Efficient Tensor Core-Based GPU Kernels for Structured Sparsity
under Reduced Precision

Zhaodong Chen"
chenzdi15thu@ucsb.edu
University of California, Santa
Barbara

Yufei Ding
yufeiding@ucsb.edu
University of California, Santa
Barbara

ABSTRACT

The success of DNN comes at the expense of excessive memory/-
computation cost, which can be addressed by exploiting reduced
precision and sparsity jointly. Existing sparse GPU kernels, how-
ever, fail to achieve practical speedup over cuBLASHgemm under
half-precision. Those for fine-grained sparsity suffer from low data
reuse, and others for coarse-grained sparsity are limited by the
wrestling between kernel performance and model quality under dif-
ferent grain sizes. We propose column-vector-sparse-encoding
that has a smaller grain size under the same reuse rate compared
with block sparsity. Column-vector-sparse-encoding can be applied
to both SpMM & SDDMM, two major sparse DNN operations. We
also introduce the Tensor-Core-based 1D Octet Tiling that has
efficient memory access and computation patterns under small
grain size. Based on these, we design SpMM and SDDMM kernels
and achieve 1.71-7.19x speedup over cuSPARSE. Practical speedup
is achieved over cuBLASHgemm under >70% and >90% sparsity
with 4x1 grain size and half-precision.

KEYWORDS
Neural Networks, Sparse Matrices, GPGPU, Tensor Core

1 INTRODUCTION

Areas like Computer Vision and Natural Language processing have
witnessed rapid development in recent years driven by the pow-
erful deep neural networks. However, the achievements come at
the expense of enormous memory footprint and computation con-
sumption. To mitigate this issue, reduced precision and sparsity are
usually exploited jointly [9, 13, 19, 27]. The former uses fewer bits
for each operands, and specialized units like Tensor Core are intro-
duced to improve the computation throughput. The latter explores

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SC °21, November 14-19, 2021, America’s Center, St. Louis, MO

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8442-1/21/11...$15.00
https://doi.org/10.1145/3458817.3476182

Zheng Qu*
zhengqu@ucsb.edu
University of California, Santa
Barbara

Liu Liu
liu_liu@ucsb.edu
University of California, Santa
Barbara

Yuan Xie
yuanxie@ucsb.edu
University of California, Santa
Barbara

the redundancy in neural network models to reduce the total num-
ber of operands and necessary computations. There are two most
commonly used sparse operations in deep neural networks, sparse
matrix-matrix multiplication (SpMM) and sampled dense-dense ma-
trix multiplication (SDDMM) [6]. High-performance GPU kernels
have been developed for these two operations. For instance, Gale et
al. [6] proposed GPU kernels for fine-grained sparsity and achieve
considerable speedup over dense GEMM kernel under single preci-
sion. cuSPARSE [17] also presents a set of APIs like cusparseSpMM
and cusparseSDDMM that target on > 95% sparsity.

However, to the best of our knowledge, existing implementations
are insufficient for achieving practical speedup over their dense
counterparts when reduced precision (e.g., FP16) is used. With
detailed profiling (Section 3.1), we find that the reasons are of three
folds: (1) After using reduced precision, fast memory can cache
more operands to improve data reuse, which is fully exploited by
dense GEMM kernels. Whereas, fine-grained sparse kernels with
much lower data reuse fail to exploit this benefit. (2) Although
structured sparsity can be introduced to improve data reuse, existing
libraries like cuSPARSE cannot deliver practical speedup with small
sparsity granularity: e.g., the blocked-ELL format based SpMM
kernel [17] requires block size to be larger than 8 to achieve speedup
(Section 3.2). (3) As larger block size is desired, more challenges are
brought to the algorithm side to maintain the model accuracy [15].

To address these challenges, we first propose the column vector
sparse encoding in Section 4. It is inspired by the commonly used
compressed sparse row (CSR) encoding, except that each index now
corresponds to a nonzero column vector. We prove that under grain
size VX1, our column encoding has the same data reuse rate as
the VXV block sparsity in both SpMM and SDDMM operations.
Moreover, the VX1 column vector has much smaller grain size com-
pared with the block sparsity pattern, which can better maintain
the accuracy under the same sparsity level [15]. Notably, it can also
be used for block sparse matrices with arbitrary number of columns
in the block by encoding each column vector separately.

To improve the performance of structured sparse kernel under
small grain size, we profile the blocked-ELL based SpMM kernel in
cuSPARSE using small block size in Section 3.2. We observe that
its performance is limited by the instruction cache capacity, de-
pendency between instructions, and shared memory bandwidth.
With these observations along with the best practices guide for
kernel design, we propose five key guidelines for designing an

https://doi.org/10.1145/3458817.3476182

SC ’21, November 14-19, 2021, America’s Center, St. Louis, MO

structured sparse kernel with efficient memory access and computa-
tion pattern. As existing implementations using Floating-point Unit
(FPU) or Tensor Core Unit (TCU) fail to achieve these guidelines at
the same time, we propose a novel mapping between the warp tile
and the TCU, namely TCU-based 1-D Octet Tiling (Section 5 and
6), that satisfies all the five guidelines simultaneously.

We extensively evaluate our kernels on the sparse matrices from
DLMC [22] dataset in Section 7 using different grain size, prob-
lem size, and sparsity ratio. In short, for SpMM, we achieve 1.71-
7.19x geometric mean speedup over the Blocked-ELL SpMM kernel
from cuSPARSE and 1.34-4.51x geometric mean speedup over a
FPU-based kernel that we directly extended from Sputnik [6]. For
SDDMM, we achieve 1.27-3.03x speedup over the FPU-based ker-
nel extended from Sputnik [6] and 0.93-1.44x speedup over the
TCU-based kernel that uses the classic mapping between GEMM-
like warp tile and TCU. Compared with the cuBLASHgemm, our
SpMM and SDDMM kernel achieve practical speedup under > 70%
and > 90% sparsity with the tiny 4 X 1 grain size. Benefited from
our design, we achieve 1.41x end-to-end speedup and 13.37x peak
memory reduction on the sparse transformer inference task.

2 BACKGROUND

We first introduce some background knowledge and related studies.

2.1 Graphic Processing Units Background

We first provide a basic description of the NVIDIA GPU architecture.

Thread Hierarchy. The threads in a GPU kernel are organized
into grid of CTAs (thread blocks). We use the term grid size to
refer the total number of CTAs. Each CTA may contain up to 1024
threads. Consecutive 32 threads in a CTA are grouped into warps,
and consecutive 4 threads in a warp is called a thread group, the
thread group id of a thread is LMJ. Furthermore, thread
group i€ {0,1,2,3} and thread group i+4 together form the Octet i. We
call thread group i and i+4 low group and high group, respectively.

Memory Hierarchy[11]. NVIDIA GPU consists of an array of
streaming multiprocessors (SMs). In Volta, all the SMs share a 6 MiB
L2 Cache and a 16 GiB DRAM. Each SM has a set of sub-cores where
each sub-core has its own register file, scheduler, and execution
units. All the sub-cores within the same SM share a private 128 KiB
L1 cache, part of which can be configured as the shared memory.
To maximize the memory bandwidth utilization, vector memory
operations using LDG.128 can be used to increase the Sectors per
Request to L1 Cache. The 128 means each thread reads 128 bits
from the global memory (e.g. 8 operands under the half precision).
Besides, the memory access pattern is expected to be 128B coalesced
to exploit the 128B transaction between L1 and L2 caches.

TCU. Volta architecture first introduces the Tensor Core Unit
[18] that provides 8x peak FLOPs than FPU. While the Volta TCU
focuses on accelerating dense GEMM, its high computation through-
put is also exploited for non-GEMM applications like reduction[5].

Figure 1 shows the Volta TCU architecture. A warp uses two
TCUs at the same time. Each TCU is controlled by two octets. Each
thread group in the octet has its own buffer for storing the LHS
matrix (Mat_a buffer) and accumulation result (Acc buffer), and each
thread can access a four-by-four inner product unit (gray blocks).
The RHS matrix buffer (Mat_b buffer) is shared by the two thread
groups within each Octet. Its source is selected by a multiplexer.

Chen, et al.

Operand Bus 1]

Operand Bus 2

€-09ue]

Operand Bus 3

T€-87 B ST-CT aue]
LT-¥T B TT-83ue]

°
4
g

TENSOR COf

1472
11-gaue

TENSOR CORE

TE8C
G1-71 aue]

[WriteBack |

STEP O [1STEP 1 [T sTeP 2 T :STI;I; 3|
i Hi e
HE [EEEE EH: ﬁ
Figure 2: Visualization of the 4 steps in mma.m8n8k4. Purple
blocks: low group; Blue blocks: high group.

CUDA provides two levels of APIs for TCU. Firstly, warp-level
matrix multiply and accumulate (WMMA) in C++ performs a dense
matrix multiplication with a warp. For instance, wmma.m8n32k16
computes a (8%x16)-(16x32) GEMM with a warp. Secondly, matrix
multiply and accumulate (MMA) in PTX performs 4 dense ma-
trix multiplications with a warp, one for each Octet. For instance,
mma.m8n8k4 completes four (8x4)-(4x8) matrix multiplications.
During the compilation, the mma.m8n8k4 is further decomposed
into four HMMA instructions: HMMA.884.F32.F32.STEP{0,1,2,3} in
Figure 2. In each step, every thread group loads its LHS tile to its
Mat_a buffer and the input accumulation values to its Acc_buffer.
The multiplexer for RHS tile selects the low group in step 0&1, and
high group in step 2&3.

