under strict low power, complexity, and bandwidth constraints.
[2]. LPWA communication protocols such as LoRa and Sig-
Fox are widely used to provide connectivity in static and
mobile sensor networks [3]. However, these systems operate
in unlicensed spectrum bands, which means that multiple
simultaneous transmissions may lead to undesirable packet
collisions and loss in performance.

Our goal is to develop new techniques for medium access
control for IoT systems resilient to packet collisions. We
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Fig. 1. System diagram for remote estimation over the collision channel.

consider the design of an LPWA network system for remote
monitoring where a large number of sensors communicate with
a base station/fusion center under a strict constraint on band-
width. For that purpose, we enable autonomous and distributed
optimal allocation of limited communication resources by
using event-triggered communication via a threshold strategy,
e.g. [4] and references therein. In the absence of local coordi-
nation among sensors, event-triggered communication strate-
gies improve the system performance by forcing the sensors
to transmit only their most informative measurements. When
local communication is available, by exchanging information
at most with their immediate neighbors, each sensor can tune
their thresholds to mitigate the negative effect of collisions
even under incomplete knowledge of their measurements’
underlying statistical model.

In this paper, we study the remote sensing system depicted
in Fig. 1, where n sensors observing independent and iden-
tically distributed continuous random variables communicate
with a fusion center over a collision channel. The channel can
only support the reliable transmission of at most k& packets,
where k < n. If the number of simultaneous transmissions
is larger than k, a collision occurs. We are interested in the
design of event-triggered transmission strategies to control
channel access in a distributed way with the goal of optimizing
estimation performance.

Our abstraction for a sensor network of multiple identical
sensors communicating with a fusion center over a finite
capacity collision channel using low complexity threshold
policies conforms with the requirements of LPWA networks.
The central insight here is that, in many sensing applications,
the communication of uninformative measurements can be
sacrificed without significant loss in performance, freeing
resources to the remaining sensors in the network. This
cooperation among sensors is the centerpiece of this article,
which seeks to lay the foundations of a new framework for

2325-5870 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2021.3100405, IEEE

Transactions on Control of Network Systems

distributed communication protocols under assumptions of the
observations’ probabilistic model.

The optimal design of remote estimation systems has been
of great interest in the past decade, and there exists a rich liter-
ature on these systems under different technical assumptions.
The optimization of transmission policies for a system involv-
ing a single sensor subject to a limited number of transmissions
over a finite horizon was studied in [5]. Instead of limiting
the number of transmissions, the authors of [6] considered
the problem of minimizing an objective function consisting
of the mean-squared error plus a transmission cost. Both
[5] and [6] showed that symmetric threshold strategies are
optimal under symmetry conditions of the probabilistic model
of the measurements. Those results were later generalized
in [7], which obtained similar structural results for a system
with an energy harvesting sensor. An in-depth comprehensive
survey of those and other earlier results can be found in [8].
More recently, connections between remote estimation and the
notion of Age of Information have been established in [9].

Unlike the works mentioned above, our paper considers the
system with multiple sensors under a limited number of simul-
taneous transmissions. Remote sensing systems with multiple
sensors sharing a collision channel were first considered in
[10], which showed that the optimal transmission policies for
symmetrically distributed observations were characterized by
asymmetric thresholds. A similar sensing system with discrete
observations was considered in [11]. Remote estimation of
autoregressive Markov processes over the collision channel has
also been considered in [12], in which symmetric threshold
policies are used in a random access scheme. Notably, [12]
also alludes to the connection between remote estimation and
Age of Information in a multi-sensor setting, thereby extending
[9]. Recent works in this area have incorporated reinforcement
learning into sensor scheduling and remote estimation, when
certain parameters of the system are unknown [13]-[15]. An-
other set of results considered other relevant issues concerning
privacy [16], adversarial jamming [17], packet drops [18], and
energy management [19], [20].

The system considered here is a multi-sensor system com-
municating over a collision channel of capacity k£ > 1. Instead
of focusing on obtaining structural results, we concentrate on
designing optimal thresholds for a symmetric system, corre-
sponding to a symmetric team-decision problem. The sensors
observations have identical statistical properties, i.e., are drawn
according to the same distribution. The symmetry assumption
allows us to obtain a tractable quasi-convex optimization prob-
lem when the sensors observations are symmetric around its
mean. In contrast, asymmetric formulations inevitably would
lead to a non-convex problem for which optimal solutions
would be difficult to obtain. The performance of the optimal
decentralized system is compared against a centralized scheme
where only the sensors with the & most informative mea-
surements are allowed to transmit. This is a generalization of
the observation-driven scheduling problem for remote sensing
studied in [21], in which a scheduler collects the measurements
from all sensors, and chooses a single one to be transmitted
to the destination. For independent observations distributed
according to a symmetric probability density, [21] showed

that a person-by-person optimal policy consists of sending the
measurement with the largest magnitude to the fusion center.
Remarkably, the performance of the optimal decentralized
system without coordination for Gaussian observations is very
close to the performance of the centralized scheme, which
requires all the sensors to exchange their observations over a
local communication network.

To close the existing gap in performance among the optimal
decentralized scheme and the centralized one, we must allow
for local communication. The additional gain in performance
comes at a price in communication delay, since the sensors
need to exchange messages locally to perform a distributed
quantile regression task [22]-[24]. For moderate to large
number of sensors, distributed quantile estimation requires
hundreds of local communication rounds, however, we propose
a smart initialization mechanism based on average consensus
[25], which improves the convergence time by orders of
magnitude, allowing us to close the optimality gap swiftly.
Moreover, we provide numerical evidence that our scheme
performs very well even when the density is symmetric
but unknown. Finally, we provide an upper bound on the
expected switching-time between the average-consensus and
the quantile-regression schemes.

In this paper, we assume that each sensor’s observations
are drawn from a distribution with a symmetric pdf fx. In
Sections II and III, full knowledge of fx is required. In Section
IV-A, we assume that fx belongs to a parametric class of
densities with unknown parameters, e.g., N'(0, 02). In Section
IV-B and C, we assume that fx is unknown.

