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ABSTRACT

Over the years, accelerating neural networks with quantization has
been widely studied. Unfortunately, prior efforts with diverse preci-
sions (e.g., 1-bit weights and 2-bit activations) are usually restricted
by limited precision support on GPUs (e.g., int1 and int4). To break
such restrictions, we introduce the first Arbitrary Precision Neu-
ral Network framework (APNN-TC) to fully exploit quantization
benefits on Ampere GPU Tensor Cores. Specifically, APNN-TC first
incorporates a novel emulation algorithm to support arbitrary short
bit-width computation with int1 compute primitives and XOR/AND
Boolean operations. Second, APNN-TC integrates arbitrary preci-
sion layer designs to efficiently map our emulation algorithm to Ten-
sor Cores with novel batching strategies and specialized memory
organization. Third, APNN-TC embodies a novel arbitrary precision
NN design to minimize memory access across layers and further
improve performance. Extensive evaluations show that APNN-TC
can achieve significant speedup over CUTLASS kernels and various
NN models, such as ResNet and VGG.

1 INTRODUCTION

Over the recent years, demands to improve the performance of
deep neural network (DNNs) have never been satisfied. Prior work
approaches faster and more efficient DNNs from different aspects,
such as model pruning [28, 29, 31], kernel factorization [3, 14, 40],
and data quantization [45, 50]. Among those efforts, quantization-
based DNN acceleration [45, 46, 50] finds its strengths in minimum
modification of the original model architecture, lower memory
consumption, and better runtime performance.

To accelerate quantized DNNs, many specialized cores have
been introduced to support low-precision dense matrix-matrix mul-
tiplications, such as Tensor Processing Units (TPUs) [20], Neural
Network Processors (NNPs) [13], and GPU Tensor Cores [4]. For
example, NVIDIA introduces Tensor Cores in Volta architecture [5]
that supports FP16 matrix-matrix multiplication. In Turing architec-
ture, NVIDIA extends architecture support for more precisions (e.g.,
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intl and int4) and bit-level operations (e.g., XOR) [26]. Recently
in the Ampere architecture, we find there is additional support
for more precision and bit-level operations (e.g., AND). However,
these specialized cores still support a limited range of precisions
with only architecture-level efforts, while quantized DNNs usually
require arbitrary precisions (e.g., 1-bit weight and 2-bit activations).
In this paper, our key question is whether we can support arbitrary
precision neural networks with the limited precisions on Tensor Cores.

We identify two major challenges in accelerating arbitrary pre-
cision DNNs on Ampere GPU Tensor Cores.

Lack of mathematical emulation design. To support arbi-
trary precisions (e.g., int1 weights and int2 activations), one naive
approach is to represent these low-precision values with the sup-
ported high-precision values (e.g., int4). However, this approach
introduces extra overhead and prevents efficient quantized DNNs
on Tensor Cores. Another approach is to emulate with int1l com-
pute primitives. However, with int1 precision, Tensor Cores only
support two bit-level operations (i.e., XOR and AND) and mathemati-
cal emulation designs are required to support multiplication and
addition in quantized DNNs. Moreover, quantized DNNs may have
diverse input data (e.g., -1/+1 or 0/1), where different data may
require different emulation designs.

Lack of efficient implementation for arbitrary precision
NN layers. To accelerate APNN on Tensor Cores, we need to ef-
ficiently map arbitrary precision NN layers to Tensor Cores with
specialized compute primitives and memory architectures. Existing
works on accelerating binary neural networks simply split NN lay-
ers into small matrix tiles (e.g., 8 X 8) to match Tensor Core compute
primitives and improve the parallelism. However, naively borrow-
ing these strategies fails to exploit the data locality during NN layer
computation especially for our emulation workload. Moreover, ar-
bitrary precision computation usually computes at the bit-level
(e.g., int3 or int5) while existing hardware devices such as CPUs
and GPUs usually operate at the word or byte level. Specialized bit
operations and data organization are required to support efficient
bit-level computation and avoid uncoalesced memory access.

Lack of efficient NN framework designs. One standard ap-
proach to build quantized neural networks is to stack a sequence of
NN layers, such as a convolution layer followed by a pooling layer
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and a quantization layer. However, this approach ignores the data
reuse opportunity across NN layers and leads to unnecessary mem-
ory overhead. For example, on NNs with n 2-bit activations, there
are two semantic equivalent implementations — quantization after
reading 32-bit activations from the previous layer or quantization
to 2-bit ones before writing to global memory for the next layer.
While these two implementations provide the same semantic, the
former requires memory access of 32n bits while the latter only
requires memory access of 2n bits.

To this end, we propose APNN-TC to accelerate Arbitrary Preci-
sion Neural Networks on Ampere GPU Tensor Cores, as illustrated
in Figure 1. First, we propose an AP-BIT emulation design to support
arbitrary-precision computation with 1-bit compute primitives. Our
AP-BIT algorithm can adaptively select operators (e.g., XOR or AND)
to support diverse input data (e.g., -1/1 or 0/1). Second, we build
efficient AP-Layer design including an arbitrary-precision matrix-
matrix multiplication (APMM) layer for fully connected layers and
an arbitrary-precision convolution (APConv) layer for convolution
layers. We propose a set of memory and computation designs (e.g.,
batch-based double caching and channel-major data organization)
to fully exploit Tensor Core computation and minimize memory
access. We also incorporate a performance analysis to automati-
cally tune the hyper-parameters in APMM and APConv. Third, we
propose an efficient APNN design to improve the performance at the
framework level. It includes a minimal-traffic dataflow to support
various precisions over APNN layers and a semantic-aware kernel
fusion to minimize the data movement across layers.

In summary, we make following contributions in this paper.

o We develop APNN-TC to accelerate neural network on Am-
pere GPU Tensor Cores with arbitrary precision.

e We propose three novel techniques: a) an AP-BIT emulation
design to support arbitrary-precision computation; b) an
efficient AP-Layer design to achieve high performance at
the layer level; c) an efficient APNN design to minimize the
data movement across layers.

o Extensive experiments show that APNN-TC can achieve up
to 3.78x speedup over CUTLASS kernels and 3.08% speedup
over CUBLAS kernels. APNN-TC can also consistently out-
perform NNs implemented with built-in int8, half, or single
precision. For example, with 2-bit weights and 8-bit activa-
tions, APNN-TC can achieve more than 4X latency reduction
and 3% higher throughput than the single-precision NN with
only 2% accuracy drop.