2.2 Compression in Deep Learning

To reduce the computational and memory intensity of large neural
networks, two types of methods are usually exploited [9]. The first
one, Quantization, reduces the number of of bit that represents each
operand from 32 to 16 or even lower. The second one exploits the
sparsity in the neural networks. For example, we can sparsify the
dense matrices used in matrix multiplication and convolution while
maintaining comparable model quality [4, 9, 10, 16]. We can also
directly formulate the computation with sparse operation when
the sparsity already exists. For instance, the forward propagation
of Graph Convolutional Neural Networks (GCNs) naturally adopts
sparsity in the graph adjacent matrix [3, 7].

In general, we can characterize the most commonly used sparse
operations in deep learning models into two categories. The first
one is sparse matrix-matrix multiplication (SpMM). For example, in
weight pruning methods, we apply specific sparsity constraints to
produce an NN model where the weight matrices contain relatively
high portion of zero values [9, 16]. The second type of sparse opera-
tion is sampled dense-dense matrix multiplication (SDDMM), where
the sparsity locates in the output matrix of the equation to help
reduce the required computations. For example, prior work [2, 14]
have proposed different mechanisms to efficiently approximate and
predict the zero values in the output feature map of CNNs and RNNs
so that to skip these computations during execution. More recently,
in the study of transformers, output sparsity helps to reduce the
computation overhead of self-attention layers, which is particularly
beneficial for applications like long sequence modeling [4, 23].

Efficient Tensor Core-Based GPU Kernels for Structured Sparsity under Reduced Precision

2.3 Existing Sparse Kernels on GPU

To further exploit the benefit of sparsity on parallel architectures
like GPUs, efforts have been made on both algorithm and hardware
level. As shown in Figure 3, apart from fine-grained sparsity, struc-
tures like 1D-vector [31] and 2D-block [29] have been enforced
to the topology of the sparse matrix to benefit architecture and
kernel design. Corresponding GPU kernels for Sp)MM and SDDMM
are also proposed to deliver practical speedup. NVIDIA introduces
the cuSPARSE library that targets on 95% or higher sparsity and
provides the cusparseSpMM and cusparseSDDMM APIs. The for-
mer one supports half, single, or higher precision, and the sparse
matrix can be either fine-grained sparsity or Blocked-ELL format.
The latter one only supports fine-grained sparsity with single or
higher precision. Gale et al. [6] introduce a library called Sputnik
that targets on fine-grained sparsity and outperforms cuSPARSE
under relatively low sparsity. E.g., Sputnik achieves speedup over
the dense baseline under > 71% sparsity with single precision.

3 OPPORTUNITIES AND CHALLENGES

In this section, we identify whether prior sparse kernels are suffi-
cient for exploiting the sparsity plus quantization combo. Specifi-
cally, we evaluate the speedup achieved over cuBLAS by Sputnik
and cuSPARSE under single and half precision. Similar to Sputnik
[6], we use the sparse matrices from ResNet-50 with magnitude
pruning in the DLMC dataset [22].

3.1 Half Precision Fine-grained Sparse Kernel

As shown in Figure 4, under fine-grained sparsity and single pre-
cision, both Sputnik and cuSPARSE achieve good speedup when
sparsity is greater than 80% '. However, when it comes to half preci-
sion, the SpMM kernel in Sputnik only outperforms cublasHgemm
under extremely high sparsity, and cuSAPRSE has a even lower
performance. Moreover, as both Sputnik and cuSPARSE do not sup-
port SDDMM under half precision, we modified the source code of
Sputink and find that it is also inferior to cublasHgemm.

To identify the reason behind this, we further profile the Sput-
nik’s SpMM kernel on A2048><1024 X BIOZ4X256s the sparsity of A
is 90%. Under half precision, as shown in Figure 5, the number of
missed sectors in L1 cache is reduced by 77.04% in GEMM kernel,
whereas that of SpMM is only 48.77%. Thus, the latter one needs
to load more sectors from L2 cache than the former one. This is
because in GEMM kernel, the cached operands show good data
reuse pattern. This benefit is further enhanced when the precision is
reduced to 16 bits, as two times as much as operands can be stored
in the shared memory. From another perspective, Kwasniewski

et al. [12] give the I/O lower bound of GEMM to be Q = bzm—;/kb,
p

where b is the number of bits of each operand, m, n, k are the matrix

dimensions, p is the number of processors, and S is the fast memory

size. Therefore, we have Qp ~ 0.35Qg for single and half precision

!The SDDMM in cuSPARSE is faster than Sputnik [6] as we use the cuSPARSE v11.2.2.

Irregular Regular

Fine-grained 1D-Vector 2D-Blocked-ELL
Sparsity Sparsity Sparsity

Figure 3: Different sparse structures.

SC ’21, November 14-19, 2021, America’s Center, St. Louis, MO

SpMM(Single) SpMM(Half)

10.0 A 8
B sputnik

7.5 4 EE3 cusparse

B sputnik
151 =3 cusparse o)

0'5<3g28i8¥g 51

5.0 8
] °p0
25 ° * i
T = T = T T T T 00 1
0.5 0.7 0.8 0.9 0.950.98
SDDMM(Single)
B sputnik g
34 3 cusparse o 8

8

j ‘Fﬁgﬁi‘

0.5 0.7 0.8 0.9 0.950.98 0.5 0.7 0.8 0.9 0.950.98
Sparsity Sparsity
Figure 4: Speedup over cuBLAS with fine-grained sparsity.

Speedup over cublasSgemm

0?5 017 018 0?9 0.‘950.‘98
SDDMM(Half)

1.51 @ sputnik

1.0 1

0.5 1

Speedup over cublasHgemm Speedup over cublasHgemm

Speedup over cublasSgemm

le6 le7

®
o

Emm Single
Half

o
o
N

Executed
=

Utilization (%)

N
o

L1$ Missed Sectors
o N
Max Compute Pipe
B
o
Math Instruction

GEMMSpMM ® GEMMSpMM GEMMSpMM
Figure 5: GEMM and SpMM under different precision.

GEMM kernel. On the contrary, the SpMM kernel has lower data
reuse. As a result, even though the fast memory is "enlarged" for
operands storage in half precision, the actual benefit delivered on
cache miss rate is limited, causing the gap shown in Figure 5.

Another portion of performance speedup of HGEMM comes from
the use of TCU. Figure 5 shows that the maximum compute pipeline
utilization of GEMM is reduced from 88.44% (FMA) to 14.6% (Ten-
sor), which suggests that the compute bound is addressed by TCU.
Besides, multiple FMA instructions are fused into a single HMMA
instruction, which removes 92.3% instructions. On the contrary,
Sputnik still uses the FPU and additional instructions to convert
result to single precision to reduce accumulation error.

3.2 Half Precision Structured Sparse Kernel

To further improve the performance of sparse computation, cuS-
PARSE v11.2.1 introduces the Blocked-ELL format to speedup its
SpMM kernel. With block sparsity, the kernel not only improves
the data reuse rate but also utilizes the TCUs.

£ Block-Size=4 Block-Size=8 Block-Size=16
£18 4
o 8
£ °]
% 884 3]
o

% 881 41
— 2
g 94 0 ©

21
ge;ya i i H i o ©°
3 =
200 44— L
0 0.0.50.7 0.8 0.02950.98 0.5.8.7 0.8 0.90.95698 0.5 0.9.8.8 0.90.950.980

Sparsity

Figure 6: Speedup over cuBLAS with Blocked-ELL SpMM.

However, as shown in Figure 6, the Blocked-ELL based SpMM has
low performance when block size is smaller than 8. Also, previous
studies [15] show that the model suffers from accuracy degradation
under the same sparsity with larger block size. As a consequence,

SC ’21, November 14-19, 2021, America’s Center, St. Louis, MO

the design space is significantly limited due to the wrestling be-
tween kernel performance and model quality. To dissect the inef-
ficiency of the Blocked-ELL SpMM kernel under small block size
(i-e., 4), we profile it on A2048x1024 X B1024x25¢ under 90% sparsity
and list the top three reasons that cause pipeline stall in Table 1.

The "No Instruction"” is usually caused by instruction cache miss.
Volta uses one 128-bit word to encode each instruction, and each
sub-core has a 12 KiB L0 instruction cache [11]. So the L0 instruction
cache can only store 768 instructions. However, we find that when
block size is 4, the SASS code has 4600 lines. So the "No Instruction”
is majorly caused by L0 instruction cache capacity miss.

The "Wait" happens when warp is stalled waiting on a fixed
latency execution dependency. From the instruction statistics we
observe that the IMAD (Integer Multiply & Add) and IADDS3 (3-
input Integer Add) account for 27.4% of total executed instructions.
From the SASS code, we interpret that these integer instructions
compute the addresses of tiles in the global and shared memory.

The "Short Scoreboard" usually happens when the warp is stalled

waiting for loading data from the shared memory. When block size

. #
is 4, the Shar#wll memory load requests ratio is 0.87, whereas this ratio
global load requests

for HGEMM is 4.17. This implies that the data loaded into the shared
memory by the SpMM kernel do not get many opportunities to be
reused compared with dense GEMM kernel. Therefore, it makes less
sense to put them into the shared memory. Moreover, to ensure the
correctness when shared memory is involved, the synchronization
barriers needs to be used, which not only introduces additional
barrier stalls, but also makes it difficult to hide latency through
interleaving the load and compute instructions. Last but not least,
as part of the L1 cache is configured into the shared memory, this
actually reduces the implicit data reuse through L1 cache.

With the analysis above and best practices guide for CUDA ker-
nel design, here we propose five key guidelines to be considered
during the kernel implementation. Guideline I and II improve the
overall kernel performance, III focuses on the computation effi-
ciency, IV and V influence the memory access efficiency.

o I. Reduce program size to avoid overflow the instruction cache.

o II Increase the grid size to hide the latency through thread-level-
parallelism (TLP).

e III. Reduce fixed latency operations through looping unrolling,
computing offset and constants at compile time, as well as merg-
ing floating point operations to HMMA with TCU.

e IV. Directly load data with few reuse opportunities to the register
file without using the shared memory.

e V.Improve bandwidth utilization with 128B coalesced transac-
tions and long vector memory operations (LDG.128).