Preliminary versions of Theorem 1 and Theorem 2 have
appeared in [26], which only considered the scheme without
local communication and contained partial proofs. In the
present paper, we present complete proofs of the previous
results, and additionally propose an exact centralized lower
bound to Problem 1 plus three decentralized schemes based
on local communication together with corresponding analysis
and simulations.

The main contributions of this paper are:

o In the absence of local communication, we study the
design of a globally optimal threshold communication
strategy under a symmetry assumption of the probabil-
ity distribution of the observations. We show that the
mean-squared error is a strictly quasi-convex function
of the threshold, which is amenable to low complexity
numerical optimization schemes. We provide numerical
evidence that this optimal threshold policy is robust to
perturbations of the underlying probabilistic model that
violate the symmetry assumption.

e In the presence of local communication, the sensors
can coordinate to learn a common threshold strategy
when the underlying probability distribution is not com-
pletely specified, or possibly completely unknown. We
propose a consensus-based scheme for zero-mean Gaus-
sian distributions and unknown variance, and a quantile
estimation scheme for unknown zero-mean distributions.
In the consensus-based scheme, each sensor estimates
the unknown variance and then computes its threshold
to determine locally whether to transmit or not. This
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scheme swiftly reaches the performance of the optimal
decentralized scheme. In the quantile estimation scheme,
each sensor estimates locally the k-th largest observation
among all observations and uses it as the threshold to de-
cide whether to transmit or not. This scheme approaches
the performance of the best known centralized scheme
albeit with a slow convergence rate.

e« We propose a hybrid scheme that uses the consensus
scheme via a Gaussian approximation to bootstrap the
quantile estimation scheme. This scheme achieves both
fast convergence and asymptotic performance close to the
centralized policy. We provide a bound on the switching-
time between the two schemes, and an example which
shows that the scheme is robust to distribution mismatch.

II. PROBLEM FORMULATION

This section establishes the problem setup for a decentral-
ized, remote estimation system over a collision channel of
limited capacity. Consider the system diagram shown in Fig. 1.
There are n sensors and a fusion center £, which are connected
by a collision channel /. The i-th sensor observes a zero-mean
random variable X;, ¢ € {1,---,n}. The random variables
{X;}?, are independent and identically distributed (i.i.d.),
and admit a probability density function (pdf) fx (), such
that fx(z) > 0 for x € R. Each sensor decides whether
to transmit its observed measurement to the fusion center or
remain silent according to a threshold strategy.

Definition 1 (Threshold strategy): Let D; € {0,1} be the
binary decision variable of the i-th sensor, where D; = 1
denotes that the sensor decides to transmit its measurement,
and D; = 0 denotes that the sensor decides to remain silent.
A threshold strategy for the i-th sensor is a function D; : R —
{0,1} such that

Di(2) 1 (2] > T), (1)

where T’ € [0, +00) denotes the threshold parameter and 1(S)
denotes the indicator function of the statement G.

Remark 1: This formulation is an instance of a symmetric
stochastic team [27]. This particular class of team decision
problems is often more tractable because the optimization is
over a single policy. It also allows to study the performance
and robustness of optimal strategies with respect to the number
of sensors. In some cases, it is possible to characterize the
system’s performance in the regime when the number of
sensors is infinite, a particularly relevant feature for IoT
applications.

After making a decision, each sensor produces a channel
input packet, S;, defined as follows:

Sidef{ ng) :i gz :(1) Cie{l,...,n}.

Remark 2: We assume that if a sensor decides to transmit,
its unique identification number i is transmitted along with its
measurement. This is done so that the receiver can identify
the origin of the successfully received communication packets
without ambiguity.

The collection of n sensors shares a collision channel C of
limited capacity k, defined as follows:

Definition 2 (Collision channel of capacity k): The collision
channel of capacity k allows the communication of at most
k < n simultaneous packets. Let ]D)déf{i | D; =1} denote the
set of indices of all transmitting sensors. The output of the
collision channel Y is given by:

@ if D=0
YL {(,X,) |ieD} if 1<|D|<k 3)
(€, D) otherwise.

The special symbol € denotes that a collision occurred and &
denotes that the channel is idle.

Assumption 1: When a collision occurs, we assume that
the fusion center can decode the indices of the transmitting
Sensors.

Our purpose is to solve the following estimation problem
over the collision channel under the normalized mean squared
error (MSE) criterion.

Problem 1: Assuming that each sensor uses a threshold
strategy of the form of Eq. (1), given the number of sensors,
n, the pdf of the sensors’ observations, fx, and the capacity
of the collision channel, k; find a threshold 7" that minimizes
the normalized mean-squared error (NMSE):

3 (x.- %)), (4)

i=1

det 1
~7n7k'(T) =—E
n

where the estimates X; are given by:
. def .
XZ:E[XZ|Y], ZE{L,H} (&)
III. OPTIMAL DECENTRALIZED SCHEME WITHOUT LOCAL
COMMUNICATION

A. Quasi-convexity of Problem 1

Assuming that there is no local communication among
the sensors, and that the distribution of the observations is
symmetric, Problem 1 can be solved exactly. We begin by
deriving alternative expressions for Egs. (4) and (5). We will
then show the quasi-convexity of Problem 1, which can thus
be solved using low complexity numerical procedures.