2 RELATED WORKS
2.1 APNN algorithm designs

Arbitrary precision (lower than INT8) neural network (APNN) algo-
rithms have been widely studied [6, 10, 11, 24, 26, 27, 36, 44, 47, 49]
to fully explore the spectrum of NN performance and NN accu-
racy and cater to diverse application requirements. In addition to
widely supported precisions on modern GPUs (e.g., int1, int4, and
int8), these APNNSs usually utilize more diverse precisions such as
int2, int3, and int5. APNNs may also have different precisions
for weights and activations (e.g., 1-bit weights and 2-bit activations).
Comparing with INT8 quantized neural networks, APNNs provide
better performance and memory efficiency at the cost of (slightly)
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degraded accuracy. Popular APNNs include DoReFa-Net [49] for
1-bit weights and 2-bit activations, LQ-Nets [47] for 1-4 bits, HAQ
[44] for 1-8 bits, OLAccel [36] for 4 bits, O3BNN [10], BSTC [24],
and TCBNN [26] for 1 bits. In this paper, we follow LQ-Nets [47]
that starts from a full-precision NN and adopts the quantization
error minimization (QEM) strategy to generate quantized NNs.

2.2 APNN Hardware Supports.

While many APNN algorithms have been designed, the hardware
supports are still limited. One direction is to build FPGA and ASIC
based implementations [10, 36, 44] to demonstrate the performance
benefits of APNNs. However, these implementations usually require
specialized hardware designs to support arbitrary-precision compu-
tation and cannot be applied to GPUs. Another direction is to utilize
built-in precisions on GPUs for quantized neural networks. Taking
the most famous Pytorch [37] framework as an example, it supports
FP32, FP16, and BF16 models on GPUs and int8 quantization on
x86 CPUs with AVX2 support. Recently, BSTC [24] and BTC [25]
accelerates binary neural networks on GPUs by exploiting the int1
compute primitive. However, existing works can only build on the
limited precision supported on GPUs (e.g., intl, int4, and int8)
and cannot fully exploit the performance benefits from APNNSs. In
this paper, we build the first generalized framework to accelerate
arbitrary-precision neural networks on Ampere GPU Tensor Cores.

2.3 Tensor Cores

Tensor Cores are specialized cores for accelerating neural networks
in terms of matrix-matrix multiplications. Tensor Cores are intro-
duced in recent NVIDIA GPUs since Volta architecture [34]. Differ-
ent from CUDA Cores that compute scalar values with individual
threads, Tensor Cores compute at the matrix level with all threads
in a warp [38]. For example, the 1-bit Tensor Core compute primi-
tive takes two int1 input matrices A and B of shape 8 x 128 and
generates an int32 output matrix C of shape 8 x 8 [25]. In Volta
architecture, Tensor Cores support only half-precision computation
[19]. To support more quantized neural networks, Tensor Cores add
more precisions including intl, int4, and int8 in Turing archi-
tecture [18]. Regarding int1 precision, Tensor Cores support only
XOR logical operation in Turing architecture and recently add AND
logical operation in Ampere architecture [33]. Despite these hard-
ware efforts on supporting more precisions, arbitrary precisions
are still not supported. This is the first work to support arbitrary
precision computation on Ampere GPU Tensor Cores with intl
precision and support for both XOR and AND operations.

3 AP-BIT EMULATION DESIGN

In this section, we design an AP-BIT emulation on Tensor Cores to
support arbitrary-precision computation. We first design an AP-Bit
operation template that supports arbitrary-precision computation
with 1-bit compute primitive on Tensor Cores. Then, we propose a
data adaptive operator selection to automatically support various
input data (e.g., -1/+1 and 0/1) with bitwise XOR and AND on Tensor
Cores. Here, we focus on the algorithm design on small matrices
(i.e., input matrices of 8 x 128 and output matrix of 8 x 8) that can
fit directly on Tensor Core compute primitives. We will discuss the
efficient computation of large matrices in the next section.
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Figure 2: Illustration of AP-Bit Operation Template with 1-bit weight W and 2-bit feature X, which can be generalized to
arbitrary weight bits and feature bits. Note that X (0) and X(V) in the dashed box are batched into a single large matrix during

computation, which will be discussed in Section 4.1

3.1 AP-Bit Operation Template Design

The AP-Bit operation template takes a matrix W with p-bit ele-
ments and a matrix X with g-bit elements, and computes with 1-bit
operations on Tensor Cores to generate a 32-bit output matrix
Y = WX. Our key observation is that each arbitrary-bit scalar digit
can be decomposed to a sequence of 1-bit scalar digits and the
arbitrary computation can be conducted with only 1-bit operations
and shift operations. Formally, to support scalar-level arbitrary
precision computation wx of a 1-bit weight w and a 2-bit feature
x = xWx0) with w,x(i) € intl, we can first decompose 1-bit
values x(1) and x(9) from the 2-bit feature x as:

M= (x> D&l, O = (x> 0)&1

Suppose we have an 1-bit operation OP(a, b) (e.g., the bmma API of
Tensor Cores) that takes 1-bit inputs and generate 32-bit outputs,
we can compute wx as

wx = OP(w,x(l)) * 2+ OP(w,x(o))

We illustrate our AP-Bit operation template in Figure 2. Here,
we focus on a 1-bit weight matrix W of shape 8 X 128 and a 2-bit
feature matrix X of shape 8 x 128 to illustrate our algorithm design.
A naive approach is to use 4-bit integers to represent each 1-bit
element w; j and 2-bit element x; ;, and then use the int4 compute
primitive on Tensor Cores. However, this approach would lead
to unnecessary memory and computation overhead. Instead, we
propose to exploit the int1 compute primitive on Tensor Cores to
support arbitrary-precision computation by dynamically adjusting
the memory and computation requirement. In particular, the first
step is to conduct bit decomposition by splitting a 2-bit x; ; to

(0) (0),

two 1-bit elements x; and x;

(1) = (xij > D&, x(o) (xij > 0)&1

These 1-bit elements are then packed into 1-bit matrix X0 and X 1,
The second step is to conduct batch-based Tensor Core compu-
tation on these 1-bit matrices with the bmma API and generate
32-bit output matrices

y(0) _ bmma(W,X(O)), y( = bmma(W,X(l))

These matrices can be computed directly with the bmma API since
all of them have the shape of 8 X 128. We also note that Tensor
Core primitives for int1, int4, and int8 generate 32-bit output
matrices to accumulate a large number of bit-operation outputs
and avoid overflow. The third step is to conduct bit combination
and generate the final output matrix Y

Y=y s2+v® (1)

Here, Y; ;, YI(JD and Yl(;)) refer to the (i, j)th scalar elements of

matrix Y, Y1) and Y(©), respectively. For notation simplicity, we
abbreviate Equation 1as Y = Y1) x2+Y(0) in the following sections
to represent the scalar multiplication and elementwise addition. We
note that Y = WX mathematically.