In conclusion, it is more challenging for the sparse kernel to
achieve speedup over GEMM under half precision than single preci-
sion. Generally, increasing data reuse and exploiting the benefit of
TCU through the structured sparsity is a promising way. However,
there are still two challenges. First, how to maintain model accu-
racy under structured sparsity. Second, how to design a kernel that
satisfies the five guidelines above simultaneously. In this paper, we

Table 1: Stall Reasons in Blocked-ELL based SpMM Kkernel
Block Size ‘ No Instruction ‘ Wait ‘ Short Scoreboard
4 \ 42.6% [21.0% 11.9%

Chen, et al.
(a)spmm B ' (b) SDDMM T B
! e
5 | <TINN
<K | i K
c AR

M | [T
m :M mi]

Figure 7: Generalized Block Sparse representation.

address the first challenge by proposing the column vector sparse
encoding in Section 4, which has finer granularity under the same
data reuse rate as block sparsity. The second challenge is addressed
by the novel TCU-based 1-D Octet Tiling in Section 5 and 6.

4 COLUMN VECTOR SPARSE ENCODING

In this section, we first show that for both SpMM and SDDMM, a
block sparse matrix has the same data reuse regardless of the num-
ber of columns within the block. Then, based on this observation,
we propose the column vector sparse encoding that achieves good
balance between sparsity granularity and computation efficiency.

4.1 Problem Description

Figure 7 shows the SpMM and SDDMM under block sparsity. The
nonzero blocks are aligned in the vertical dimension. The problem
size is (MXK)-(KxN), TileK and TileN are the tiling sizes con-
strained by the shared memory or register file capacity. Tensors in
mainstream frameworks like PyTorch [20] and TensorFlow [1] are
stored in row-major format. Therefore, for SpMM, we store both
B and C in row major, and A in compressed sparse row (CSR). For
SDDMM, we store C in CSR and A in row major. However, as B is
usually a transposed row-major matrix, e.g. in the self-attention
layer [26], we store B in column major to replace the transpose.

For SpMM, each block is an m X k matrix where m and k are user
defined sizes for block sparsity. We follow the workflow in Sputnik
[6]: each tile takes TileK/k consecutive nonzero blocks in matrix
A, and samples a vector with width TileN from the corresponding
rows in matrix B. At last, the partial sums in matrix C is computed.
For SDDMM, each block in matrix C is an m X n matrix where m
and n are user defined grain sizes. Each tile computes the partial
sum of TileN /n consecutive nonzero blocks in matrix C by taking
TileK columns of the corresponding rows in matrix A and TileK
rows from the corresponding columns in matrix B.

With the above settings, it is obvious that for both SpMM and
SDDMM, each operand from the LHS matrix is reused for TileN
times, while each RHS operand is reused for m times. Therefore,

£

2
o 30 2 4
3 s 1 3
X3
"é > 6 csrval =[0,1,2,3,4,5,6,7,8,9, 10, 11]
9 7 csrRowPtr = [0, 3, 4, 6]
g 8 10 csrColind =10, 2, 6, 3, 1, 6]
z

) 11

Number of Columns
Figure 8: Column Vector Sparse Encoding.

Efficient Tensor Core-Based GPU Kernels for Structured Sparsity under Reduced Precision

the number of data reuse is determined by m and TileN, but not the
number of columns (k in SpMM and n in SDDMM) in each block.

4.2 Column Vector Sparse Encoding

As the data reuse is independent of the column number, and smaller
granularity is preferred, we propose to reduce the number of columns
to 1, which yields the column vector sparse encoding in Figure 8.
Our encoding is equivalent with replacing each nonzero scalar in
the CSR sparse matrix with a nonzero column vector, i.e. half2 for
V =2, half4 for V = 4, and float4 for V = 8. The elements within
each nonzero column vector are stored in consecutive addresses,
and the consecutive vectors in the same row are also consecutive in
the memory space. Notably, this encoding can also cover the cases
of general block sparse matrix by encoding each column separately.

5 SPMM KERNEL DESIGN

In this section, we detail the design of our SpMM kernel with
column vector sparse encoding. We first describe two baseline
implementations. The first one is an FPU-based design that we
directly extended from the Sputnik [6]. This implementation is
tailored for high memory access efficiency. The second one uses
TCU and adopts the classic GEMM-like tiling, which maximizes the
compute and kernel efficiency. At last, we present a more efficient
design that covers the above advantages simultaneously.

5.1 FPU-based 1-D Subwarp Tiling

Gale et al. [6] propose the FPU-based 1-D subwarp tiling for fine-
grained SpMM kernel that maximizes the memory access efficiency.
It is called “1-D subwarp tiling" because under the fine-grained
setup (V=1), as illustrated in Figure 9 (a), the LHS operand is a
1xTileK 1-D vector handled by a subwarp of threads. Under the
column vector sparse encoding, we still call the (VxTileK)-(TileKx
TileN) tile a "1-D tile", as its LHS operand can be regarded as a
1xTileK 1-D set of column vectors. As shown in Figure 9 (a), a CTA
tile contains multiple independent 1-D tiles that are assigned to
subwarps (Subwarp Size <32). Each 1-D tile is further decomposed
to Subwarp Size independent (V xTileK)- (%) thread
tiles. The threads in the same subwarp first load the LHS fragment
into the shared memory corporately. Then, each thread loads the
RHS fragment corresponded to its tile and computes the MMA.

(@) MNum TileN > TieN'Subwarp Size
Subwarp - >
CTATile Thread Tile
Num. §
Subwarp, «——=2—
A |
>1 TiIeN/Subwan_'p Siz . ———.
(b) TileN 64
CTATile Warp Tile
Tilel

TileK
<«<———>

64
i) .
>1 ;
Figure 9: Decomposition of SpMM with 1-D tiling. (a) The FPU
tiling extended from Sputnik[6]; (b) Our TCU tiling.

SC ’21, November 14-19, 2021, America’s Center, St. Louis, MO

64

e

@ Warp Til @:

e

Tile

___*___
o
<
I
wv
N
(2]
>

1

1

\
=

\
9
7 | 01 2 3
’: EIg 0| Tolbo, by, by, bs}
\ ! :
————r--=- 3| Talbo,bi bz, bs}

=

Tofbs, bs, bs, b7}

. ERE - T T12 .. 115 7| Tibabebe b
T G| T, & o Gl To T % [T, Gz o G

1 T,a T, | T, as T, as| Ty a T ao|Tyas T, a| |8 Tolbebobuobul
2 Ty Tu® | Ty @6 > T, 06| Toars > Ty | Tyt > Ty ars X v

3 Tpas Tys33 | Ty, Q7 Ty, @7 | TiaGx Tiz Qi1 |y, s Ty, G5 11| Ts{bg bs, b1, b1}
4 TG Tio Gg | T16 G5 Tyo G [Tr6 Gy T g [T16012 Ty . 12| To (bra, brssbunsbs]
5 Toa Tz a3 | T G5 Tz s | T o Ty Go |Taasz Tz O3, e
6 Tua Ty @2 | T@s > Ty G | Tasio ~ Tzy Gao|Toatis > Ty s v

7 Twas Ts1 03| Tow a7 Ts1 a7 | Tosan Ts1 an | Tosis Ts1 tis 15| Ts{b1z, b1z, bus, bis }

Figure 10: Classic mapping of the warp tile to TCU.

This tiling design opts for maximizing memory access efficiency.
First, it satisfies the aforementioned guideline IV as the RHS operands
are directly loaded to register file. For guideline V, by choosing
TileN = 64 and Subwarp Size = 8, each subwarp can load a row
of consecutive 64 half operands from the RHS fragment with the
vector memory operation LDG.128 in a single 128B transaction.

However, the design choice causes low kernel and compute effi-
ciency. For kernel efficiency, it violates guideline I because we need
to fully unroll the loops along V, TileK, and TileN. This generates
huge amount of instructions. But without this unrolling, the com-
piler may not know the index to RHS operands at compile time,
and the operands would be put into the local memory (in DRAM)

for indexing. For guideline II, we have #ﬁﬁjsz‘ze =38 with guide-

line V and #Subwarp > . Therefore, the grid size is

32
Subwarp Size
bounded by m = %. Oppositely, we can have

TileN _ ; MxN :
Subwarp Size = 2 and the upper bound improved to %57 only if

we give up guideline V and use LDG.32. For compute efficiency,

it violates guideline III because each thread tile is computed by a
sequence of HMUL (FP16 Multiply) and FADD (FP32 Add).

