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ABSTRACT

In this paper, improved channel gain delay estimation strate-

gies are investigated when practical pulse shapes with fi-

nite block length and transmission bandwidth are employed.

Pilot-aided channel estimation with an improved atomic norm

based approach is proposed to promote the low rank struc-

ture of the channel. All the channel parameters, i.e., delays,

Doppler shifts and channel gains are recovered. Design

choices which ensure unique estimates of channel parameters

for root-raised-cosine pulse shapes are examined. Further-

more, a perturbation analysis is conducted. Finally, numerical

results verify the theoretical analysis and show performance

improvements over the previously proposed method.

Index Terms— Leakage, atomic norm, re-sampling,

channel estimation, time-varying narrowband channel.

1. INTRODUCTION

Many wireless communication applications necessitate high

performance channel estimation in order to ensure reliable

communications. In particular, frequency and temporal dis-

tortion [1] is a challenge in high mobility scenarios, such as

high-speed railway system [2], vehicle-to-vehicle communi-

cations [3], and positioning systems [4].

To combat channel distortion, equalization with accurate

channel estimation has been persistently studied (see e.g. [5]

- [9]). Inherent channel sparsity has been exploited in [7]

- [9], reducing the number of observations needed for es-

timation; these works ignored the impact of practical pulse

shapes which lead to a loss in sparsity (channel leakage) in the

Doppler-delay domain and challenge performance of these

sparse methods.

Channel leakage has been addressed by enhancing clas-

sical sparse approximation [3, 10, 11]. Distinct from these

approaches, [12] exploits the atomic norm heuristic [13, 14]

to promote structure while explicitly considering the leakage

leading to strong performance improvements over [10]. The

extensions of [12] to the orthogonal frequency-division multi-

plexing leaked channel are presented in [15] - [17]. However,

in [12], [15] - [17], only the Doppler shift and leakage vector

are estimated, i.e., the delays and channel gains are not sepa-

rately recovered. While equalization can be achieved via the
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1410009, NSF CPS-1446901, NSF CCF-1817200, and ARO 74745LSMUR.

methods in [12], improved equalization is enabled via the di-

rect estimation of channel gains and delays. In addition, based

on the estimated delays and channel gains, time-of-arrival or

received signal-strength information can be exploited for lo-

calization [18, 19], critical to many IoT applications. Herein,

we further improve upon the atomic norm based approach, by

directly estimating these quantities. Properties of the particu-

lar pulse shape employed are analyzed.

The main contributions of this paper are:

1) A simple improvement to the atomic norm based chan-

nel estimation scheme [12] is proposed, where the delay,

Doppler shift, and channel gain of each path can be indi-

vidually estimated, in contrast to [12].

2) Specific to the root-raised-cosine (RRC) pulse shape, the

proposed approach is theoretically analyzed, where we

prove the uniqueness of the delay estimate in the noiseless

case.

3) A perturbation analysis for the noisy scenario is investi-

gated to understand the impact of noise on the estimates.

4) Numerical comparisons to [12] show the proposed scheme,

surprisingly, offers an average 5dB improvement with

respect to the bit error rate (BER) achieved by equaliz-

ing with the estimated channel matrix of [12]. Further-

more, an improvement in the normalized-mean-square-

error (NMSE) of the Doppler shift is achieved with re-

estimation with the re-sampled signal.

2. SIGNAL MODEL

We adopt the signal model of [12], thus, the transmitted signal

x(t) is given by

x(t) =
+∞
∑

n=−∞
x[n]pt (t− nTs) , (1)

where pt (t), Ts, and x[n] represent the transmit pulse, the

sampling period, and the pilot sequence, respectively. Since

the signal is transmitted over a linear, time-varying, narrow-

band channel whose impulse response is given by

g(t, τ) =

p0
∑

k=1

ηkδ (τ − tk) e
j2πνkt, (2)

the received signal can be written as

y(t) =

∫ +∞

−∞
g(t, τ)x(t− τ)dτ + z(t), (3)
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where z(t) is a complex, Gaussian, white noise process, p0
denotes the number of dominant paths, ηk, vk, and tk rep-

resent the channel gain, Doppler shift, and delay of the kth

path, respectively, with 1 ≤ k ≤ p0. We label the paths ac-

cording to the delay values, thus the first path has the small-

est delay value t1. At the receiver, the received signal is

converted to the discrete-time equivalent by matched filtering

with pr(t), that is, y(t) = x(t)⊗ g(t, τ), and then sampled at

t = nTs + t⋆(n), where the offset, t⋆(n), is a design parame-

ter and is set to 0 for each n in [12]. Hence, the corresponding

discrete-time signal is given by

y[n] = (x(t)⊗ g(t, τ)⊗ pr(t) + z(t)) |t=nTs+t⋆(n)