It is not hard to see that this computation can be generalized to
matrices with arbitrary bits p and g. Formally, given a p-bit weight
matrix W and a g-bit weight matrix X, we can first decompose into

1-bit matrices W) s € {0,1,...,p—1}and XM ¢t e {0,1,...,q—1}.
For each element, we have
(5) = (wij > )&, xl.(;) = (xij > D&l @)

Then, we compute the bmma API for pq times for each combination
of s and t:

Y&t = bmma(w(®), x(*))
Finally, we conduct bit combination to generate the 32-bit output

matrix Y:
-1g-1

Y = Y(s t) . x2S+

Cost Analysis. The cost of arbitrary-precision computation
comes from three parts: bit decomposition, tensor core computation,
and bit combination. Given a p-bit weight matrix and a g-bit data
matrix of shape nxn, bit decomposition shows complexity of O((p+
q)n?) since we need O(pn?) operations to split each p-bit element
from A into p 1-bit elements and another O(gn?) operations to split
each g-bit element from B into q 1-bit elements. The bit combination
shows complexity of O(pgn?), since we have pq matrices y(st)
of shape n X n and need to add elementwisely. This overhead is
negligible compared with the O(n%) complexity in the Tensor Core
computation. Note that only 1-bit compute primitives are used for
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this expensive matrix-matrix multiplication, which significantly
reduces the overall latency.

3.2 Data Adaptive Operator Selection

While we compute with bit-0 and bit-1 in arbitrary-precision com-
putation, these two values may actually encode diverse values. For
example, the 1-bit weight matrix in neural networks may encode —1
and 1, instead of 0 and 1, in order to improve the accuracy of neural
networks. In this case, the bit-0 indicates the value —1 and the bit-1
indicates the value 1. To support this diversity in the encoded data,
we introduce data adaptive operator selection by adopting different
bit operations in Tensor Cores (i.e., XOR and AND). In particular, we
support three cases, where we first conduct bit operations and then
accumulate with popc (i.e., population count [35] that counts the
number of set bits). The Case-I is that both W and X encode 0 and
1, where we choose logical AND operation. For example, given a
1-bit vector W = [0, 1] and a two-bit vector X = [1, 1], we use AND
operation to compute as

WX = popc(AND([0, 1],[1,1])) = popc([0,1]) =1

The Case-II is that both W and X encodes —1 and +1, where we
select logical XOR operation. For example, given two 1-bit vectors
W =[-1,1] and X = [1,1], we first map —1 to 0 and compute as

WX =n—popc(XOR([0,1],[1,1])) =n—2*popc([0,1]) =0

Here, n(=2) is the length of the vector.

The Case-III is that W encodes —1 and +1, while X encodes 0
and 1. For example, we may need to compute the multiplication of
two 1-bit vectors W = [-1,1] and X = [1,0]. This case happens
frequently in neural networks with a 1-bit weight matrix W and a
g-bit feature matrix X with g > 1. In this case, naively adopting XOR
or AND does not work, since there are three values —1, 0, and 1 that
cannot be easily encoded with 1 bit. To this end, we incorporate a
linear transformation on W and compute with only AND operation.
Our key observation is that W can be transformed into a vector
with only 0 and 1 by adding a constant vector Jo = [1,1]:

W= W+ Jo
2
Then, we compute WX = 0 with AND operation as Case-II. Finally,
we recover the value WX by another linear transformation:

WX =2WX -JoX=2%0-1=-1

=10,1]

Note that J2 is a constant vector that can be cached in Tensor Core
fragment and does not introduce extra memory overhead.

4 ARBITRARY PRECISION LAYER DESIGN

In this section, we propose the Arbitrary-Precision Matrix Multipli-
cation (APMM) for fully connected layers and Arbitrary-Precision
Convolution (APConv) for convolution layers.

4.1 Arbitrary-Precision Matrix Multiplication
(APMM)

APMM takes the decomposed 1-bit weight matrix W) s € {0, ..., p—

1}, the decomposed 1-bit feature matrix X(t), te{0,..,q— 1}, and

computes output matrix Y = Zf;ol Z;I;é Y88 4 95+ By default,

APMM generates 32-bit output to avoid data overflow for large
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matrices and match the 32-bit output in Tensor Core compute prim-
itives. APMM also supports arbitrary-precision output (e.g., int2)
when APMM is used as a hidden layer in neural networks (NNs)
and the output is consumed by the next APMM-based NN layer.

Considering that APMM essentially computes an arbitrary pre-
cision GEneral Matrix-Matrix multiplication (GEMM) kernel with
multiple Binary Matrix-MAtrix multiplication (BMMA) kernels, one
naive strategy is to build upon existing BMMA kernels [24, 25]. In
particular, we can use existing BMMA kernels to multiply each pair
of W) and X and accumulate W) X to the output matrix
Y. However, this approach shows significant inefficiency due to
two reasons. First, this approach ignores the data reuse opportunity
since the same weight matrix tile from W) can be multiplied with
different feature matrix tiles from X;1 and X;2. Second, this ap-
proach requires extra communication across BMMA kernels, such
that reducing WX into Y leads to significant global memory
access.

We show our efficient APMM design in Figure 3. It includes a
batch-based double caching to facilitate the data reuse and a memory-
efficient bit combination to accelerate the accumulation and option-
ally generate the arbitrary-precision output. Here, we illustrate
the design with 1-bit W and 2-bit X for notation simplicity while
arbitrary-precision W and X are supported.

(a) Batch-based Double Caching. Batch-based double caching
exploits two GPU memory hierarchies (i.e., shared memory and
fragment located in registers) to cache matrix tiles and facilitate
data reuse in APMM computation, as illustrated in Figure 3(a).
Considering the limited size of shared memory and fragment, we
tile weight matrices W) and feature matrices X () such that these
tiles can be cached in GPU memory hierarchies. Formally, given
W) of shape M x K and X () of shape N x K, we first tile W)
along the M dimension into block matrix tiles of shape by, X by.
Similarly, we tile X(*) along the N dimension into block matrix
tiles of shape by, X by. Here, each GPU block will multiply one pair
of block matrix tiles and generate an output matrix tile of shape
bm X by. Considering that Tensor Cores compute at the warp level,
we further tile W) into warp matrix tiles of shape wy, X wy and X
into wy, X wi. such that each warp computes an output tile of shape
Wm X wp. To match with the 8 X 8 x 128 bmma compute primitive of
Tensor Cores, each warp will slide along wy;,, wy, and K dimension
during computation. Note that these tiling sizes have a significant
impact on the performance, which will be analyzed in Section 4.3.