5.2 TCU-based 1-D Warp Tiling

We present a tiling design that opts for maximizing kernel and
compute efficiency. With guideline II, we assign 1-D tiles to CTAs
instead of subwarps, such that the upper bound of grid size is GQW—‘I)’.
Besides, motivated by I&III, we leverage the TCU as it merges mul-
tiple HMUL and FADD into a single HMMA instruction. Besides, its
fixed computation pattern helps us avoid many index computation.
With all these features, we present the TCU-based 1-D Warp Tiling
in Figure 9 (b). The 1-D CTA tile is further decomposed into warp-
level tiles with size (VxTileK)-(TileKx64). The 64 is chosen as it
is the smallest number that perfectly fills the 128B transaction.
Although this tiling design has high kernel and compute effi-
ciency, its memory access pattern is sub-optimal. Figure 10 illus-
trates how the warp tile is further decomposed to each thread
in the classic way. As our kernel targets on V € {2,4,8}, the
wmma.m8n32k16 in CUDA C++ is used to reduce the waste of
computation. As we can see in @, each small rectangle represents
a 16 X 4 block and the number on it indicates the thread group
that holds it. An example for the thread group 0 is illustrated in @,
where T; represents thread i and b; indicates the register j of the

SC ’21, November 14-19, 2021, America’s Center, St. Louis, MO

6
<=
LDG.128 !
e B 1[4
. 1
@ Warp Tile TileK
8
— . Los 9O
FI SESE -
1
e o B,
<«<——>
o TileK '
0__._3 o
% = Row Major y
1 @ a,:_ Blo 1 2 3| 4 5 6 7
2 e @ .
3@ o, OctetTile Of ToloBuBerbs} | Tl b ba.ba)
RRAES A N :
as as | | 3| Ta{bo,by,by, b3} | Tio{bo,by, by, bs}
6 G as| |
7w %] @ Column Major @
5 3:/.\0__3 co1234{5}s{7)
. % i Offeta e Toco ol Taleatsl Tlcycs
H I’Z" 2 |'4 1 a a 1[ilco,ct} Teleaesd Tilcucs) Tleyeol
M Gl o g, > Tig, 2[Tofca,cs) To{coca) Tolcatsd Tyfcq)
3 1a P R a 3[Tilcz.ca) Taleacs) Tilcoc) Tofeger)
4 Hi‘ - 77; T @ 14 [T (o, ¢ T 160, € T (64, C5) Tra s, €
: Tlsa —>Toli] 4| 5 T @ Ty @ 5 [Ti78€00en) oo {co, M Ta(€4,C8) T e, 5|
N & 6 ‘e > "a 6 [T {c2, €3} Tra{C2,¢3) T {Cs. 7} Tra{Cn)
g s o |7Maeed T ey o Tinleaen T feocr)

Figure 11: TCU-based 1-D Octet Tiling for SpMM.

thread. In @), each block represents a 4x 16 block and the number on
it indicates the thread groups that hold a copy, the detailed layout is
shown in @. If we have IV and directly load the RHS fragment (@)
from global memory to register file, as shown in @, each thread has
4 registers in each row. So the longest vector memory operation
we can use is LDG.64, and the global memory access pattern is at
most 64B coalesced because each row in @ is mapped to 8 threads
in a warp. Therefore, guideline V is violated. On the other hand, to
achieve guideline V, we need to coalesce the global memory access
with the shared memory, which violates guideline IV.

Besides, TileK has to be the multiple of 16, which introduces
additional overhead during residue handling when the number of
nonzeros in the current row is not divisible by TileK. At last, when
V is smaller than 8, each computation step with wmma.m8n32k16
actually computes a (V'x16)-(16x32) tile, which indicates a portion
of wasted computation.

5.3 TCU-based 1-D Octet Tiling

While the performance of the previous two designs are limited
by the wrestling between kernel/compute and memory access effi-
ciency, we propose a new tiling technique that is efficient in all three
aspects. To achieve good kernel and compute efficiency (guideline I,
II, and III), we leverage the CTA and warp tiling in the TCU-based
1-D Warp tiling in Figure 9 (b). The memory access efficiency (guide-
line IV and V) is achieved by redesigning the mapping between the
warp tile and the TCU on Octet level. Therefore, we name it as the
TCU-based 1-D Octet Tiling.

The new mapping is visualized in Figure 11. There are two major
differences from the classic mapping in Figure 10. First, as shown
in Figure 2, STEP 0&1 generate the left four columns in the output
while STEP 2&3 produce the rest. This motivates us to put V to
the horizontal direction by switching the LHS and RHS fragments,
which creates opportunity to skip STEP2&3 when V' < 4. Specif-
ically, while @ is from the RHS fragment of the warp tile, it is
regarded as the LHS fragment for the computation in TCU. Each
block in @ represents an 8 X 4 block and the number on it indicates
the thread group that loads it. Similarly, @ from the LHS fragment
of the warp tile is regarded as the RHS fragment in TCU, and each
block in @ is a 4 X 4 block. Therefore, as the original warp tile has
column-major LHS fragment and row-major RHS fragment, @ is
in row major and @ is in column major. When V < 4, one could

Chen, et al.

remove the STEP 2&3 from the SASS code if an assembler were
available. Second, the warp tile is partitioned to octets in a different
way to guarantee both efficient computation and memory access. In
detail, the warp tile is decomposed to TileK /4 steps to be processed
in serial by each warp, and each step processes a (64 X 4) - (4 x V)
subtile (after the switching). With guideline IV, we directly load
O to the register file as it has few reuse opportunities. For guide-
line V, as each column of consecutive 64 half operands in @ are
mapped to 8 different threads and each thread holds consecutive 8
half operands, @ can be loaded with a single LDG.128 instruction
which generates four 128B coalesced global memory transactions.
For @, as the LHS fragment in the warp tile is reused for many
times, we directly load it into the shared memory at the beginning
of the tile, so it does not influence the memory access efficiency.
Besides, the new mapping only requires TileK to be the multiple
of 4, which is more friendly to residual handling.

5.4 Implementation Details

For an SpMM with size Apyixx X BkxN = CpxN, we take TileN =
64 and CTA size = 32 to have as much CTAs as possible while
maintaining the best memory access pattern. Therefore, [M/V] X
[N/64] CTAs are launched, each processes an V X 64 output tile.

To generate the output tile, each CTA traverses all the nonzero
vectors in its row with stride TileK, and accumulates the partial
sums in the register file. For each stride, all the threads first work
jointly to load the LHS fragment in Figure 11 @ to shared memory.
Then, each thread group loads its share in the 64 X 4 RHS fragment
in Figure 11 @. Next, an mma.m8n8k4 is launched to compute a
(64X 4) - (4x V) matrix multiplication ((x@=@). This is repeated
for TileK /4 times until the warp tile is done. We observe that the
compiler tends to reuse the registers that store the source operand
of each mma.m8n8k4 to reduce register consumption. Whereas, this
actually hurts the Instruction Level Parallelism (ILP) as the load and
computation of different (64x4)(4xV) tiles will depend on each other
if they use the same set of registers. To improve ILP, we first call all
the TileK /4 load instructions, then insert a __threadfence_block(),
at last call the TileK/4 mma.m8n8k4 instructions. This prevents
the compiler from reusing the registers.

When the last few nonzero vectors cannot fill the TileK width,
the load and computation of each (64 X 4) - (4 X V) tile will be
interleaved until all the nonzero vectors are processed. This helps
reduce the residual handling overhead. After all the nonzero vectors
are processed, we use the warp shuffle primitives to reorganize the
data and write them to DRAM with vector memory operations.

6 SDDMM KERNEL DESIGN

Similar to Section 5, we first describe two baseline SDDMM designs.
One is extended from Sputnik [6] that opts for memory access
efficiency, the other is based on classic mapping between GEMM
and TCU for high compute and kernel efficiency. Then, we present
our design that achieves high efficiency in all three aspects.

6.1 FPU-based 1-D Subwarp Tiling

The FPU-based 1-D subwarp tiling is illustrated in Figure 12 (a).
Similarly, each CTA tile contains multiple independent 1-D tiles as-
signed to subwarps. Each 1-D tile is decomposed to Subwarp Size in-

: : : TileK . TileK
dependent thread tiles with size (VX g7 > Size) (Supvar > Size

Efficient Tensor Core-Based GPU Kernels for Structured Sparsity under Reduced Precision

TileN

Num.
Subwar
(a)

CTATIile

Num.

Thread Tile
Subwarp, TileK

/ly TlleKl bwarp Size
AV T

TlleK/Subwarp Slze

(b)

64 Warp Tile

1-3 T |

Figure 12: Decomposition of SDDMM with 1-D tiling. (a) The
FPU tiling extended from Sputnik [6]; (b) Our TCU tiling.

CTATile Tiek

TileN). Each thread loads its LHS and RHS tile into registers and
computes partial sums. At last, partial sums stored by different
threads in the same subwarp are reduced with warp shuffle.

This tiling design also has high memory access efficiency. Specif-
ically, with TileK = 64 and Subwarp Size = 8, the rows in LHS
fragment and columns in RHS fragment of the 1-D tile can be loaded
with a single LDG.128 instruction in the 128B coalesced pattern.
Therefore it satisfies guideline IV and V. However, kernel and com-
pute efficiency are sub-optimal due to the same reasons as in the
FPU-based SpMM. Moreover, each thread holds a V xTileN array in
the register file to store the partial sums. For instance, when V = 8
and TileN = 32, the partial sum consumes 256 registers of each
thread, which exceeds the register file capacity and causes register
spilling. Even without the register spilling, the large amount of
registers actually reduces the occupancy.

6.2 TCU-based 1-D Warp Tiling

The TCU-based 1-D Warp Tiling for SDDMM is illustrated in Figure
12 (b). Each CTA tile has only one 1-D tile, which is further decom-
posed to warp tiles with size (V X 64) - (64 x TileN). Similarly, 64
is chosen because it is the smallest number that perfectly fills the
128B transaction. As shown in Figure 13 @), the warp tile is further
processed with %
with a wmma.m8n32k16.

On the positive side, Similar to SpMM kernel, it has high kernel
and compute efficiency (guideline I, IT, and III) for the same reasons.
Besides, it uses fewer registers to store the partial sum. E.g., with

steps in serial, and each step is computed

@ Warp Tile

64

X

Ts 7111500, @1 oo Gag, 15}
Ti6,20,20,28 {00, @1 e ag, 15}

- 14
T19.23,27,31 {00, @1 e Qae s } 15 by

Figure 13: Classic mapping of the warp tile to TCU.

SC ’21, November 14-19, 2021, America’s Center, St. Louis, MO

TileK = 64, while the FPU-based implementation has Subwarp Size
copies of the partial sums, this one only has one copy.