Lemma 1: Provided the pdf fx is symmetric; given set of
the decision variables ]D)déf{i | D; = 1}, the output of the
estimator can be rewritten as

5 vl {Xi if |ID|]<kandieD
o

otherwise,
Proof: We will compute the conditional expectation in
Eq. (5) for every possible output of the collision channel.
When there is no collision and X; was transmitted, i.e.,
|D| < k and D; = 1, we have (i, X;) € Y, which implies
that

ie{l,--,n}. (6)

X, =E[X; | Y] 2" X,. 7)

When a collision occurs and X; was transmitted, i.e.,

|D| > k and D; = 1, we have Y = (€, D) and know ¢ € D.
Assumption 1 implies that

(@)

% YEX | D=1 =KX | |X,|>7 Y

=0, (8
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where (a) is due to { X}, being a collection of independent

random variables, and (b) is due to the symmetry of fx.
When X is not transmitted the index ¢ does not appear in

the channel output Y, which implies that D; = 0. In this case,

(o)

X, = EBIX, | D, = 0] = E[X, | |X.| < 7] 20, 9

where (c) is due to the symmetry of the pdf fx.
|
Lemma 2: Let {X;} ; be an ii.d. sequence distributed
according to a symmetric pdf fx. The objective function in

Problem 1 can be expressed as:
JInk(T) = E[X?] - B [X*1(|X] > T)] Fox(T), (10)

where

k—1
Fop (1) (”_1)(1—q<T))eq(T)"‘1‘f, (11)

l
£=0
and ot
oD=P(X] <T). (12)
Proof: See Appendix A. ]

Theorem 1: The cost function 7, »(T") in Eq. (10) is strictly
quasi-convex and admits a unique optimal threshold 7™ such
that

* .
T* = arg min T (T). (13)
Proof: See Appendix B. ]

Remark 3: Theorem 1 holds for any symmetric pdf, regard-
less of the number of modes of the distribution. We highlight
that proving quasi-convexity is typically a non-trivial task,
and existing methods rely on composition rules of operations
that preserve quasi-convexity, which are not available in our
case. From an algorithmic standpoint, quasi-convexity is a
property as desirable as convexity. Although a closed-form
expression to 7™ is unlikely to exist, we can compute it via
iterative numerical methods. Due to the continuity and quasi-
convexity of 7, 1 (T") (established in Appendix B), we can use
disciplined quasi-convex programming to compute the optimal
threshold [28].

When using numerical optimization solvers, it is important
to properly initialize the interval to be searched, especially
when the support of the pdf fx is unbounded. Next, we will
provide an interval initialization by analyzing the 0 — 1 phase
transition property of F}, ;.. By inspection of Eq. (10), when T'
is such that F,, (T ~ 0, the cost is J,, x(T) ~ E[X?]; when
T is such that F,, x(T) ~ 1, then J,, »(T) ~ E[X?1(|X]| <
T)]7 which is non-decreasing in 7'. Therefore, the optimal 7™
occurs in the interval when F), j transitions from O to 1.

Lemma 3: Let T* be the optimal threshold for the cost
function 7, (T") in Eq. (10). Then

T*>q ! (1—k).
n

Proof: See Appendix C. ]
Lemma 4: Let d > 0. Then the following inequality holds:
For T > ¢~ *(¢),

(14)

Fop(T)>1-10"1 (15)

—N(0,2)
—N(0,1)
—N(0,1/2)

L|- - Jk, for N(0,2)

- - Tk for N(0,1)

- = Tk for N(0,1/2)

Fig. 2. Cost function 7, ;(T) as a function of the threshold 7' with
n = 1000 sensors and a collision channel with capacity & = 100 packets
for Gaussian observations of different variances. The dashed horizontal
lines represent the corresponding centralized lower bounds Zﬁ , given in
Section III-B.

*
7t71000,k'

t71()[1[1,);'

300 400 500 600 700 800
channel capacity k

0 100 200 900 1000

Fig. 3. Optimal cost J,, ;. (T*) and the lower bound JnLk as functions of the
capacity of the collision channel k (performance of the 6ptimal decentralized
and centralized schemes) with n = 1000. The observations at the sensors are
i.i.d. according to a standard Gaussian distribution, X ~ A(0,1).

where ( is the unique zero of

Inka(@ k= (n—1)(1—¢q) — kln <nk1>

+EkIn(1—q)+dlnlo, (16)

in the interval (1 —k/(n—1),1].
Proof: See Appendix D. [ ]
Theorem 2: There exists ¢ > 0 such that:

g (1 k) <7 <q(0).

n

a7)

Proof: The proof follows from Lemmas 3 and 4 and the
fact that one can always set d as large as necessary to guarantee
that the upper bound includes the optimal threshold. [ ]

Remark 4: Theorem 2 provides an interval that is guaranteed
to contain the optimal solution. Typically, d = 2 or 3 will
suffice. The significance of Theorem 2 is that it let us avoid
initializing a numerical solver where 7, x(T") is flat, which
may lead to falsely declaring that a local minimum has
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TABLE I
SEARCH INTERVAL FOR GAUSSIAN OBSERVATIONS. THE UPPER BOUND
ON T™* IS FOUND USING LEMMA 4 WITH d = 3.

2 n=10k=1

o n =100,k =10 n = 1000,k = 100
il 1.64,07.27 1.64,4.01 1.64,3.24
2 2.33,10.28 2.33,5.68 2.33,4.59
3 2.85,12.59 2.85,6.95 2.85,5.62
4 3.29,14.54 3.29,8.03 3.29,6.48
5 3.68,16.26 3.68,8.98 3.68,7.25

been found, and failing to find the unique global minimum
guaranteed by Theorem 1.

B. A centralized lower bound to Problem 1

When the goal is to minimize the MSE of zero-mean
independent variables such as in Problem 1, the best known
centralized strategy consists of transmitting the k largest
measurements in magnitude to the fusion center [21]. The
performance of this strategy serves as a lower bound to decen-
tralized communication strategies over the collision channel
with capacity k. For the “top-k” strategy, the value of the cost
function is given by

L def 1

jn,k: — (18)
n
i=k+1

where Zl-d§f|Xi|, and Z;) is defined as the i-th largest value

in {Z,}}_, such that:
Ziny < Zin-1) < - < Z). (19)
From results on ordered statistics [29], the second moment
of Z; is given by:

2 2 F, () (1 — Fy(2))' ™ fg(2)dz
BlZ0] = — )B(n(—i-i-zl(,i;) O,

where fz and Fz are the pdf and cdf of Z, respectively, and
B(-,-) denotes the beta function. Since Z = | X|, we have:

Fz(z)=2Fx(z)—1, z>0, 21

(20)

and
fz(2) =2fx(2), z2>0.