Batch-based double caching first adopts a batch strategy to im-
prove inter-thread parallelism and achieve high performance. Ex-
isting works on binary neural networks [24, 25] report that the
GEMM size in NN workload is usually small (e.g., 512 X 512) and
use small matrix tiling sizes (e.g., 32 X 32) to improve the inter-
thread parallelism. However, this approach leads to low intra-thread
parallelism and prevents data reuse. Instead, our batch strategy
virtually transforms multiple small BMMAs into a large BMMA.
In particular, given W(s),s € {1,...,p — 1} of shape M X K and
X te{1, ...q — 1} of shape N X K, we batch these small matri-
ces into Wp of shape pM X K and Xp of shape gN X K and compute
using a single large BMMA. Here, we implement a “virtual” batch
strategy during the data loading procedure by dynamically deciding
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the global memory address of the corresponding matrix tile such
that no additional memory movement is involved.

Batch-based double caching then exploits two GPU memory hi-
erarchies to facilitate data reuse at different levels. The first level
is shared memory caching to reuse matrix tiles from w () and
X Here, a naive strategy is that each warp independently loads
a weight tile and a feature tile for computation. However, we ob-
serve that the same weight tile may be multiplied with feature tiles
from different 1-bit feature matrices X(©) and X <1), as illustrated
in Figure 3(a). To this end, our design requires all warps to first col-
laboratively load by, X by weight data and by, X by, feature data from
global memory to shared memory. Then, each warp fetches its own
matrix tiles from shared memory. In this way, we can significantly
reduce global memory access by exploiting fast shared memory.

The second level is fragment caching to continuously store out-
put tiles in the same Tensor Core fragment. Since Tensor Core
compute primitives require to accumulate in 32-bit Tensor Core
fragments, the output tiles usually consume a large memory space
compared with the 1-bit input data. Moving output tiles between
shared memory and Tensor Core fragment may lead to heavy shared
memory access. Moreover, existing dissecting works [18, 19] reveal
that fragment is composed of registers and one GPU block of 8
warps can provide up to 256 KB Fragment, which is much larger
than shared memory. To this end, as iterating through the K dimen-
sion during computation, we continuously use multiple fragments
to cache output tiles of shape b, X by, for reducing shared memory
access and caching more feature and weight tiles in shared memory.

(b) Memory-efficient Bit Combination. Bit combination con-
sumes 32-bit BMMA outputs Y1) € int32M*N and generates 32-
bit APMM outputs ¥ € int32M*N a5y = 37 3971 y(st) 4 g5+,
‘Bit combination can also generate arbitrary precision output when
it is utilized as a NN hidden layer and its output is consumed by
the next NN layer. Overall, bit combination takes only O(pgMN)
computation complexity, which is significantly lower than the com-
putation complexity of GEMM operations.

However, there are two potential memory bottlenecks in bit com-
bination, which have a significant performance impact. The first one

is global memory access when reducing 32-bit BMMA outputs to 32-
bit APMM outputs. In a naive implementation that independently
conducts BMMA and bit combination, bit combination usually in-
troduces similar latency as the BMMA kernel. The main reason is
that, while Tensor Cores provide significantly higher computation
throughput than CUDA Cores, the global memory bandwidth re-
mains the same. The second one is the shared memory access when
converting 32-bit APMM outputs to arbitrary-precision outputs. In
this procedure, we usually need to pack low-bit values (e.g., 2-bit)
in registers from different threads to a single memory-aligned value
(e.g., 32-bit) before storing to global memory. Relying on shared
memory for data exchange across threads may lead to heavy shared
Memory access.

Memory-efficient bit combination includes two novel designs to
mitigate memory overhead. The first design includes a semantic-
aware workload allocation and an in-shared-memory reduction.
In particular, at the data loading phase of BMMA, we load feature
tiles and weight tiles of the same spatial location such that their
multiplication outputs can be reduced directly. As illustrated in
Figure 3, instead of loading a b, X by feature tile of X(©) or x(1),
we load two 0.5b,, X by feature tiles of both X and XD with the
same matrix index. In this way, we can reduce WX 1 and wx O
directly in shared memory and mitigate global memory access while
not degrading the BMMA performance.

The second design incorporates an element-wise routine and
an inter-thread communication to pack low-bit values and miti-
gate shared memory overhead. The element-wise routine is a user-
defined interface to provide diverse support of quantization and
batch normalization across NN layers. This routine applies to indi-
vidual 32-bit reduced values in registers. Given a 32-bit value in a
register, this routine may quantize it into a p-bit value that is still
stored in the 32-bit register with the first 32 — p bits as zeros. This
routine also includes bit decomposition (Equation 2) that splits this
p-bit value in a register to 1-bit values in p registers. After that, we
use a __ballot_sync API to enable inter-thread communication
and directly pack the 1-bit values across threads into 32-bit values
that can be stored to the global memory.
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Figure 4: Illustration of Channel Major Data Organization
(NPHWC). P indicates the number of bits. I.;,, indicates the
image pixel at the c-th channel, h-th height, and w-th width.

4.2 Arbitrary-Precision Convolution (APConv)

APConv takes the decomposed 1-bit weight matrix W) of shape
Cout X Cin X K X K, the decomposed 1-bit feature matrix X of
shape BS X Ci X Height X Width, and generates output matrix Y.
Here, Cyy; is the number of output channels, Cjj, is the number of
input channels, K is the kernel size, BS is the batch size.

Existing works on bit-level convolution usually adopt a direct
convolution design [24, 25] to improve the GPU utilization. How-
ever, these methods ignore the data reuse opportunity and introduce
heavy global memory access. In addition, APConv on a p-bit weight
and a g-bit feature usually has pq times workload than the BConv
on the same weight and feature size, which can easily contribute
to high GPU utilization. To this end, APConv incorporates the
batch-based double caching design as APMM to mitigate the global
Memory access.