=
M−1
∑

m=0

p0
∑

k=1

ηke
j2πvk[(n−m)Ts+tk]p (mTs + t⋆(n)− tk)

× x[n−m] + z[n], (4)

where p(t) = pt(t)⊗pr(t), M ≤ n < N +M −1, 0 < m <

M =
⌊

τmax

Ts

⌋

+ 1, and τmax = max(t1, ..., tp0
). Here, we

assume pt(t) = pr(t). Note that, the receiver knows the pilot

sequence as well as the transmit and receive pulse shapes. We

seek to estimate the channel parameters (ηk, vk, and tk for

1 ≤ k ≤ p0).

3. IMPROVED ATOMIC NORM BASED CHANNEL

ESTIMATION

Prior to providing our algorithmic improvements to the

methods of [12], we briefly review the estimation strategy

of [12]. Defining v̄k = vkTs, lk(t) = p(t − tk)e
−j2πvkt,

lk = 1
∑M−1

m=0 lk(mTs)
[lk(0Ts), · · · , lk((M − 1)Ts)]

T
, and

α(v̄) =
[

ej2πMv̄, · · · , e−j2π(N+M−1)v̄
]T

, the received

discrete-time signal can be rewritten as

y[n] =

p0
∑

k=1

η̄kα (vk)
H
cn−M+1x

T
n lk + z[n]

= trace

(

cn−M+1x
T
n

p0
∑

k=1

η̄klkα (vk)
H

)

+ z[n],

(5)

where η̄k = ηke
j2πvktk

∑M−1
m=0 lk(mTs), v̄k ∈ [− 1

2 ,
1
2 ],

xn = [x[n], · · · , x [n− (M − 1)]]
T

, t⋆(n) = 0, and cn with

1 ≤ n ≤ N is a canonical basis for R
N×1. The channel

matrix is a function of the unknown channel parameters:

H =

p0
∑

k=1

η̄klkα (vk)
H
. (6)

Given that many channels of interest have a small number of

paths relative to the number of observations p0 ≪ N , we

can formulate a parametric low-rank matrix recovery prob-

lem. Stacking y[n] for M < n < N +M − 1 in a vector y,

we can write
y = Π(H) + z, (7)

where z = [z[M ], · · · , z[N +M − 1]]
T

and the linear op-

erator Π : C
M×N → C

N×1 is defined as Π(H) [n] =

trace
(

cn−M+1x
T
nH

)

. Since each term in the sum in Equa-

tion (6) is a rank-one matrix, [12] proposes the use of the

atomic norm [13], [14] to promote sparsity. Given a set of

atoms, A =
{

ejθlα(v̄)H : v̄ ∈ [− 1
2 ,

1
2 ], ‖l‖2 = 1, l ∈ C

M×1,
θ ∈ [0, 2π)}, the atomic norm is defined as

‖H‖A = inf {c > 0 : H ∈ c conv(A)}

= inf
η̄k,v̄k,‖lk‖2=1

{

∑

k

|η̄k| : H =
∑

k

η̄klkα (v̄k)
H

}

,
(8)

where conv(A) is the convex hull of A. Using the atomic

norm, we solve the following optimization problem to esti-

mate the channel,

minimize
H

‖H‖A s.t. ‖y −Π(H)‖
2
2 ≤ Nσ2

z , (9)

where σ2
z is the variance of z[n]. In [14], our optimization

problem in Equation (9) is shown to have an equivalent semi-

definite program representation, which enables efficient so-

lution of Equation (9) via solvers such as CVX [20]. Under

key conditions (C-1 and C-2 of [12]), the Doppler shifts can

be estimated by exploiting the dual problem of Equation (9)

since there is no duality gap [12]. We refer readers to [12] for

the details of the atomic norm based Doppler shift estimation.

This concludes the summary of prior work.