This lower bound is used as benchmark in the examples
shown in this paper. The gap between the performance of the
optimal threshold policy and the value of jn% & corresponds to
the loss due to decentralization.

(22)

C. Numerical results

Figure 2 shows the normalized MSE 7,, (T for a system
with n = 1000 sensors and a collision channel of capac-
ity £ = 100 making Gaussian observations with different
variances. We can observe the quasi-convexity property, and
compare the performance of the optimal decentralized scheme
Jn.x(T) to the centralized lower bound Jrﬁ i~ From this figure,
we can also observe that 7, (7)) is flat at regions away
from the optimal threshold 7. This observation reinforces the
need for Theorem 2 and proper initialization of the numerical
solvers used to compute 7. Table I shows the search intervals

t n =10,k =1 std dev

14 |——n =10,k = 1 mean

L m= T

3" |n =100, k = 10 std dev

[ |——n =100,k = 10 mean
T, 10

E n = 1000, k = 100 std dev
I |—e—n = 1000, k = 100 std dev
[ \71*000,100

NMSE

09-

0.8 -

o7

0.6

05 -
0

L I I L I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
€

Fig. 4. Monte-Carlo Simulation for the remote estimation system for
random perturbations on the mean p; ~ U[—e, €] as a function of e with
n = 10, 100, 1000 sensors and capacity k£ = 1,10, 100.

computed using Theorem 2 with d = 3, assuming Gaussian
observations N (0, 02).

For a system with n = 1000 sensors, Fig. 3 displays the
dependency of the optimal MSE 7, (T*) and the lower
bound j,ﬁ & as function of the capacity of the collision channel
k for standard Gaussian observations, X; ~ N(0,1). As
the capacity k increases, more measurements are successfully
received at the fusion center, and the normalized MSE de-
creases. We can also observe that the optimal choice for the
threshold successfully mitigates the occurrence of collisions.
Consequently, the decentralized scheme performs remarkably
close to the centralized scheme. The gap between the solid
(decentralized) and the dotted (centralized) curves is the per-
formance loss due to decentralization.

The pdf’s symmetry, identical distributions and known
means are assumptions required to obtain our technical re-
sults. However, our optimal symmetric threshold policies are
surprisingly robust in the absence of all three conditions
mentioned above. Consider the following numerical example
where each sensor makes observations distributed according
X; ~ N (i, 1), where p; € [—€, +€]. We simulate the remote
estimation system for 100 sample paths. For each sample path,
a vector d, where each component d; is uniformly distributed
over the interval [—1,1] is independently generated and kept
fixed. Then, the mean p; = ed; is computed. The value of
the mean is unknown to the sensors and the estimator, which
use a strategy designed under the assumption that p; = 0,
i € {1,---,n}. In this case, the observations are statistically
independent; however, the pdfs are neither symmetric nor
identically distributed. Adjusting the constant € from O to 1,
we can vary the degree of asymmetry.

We measure the normalized mean squared error using a
Monte Carlo simulation for each point of each sample path,
using 10* observation samples for each of the n sensors. In
Fig. 4, we see that the performance of the system employing
a symmetric threshold strategy designed for a nominal sym-
metric and i.i.d. system is robust to variations in the mean for
€ < 0.25. That robustness is consistent across systems with a
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broad range of number of sensors. Clearly, when e increases,
the performance of the system degrades. The purpose of
this simulation is to show that the system can be used, in
practice, under moderate perturbations in the symmetry of the
probabilistic model.

IV. DECENTRALIZED SCHEMES WITH LOCAL
COMMUNICATION

Consider a connected undirected graph G = (N, E) with n
nodes, each node represents a sensor observing an independent
random variable as before. Here, N = {1,...,n} denotes
the set of sensors and E C N x N denotes the set of edges
between nodes. Let N; denote the set of neighbors of the ¢-
th sensor, and did§f|Ni\. By local communication, we mean
that if (¢,7) € [E, sensors ¢ and j can communicate with
each other for a given number of rounds before making their
final decisions on whether to attempt a transmission to the
fusion center or not. Each round of local communication
has short range and represents one unit of accrued delay in
communication between the sensors and fusion center.

A. Average consensus-based decentralized scheme

In many scenarios, we may not have access to one or
more parameters of the pdf fx although we know that the
distribution is of a certain type, e.g. we may know that
the distribution is Gaussian, but its mean and/or variance
is unknown. By means of local communication among the
sensors, we enable them to estimate the unavailable parameters
such that the optimal threshold 7% may be computed in a
decentralized way. This is done at the expense of some delay
in communication with the fusion center. Using a distributed
averaging algorithm, we describe how the method works in
the Gaussian case. A similar procedure would also work for
other symmetric densities such as Laplace, Uniform, Cauchy,
and Logistic, among others.

Assume that the sensors make i.i.d. observations drawn
from a zero-mean Gaussian distribution with known mean and
unknown variance, e.g. N'(0, o2). The observation from sensor
¢ is denoted x;. An unbiased estimator &,, for the variance
of a data set {1, -+ ,x,} is given by G2y >, z7. The
general case with a non-zero mean can also be easily handled,
but requires an additional estimator for the sample mean at
each sensor, and that each sensor transmits its sample mean
estimate to the estimator.

Let y;(t) denote the local estimate of the sample variance
at the ¢-th sensor after the ¢-th round of local communication.
We initialize the local estimates by setting yi(O)défxf, i =
{1,---,n}. Using a distributed averaging scheme, each sensor
estimates ydéfn_l > 7 4i(0) = &5, On the ¢-th round of local
communication each sensor performs the following steps:

1) Distributed variance estimation: Each node updates
its local estimate based on the local estimates of its
neighbors according to the Metropolis' update rule [30]:

'Any other averaging scheme would be equally applicable, but possibly
leading to different convergence rates.