However, there are still two key challenges that distinguish AP-
Conv from APMM. The first is the data organization where naively
reading the K XK feature map may easily lead to un-coalesced mem-
ory access. The second is the data padding where simply padding
zeros may lead to erroneous results. To tackle these challenges, we
propose channel-major data organization and input-aware padding
design.

(a) Channel-Major Data Organization. Channel-major data
organization transforms un-coalesced and unaligned memory ac-
cess to a coalesced and aligned one for improving performance. Tra-
ditional data organization for 32-bit convolution usually employs a
NCHW design, as illustrated in Figure 4(a). However, naively bor-
rowing this design to APConv leads to un-aligned and un-coalesced
memory access due to two reasons. First, multiple P-bit (e.g., 3-bit)
elements usually cannot be packed into an aligned 32-bit element,
which is required for valid GPU reads and writes. Using a 32-bit ele-
ment to store a P-bit element will introduce extra memory overhead.
Second, convolution operations usually read only K continuous

B. Feng et al.

elements (or KP bits) due to the K X K kernel size, which may lead
to un-coalesced memory access.

We design a channel-major data organization as illustrated in
Figure 4(b). There are two key design choices. First, we split a P-bit
feature matrix into P 1-bit feature matrices and store each 1-bit
feature matrix consecutively. In this way, we can provide aligned
memory access for each 1-bit feature matrix and support arbitrary
precision P. Second, we consecutively store all channels of elements
with the same spatial location. Since convolution layers usually
have 128C, C € N channels, this usually leads to coalesced memory
access during computation.

(b) Input-aware Padding Design. Input-aware padding design
adaptively adjusts padding values according to input values. As
mentioned in Section 3.2, when the weight W encodes —1 and 1
with 0 and 1, we cannot naively padding O since O represents —1.

We propose three padding strategies according to the input data.
First, when both weight and feature encode 0 and 1, we simply pad
zeros for features. In this case, padding 0 for features will only add
extra 0’s for arbitrary weight values, which does not change the
computation result. Second, when both weight and feature encode
—1 and 1, we pad 1 for features and use an extra counter flag
to track the number of 0’s when the convolution weight moves
outside the input image frame. We will subtract counter to amend
the corresponding convolution results. Third, when weight encodes
—1 and 1 and feature encodes 0 and 1, we pad O to features and do
not change the convolution results.

4.3 Performance Analysis

In our APNN-TC kernel design, there are six tuning knobs — the
block tiling sizes by, by, by, and the warp tiling sizes wp,, wn, Wi.
These tiling sizes bring a trade-off between the Thread-Level Paral-
lelism (TLP) and the Instruction Level Parallelism (ILP), especially
the compute intensity (CI). Here, we focus on block tiling sizes,
since we empirically observe that utilizing 8 warps per block and
splitting the block workload evenly across warps provide the best
performance (i.e.,, W = by /4, wy = by /2, wi = by). In this subsec-
tion, we first analyze the performance impact of individual tuning
knobs. Then, we propose an autotuning strategy to maximize the
performance. Since APMM and APConv share the same batch-based
double caching strategy, we use the same autotuning for these two
kernels.

4.3.1 Performance Model. TLP refers to the thread-level paral-
lelism in terms of the number of threads in use. Intuitively, larger
TLP can improve GPU utilization and kernel performance. Formally,
given a p-bit weight matrix of shape M X K, a q-bit feature matrix
of shape K X N and the matrix tiling size by, X by, we define the
TLP as

®)

We ignore the number of threads for each block since it is a constant
in our evaluation. Intuitively, smaller b, X b, may improve TLP,
which suggests a small by, X by, especially for small matrices.
Compute intensity (CI) refers to the ratio of computation over
memory access on each thread block. We aim to improve CI for
two reasons. First, a higher CI indicates less memory access and
better performance. While the amount of computation remains the
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same, the amount of memory access may be reduced significantly
by data reusing and hyper-parameter tuning. Second, a higher CI
on a thread block provides more opportunities for latency hiding.
Formally, for a matrix tile, we compute the amount of global mem-
ory access as by, X by + by X by, when reading a by, X by weight tile
and a by, X by feature tile. We compute the amount of computation
as 2 X by X by X by, from the matrix-matrix multiplication. Finally,

we compute CI as
2X by, X by,
T oo @
Note that CI can be increased when b, and b, are increased. We
also observe that CI is independent of by such that we can use
smaller by to leave space for larger b, and by, especially when the
shared memory size is a limiting factor. In our evaluation, we fix

by as 128 by default.

4.3.2  Auto-tuning. During APNN-TC kernel design, there is a large
search space on the complex interaction between matrix size (M, N,
and K), weight bit p, feature bit ¢, and block tiling size by, and bp,.
Note that the selected parameters may also be different on various
GPUs according to computation and memory capabilities. To this
end, we propose a heuristic algorithm to provide a faster search
procedure in this large search space. Formally, given the matrix size
M, N, K, the weight bit p, the feature bit g, the algorithm selects
bm, by € {16, 32,64, 128} in two steps. First, we compute the TLP
of each combination of b, and b,. We put these combinations
in a priority queue, where a higher TLP leads to a high priority.
Second, we pop individual combinations in the priority queue. We
stick to the first combination with the highest TLP if its TLP is
already smaller than a threshold T. Otherwise, we continuously
pop and select combinations in the priority queue to improve CI
while ensuring TLP is larger than T. We empirically set T as 64
in our evaluation. Note that different block tiling sizes share the
same data layout such that there is no overhead when consecutively
executing two layers with different block tiling sizes.

5 ARBITRARY PRECISION NEURAL
NETWORK DESIGN

In this section, we introduce our Arbitrary Precision Neural Net-
work (APNN) design. We first introduce a minimal-traffic dataflow
on supporting various precisions across layers in APNN. Then,
we incorporate a semantic-aware kernel fusion to minimize the
memory access across layers.

5.1 Minimal-Traffic Dataflow

Given an int8 RGB image, APNN computes a sequence of NN
layers with p-bit weights and g-bit activations and finally generates
an int32 output logits. Here, all intermediate layers compute at ar-
bitrary precision by taking a p-bit weights and g-bit activations and
generate 32-bit outputs. Note that the int1 Tensor Core compute
primitive can only generate int32 outputs and an extra quantization
layer is required to quantizing into g-bit activations for the next
layer. For performance consideration, during the initialization of
an APNN, we quantize all weights before the model inference com-
putation. To effectively maintain and transfer arbitrary-bit data, we
pack the data bit-by-bit for both weight and feature map, following
the data organization discussed in Section 4.2.
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The input layer and the output layer have different precisions
from the intermediate layers. As is the common practice with int8
image inputs, the input layer requires an extra quantization layer
that quantizes 8-bit inputs into g-bit activations. The output of the
input layer will also be the quantized arbitrary-bit feature map
serving as the input for the following intermediate layers. In the
output layer, Tensor Core computation results will be directly used
for the final softmax logits computation. Thus, we do not apply
quantization after the output layer.