On the negative side, it has sub-optimal memory access pat-
tern. Figure 13 @ and @) visualizes the operand layout for each
wmma.m8n32k16. In @, each block represents a 4 X 16 block and
the numbers on it indicate the thread groups that hold a copy. @
gives a detailed data layout for @. In @, each block represents a
16 X 4 block and the number on it represents the thread group that
holds it. We illustrates the data layout for thread group 0 and 4
in @ as an example. If we have guideline IV and directly load the
LHS fragment (@) and RHS fragment (@) into the register file, we
can only have 16B coalesced access. In detail, the 16 operands in
each row of the row-major @ and column of the column-major
© are consecutive and they are mapped to the 16 registers of a
thread. However, each LDG.128 can only load 8 of them. So it is
16B coalesced. On the other hand, If we have V and coalesce the
global memory access with the shared memory, it violates IV.

Furthermore, the LHS fragment @ is copied for 4 times, which
consumes addition registers that reduces occupancy. Also, TileN
has to be a multiple of 32, which introduces additional overhead in
residual handling. At last, redundant computations occurred when
V is smaller than 8.

6.3 TCU-based 1-D Octet Tiling

Based on the analysis above, we propose our SDDMM kernel that
tackles the limitations of the two designs. First, it adopts the same
warp tiling as the TCU-based 1-D Warp Tiling in Figure 12 (b),
which indicates good kernel and compute efficiency (guideline I,
11, and III). To achieve optimal global memory access pattern, we
redesign the mapping between warp tile and the TCU in the Octet
granularity which we named the TCU-based 1-D Octet Tiling.

The new mapping is shown in Figure 14. There are two major
differences from the classic m8n32k16 mapping in Figure 13. First,
under the same motivation in Section 5.3, we switch the LHS and
RHS fragment to expose the opportunity to remove redundant
HMMA in the SASS code when V < 4. Second, a novel warp tile
partition is applied to guarantee efficient computation and memory
access pattern. Specifically, our warp tile is decomposed to TileN /8
sub-tiles to be processed sequentially, and the size of each sub-tile
is (8x64)-(64xV) (after the switch). With guideline IV, the switched
LHS and RHS fragments are partitioned and stored in the register
file of different thread groups, as shown in @ and €. Each block in
@ and @ represents a 4x8 or 8x4 matrix held by a single thread
group. We take the thread group 0 and 4 as examples and illustrate
the detailed data layout in @ and @. Under this setup, both @ and
@ can be loaded with a LDG.128 instruction and together generate
eight 128B coalesced transactions. In detail, each row vector with
length 64 of the row-major @ is partitioned to 8 sub-vectors with
length 8, and different sub-vectors are loaded by different threads
in the warp. This is the same in @). Besides, all the operands are
only stored by a single thread group, whereas the LHS fragment in
the TCU-based 1-D Warp tiling is copied for 4 times.

However, the loaded operands in @ and @ cannot be directly
used for mma.m8n8k4, as the register index of each row in @ and
column in @ in thread group i and i+4 do not match. If we compute
the index based on the thread group index at runtime, the operands
will be moved into the local memory to enable dynamic indexing.

SC ’21, November 14-19, 2021, America’s Center, St. Louis, MO

Chen, et al.

Operand Bus 1

High Group Switch I =
) “ % ‘G
0 3o . 3 o . a]o_._3_ g g 5
0 & G s Ty T I'ﬂo @[g o 3 3 MUX
1 a a; as g 1 a a; a; a; %
2 @ @ ap | 2 la | a w|[Fm-- 1 s I 5
3 a as| an an| 3 la as| a i 1 ; I 3 Operand Bus 2 I
4T Ty @ 1,02y 7,002 4 Ty 0 ST @y T ! N N iz
s e e e M | {5 e T afta " ™ I 8 3 e Operand Bus 3 2
6 a a| ay a 6 a a| a a ! B N w N
7@ @] as sl 7@ @] a a ! o)
1
= \
o . 3o 3 0 3 [o 3 ! ﬁ
o T T Ty T o Ty T T Ty : Mat_a Mat_b
1w a | a a4 1Ta | a as | Octet 3 Octet 2 Octet 1 buffer buffer buffer
g a a| ay ay § ayp ap| g o 1 & o3
a a| au an a a| o an
4 Ty —b Tig @ Ty Gz —p T; Qi 4 Tyl — Tiy@z|To @Gz —p T; Gz : o] TensorcoR | i
5 Yo a| an as 5 ay | a] 5 5 Threadgroup 0 Threadgroup 4
6| a | @ o 6 | g ol @ al . X %3 k3 B3 - Octet 0 T
7 @ ol a asl | (| 7 ay a| ay ay \ Column Major @ & 1S ol 2 TENSOR CORE | §\ |2 §‘
1 Bo . 3|4 . 7 & = 3 53
H TileN | % =T = k{ } { }
1 " " 1 1 a ay ay a WriteBac|
@ Warp Tile ! OctetTile =----- 2 Toay = Ts gy gy — Too g
! 3 a| a a
1 1 . .
LoGi2d o - , © RowMaor Figure 15: Proposed TCU Architecture.
I ! Alo 1 2 3] o 1 2 3 45 6 7
1 {eo.ca) Tolcocy) Tolew€s) To(ca Cs)]
by, b2, b: [0 flateo, &2 Tolca i Tolewcs] Tolcacs)
| I 9. o O TeleubaBl™| ey) mlegel Tevcd Tieies) N N
R RPN {—8;)' U112 4 5[6 : 2 [fofcz, 3} T2{cacs) Tolcecs) To{cocy
| 8 3| Talbobsbubs) | [lcncs Tafeacs) Tif \
VI H 2| Tl b ba by | |4 [fleo cdTmleoel T, e lV
' 1 1 . 5 [T o, 1) Ty s
______ . ' | : 4 16 [Tis 2, €5} TaalC2,€al Ty e, ¢} Trnfees €3 N =
> o __ 4 —mm——-a 7| Tio (oo by, by,ba} | (7 [Tia€n,€a) Too €2 €3l s Too (c.)
1 1
| LDG.128 Y > N
0 v v
0 1 2345867 0 1.2 345867 0_1.2.34567 0 12345867 MxV “M S L sy
o To{bo, by, bz, bs, by, bs, be, br} 0 Tis{bo,ba,bz b3, b, bs, b, by } o[T7efbo, by bzrh]rblubsrbuvbﬂ 0| Tas{bs,bo.bro, bra,bra,bus ,bs, brs}
A : A I :
3 Ty bo, by, bz, by, by, bs, be, b} Pl Tio (b 1bs, bs, by} 13 | 1 Tslbo,by,ba,ba, By, bs, b, by} 13 | Tio{bs. s, bro, bss, bz bsa ,bis, bss} ‘
‘.l Tis{ba, ba, bro, by, biz, by ,bus, bas} ‘.1 To{bs, bo,bro, bur bz, bus, bua, bs} |4 Irrmlbn.bubzf:vqmb be,b7} ‘4 Tofbs, bo,bro, buy ,bia, bis, b, bas} Fine-grained Sparsity
A : A H :
[7 | Tiotbs, bs, bao, by, biz,bss ,bus, bis} 7 | Tslbs,bo,bio,bus bz, b, bua, bis} 7 I\T,;(b,,,b,,bz,b, by, bs, bg, b} [7_| Ts(ba, by, bio, br , biz, bis, bua,bss}
Vector Blocked-ELL
High Group Switch Sparsity Sparsity

Figure 14: TCU based 1-D Octet Tiling for SDDMM.
To avoid this, we further apply the "High Group Switch", which
switch the content in register j and (j + 8)Mod16 in the thread
group 4, 5, 6, and 7 (high group). The data layout after the High
Group Switch is illustrated in @ and @, respectively.

After the High Group Switching, each Octet has an (8x16)-(16x8)
tile to compute. While each mma.m8n8k4 can compute an (84} 48)
tile, it takes 4 steps to finish the computation. Notably, the upper 4
rows in @ and the left 4 columns in @ are held by thread group 0 in
step 1&2, but they are in thread group 4 in step 3&4. This inverted
pattern of source operands also inverts the pattern of the output.

On the algorithm side, the above problem can be solved by either
shuffling the operands in thread group i and i+4 with the warp
shuffle primitives before calling mma.m8n8k4, or using an additional
set of registers to accumulate the partial sums from the last two
steps. While the shuffle introduces additional overhead, the second
solution reduces the occupancy as additional registers are used.

On the hardware side, we propose to extend the original HMMA
instruction by adding an additional switch Flag that directly switches
the source operand in low and high groups within the TCU, i.e.
HMMA.884.F32.F32.STEP{0,1,2,3).SWITCH. To support this switch,
as shown in Figure 15, we add a pair of multiplexers between the
operand bus 1 and the Mat_a buffer of the two thread groups. This
pair switches the source of the two Mat_a buffers if switch is set.
The source of the Mat_b buffer is switched by XORing the original
control signal with the SWITCH bit.

6.4 Implementation Details

For an SDDMM with size Apxg X BkxN © DyxN = CyixN»> Where
D is a binary mask stored under the column vector sparse encod-
ing, we take TileK = 64 and CTA size = 32 to reduce the residual
processing overhead while maintaining the best memory access
pattern. We heuristically pick TileN = 32 as it achieves good bal-
ance between the data reuse ratio and the number of CTA, but any
multiple of 8 is acceptable. Therefore, [M/V] x [N/32] CTAs will
be launched, each processes an V X 32 output tile.

Figure 16: Benchmark Construction

To generate the output tile, each CTA traverses the dimension K
with stride 64. Each octet holds the partial sums in its local registers.
For each step, The LHS fragment in Figure 14 @ is loaded. Then,
the warp takes four sub-steps, each sub-step load @ in Figure 14
and computes a (8 X 64) - (64 x V) tile (after the switching) as we
mentioned before.