[ std dev
— mean
-------- channel capacity k

20 25 30 35 40 45 50

Fig. 5. The top figure shows the empirical performance of our scheme based
on average consensus for 100 sample paths Jo (m, u,(t)) as a function of
time ¢ for a system with n = 100 sensors and channel capacity £ = 10. The
figure in the bottom shows the corresponding total number of transmitting
sensors at a given time ¢.

W+ ) =00 + Y e (00— ).
JeN; ©

(23)
forie{l,---,n}.
2) Threshold computation. Using the techniques intro-
duced in Section III and assuming that X ~ A(0, y;(¢)),
each node solves:

Tr (1) arg mi T 24

¢ ()= argmin T v (1), (24)
where 7, (1) is given by Eq. (10).

If at time ¢ the sensors use the thresholds {77} (¢)}",, the
decision variables u;(t) are computed as:

ui(t) = 1(|z| > Ty (). (25)

The instantaneous performance of this approximate scheme is
given by

1yia

(26)

where the notation m = C' is used to denote that the sensors
are using a consensus-based scheme.

Figure 5 (top) shows the empirical performance of the

system obtained by generating 100 independent sample

paths (one for each realization of the observation vector

def .
&= (z1,--- ,x,)). The mean and the standard deviation of the

data Jo(x,u(t)) are plotted. The underlying local communi-
cation graph G is sampled from the ensemble of geometric
graphs with connectivity radius r = +/log, n/n, which is
known to result in a connected graph with high probability
[31]. One key observation here is that the mean of the sample
paths converges to a value below the performance of the
optimal scheme j;’k. The reason behind this is that the thresh-
olds are adapted to the observed data a, which is the same
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data used to compute the empirical performance, resulting in
a downward biased estimation of the true optimal solution
J 1. [32]. Another observation is the fact that this strategy
is conservative in terms of average number of transmissions
relative to the channel capacity. Figure 5 (bottom) shows that
the average number of transmissions converges to 6.2, which is
approximately 38% less than the maximum available capacity
of kK = 10. Moreover, the maximum number of simultaneous
transmissions in the sample paths that are within the standard
deviation (shown in the shaded green region) is 8, from which
we conclude that the occurrence of collisions is effectively
mitigated while achieving empirical performance very close
to the theoretical optimal. We conjecture that this additional
gap observed between the maximum number of simultaneous
transmissions and the capacity is responsible for the robustness
observed in Fig. 4.

B. Top-k strategy based on decentralized quantile estimation

When local communication among sensors is available,
nothing prevents the sensors to coordinate and attempt to im-
plement the centralized top-k scheme outlined in Section III-B.
Therefore, one possibility consists of each sensor exchanging
messages to compute a local estimate of the k-th ordered
statistics z(x) as defined in Eq. (19) and use it as a threshold.
Ideally, if the estimates are perfect, only the sensors holding
the measurements within the top-k largest magnitudes will
transmit. This strategy seeks to maximally exploit the available
communication resources to achieve the best performance.

We will use a distributed subgradient method to estimate the
sample quantile corresponding to the k-th ordered statistics.
Let 2% |2y], i € {1,
defined as

,n} and the p-th sample quantile be

n

Gpdffmf {§ | le(?«’i <) Zp}-

=1

27)

Proposition 1 (Relationship between sample quantiles and
ordered statistics): Let {z; }_; be a sequence of realizations of
the i.i.d. sequence of contlnuous random variables {Z;}_; and
its corresponding non-increasing reordering {z;) }7_,. Then,

n—k n—k+1
e ( (28)

y T) = Hp = Z(k)
Proof: The proof of this result relies on the fact that
{#}_, are realizations of continuous random variables, and
therefore are distinct with probability 1. Setting p in the
interval of Eq. (28) guarantees that the minimum data point &
such that " | 1(z; < &) > np holds is exactly z). [
Let w;(t) denote the estimate of z(;) for the i-th sensor at
t-th iteration and set wi(O)défzi, i€ {l,---,n}. Let n(¢t) be
a deterministic step-size sequence, which is chosen as 7(t) =
a/t7, where o > 0 and 7 € (0.5, 1].
On the ¢-th round of local communication we perform the
following iteration:

1
wit+1) =w;(t)+ Y —————(w;(t) —wi(t))
jEZN Inax{di, d]}

| —n(t)si(zi, wi(t)), (29)

7

where

—p z > w;(t).

If at time ¢ the i-th sensor uses its quantile estimate w;(¢)
as a threshold, the decision variables u;(t) are computed as:

ui(t) = 1(|ai| = wi(?)). (31)

The instantaneous performance of this scheme is computed
according to Eq. (26) with m = () denoting the fact that the
sensors are using the quantile-based scheme.
Theorem 3: Let p € ((n—k)/n, (n—k+1)/n). If the local
communication graph G is connected, then
lim w;(t) = zm), i€{l,...,n}.

t——+o0

Proof: From [22, Section 1.3, pp. 7-9], we know that

(32)

T DR

where
pp(x)déf {(p -z z<0 34)

pT x> 0.

Equation (33) is a non-smooth convex optimization problem,
which can be distributed assuming that z; is the local variable
available only to sensor ¢. Therefore, the optimal solution can
be obtained by interleaving the subgradient method with an
average-consensus iteration [33]. Consider the iteration given

by:
Z aijw;(t

JjEN;

i(t+1)

(t)S,‘ (Zi, wi(t)), (35)

where a;; are the averaging coefficients, and s;(z;, w;(t)) is
a subgradient of p, (z; — &) with respect to £ at w;(t), e.g.,

si(zi,wi(t))déf {1 —-p z <w;i(t) (36)

—p zi > w;(t).

Let a;; be the Metropolis averaging coefficients [34]. Under
the assumptions that the step-size 7(t) is square-summable,
but not summable, and that the local communication graph G
is connected, Eq. (35) is guaranteed to converge to the optimal
solution [30], i.e., 6, which, from Proposition 1, is equal to
2y forp € ((n—k)/n, (n—k+1)/n). [ |

One consequence of Theorem 3 is that for a large enough
delay in communication, the performance of the scheme
based on sample quantile estimation converges to the bounded
interval, which is specified by the following result.