5.2 Semantic-aware Kernel Fusion

Besides APMM and APConv discussed previously, there are still
multiple important layers in APNN, including quantization, Batch
Normalization (BN), pooling, and ReLU. Given all scalars x; j in the
ith layer, quantization element-wisely converts int32 values x; ;
to g-bit values y; j:
Yij = L(xij —zi) /i)
Here, z; is a 32-bit scalar zero-point, s; is the scaling scalar, and
L-] is the floor function. BN [17] is another major component in
NN for tackling the covariate shift problem and facilitating NN
training:
xij — E[xix

yi,j:;/’;Ti)[*:i]‘Yj*'ﬁj 5)
where E and Var are expectation and variance across the batch, y;
and f3j are two learned parameters. Pooling splits the feature map
spatially into k X k grids and generates 1 scalar output for each
grid by computing the average or the maximum value in each grid.
ReLU takes individual input values x; ; and generates output values
y;,j = max(x;j j,0).

While these operations have linear time complexity to the size
of feature maps and consume significantly less computation than
APConv and APMM kernels, these operations may still introduce
heavy latency due to the expensive memory access. Indeed, while
Tensor Cores provides significantly improved computation capabil-
ity, Tensor Cores share the same memory bandwidth with CUDA
Cores on GPUs. Moreover, we observe that these values are usually
computed element-wisely and do not require heavy communication
across GPU threads.

We propose a semantic-aware kernel fusion to minimize memory
access. We first fuse APMM/APConv with its following quantiza-
tion, BN, pooling, and ReLU kernels into a single kernel to minimize
the global memory access. In particular, these following layers can
be seamlessly applied once the convolution results become available
at the shared memory. This can improve the computation intensity
for individual convolution kernels meanwhile reducing the global
memory access from invoking an additional batch normalization
kernel. Second, considering that these following layers usually com-
pute at scalar level, we can further reduce shared memory access
by directly reusing values in registers. For example, when a APMM
layer is followed by a BN layer, a quantization layer, and a ReLU
layer, we directly compute the output scalar as

Lmax(

xij — Blxi«]
Vi + 5 —20)/si]
Var[xi« + €]
Note that we only need to load a scalar once to a register and avoids
unnecessary shared memory access.
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6 EVALUATION

In this section, we evaluate APNN-TC under diverse precisions
and show the benefits of arbitrary-precision computation in perfor-
mance and accuracy.

Environments. We evaluate on both Nvidia RTX 3090 and
Nvidia Tesla A100. The RTX3090 GPU is in a ubuntu 16.04 sys-
tem with Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz, 64 GB
DDR3 DRAM, gcc-7.5.0, and using CUDA-11.1, CUTLASS-2.5, and
CUBLAS-11.1. The A100 GPU is in a Linux 3.10.0 system with AMD
EPYC 7742 64-core CPU, 1TB DDR4, gcc-9.1.0, and using CUDA-
11.1, CUTLASS-2.5, and cuBLAS-11.3. All results reported are the
average of 200 times execution.

6.1 APLayer Evaluation

6.1.1  APMM Performance. We compare our APMM designs with
NVIDIA implementations of low-bit gemm (i.e., intl, int4, and
int8) that are accelerated by Tensor Cores. For int8, we com-
pare with cublas implementation, namely cublass-gemm-int8. Since
intl and int4 are not supported in cublas, we compare with
cutlass implementation, namely cutlass-gemm-int1 and cutlass-
gemm-int4. Following popular settings in NNs, we compute ma-
trix multiplication of a matrix with shape B X K and a matrix
with shape K X N, where B = 64 is a popular batch size and
K =N € {128,256, ...,1024} covers typical fully connected layer
dimensions. According to the precision of our APMM kernel, we
name it APMM-wxay, where x indicates the weight bit and y indi-
cates the activation bit. For example, APMM-w1a2 indicates 1-bit
weights and 2-bit activations. While our APMM is general to sup-
port arbitrary precision, we show 8 popular bit combinations due
to page limits. If both weight bits and activation bits are less than 4
(e.g., wla2, wla3, wla4, w2a2), we compare it against cutlass-gemm-
int4. If either weight bits or activation bits are larger than 4, we
compare it against cublas-gemm-int8. For each matrix size, we also
show the speedup of cutlass-gemm-int1 against cutlass-gemm-int4
and cublas-gemm-int8 as the performance benefit when sticking
to binary neural networks [24, 25]. Since Tensor Core compute
primitive supports only 32-bit outputs, all of these gemm kernels
take low-bit input (e.g., int1, int4, and int8) and generate 32-bit
outputs. We will study the performance of quantization in later
sections.

Figure 5 shows the results of APMM on RTX 3090. We compare
APMM with cutlass-gemm-int4 in Figure 5(a) and cublas-gemm-
int8 in Figure 5(b). Overall, we have three major observations.
First, APMM can usually achieve significant speedup over base-
lines. For example, APMM-w1a2 can achieve up to 2.35X speedup
over cutlass-gemm-int4, while APMM-w5al can achieve up to 3%
speedup over cublas-gemm-int8. This result demonstrates the per-
formance benefits of emulating arbitrary-precision with int1 com-
pute primitives over sticking to int4 or int8 compute primitives.
Second, APMMs with various weight and activation bits usually
show similar performance on small matrices. For example, APMM-
wla2, APMM-wla3, APMM-wla4, and APMM-w2a2 achieves al-
most the same speedup when N=128 and N=256, even if these
kernels have different computation overhead (e.g., 2X from APMM-
wla2 and 4x from APMM-w2a2). This benefit comes from our
batch-based double caching (Section 4.1(a)), where individual small
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Table 1: APNN Evaluation Setting. We list the dataset, network, in-
put size, output size, and the model accuracy under precisions of
BNN (i.e, int1), wla2 (i.e., 1-bit weights with 2-bit activations), and
single-precision floating point.