In Equation (5), we replace the Doppler shifts vk by their

estimated values, v̂k for 1 ≤ k ≤ p0, to construct an esti-

mate of the channel leakage vector, ĥl
m

. We assume that the

estimates are perturbed from the true values as follows

ĥl
m = hl

m + e(h)m , (10)

where the kth element of the true channel leakage vector hl
m

with 0 ≤ m ≤ M − 1, is given by

hl
m[k] = ηke

j2πvk(tk−mTs)p (mTs − tk) , (11)

for 1 ≤ k ≤ p0. The vector e
(h)
m represents the error induced

by the errors in the estimation of the Doppler shifts. From

Equations (5) and (11), we can see that the channel delays

appear only in the channel leakage vector. How to obtain the

estimated delays and channel gains based on ĥl
m, 0 ≤ m ≤

M − 1, is the focus of this paper.

Since the channel gains are unknown, complex values, we

can not use the phase of hl
m defined in Equation (11) to di-

rectly obtain the delay estimate. However, knowledge of the

pulse shape p(t) can be exploited to infer the delays. We de-

fine the ratio function, which will be used in our estimation

strategy, as

rk(m1,m2, tk) =
p (m2Ts − tk)

p (m1Ts − tk)
+ e(rk), (12)

with 0 ≤ m1,m2 ≤ M − 1 and m1,m2 ∈ Z. Here, the error

in the ratio function, e(rk) is

e(rk) = sign

(

p (m2Ts − tk)

p (m1Ts − tk)

)

∣

∣

∣

∣

∣

ĥl
m2

[k]

ĥl
m1

[k]

∣

∣

∣

∣

∣

−
p (m2Ts − tk)

p (m1Ts − tk)
.

(13)
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Algorithm 1 Ratio Functions for Delay Estimation.

1: Input: rok(m1,m2, tk) =
ĥ

l
m2

[k]

ĥl
m1,k

[k]
= |rok(m1,m2, tk)| ×

e
jφro

k
(m1,m2,tk) and v̂k;

2: Output: rk(m1,m2, tk), with 1 ≤ k ≤ p0;

3: for k = 1 to p0 do

4: zk ←

〈

2π(m2−m1)v̂kTs+φro
k
(m1,m2,tk)

π

〉

;

5: if p(t) is positive for all t then

6: rk(m1,m2, tk) ← |rok(m1,m2, tk)|;
7: else

8: rk(m1,m2, tk) ← (−1)zk |rok(m1,m2, tk)|;
9: end if

10: k ← k + 1 ;

11: end for

12: return rk(m1,m2, tk), with 1 ≤ k ≤ p0.

Note that, if p(t) is positive for all t, we can directly set the

ratio function rk(m1,m2, tk) to

∣

∣

∣

∣

ĥ
l

m2
[k]

ĥl
m1

[k]

∣

∣

∣

∣

. If p(t) is not posi-

tive everywhere, we need to first obtain the sign of
p(m2Ts−tk)
p(m1Ts−tk)

and then set rk(m1,m2, tk) properly. Algorithm 1 illustrates

the generation of these ratios for delay estimation, where <
d > represents the integer that is closest to d. Perhaps sur-

prisingly, the choices of the design parameters m1 and m2

strongly influence the uniqueness and quality of the estimates;

furthermore, they are pulse-shape dependent. Thus in Sec-

tion 4, we explore good choices of these parameters for RRC

pulse shapes. Once these parameters are selected, the ratio

function is simply a function of delays. If we set m1 and

m2 to a and b (integers in [0,M − 1]), the delay estimate

of the kth path can be obtained by t̂k = (f(tk))
−1, where

f(tk) = rk(m1,m2, tk) |m1=a,m2=b, (f(·))
−1

represents the

inverse function of function f(·), and t̂k is the estimate of tk.

After delays are estimated, we can substitute their values into

Equation (5) to achieve a linear system of equations to com-

pute the channel gains.

One can construct an equalizer from the estimated Doppler

shifts and channel leakage vectors versus estimating the indi-

vidual path parameters. However, with the estimated delays

and channel gains, we can properly re-sample the received

signals for sequence detection yielding lower BERs. Specif-

ically, we re-sample the received signal at nTs + t̂k′ with

1 ≤ k′ ≤ p0, and thus have

y[n] = (x(t)⊗ g(t, τ)⊗ pr(t) + z(t)) |t=nTs+t̂k′

=

m0−1
∑

m=0

p0
∑

k=1

ηie
j2πvi[(n−m)Ts+ti]p

(

mTs + t̂k′ − tk
)

× x[n−m] + z[n],
(14)

Using these re-sampled discrete-time signals that are

matched to the channel for detection, we can decrease BER

of the data sequence and establish a more reliable transmis-

sion link. Also, re-estimation with the re-sampled signals can

further reduce the mean-squared estimation error, which will

be seen in Section 5. The improved estimation strategy is de-

noted as the Atomic Norm based Delay-Doppler Estimation

(ANDE).