Corollary 1: Let p € ((n — k)/n,(n — k + 1)/n). Then
exists a number M > 0 such that for ¢ > M,

= Z 2 < To(X,U(1) Zzl) (37)
i=k+1
Proof: From Theorem 3, we have:
tllgloowi(t) =zpy, t€{l,...,n}. (38)

From the definition of limit, there exists a positive number

def .
e= min {z¢e-1) = 2 20) — 241y} (39
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Fig. 6. The top figure shows the empirical performance of our scheme based
on quantile estimation for 100 sample paths Jg (a:, u(t)) as a function of
time ¢ for a system with n = 100 sensors and channel capacity k = 10. The
figure in the bottom shows the corresponding total number of transmitting
sensors at a given time ¢t.

and a sufficiently large number M such that

|wi(t) — zgy| <e, t> M. (40)

This implies that after M rounds of local communication,
the thresholds w;(t) will lie in (2(x11), 2(k—1)) for all i €
{1,---,n}. Furthermore, for ¢ > M, the number of trans-
missions will be either k£ or k — 1. Therefore, either the top
k or k — 1 largest measurements will be sent to the remote
estimator, resulting in the following inequality:

%zn: (2<jQ(wu < Zz

n
i=k i=k

(41)

3\)—‘

|

Figure 6 illustrates the performance of the distributed quan-
tile estimation scheme by computing the mean of 100 sample
paths Jg(z, u(t)). The underlying graph is the same used in
the simulation results in Section IV-A and the observations
are standard Gaussian random variables. The chosen step-size
sequence is 7(t) = 1/t°51. Comparing Figs. 5 and 6, the
asymptotic performance of the quantile estimation scheme is
superior to the performance of the average consensus-based
decentralized scheme. However, the convergence rate of the
quantile estimation scheme is considerably slower than the
consensus-based system. There is a simple, intuitive argument
for these performance differences: The quantile estimation
scheme’s asymptotic performance is essentially the centralized
method’s performance. The sensors must exchange much more
information at this performance level than what is needed
to estimate the distribution’s variance via average consensus.
Moreover, the quantile estimation scheme seeks to eliminate
the occurrence of collisions in the long run while at the same
time approaching the channel’s capacity. Notice that through
quantile estimation, we operate at approximately 95% of the

channel capacity. The average consensus-based strategy is
conservative and works at 62% of the capacity limit. Hence,
the existence of a performance gap.

C. Fast quantile estimation decentralized scheme

In this section, we introduce a hybrid scheme with a faster
convergence rate and better or equal performance than both
schemes presented so far. We will only assume that the pdf of
the sensors’ observations is zero-mean and symmetric, but is
otherwise unknown. Let R be an integer such that when ¢ < R,
we use the consensus-based method in Section IV-A, which
has a faster convergence rate; when ¢ = R, each node uses
the threshold computed by solving the optimization problem
in Eq. (24) to initialize the quantile estimation scheme, i.e.,

wi(R) =T(R), ie{l,-- n} (42)

After that, we use the quantile-based scheme as described in
Section IV-B. which converges to a lower asymptotic cost. The
instantaneous cost is given by Jr (@, u(t)) defined as:

det [ Jo(z,ul(t)),
Tr(z, u(t)) {jQ(m,u(t)),
The switching-time R is chosen as the time when all of
the local thresholds at the sensors 77 (t) are close to the
threshold computed with access to entire data set 7*. Since
the convergence-time depends on the data, which is random,
we define the expected threshold agreement time.
Definition 3: Let 6 > 0, the expected threshold agreement
time is defined as

if t <R,

ift > R. “43)

R(O)EE[min{t € Zs, | max [T (1) - T <6 }],
= ie{l,n
(44)
where the expectation is taken over the sensors’ observations

X1, X

Intuitively, the threshold agreement time R(J) is a function
of the graph’s connectivity (through the averaging matrix
A), the cost function J and the probability distribution of
X1,--+,X,. The next result provides a useful upper bound
to the expected threshold agreement time, which can be also
used as a switching-time.

Theorem 4: Let A be the averaging matrix used along
with the local communication graph G, the vector Y (0) =

vec(XZ,---,X2), and the function 7 : R — R be defined as
7(02)d§f argmin J, (T), (45)

>0
assuming that X; ~ N(0,0%), i € {1,---,n}. Then the

following upper bound to the expected threshold agreement
time holds:

R(5) < E[min {t € Zsg ‘ H( - *11T) H
5
) @

where 7’ is the derivative of Eq. (45) with respect to o2 (i.e. the
sensitivity function), and the expectation is taken with respect
to X1, , Xn.
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Proof: Consider the function 7(0?) defined in Eq. (45),
which is continuously differentiable and concave on (0, +00)
(cf. Lemma 6 in Appendix E), the following holds for all
ie {1, ,nk

T () =T = |7 (3:(1) = 7(@)] < |7 @)] - la(t) — 7], 47D

where § = n=1 > y;(0), and y;(t) is the i-th sensor’s estimate
of ¢ at time ¢. Thus,

max

, T () =T < 17" @) ly(t) — 17|00
i€{l,---,n}

= @) | (A~ 2117 y0)
Let S(6) and C(J) be defined as

SO {t ez ||| (a0~ -11T)y()|_ <5/ @)] )
(49)

(48)

oo

and

COE{teZso | max |THE)—T* <8} (50
- i€{l,--,n}
Notice that S(6) C C(d) = min C(d) < min S(J). Taking the
expectation with respect to Xq,---, X, yields

def

R(8) < E[minS(6)] = R(9). (51)

|
For the graphs that we have been using in our numerical
results, we have computed switching-times based on the upper-
bound of Theorem 4. Table II contains the switching-times
R, 1. corresponding to different values of § for systems with
n sensors and channel capacity k. The underlying graphs G
are random Geometric graphs with n» = 10,100 and 1000
nodes and are fixed’. The expectation in the upper-bound is
approximated using 1000 Monte-Carlo simulations, for which
the mean and its 95% confidence interval are provided.