Dataset Network Input Size | Output Size | Binary wla2 Single
ImageNet AlexNet [21] 224x224x3 1000 46.1% [15] | 55.7% [47] | 57.0% [22
ImageNet | VGG-Variant [2] | 224x224x3 1000 53.4% [15] | 68.8% [47] | 69.8% [41
ImageNet | ResNet-18 [12] | 224x224x3 1000 51.2% [15] | 62.6% [47] | 69.6% [12

BMMAs are batched into a large BMMA and computed simultane-
ously. Surprisingly, our arbitrary precision computation can even
outperform cutlass-gemm-int1 in such cases due to the improved
GPU utilization. Third, we observe a smaller speedup over cublas-
gemm-int8 on large matrix sizes, when peak int1 performance is
achieved. Our investigation shows that, on RTX 3090, cutlass-gemm-
int1 is only 5.9% faster than cublas-gemm-int8, such that emulation
is slower than built-in int8 compute primitives on large matrices
when peak int1 performance is achieved (e.g., 64 x 1024 x 1024
for APMM-w2a8). We argue that NN workload can still benefit
significantly from our APMM since the fully connected layers in
neural networks usually have small matrix sizes (e.g., 1 X512 x 512
in ResNet-18). We also show the results of APMM on A100 in Figure
6 with similar observations.

6.1.2  APConv Performance. We compare our APConv designs with
NVIDIA implementations of low-bit convolution that are acceler-
ated by Tensor Cores. Since cublas does not support intl, int4,
AND int8 convolution, we use kernels from cutlass. We name these
kernels as cutlass-conv-intl, cutlass-conv-int4, and cutlass-conv-
int8. Similar to APMM, we evaluate 8 types of precision with the
name APConv-wxay. Since convolution kernels have much more
hyperparameters than matrix-multiplication kernels, we show the
performance under various input and output channels while fixing
the input size as 16 (medium feature size), filter size as 3 (most
frequently used), stride as 1 (most frequently used), and batch as 1
(for inference).

Figure 7 and Figure 8 show the speedup of APConv on RTX 3090
and A100, respectively. We observe that APConv can achieve 3.78x
speedup over cutlass-conv-int4 and 3.08x speedup over cutlass-
conv-int8. This result shows the significant performance benefit
from emulating arbitrary precision with int1 over utilizing int4
or int8. Similar to APMM, we also observe a smaller speedup over
cutlass-conv-int8 on larges channels due to the limitation of peak
int1 performance. Since RTX3090 and A100 provide similar perfor-
mance, we will focus on RTX3090 in the following evaluations.

6.2 APNN Evaluation

In this section, we evaluate the overall APNN performance on three
mainstream neural network models with ImageNet dataset. The
details of our evaluated NN models and their corresponding bina-
rized neural network, low-bit (1-bit weight with 2-bit activation),
single-precision accuracy precision are listed in Table 1.

We consider two types of configurations for evaluation. In the
first setting, we focus on a specific low-bit configuration (1-bit
weights and 2-bit activations, i.e., wla2) across different neural
network models. We choose several baselines including neural net-
works built with single-precision floating-point implementation
from CUTLASS [32] running on CUDA Cores, half-precision imple-
mentation from CUTLASS running on Tensor Cores, INT8 precision
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Figure 7: APConv Performance on RTX 3090.

implementation from CUTLASS running on Tensor Cores, and the
1-bit binarized neural network running on Tensor Cores. As shown
in Table 2, our APNN design running on Tensor Cores can achieve
a significant speedup (more than 2x on average) compared with

CUTLASS INTS, half and single precision implementations. This in-
dicates the practical usage of our APNN design in latency-sensitive
applications. Meanwhile, on large batch sizes for throughput per-
formance evaluation, our APNN design also demonstrates its high
throughput advantage over these “standardized” bit (e.g., 8-bit and
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Figure 8: APConv Performance on A100.

Table 2: APNN Inference Performance on NVIDIA Ampere
RTX3090 GPU. Note that latency is measured under a batch of 8
images, throughput is measured under a batch of 512 for AlexNet
and ResNet18, and 256 for VGG-variant model.

ImageNet-AlexNet ImageNet-VGG ImageNet-ResNet18
Schemes 8 Latency | Throughput | 8 Latency | Throughput | 8 Latency | Throughput
CUTLASS-Single 25.22ms | 3.29x10%fps | 116.84ms | 6.85x10 fps 24.02ms | 5.22x10%fps
CUTLASS-Half-TC 1437ms | 6.21x10%fps 3142ms | 2.79x10%fps 12.52ms | 1.13x10%fps
CUTLASS-INT8-TC 3.78ms | 2.40x10°fps | 23.53ms | 3.51x10%fps 66ms | 3.13x10°0ps
BNN 0.69ms | 1.37x107fps 2.17ms | 3.91x10%fps 0.68ms | 1.89x107fps
APNN-w1a2 2.87ms | 3.79x10%fps 7.50ms | 1.07x10%fps 3.66ms | 4.37x10%fps

Table 3: Case Study: APNN Evaluation on ResNet-18 and Im-
ageNet with various precision.

Precision | Accuracy (%) | 8 Latency (ms) | Throughput (fps)
Float 69.8 24.02 5.22x102
Half NA 12.52 1.13x103
INTS NA 6.6 3.13x10°
BNN 51.2 0.68 1.89x107%
wla2 59.6 3.66 437103
w2a2 62.6 3.65 4.38x10°
w2a8 67.7 4.71 1.67x103

half) precision baselines. Compared with the 1-bit binarized neural
network running on Tensor Cores, our APNN design would demon-
strate its significant accuracy improvement (an average 11.67%) as
listed in Table 1. This can demonstrate the application of our APNN
design in some application settings, where the BNN model accuracy
performance fails to meet the demands. Overall, from the study,
we can see that using our APNN design for arbitrary-bit precision
computation is a potential way for balancing NN model accuracy
and runtime performance.

In the second setting, we shift our focus towards the precision
and model runtime performance tradeoff on ResNet18, which is
popularly used in many workloads [43]. We select several low-bit
settings for comparison, including the 1-bit weight with 2-bit activa-
tion, 2-bit weight with 2-bit activation, and 2-bit weight with 8-bit
activation. As shown in Table 3, APNN-TC significantly reduces
latency and improves throughput for wla2 and w2a2 than INT8
which shows that APNN-TC can bring benefits for many arbitrary-
precision computations. On w2a8, we only trade 2% model accu-
racy loss for more than 4X speedup in latency performance and
3x higher throughput, comparing with the full-precision floating-
point design. Comparing with INT8, APNN-TC with w2a8 shows
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Figure 9: Per-layer latency breakdown of our APNN design
on the 3 models.

lower throughput since we need to compute 16 (=2*8) 1-bit ma-
trices to emulate arbitrary-precision computation, which require
more computation than wla2 with 2 1-bit matrices and w2a2 with
4 1-bit matrices. This also matches the performance on individual
kernels (e.g., Figure 5, 6, 7, 8). We also note that APNN-TC can still
achieve lower latency on w2a8 than INTS8. This result indicates that
APNN-TC can still bring benefits for latency-sensitive applications.