4. PULSE-SHAPE BASED DESIGN CHOICES

Given that typical pulse-shapes are non-linear with respect

to the time argument, the inversion function f(·) needed

to compute the delay estimates will also be non-linear. As

such, we need further constraints to ensure unique delay esti-

mates, even in the noiseless case. To this end, we show that

proper choice of m1 and m2 can ensure uniqueness for RCC

pulse shape functions1, using the noiseless ratio function, i.e.,

e(rk) = 0, and present the perturbation analysis, where we

assume m2 > m1. Since the RCC pulse shapes are adopted

for pt(t) and pr(t), p(t) is defined as

p(t) =







π
4T sinc

(

1
2β

)

, t = ± T
2β ;

1
T
sinc

(

t
T

) cos(πβt

T )
1−( 2βt

T )
2 , otherwise,

(15)

where sinc(t) = sin(πt)
πt

, β and T are the roll-off factor and

a design parameter of p(t), respectively. First, viewing the

design parameters m1 and m2 as constants, we consider the

following noiseless ratio function for delay estimation,

fRRC(tk) =
p (m2Ts − tk)

p (m1Ts − tk)

=
sinc

(

m2Ts−tk
T

)

cos(πβ(m2Ts−tk)
T

)
(

1− ( 2β(m1Ts−tk)
T

)2
)

sinc
(

m1Ts−tk
T

)

cos(πβ(m1Ts−tk)
T

)
(

1− ( 2β(m2Ts−tk)
T

)2
) ,

(16)

where we assume p (m1Ts − tk) 6= 02. In general, fRRC(tk)
is not a monotonic function with respect to tk and thus the

uniqueness of the delay estimate can not be guaranteed. To

make the delay estimate unique, we need to properly select

the design parameters mi, which is discussed as follows,

Proposition 1. For the implementation of ANDE with RCC

pulse shapes, the uniqueness of the delay estimates in the

noiseless case (e(rk) = 0) can be guaranteed under the con-

ditions: A) The design parameter m1 is set to 0 and m2 is

restricted to [ 2M
1+

√
2
,M − 1]3; and B) The parameters T and

β in Equation (15) are such that T = βm2Ts and 1
β
∈ Z.

Proof. With assumptions A and B, it can be proved that

fRRC(tk) is a monotonic function with respect to tk. Hence,

1For Gaussian and rectangular pulse shapes with practical constraints, we

also can ensure the uniqueness of the delay estimates by properly setting mi

and a larger value of m2−m1 is preferred to reduce the mean-squared-error

of delay estimates, which is not presented in this paper due to lack of space.
2If we have p (m1Ts − tk) = 0 and p (m2Ts − tk) 6= 0, the delay

estimate of the kth path can be directly obtained.
3Note that, the constraint m2 ∈ [ 2M

1+
√

2
,M − 1] enforces M ≥ 6 be-

cause m2 ∈ Z and m2 > m1 = 0 holds, which indicates the large discrete

delay spreads are taken into consideration. The condition M ≥ 6 can be met

by decreasing the sampling period Ts.
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t̂k =



































(

5fRRC(tk)−(−1)
1
β

√

f2
RRC

(tk)−(−1)
1
β 34fRRC(tk)+1−(−1)

1
β

)

m2Ts

4(fRRC(tk)+(−1)
1
β )

, if fRRC(tk) < 0;

m2Ts

2 if fRRC(tk) = 1;
(

5fRRC(tk)+(−1)
1
β

√

f2
RRC

(tk)−(−1)
1
β 34fRRC(tk)+1−(−1)

1
β

)

m2Ts

4(fRRC(tk)+(−1)
1
β )

, otherwise.

(17)

its inverse function exists and the delay estimate is unique.4

Remark 1. With the proper selection of the design parame-

ters based on Proposition 1, it can be verified f2
RRC(tk) −

(−1)
1
β 34fRRC(tk) + 1 ≥ 0 holds for all tk ∈ (0,MTs) and

the delay estimate is given by Equation (17).