This kernel has a tighter budget for the registers, as each octet
hold at least one set of the partial sums, and we rely on the compiler
to determine the best strategy for register reusing. When K is
traversed, the partial sums in different Octets are accumulated with
warp shuffle primitives. The final result is reordered and written to
DRAM with vector memory operations.

7 EXPERIMENTS

In this section, we compare the performance of our proposed kernels
with cuSPARSE and the FPU baseline extended from Sputnik [6].
We justify the speedup and our motivations with detailed profiling
results on a representative benchmark.

7.1 Experiment Setup

7.1.1 Benchmark Construction: Figure 16 illustrates how we con-
struct the benchmarks from ResNet 50 under magnitude pruning in
the DLMC dataset [22]. Given a M X N sparse matrix from DLMC
with sparsity S, as our column vector sparse encoding is equiva-
lent with replacing the nonzero scalars with vector types, we use
the csrRowPtr and csrCollnd of the sparse matrices, and randomly
generate a nonzero vector with length V for each indexed position.
To construct the blocked-ELL format sparse matrix, we first set the
block size to the vector length V, and then compute the number of
blocks in each row with [N/V x S]. At last we generate the column
indices of the nonzero blocks with uniform distribution. Therefore,
the Blocked-ELL format has the same sparsity and problem size
with the column vector sparse encoding.

Efficient Tensor Core-Based GPU Kernels for Structured Sparsity under Reduced Precision SC ’21, November 14-19, 2021, America’s Center, St. Louis, MO
o V=1, N=64 V=2, N=64 V=1, N=128 V=2, N=128 V=1, N=256 V=2, N=256
1.
B fpu Bl fpu 1.5 EEE fpu Em fpu B fpu B fpu
151 37 = blocked-ELL o © 3| EEE blocked-ELL 154 31 EEm blocked-ELL
© =3 mma 1.24 == mma) o =3 mma
? 24 | 8 1.0 I |
g ¥ i i ' 2] g 10 2] 8
£ -8 0.8 q .
@
SRERRC 1T I 051 14 1
T 1 0.5
0 O, O, ?
< o6 8 | 021 B
3 0.5 0.7 08 0.9 0.950.98 0.5 0.7 0.8 0.9 0.950.98 0.5 0.7 08 0.9_0950.98 0.5 0.7 0.8 0.9 0,950.98 0.5 07 0.8 0.9 0.950.98 0.5 0.7 0.8 0.9 0,950.98
e V=4, N=64 =8, N=64 V=4, N=128 =8, N=128 V=4, N=256 V=8, N=256
9 10 81
éog B fpu E fpu 54 EEE fpu 87-fpu 5,-fpu B fpu
o ° | EER blocked-ELL 8 B blocked-ELL B blocked-ELL B blocked-ELL I blocked-ELL I blocked-ELL
3 4| == mma =3 mma 41 =3 mma =3 mma 4] =3 mma 61 =3 mma
a} 64
@ 6 o
o i o

L% 31 3 o 3 T 41

0.2 B o] q 4

: 8 2 *] 5

-

Q'ng B”isig

2

I 2 :iﬁsiﬁi‘H 1: i 0, o1 18

04

N}

il

0.0 T T T T T T T T T T T T T T T T T T
0.5 0.7 0.8 0.9 0.950.98 0.5 0027 0.8 0.9 0.950.98 0.5 0.7 @8 0.9 0.950.98

0.5 0.7 0.8 0.9.6.950.98 0.5 0.7 0.8 0.9 0.950.88 0.5 0.7 0.8 0.9 0.950.98 1.0

Sparsity
Figure 17: Speedup over cuBLASHgemm with SpMM under different configurations. The problem size is Apxk - BkxN Where A is

the sparse matrix under sparsity in {0.5,0.7,0.8,0.9,0.95,0.98}. The size M and K are given in the benchmarks, N is picked from {64, 128, 256}.

7.1.2 Baseline Kernels: For both SpMM and SDDMM, we compare
our TCU-based 1-D Octet Tiling with an FPU baseline and a TCU
baseline. The FPU baseline is obtained by extending the kernels in
Sputnik [6] following Section 5.1 and 6.1 to support the column
vector sparse encoding. The tiling sizes are tuned on a subset of
benchmarks to find a configuration that brings the highest geomet-
ric mean speedup. We directly use the Blocked-ELL based SpMM
kernel in cuSAPRSE as the TCU baseline for SpMM. As the SDDMM
under structured sparsity is not supported by off-the-shelf libraries,
we use the kernel in Section 6.2 as the TCU baseline. Finally, we
use cuBLASHgemm kernel as the dense baseline.

7.1.3 Removing HMMA instructions: While our tiling design ex-
poses opportunities for removing additional HMMAs, as existing
SASS assemblers like [28] do not support this modification, we
leave it for future work.

7.2 SpMM

The speedup achieved by our SpMM kernel is summarized in Figure
17. We use the box plot to illustrate the distribution of the speedup
achieved on different benchmarks. Furthermore, following Gale
et al. [6], we compute the geometric mean speedup and plot it
with the solid line in Figure 17. "fpu", "blocked-ELL", and "mma"
correspond to the FPU baseline extended from Sputnik[6], blocked-
ELL based SpMM kernel in cuSPARSE, and our implementation
with TCU-based 1-D Octet Tiling, respectively.

7.2.1 Overall Performance Description: Across all benchmarks, our
TCU based 1-D Octet Tiling (mma) achieves 1.34-4.51x and 1.71-
7.19x geometric mean speedup over the FPU and TCU baselines.
Moreover, it outperforms cuBLASHgemm under > 80%, > 70%, and
> 50% sparsity under the tiny 2x1, 4x1, and 8x1 grain size. This illus-
trates that higher speedup can be achieved with larger vector length
V, which justifies our motivation of achieving practical speedup
under moderate sparsity with column vector sparse encoding.

7.2.2 Performance Analysis: We further justify the above speedup
with detailed profiling. Following Section 3, we profile the kernels
on A2048x1024 X B1024x256 under 90% sparsity. First, we compare the
three implementations of SpMM in terms of the five guidelines we
propose in Section 3. We use the percentage of pipeline stall caused
by "No Instruction”, "Wait", and "Short Scoreboard" for guideline I,

le8 le8

1le8
mmm Blocked Ell
Vector-Sparse 4

mmm Blocked Ell
Vector-Sparse 44
| I] | I]
| THR | T

0.5 0.7 0.8 0.90.950.98 0.5 0.7 0.8 0.90.95.98 0.5 0.7 0.8 0.90.950.98
Sparsity Sparsity Sparsity

Figure 18: Total bytes loaded from L2 cache to L1 cache

mmm Blocked Ell
Vector-Sparse

|IlLL

IN
L

Bytes L2$->L1$
~N
L

o

111, and IV, number of thread blocks for II, and Sector per Request to
L1 cache for V. The results are listed in Table 2, we mark the results
that are significantly worse than others with red.

Compared with our TCU-based 1-D Octet Tiling, the FPU base-
line suffers more from the "No Instruction" and "Wait" stalls. We
observe that the FPU baseline has 3776 and 6968 lines in their SASS
code. Moreover, 3,402,752 and 3,407,872 HUML+FADD instructions
are executed under V = 4 and V = 8, respectively. On the other
hand, our kernel has only 384 and 416 lines in the SASS code, with
429,504 and 215,104 executed HMMA instructions. This greatly
reduces instruction cache miss and stalls for dependency on fixed
latency instructions. Besides, the "Sectors/Req" of the FPU baseline
is only around 4. This is because when tuning its tiling size, we
find that having #Subwarp = 1 to improve the grid size generally
improves the overall performance, while this comes at the cost of
using shorter vector memory operation. The Blocked-ELL kernel
suffers from "No Instruction", "Wait", and "Short Scoreboard" stalls,
which accords with our analysis in Section 3.

To justify the argument in Section 4 that the data reuse is in-
dependent of the column number in the block sparse matrix, we
profile the total number of bytes loaded from L2 cache to L1 cache
in our column vector sparse encoding and blocked-ELL format un-
der the same problem size and sparsity. As shown in Figure 18, our
column vector sparse encoding loads even fewer data from L2 to L1
cache than the Blocked-ELL format, across all the sparsity levels.

Table 2: The 5 guidelines in different implementations.

Kernel ‘ No Instruction ‘ # Thread Block ‘ Wait ‘ Short Scoreboard ‘ Sectors/Req
SpMM, V=4
MMA 1.1% 2048 4.7% 4.5% 12.56
CUDA 11.0% 2048 11.6% 2.6% 4.04
Blocked-ELL 42.6% 1024 21.0% 11.9% 14.92
SpMM, V=8
MMA 1.1% 1024 6.2% 2.6% 13.22
CUDA 52.2% 1024 8.3% 2.0% 4.27
Blocked-ELL 35.1% 512 16.2% 12.1% 13.85

SC ’21, November 14-19, 2021, America’s Center, St. Louis, MO

Chen, et al.