_ TABLE I
SWITCHING-TIME R,, j, FOR DIFFERENT VALUES OF §

0 Ri0,1 Ri100,10 R1000,100
10~ 1T 15.35 £ 0.39 21.84 +£0.47 41.39 £ 1.16
102 34.86 + 0.51 63.85 4+ 0.92 218.28 £ 3.09
103 56.34 £+ 0.57 112.38 £ 1.17 441.94 + 3.62
104 76.73 = 0.59 162.10 £ 1.34 668.71 = 4.01
105 97.21 £ 0.53 213.10 £1.43 903.29 £+ 4.07

D. Mistmatched distributions and illustrative example

To broaden our schemes’ applicability, consider the case
when the distribution is not necessarily Gaussian. Still, we use
a Gaussian approximation, i.e., we perform the local threshold
design, assuming that the measurements are drawn from a
Gaussian distribution with unknown variance. In this “mis-
matched” distribution scenario, we use consensus to estimate
the variance of the distribution. At each iteration, each sensor
solves Eq. (13) assuming the distribution is A (O,yi(t)). At

2All data and code discussed in this paper is available at GitHub https:
//github.com/mullervasconcelos/collision-quantile.git
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Fig. 7. Performance of the quantile estimation scheme and its accelerated
counterpart. The observations are i.i.d. according to a Laplacian distribution,
X; ~ £(0,1), i € {1,--- ,n}. The number of sensors is n = 100, and
capacity is k = 10.

a certain point ¢ = R, we initialize the quantile estimation
scheme using Eq. (42).

The parameter ¢ used in the fast quantile estimation scheme
is chosen to be 10!, which implies in a switching time
R = 22. Assuming the measurements are drawn from a
Laplacian distribution, X; ~ £(0,1), ¢ € {1,---,n}, we
compare the performance of the regular quantile estimation
scheme with its accelerated counterpart. The numerical results
shown in Fig. 7 show that the fast quantile estimation scheme
is approximately 2 orders of magnitude faster, even when the
design is done based on mismatched distributions. The reason
why the hybrid scheme is so effective, is that the consensus
scheme quickly synchronizes the local estimates at the sensors
to a threshold close to the k-th ordered statistics, accelerating
the overall convergence of the quantile-based scheme. This
synchronization also leads to smoother sample paths, whereas
the sample paths of the pure quantile estimation scheme
display large oscillations when different local estimates are
approaching the k-th ordered statistics (cf. shaded regions
in Fig. 7). Finally, since the quantile estimation scheme is
independent of the distributions, the asymptotic performance
is unaffected by the mismatch. That is the reason why the
hybrid scheme is able to achieve the desirable features of both
schemes.

V. CONCLUSIONS

In the first part of the paper, we have studied the design of
threshold strategies for a remote estimation system over the
collision channel without local communication. We showed
that when the observations across sensors are i.i.d. and the
pdf is symmetric, there exists a unique optimal threshold for
the normalized MSE criterion. Our numerical results show that
the optimal threshold strategy has a performance reasonably
close to a clairvoyant centralized lower bound and is robust
to moderate perturbations on the symmetry assumptions.
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In the second part of the paper, we assume the measure-
ments are i.i.d. according to symmetric probability distribution
belonging to a parametric class with unknown parameters.
Under this partial distribution knowledge, local communica-
tion among sensors enables distributed learning of the optimal
thresholds. We presented three schemes:

1) A fast converging consensus-based design where each
sensor estimates missing distribution parameters from
data and then solve a local optimization problem.

2) A distributed quantile estimation strategy that implements
the optimal centralized policy at the price of a slower
convergence rate.

3) A hybrid scheme with fast convergence and excellent
performance.

Many open questions stem from this work. One of them
is the characterization of the system robustness concerning
perturbations of the probabilistic model. For example, we
would like to characterize the system’s performance loss when
the imperfect local parameter estimates are used instead of the
nominal values. Another important open question pertains to
the possibility of correlation among sensors’ observations and
properties of the objective function, existence, and uniqueness
of optimal solutions. More importantly, whether the use of
asymmetric threshold strategies would imply substantial gains
in performance. Finally, the convergence rate analysis of
the consensus and quantile-based schemes and their network
scaling properties are still open questions.

APPENDIX A
PROOF OF LEMMA 2

We begin by defining the event inykdéf{zeﬁ D, <k-1}.
Using the law of total expectation, the objective function in
Eq. (4) becomes

T i(T) —%i[ (X; — X)? | D; = 0[P(D; = 0)

+E[(X; - X;)? | D; =1,D| > k]P(D; = 1,|D| > k)
+E[(X; - X;)? | Dy = 1,D| < K[P(D; = 1,D| < k)]
(52)

The independence of D; and {D,},; yields

n

i=1
+E[(X; — X,)? | Dy = 1,8, ]P(D; = 1)P(€5,)

+E[(Xi — X2 | Dy = 1,8 ,]P(D; = 1)P(el,k)]. (53)

Substituting Eq. (6) in Eq. (53), the cost function becomes

1 & ) B
Tn.k( = Z: [ E [X71(D; =1)] P(@z,k)}.
(54)
Since {X;}7, are i.i.d., after some algebra we have:
Ini(T) = E[X?] — E[X?1(|X| > T)]F, 1(T).  (55)
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APPENDIX B
PROOF OF THEOREM 1
From [29], the derivative of F), ;,(T') is
n—1 el k-1
) =20(" ) om0 o) (),
(56)

We shall show that there is a unique 7™ such that the
derivative jT’L . (T') is zero for T > 0, where

Tni(T) = 2T fx (T) F o(T) —E [X*1(|X| = T)] F) 1 (T).
(57
Due to the fact that fx(7") > 0 for T' > 0, Eq. (56) implies

that F ,(T') > 0 for T' > 0. So we have that

wk(T) | 2T%fx (T)Fui(T) 2
TG R R S e

1(|X| > T)]

(58)
Incorporating Eq. (11) and Eq. (56) into h(T') yields

(kl)!(nlk:)!< q(T) )’”1
jln —1—j)! 1—¢(T)

-E[X*1(X[>T)]. (59

k—1

=T%(T))

j=0

()

Since ¢(T) € (0,1) is strictly increasing for T > 0,
1/(1 —q(T)) € (0,00) is also strictly increasing for 7' > 0.
The product of two positive and strictly increasing functions
is a positive strictly increasing function, which implies that

q(T)/(1 —q(T)) € (0,+00) is a strictly increasing function.