Remark 2. In contrast to the noiseless case, the conditions of

Proposition 1 do not guarantee a unique estimate for all pos-

sible noise values, i.e., the perturbations to the ratio function

e(rk). Each perturbation could lead to a different optimal m2.

However, one can consider multiple values of m2 and average

the corresponding delay estimates.

5. NUMERICAL RESULTS

In this section, we evaluate the performance of our proposed

scheme. The channel model is as in Equation (2). Specif-

ically, the delays are uniform random variables, normalized

to (0, 1] and the normalized Doppler shifts (also uniform ran-

dom variables) have a support [− 1
2 ,

1
2 ]. The channel gains and

noise are complex, independent, Gaussian random variables.

The pilot sequence is a Binary Phase Shift Keying (BPSK)

modulated random sequence. As previously noted, the pulse

shapes, pt(t) = pr(t), are chosen as RRC pulse shapes (see

Equation (15)) truncated by a window with length of 2MTs.

In all experiments, the scaling law [12] is satisfied to ensure

proper behavior of the atomic norm based estimator and the

transmit SNR is considered, i.e., E{‖x‖
2
2/‖z‖

2
2}. We set N ,

p0 and β to 100, 3 and 1
m2

, respectively.

In Fig. 1(a), the NMSE of delay estimation versus SNRs

is shown, where we set m1 and M to 0 and 12, respectively.

Based on Proposition 1, there are two choices of m2 to ensure

unique delay estimates, i.e., m2 = 11 or 10. From Fig. 1(a),

a slightly lower NMSE of delay estimation is achieved with a

larger value of m2 if M = 12 and the SNR is greater than 6

dB. To show the impact of violating the constraints of Propo-

sition 1, we set m1 and m2 to 0 and 9, respectively. In this

case, the delay estimates for each path are determined by min-

imizing ‖fRRC(t̂k)− fRRC(tk)‖2; the associated NMSE for

this case is also shown in Fig. 1(a), and as uniqueness is not

guaranteed, a strong performance loss is seen, as suggested

by Proposition 1.

To show the performance gains achieved by our scheme,

the BER of the data sequence for ANDE and PLAN [12] are

shown in Figs. 1(b), where m1, m2, and M are set to 0, 5 and

4See https://github.com/LJIANXIU/Improved-Atomic-Norm-Based-

Channel-Estimation-for-Time-varying-Narrowband-Leaked-Channels.git for

the complete proof.

5 10 15 20

SNR (dB)

10
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10
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0

N
M

S
E

(a)

m
2
=11

m
2
=10

m
2
=9

5 10 15 20

SNR (dB)

10
-3

10
-2

10
-1

N
M

S
E

(c)

PLAN

ANDE

5 10 15 20

SNR (dB)

10
-5

10
-4

10
-3

10
-2

B
E

R

(b)

PLAN

ANDE

Fig. 1: (a) NMSE of delay estimation with different choices

of m2, (b) BER of data sequence versus SNRs, and (c) NMSE

of Doppler shift estimation in comparison with PLAN under

different SNRs.

6 and maximum likelihood sequence equalization [21] is im-

plemented for detection. ANDE outperforms PLAN, offering

5 dB improvement on average. This strong gain is achieved

as the individual delays, Doppler values, and channel gains

are estimated via ANDE enabling the construction of receive

filtering based on the pulse shape and the channel; whereas

PLAN only estimates the channel matrix described in Equa-

tions (6). The NMSE for the two schemes for Doppler esti-

mation is provided in Fig. 1(c) wherein for ANDE, the chan-

nel parameter estimates are used to re-sample the signal at

nTs + t̂1 with re-estimation, yielding further improvements.

6. CONCLUSIONS

In this paper, an improvement to atomic norm based estima-

tion scheme is proposed for time-varying narrowband leaked

channels, where all the channel parameters can be well es-

timated. In particular, a new strategy to estimate delays and

channel gains after atomic norm based channel matrix estima-

tion [12] is provided. An analysis regarding the uniqueness

of delay estimates in the presence of root-raise cosine pulses

and an accompanying perturbation study for the noisy case is

provided. The new method offers strong improvement with

respect to BER over the prior art (5dB) [12]. Direct estima-

tion of the delays is an essential element of high performance

localization strategies, as well as channel equalization. The

proposed method can also be used to further improve Doppler

estimation.
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