B fpu = wmma B mma (reg) EE mma (shfl) = mma (arch)
V=1, K=64 V=1, K=128 V=1, K=256

N S Y

1.0 1.0 10

1] H——"/‘ > H——/'—"‘,

0.8 T T T T T T T T T T T T T T T T T T

0.5 0.7 0.8 0.9 0.95 0.98 0.5 0.7 0.8 0.9 0.95 0.98 0.5 0.7 0.8 0.9 0.95 0.98
V=2, K=64 V=2, K=128 V=2, K=256
2
g 159
: il) L
£ 1 AT 1.0 1 ” ”
wn 0.6
@ 0.5)
@ 1§
3 0?5 0‘7 018 0.9 OAg)S O.‘98 0?5 0t7 018 019 OAg)S O.‘98 OjS 0‘7 018 Oj OAg)S 0.§8
o V= =64 V=4, K=128 V=4, K=25
[2.0 2.0
>
o] 0° 154 j
g of | Ll ul
[g - flaal T L | f Lo vl LR L)
[} T T i
|} .54 .54 L
a it L1 LLAS LA LLFULLLM 05 FYLELIALLS 8- 05 "
0‘5 0t7 018 0'9 OA'95 O.‘98 ¢ ¢
02 V=8, K=64

0.5 0.40.7 0.8

0.0 0. 0.7 0.8 0.9

0.9 095 0.986 0.5 0.7 0.8.8 0.9 095 0.98 1.0

Sparsity
Figure 19: Speedup over cuBLASHgemm with SDDMM under different configurations. Problem size is Ayxx - BkxN = Cuxn, C
is the sparse matrix under sparsity in {0.5,0.7,0.8,0.9,0.95,0.98}. The size M and N are given in the benchmarks, K is picked from {64, 128, 256}.

7.3 SDDMM

The speedup achieved by our SDDMM kernels are summarized
in Figure 19. The "fpu" denotes the FPU baseline in Section 6.1,
"wmma" corresponds to the TCU baseline in Section 6.2. As we
propose three different methods to handle the inverted pattern,
we mark the one that adds additional registers with "mma (reg)",
the one that shuffles the source operands before computation with
"mma (shfl)", and the one based on the new TCU architecture with
"mma (arch)". For the last one, we develop a fake kernel to simulate
the performance by assuming that operands are switched in TCU.

7.3.1 Overall Performance Description: Our TCU-based 1-D Octet
Tiling achieves considerable speedup over the baselines across all
the setups except for K = 64,V = 8. Specifically, it achieves 1.27-
3.03x and 0.93-1.44x geometric mean speedup over the FPU and
TCU baselines. Besides, speedup at > 90% sparsity is achieved under
V =8 and K = 256. Moreover, with the modified TCU architecture,
the mma (arch) consistently outperforms the mma (reg) and mma
(shlf). This demonstrates that our simple architecture optimization
can effectively improve the performance.

7.3.2 Performance Analysis: We observe that the SHFL (Warp Wide
Register Shuffle) + FADD accounts for 29.5% of the total instructions
executed under V = 8 and K = 64 settings with our TCU based 1-D
Octet tiling. The percentage is reduced to 17.2% under V = 8 and
K = 256. As these instructions are primarily used for accumulating
the partial sums of each Octet at the end of the kernel. This suggests
that When K is small and V is large, the overhead of this reduction
is not negligible and will offset the benefit of the dedicated tiling
design. When K gets larger, it is obvious that our Octet tiling (mma)
achieves significant better performance.

We present more detailed profiling results to justify the speedup
achieved by our kernels. With the same setup for Table 2 expect

that the benchmark size is Ap48x256 X B25x1024 = C2048x1024 and
C has 90% sparsity, the results are summarized in Table 3. As all
the three implementations of our MMA are more or less similar in
term of these five guidelines, we just list the result of mma (reg).

Similarly, the FPU baseline suffers more from "No Instruction”,
"Wait" stalls, and it has smaller "Sector/req" than the other two
implementations. The TCU baseline is limited by the shared mem-
ory bandwidth. These observations accord with our arguments in
Section 6. We also compare the mma (reg), mma (shfl), and mma
(arch) to justify the architecture level optimization. We observe that
given credit to our architecture modification, our mma (arch) uses
33% fewer registers and has 21.3% more active warps per sched-
uler than mma (reg), as it removes the need of additional registers
for partial sums from the inverted pattern. Besides, it has 10.4%
fewer instructions that is majorly contributed by the removed SHFL
instructions for operands switching.

Table 3: The 5 guidelines in different implementations.
Kernel ‘ No Instruction ‘ # Thread Block ‘ ‘Wait ‘ Short Scoreboard ‘ Sectors/Req

SDDMM, V=4

MMA 0.8% 16384 10.7% 2.1% 3.83

CUDA 6.1% 16384 281% 2.5% 353

WMMA 0.3% 16384 10.6% 14.4% 3.82
SDDMM, V=8

MMA 1.0% 8192 11.0% 1.9% 9.25

CUDA 7.3% 16384 24.6% 31% 333

WMMA 0.4% 3192 9.5% 17.9% 9.26

7.4 Application: Sparse Transformer

Transformer models based on the self-attention mechanism have
achieved unrivaled performance in natural language processing and
vision[8, 25, 30]. Under sequence length [and feature dimension m,
the self-attention layer takes query, key, and value Q, K,V € Rk

Efficient Tensor Core-Based GPU Kernels for Structured Sparsity under Reduced Precision

mm OK"oC Softmax mEE AV mmE Others
1=2048, k=64 1=4096, k=64 1=8192, k=64 1=8192, k=256

Sparsity
Figure 20: Latency of self-attention layer in various setups.

and computes the output with
A = Softmax ((QKT o} C)/\/E) , Attention(Q, K, V) = AV, (1)

where C is an optional sparse mask that prunes most of entries in
the matrix A. In the dense setting, C is just a dense matrix filled
with ones, thus Equation 1 has quadratic computation and memory
complexity in terms of sequence length [, which limits it from
modeling long sequences like documents or images. To address
this issue, many studies have been proposed to apply a fixed or
learned sparse mask C [25]. Under this setup, QKT © C and AV
can be formulated as SDDMM and SpMM,, respectively. However,
without efficient GPU kernels, they could be much slower than their
dense counterpart, thus previous studies [30] apply block sparsity
with large block size like 32 or 64. In this section, we will show
that with our SDDMM and SpMM kernels, speedup over the dense
implementation can be achieved under much smaller granularity,
thus offers larger design space when constructing the sparse masks.

Experimental Setup: We trained a transformer model with a
fixed sparse attention mask on the byte-level text classification task
in Long-Range Arena (LRA) [24], a benchmark for transformers
under long-sequence scenarios. In this task, the sequence length is
4000. We set the model configuration and training parameters to
be the same as the original dense baseline. The 4-layer transformer
model has 4 attention heads for each attention layer, and the feature
dimension of each head is 64. For the sparse attention pattern, we
follow Gale et al. [6] but add our 8 X 1 vector sparsity constraints.
Specifically, we generate fixed attention masks with a dense band of
size 256 along the diagonal and off-diagonal random attention. The
overall sparsity is 90% and the attention mask can be expressed by
our column-vector sparse encoding. We also implement a custom
softmax kernel that works on column vector sparse encoding. For
the half-precision models, we directly quantize the weights and
activations to half without finetuning. We evaluate the inference
throughput and peak memory usage under batch size 8 and average
the results over 10 runs.

Table 4: Sparse Transformer Results

Model ‘ Dense(float) ‘ Dense(half) ‘ Sparse(half)
Accuracy 65.12% 65.09% 65.01%
Throughput (seq / s) 74.7 182.6 258
Peak Memory 4.44 GB 2.22GB 170.03 MB

Results & Analysis: As shown in Table 4, the sparse model
under half precision achieves 3.45x and 1.41x end-to-end speedup
over the dense model under single and half precision, respectively.
The peak memory usage is reduced by 26.74x and 13.37x. With
vector-wise sparsity, we are able to achieve only 0.11% of accuracy
degradation compared with the dense transformer baseline.

SC ’21, November 14-19, 2021, America’s Center, St. Louis, MO

Ablation Study: Under the long-sequence scenario, the multi-
head attention layer could contribute more than 70% of total execu-
tion time. We further illustrate the speedup achieved in different
parts in the attention layer in Figure 20. In terms of the whole layer,
we achieve 1.35 — 1.78x, 1.48 — 2.09x, and 1.57 — 2.30x speedup
under 90%, 95%, and 98% sparsity, respectively. Our SpMM and Soft-
max kernels effectively reduce the latency contributed by So ftmax
and AV. The SDDMM kernel is slower than its dense counterparts
when k = 64. It is because 64 is too small, which accords with the
observation in Figure 19. Notably, the sparsity cannot be utilized
in Softmax and AV without the SDDMM kernel, and our SDDMM
achieves better performance than other baselines. Besides, as shown
in the last figure in Figure 20, the SDDMM outperforms its dense
counterpart when k = 256.

8 DISCUSSION & CONCLUSION

While the SpMM and SDDMM operations in our paper are defined
in terms of row-major matrices, they can also be applied to column-
major matrices by mathematically transposing both LHS and RHS
of the equation. Specifically, we can have DT = BTCT and DT =
(BT)TAT o T for SpMM and SDDMM, where DT, AT, and BT
are column-major dense matrices. CTisa transposed sparse matrix
under column-vector sparse encoding, which can be viewed as
“row vector sparse encoding" that is composed of short row vectors
aligned along the horizontal dimension. The position of these short
row vectors are encoded in compressed sparse column (CSC).

Although our column vector sparse encoding only requires the
sparse matrix to be composed of short column vectors aligned along
the vertical dimension, additional constraints can be added along
the horizontal dimension in need. While additional adjustment
can be applied to the way that operands are indexed, the CTA tile
remains identical under different constraints, so our TCU-based
1-D Octet tiling is still applicable. Besides the case with default
setting provided in Section 7.4, we further discuss two cases below.

Case 1: When applying our method to neural network training,
one can store the activations X € R™ in row-major, where n is
the input feature dimension and N is the batch size. We have

oL 194 oL oL _r

OV-wx @ _=w'_". @ =X)
@ and @ in the above equation can be computed with our SpMM
kernel, and SDDMM kernel is applicable in €. As both W and W7
are used, we need to have square nonzero blocks aligned in both
vertical and horizontal dimensions, then we can encode both W and
WT with our column-vector sparse encoding. As square nonzero
blocks are used, we can use one column index per block, and access
the columns in the block with an unrolled loop in the kernel.