Since Kk —j — 1 > 0 for ] e {o,-- — 1}, we obtain
that [¢(T)/(1 — q(T))]k it (0,—|—oo) is a non-decreasing
function. The sum of non-decreasing functions is a non-
decreasing function, which implies that

i (n—1—k)! ( q(T) )k_j_l 60)
= n,l,]) 1—q(7)
is a positive non-decreasing function. Using the fact that the

product of a positive strictly increasing and a positive non-
decreasing function is a strictly increasing function, we get

k—1 S
2 k=Dln—1-k)! [ oT) \*
TQ(T)J'Z—%[ jin—1— ) <1_Q(T)) ]’
(61)

which is a positive strictly increasing function.

Combining with the fact that —E [X?1(|X|>T)] is
strictly increasing continuous function for 7' > 0, we conclude
h(T) is a strictly increasing continuous function of 7' for
T > 0. When T — 0T, we have E [X?1(|X| > T)]| > 0 and
q(T) — 0, which implies infy h(T) = limp_o+ h(T) < 0.
When T — +o0, we have E [X?1(|X|>T)] — 0 and
q(T) — 1, which implies supp h(T") = limp_,4 o A(T") > 0.

Therefore, there exists only one T* € (0,+00) such that
h(T*) = 0. Since f, x(T) > 0 and J;, (T') = fo,x(T)M(T),
there is a unique 7* that minimizes 7, (") for T € (0, +0).
Combining with the fact that 7, x(T') is a continuous function,
T™* is the optimal threshold.
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APPENDIX C
PROOF OF LEMMA 3

Recall that h(T) in Eq. (59) is a strictly increasing con-
tinuous function of 7', establishing the inequality 7™ > T,
is equivalent to showing that h(T.) < h(T*) = 0, where

T,%'q=1 (1 — k/n) . Using Eq. (59) yields

n -
j=0

2 k=l 1 _ AN
hi) =2y Mt kﬂ( kzk)‘E[le(XlzTc)]

i =1=))!

(62)
T2 kl(n—1—k) (n—k\"7 kT2
<= -—£<0 63
njz_%j!(n—l—j)!( k > n — (63)
where the first inequality follows from
+oo
E [X°1(|X|>T.)] = / 22 fy(x)da (64)
T.
kT?
> T = Fy(Te)) = =<, (65)
and the last inequality follows from
k—1 k—j
Kln—1—k)! —k J
"(n : ')' (n . ) <k 66)
= =1 )
APPENDIX D
PROOF OF LEMMA 4
Lemma 5 (Chernoff bound [35]): Let D4,..., D, be inde-

pendent Bernoulli random variables such that P(D; = 1) =
1—g;. Let S, = > | D; and o = E[S,,]. Then the following
inequality holds: For ¢ > 0,

e’ a
(1+5)<1+5)> - @)
We begin to prove Lemma 4. Since {D;} is an i.i.d.
sequence of Bernoulli random variables with probability
P(D;=1) =1-¢(T), we have p = (n — 1)(1 — ¢(T)).
Let 6 = g — 1, and notice that

P(S, > (1+6)u) < <

0>0<q(T)>1—-k/(n—1). (68)

Then, the following holds

(;)1 eé H
= a9 )

(69)

n—1
For(T)=1-P (> D;>k
i=1

where (a) follows from Lemma 5.
Let d > 0. We would like to find 7" such that F,, (1) >
1—10"¢%, for T > T. Therefore, we would like to solve:

66 ’ —d
((1+5)<1+5>) =10

which is equivalent to finding a zero of gy,  4(¢) defined in
Eq. (16). We will show that g,, 1 4(q) always admits a unique
zero in the interval (1 —k/(n — 1),1].
Since g, ,q(q) is differentiable, we have
k

! =n—-1)—-———<0
gn,k,d<Q) (n ) 1—¢ )

(70)

(71)

11

which means that g, 1, 4(q) is strictly decreasing on the interval
(1 = k/(n — 1),1). Moreover, when ¢ — 1 — k/(n — 1),
we have g, 1 q4(¢) — dln10 > 0. When ¢ — 1, we have
Gn.k,d(q) — —oo. Thus, since gy q(g) is continuous and
strictly decreasing on (1 — k/(n — 1),1), there is a unique

zero ¢ in the interval (1 —k/(n —1),1]. Let Tdéfq_l(g“).

APPENDIX E

Lemma 6: Assuming that X ~ N(0, o2), define the function
7 : R>o — R as in Eq. (45). The function 7 is concave. More
specifically: There exists a constant ¢ > 0 such that

7(0?) = V202

Proof: Recalling that 7(0?) satisfies h(7(c?)) = 0, where
h is given by Eq. (59). Define the function r : R>g — R as

s k—j—1
r(z) = 22y (z) Z e (1 ﬁlif()f))

(72)

2 i1 j)!
— va(x), (73)
where
def 2 2 def 2 tooo
vl(ac):ﬁ ; e™™ du and vg(x):ﬁ ) u?e ™ dué.l
(74)

We can show that r(x) is a strictly increasing continuous
function of = and there exists a unique constant ¢ > 0 such
that r(c) = 0. Moreover, for X ~ N(0,0?), we have

. (T(02)> _hr@®) _

20’2 20'2

(75)

Since there is a unique zero c¢ such that r(c) = 0, we have

7(0?) = evV202. [ |
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