6.3 Additional Studies

We perform several additional studies in this subsection, including
the latency breakdown from individual NN layers and the benefit
from kernel fusion. We show results from RTX 3090 and skip results
from A100 since we observe similar trend on these two GPUs.

Latency Breakdown. Figure 9 illustrates the percentage break-
down of the latency for the inference of 8 images over three NNs
on RTX-3090 GPU. Clearly, the first layer introduces the most delay
since the input feature size for this layer is significantly larger than
other layers. This percentage can be as high as 80.4% for AlexNet
and 47.5% for VGG_Variant. On other layers, we observe a roughly
balanced latency.

Benefits from Kernel Fusion. Figure 10 investigates the per-
formance benefits from fusing APConv-w1az2, pooling, and quan-
tization into one kernel. Specifically, in the "w/o Fusion" imple-
mentation, we implement three global functions for APConv-w1a2
with 32-bit output, 2 X 2 pooling, and quantizing into 2-bit outputs,
respectively. Here, each function read and write data to the global
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memory. In the "w/ Fusion" implementation, we conduct the same
workload in a single kernel. Overall, we observe a latency reduction
of 1.77x on average. The main reason is that, in "w/ Fusion", data
across APConv, pooling, and quantization can be cached in shared
memory and global memory access is significantly reduced.

Overhead from bit combination and bit decomposition.
We show the overhead from bit combination and bit decompo-
sition in Figure 11. We profile the overhead on APConv designs
following the same setting as Section 6.1.2. We show results from
APConv-w1la2 since we observe similar overhead across bit set-
tings. On average, we empirically observe 1.16% overhead from
bit combination and another 2.02% overhead from bit decomposi-
tion, compared to only TC computation. The main reason is that
bit combination and bit decomposition introduce only quadratic
time complexity, which is significantly smaller than the cubic time
complexity from TC computation. Due to this difference in time
complexity, the overhead from bit combination decreases from 2.4%
to 0.12% as the channel size increases from 128 to 1024. We also
observe similar trend for bit decomposition.

Comparing APMM and cutlass GEM under the same bits.
Figure 12 shows the performance comparison between APMM and
cutlass-gemm when using the same bits. Overall, we observe that
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Table 4: Raw latency of a typical fully-connected layer with
batch size M = 64, input dimension K = 1024, and output
dimension N = 1024. Unit: microsecond.

wla2 ‘ wla3 ‘ wla4d ‘ w2a2 ‘ cutlass-gemm-int4 ‘ cutlass-gemm-int1

667 [ 681 [ 706 | 715 | 15.61 [ 7.92

APMM-w4a4 can achieve 1.3X speedup over cutlass-gemm-int4.
The main reason is that APMM-w4a4 can achieve better parallelism
by using 16 intl computations to emulate 1 int4 computation and
achieving better GPU utilization, especially for small matrix sizes.
We note that this speedup of APMM-w4a4 over cutlass-gemm-int4
decreases as the matrix size increases where more int1 computation
resources are required for emulation. We also observe that APMM-
wlal can achieve 1.35x speedup over cutlass-gemm-int1. This
shows the benefit from our kernel-level optimizations.

Raw latency of a typical fully-connected layer. Table 4 shows
the raw latency of a typical fully-connected layer with batch size
M = 64, input dimension K = 1024, and output dimension N =
1024. Overall, we observe that we require only around 7 microsec-
ond for such a layer. Comparing with cutlass-gemm-int4, we can
achieve 2.27X speedup on average by using arbitrary-precision
computation. We also note that the arbitrary-precision computation
is even slightly faster than the cutlass-gemm-int1, which matches
the result in Section 6.1.1.

7 DISCUSSION

Practical usage of APNN. Arbitrary-precision neural networks
have been widely studied to provide diverse tradeoffs between
precision and efficiency [6, 10, 11, 24, 26, 27, 36, 44, 47, 49]. While
arbitrary-precision may slightly reduce the precision, it shows merit
in many practical usages such as smart sensors [23, 30, 39], mask
detection [8], and intelligent agriculture [9]. In these usages, when
a certain accuracy bar is surpassed, other essential metrics such as
real-time processing and resource consumption are more important.
For example, BinaryCoP [8] utilizes low-power binary neural net-
works to detect facial-mask wear at entrances to corporate buildings
and airports. Another example is XpulpNN [9] that uses quantized
neural network on energy-efficient IoT devices.

Generality to other NNs. This paper reports the results of
APNN-TC on two most time-consuming kernels, GEMM and Con-
volution, from the computer vision domain and showcases the
performance on popular vision models (e.g., AlexNet, VGG, and
ResNet). Yet, we expect that APNN-TC applies to NNs from various
domains such as natural language processing (NLP). Intuitively,
APNN-TC accelerates GEMM and dot products which is the build-
ing block of many NLP NNs [7, 42, 48], such as the attention layer
and the feed-forward layer.

Generality to other processors. APNN-TC utilizes popula-
tion count (i.e., popc()) and two logical operations (i.e., XOR and
AND) to support arbitrary-precision computation on Nvidia GPUs.
Considering the wide support for popc() and logical operations,
APNN-TC can be easily adapted to diverse processors. For example,
AMD GPUs [1] supports population count (i.e. popcnt () on AMD
GPUs) and logical operations (e.g., bitwise XOR). Xeon phi [16] also
supports population count and logical operations.
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8 CONCLUSION

In this paper, we design and implement APNN-TC that accelerates
arbitrary-precision neural networks on Ampere GPU Tensor Cores.
Specifically, APNN-TC contains an int1-based emulation design on
Tensor Cores to enable arbitrary-precision computation, an efficient
AP-Layer design for efficiently mapping NN layers towards Tensor
Cores, and an APNN design to minimize the memory access across
NN layers. Extensive evaluations on two Ampere GPUs show that
APNN-TC can achieve significant speedup over CUTLASS kernels
and various mainstream NN models, such as ResNet and VGG.
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