Case 2: Another extreme case is all the column vectors in the
same row should be zero or nonzero at the same time (a short
and wide matrix), which is used in the global attention in sparse
transformer [30]. Because all the entries are nonzero in a nonzero
row, we can directly access the entries in a for loop.

All in all, in this paper, we propose efficient sparse GPU kernels
for half precision SpMM and SDDMM operation under structured
sparsity. Our kernels are based on two essential contributions. The
first is column vector sparse encoding, which achieves same data
reuse as block sparsity while delivering smaller granularity to help

SC ’21, November 14-19, 2021, America’s Center, St. Louis, MO

maintain neural network model quality. The second contribution is
a novel mapping and tiling strategy namely TCU-based 1-D Octet
Tiling. With the proposed tiling method, our kernels are able to
achieve both efficient memory access and efficient computation
even with tiny sparse granularity. Experiments on the DLMC sparse
matrix benchmark illustrates that the proposed kernels achieve
1.71-7.19x geometric mean speedup over the Blocked-ELL based
SpMM kernel. Moreover, our SpMM and SDDMM kernel achieve
practical speedup over their dense counterparts with > 70% and >
90% sparsity under the 4 X 1 grain size and half precision. Benefited
from our design, we achieve 1.41x end-to-end speedup and 13.37x
peak memory reduction on the sparse transformer inference task.

9 ACKNOWLEDGEMENTS

This work was supported in part by NSF 1925717. Use was made of
computational facilities purchased with funds from the National
Science Foundation (OAC-1925717) and administered by the Center
for Scientific Computing (CSC). The CSC is supported by the Cali-
fornia NanoSystems Institute and the Materials Research Science
and Engineering Center (MRSEC; NSF DMR 1720256) at UC Santa
Barbara.

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[2] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. K. Gupta, and H. Esmaeilzadeh.
2018. SnaPEA: Predictive Early Activation for Reducing Computation in Deep
Convolutional Neural Networks. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). 662-673. https://doi.org/10.1109/
ISCA.2018.00061

[3] Zhaodong Chen, Mingyu Yan, Maohua Zhu, Lei Deng, Guogqi Li, Shuangchen Li,
and Yuan Xie. 2020. fuseGNN: accelerating graph convolutional neural network
training on GPGPU. In 2020 IEEE/ACM International Conference On Computer
Aided Design (ICCAD). IEEE, 1-9.

[4] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019. Generat-
ing Long Sequences with Sparse Transformers. CoRR abs/1904.10509 (2019).
arXiv:1904.10509 http://arxiv.org/abs/1904.10509

[5] Abdul Dakkak, Cheng Li, Jinjun Xiong, Isaac Gelado, and Wen-mei Hwu. 2019.
Accelerating reduction and scan using tensor core units. In Proceedings of the
ACM International Conference on Supercomputing. 46—57.

[6] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse GPU
Kernels for Deep Learning. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2020.

[7] Tong Geng, Ang Li, Tianqi Wang, Chunshu Wu, Yanfei Li, Antonino Tumeo,
and Martin C. Herbordt. 2019. UWB-GCN: Hardware Acceleration of
Graph-Convolution-Network through Runtime Workload Rebalancing. CoRR
abs/1908.10834 (2019). arXiv:1908.10834 http://arxiv.org/abs/1908.10834

[8] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua
Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, et al. 2020. A Survey on
Visual Transformer. arXiv preprint arXiv:2012.12556 (2020).

[9] Song Han, Huizi Mao, and William Dally. 2016. Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.

[10] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning both Weights
and Connections for Efficient Neural Networks. CoRR abs/1506.02626 (2015).
arXiv:1506.02626 http://arxiv.org/abs/1506.02626

[11] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. 2018. Dis-

secting the NVIDIA volta GPU architecture via microbenchmarking. arXiv

preprint arXiv:1804.06826 (2018).

Grzegorz Kwasniewski, Marko Kabi¢, Maciej Besta, Joost VandeVondele, Raffaele

Solca, and Torsten Hoefler. 2019. Red-blue pebbling revisited: near optimal parallel

[12

[13

[14

=
&

[16

(17]

[18

[19

[21]

[22

I
&

[24

[25]

[26

[27

[28

[29

[30

@
=

Chen, et al.

matrix-matrix multiplication. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 1-22.

Bing Li, Wei Wen, Jiachen Mao, Sicheng Li, Yiran Chen, and Hai Li. 2018. Running
sparse and low-precision neural network: When algorithm meets hardware. In
2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE,
534-539.

Liu Liu, Lei Deng, Zhaodong Chen, Yuke Wang, Shuangchen Li, Jingwei Zhang,
Yihua Yang, Zhenyu Gu, Yufei Ding, and Yuan Xie. 2020. Boosting Deep Neu-
ral Network Efficiency with Dual-Module Inference. In Proceedings of the 37th
International Conference on Machine Learning (Proceedings of Machine Learn-
ing Research, Vol. 119), Hal Daumé III and Aarti Singh (Eds.). PMLR, 6205-6215.
http://proceedings.mlr.press/v119/liu20c.html

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J
Dally. 2017. Exploring the regularity of sparse structure in convolutional neural
networks. arXiv preprint arXiv:1705.08922 (2017).

Sharan Narang, Gregory F. Diamos, Shubho Sengupta, and Erich Elsen. 2017.
Exploring Sparsity in Recurrent Neural Networks. CoRR abs/1704.05119 (2017).
arXiv:1704.05119 http://arxiv.org/abs/1704.05119

M Naumov, L Chien, P Vandermersch, and U Kapasi. 2010. Cusparse library. In
GPU Technology Conference.

Tesla NVIDIA. 2017. V100 GPU Architecture: The world’s most advanced data-
center GPU. NVIDIA Corporation (2017).

Mi Sun Park, Xiaofan Xu, and Cormac Brick. 2018. Squantizer: Simultaneous
learning for both sparse and low-precision neural networks. arXiv preprint
arXiv:1812.08301 (2018).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 8024-8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

Md Aamir Raihan, Negar Goli, and Tor M Aamodt. 2019. Modeling deep learning
accelerator enabled gpus. In 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 79-92.

Google Research. [n.d.]. Deep Learning Matrix Collection. https://github.com/
google-research/google-research/tree/master/sgk.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin.
2019. Adaptive Attention Span in Transformers. CoRR abs/1905.07799 (2019).
arXiv:1905.07799 http://arxiv.org/abs/1905.07799

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham,
Jinfeng Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. 2020. Long Range
Arena: A Benchmark for Efficient Transformers. arXiv preprint arXiv:2011.04006
(2020).

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. 2020. Efficient
transformers: A survey. arXiv preprint arXiv:2009.06732 (2020).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NIPS. 6000-6010. http://papers.nips.cc/paper/7181-attention-is-all-
you-need

Ganesh Venkatesh, Eriko Nurvitadhi, and Debbie Marr. 2017. Accelerating deep
convolutional networks using low-precision and sparsity. In 2017 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2861-2865.

Da Yan, Wei Wang, and Xiaowen Chu. 2020. Optimizing Batched Winograd
Convolution on GPUs. In 25th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP °20). ACM, San Diego, CA, USA.
Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris
Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li
Yang, and Amr Ahmed. 2021. Big Bird: Transformers for Longer Sequences.
arXiv:2007.14062 [cs.LG]

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie,
Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. 2020. Big Bird: Transformers for Longer Se-
quences. In Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Vol. 33. Curran As-
sociates, Inc., 17283-17297. https://proceedings.neurips.cc/paper/2020/file/
¢8512d142a2d849725f31a9a7a361ab9-Paper.pdf

Maohua Zhu, Tao Zhang, Zhenyu Gu, and Yuan Xie. 2019. Sparse Tensor Core:
Algorithm and Hardware Co-Design for Vector-Wise Sparse Neural Networks
on Modern GPUs. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (Columbus, OH, USA) (MICRO °52). Association
for Computing Machinery, New York, NY, USA, 359-371. https://doi.org/10.
1145/3352460.3358269

https://www.tensorflow.org/
https://doi.org/10.1109/ISCA.2018.00061
https://doi.org/10.1109/ISCA.2018.00061
https://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1908.10834
http://arxiv.org/abs/1908.10834
https://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
http://proceedings.mlr.press/v119/liu20c.html
https://arxiv.org/abs/1704.05119
http://arxiv.org/abs/1704.05119
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/google-research/google-research/tree/master/sgk
https://github.com/google-research/google-research/tree/master/sgk
https://arxiv.org/abs/1905.07799
http://arxiv.org/abs/1905.07799
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://arxiv.org/abs/2007.14062
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://doi.org/10.1145/3352460.3358269
https://doi.org/10.1145/3352460.3358269

	Abstract
	1 Introduction
	2 Background
	2.1 Graphic Processing Units Background
	2.2 Compression in Deep Learning
	2.3 Existing Sparse Kernels on GPU

	3 Opportunities and Challenges
	3.1 Half Precision Fine-grained Sparse Kernel
	3.2 Half Precision Structured Sparse Kernel

	4 Column Vector Sparse Encoding
	4.1 Problem Description
	4.2 Column Vector Sparse Encoding

	5 SpMM Kernel Design
	5.1 FPU-based 1-D Subwarp Tiling
	5.2 TCU-based 1-D Warp Tiling
	5.3 TCU-based 1-D Octet Tiling
	5.4 Implementation Details

	6 SDDMM Kernel Design
	6.1 FPU-based 1-D Subwarp Tiling
	6.2 TCU-based 1-D Warp Tiling
	6.3 TCU-based 1-D Octet Tiling
	6.4 Implementation Details

	7 Experiments
	7.1 Experiment Setup
	7.2 SpMM
	7.3 SDDMM
	7.4 Application: Sparse Transformer

	8 Discussion & Conclusion
	9 Acknowledgements
	References

