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ABSTRACT

A quantum computing system naturally consists of two compo-
nents, the software system and the hardware system. Quantum
applications are programmed using the quantum software and then
executed on the quantum hardware. However, the performance
of existing quantum computing system is still limited. Solving a
practical problem that is beyond the capability of classical com-
puters on a quantum computer has not yet been demonstrated. In
this review, we point out that the quantum software and hardware
systems should be designed collaboratively to fully exploit the po-
tential of quantum computing. We first review three related works,
including one hardware-aware quantum compiler optimization,
one application-aware quantum hardware architecture design flow,
and one co-design approach for the emerging quantum computa-
tional chemistry. Then we discuss some potential future directions
following the co-design principle.
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1 INTRODUCTION

Quantum computing has become the new ’race to the moon’ pur-
sued with global pride and tremendous investments due to its strong
potential in some important applications, including quantum simu-
lation [10], combinatorial optimization [9], machine learning [4],
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Co-design

Hardware

Application: simulation, optimization, ......
Programming language: QASM, Quil, ......
Compiler: Qiskit terra, quilc, ......

Control interface: microwave, laser, ......
Qubit coupling: resonator, motion, ......
Qubit technology: superconducting, ion-trap, ......

Figure 1: Quantum computing system stack

cryptography [29], etc. To build a quantum computing system re-
quires a multi-discipline effort from both theory and engineering.
Similar to a classical computer, a quantum computing system can
also be divided in the software system and hardware system. Fig-
ure 1 shows some key components and their examples in a quantum
computing system stack.

On the hardware side, we now have several candidate underlying
technologies to implement the qubits (e.g., superconducting quan-
tum circuit [8], ion trap [13], photonics [3]). The qubits are coupled
together (e.g., by resonators [15] for superconducting qubits, by mo-
tion for ion trap qubits [6] ) formulate a larger-size quantum system
and then controlled by analog signals like microwave or laser. On
the software side, we have quantum program languages (e.g., Open-
QASM [7], Q# [31], Scaffold [1] ) that can describe the quantum
algorithms. Recently there are also high-level libraries for different
quantum applications, like Qiskit Aqua [2], OpenFermion [22]. then
the quantum programs can be compiled and optimized through
quantum compilers (e.g., Qiskit Terra [2], ScaffCC [12]).

Nevertheless, state-of-the-art quantum systems are far from be-
ing mature. We are still waiting the demonstration of the first
practical application that is intractable on classical computers but
solvable with a quantum computer. Practical quantum applications
require a high volume of resources, including a large number of
qubits, many operations, and a long execution time. Yet, existing
hardware are still too noisy to maintain many qubits coherently
for long time and the operations are also imperfect. This probably
requires a shift on the entire quantum computing system stack.

In this review, we argue that software-hardware co-design ap-
proach may become a solution to this problem and pave the way
towards practical quantum computing. Following the co-design
principle, the applications can be made hardware friendly, the hard-
ware can be constructed more efficiently, and the compiler opti-
mizations for the target application onto the target hardware can be
more effective. In the rest of this paper, we will discuss three works.
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The first work is to map a quantum program to a superconducting
quantum architecture effectively and efficiently. The second work,
lying in the opposite direction, tailors the superconducting quan-
tum processor architecture to a specific program. Putting these two
together, the third work develops a holistic co-design for the quan-
tum computation chemistry, leading to a wide range of benefits
across multiple system stacks. Finally, we discuss several potential
future research directions under the co-design principle.

2 MAPPING QUANTUM SOFTWARE ONTO
QUANTUM HARDWARE ARCHITECTURE

In this section, we introduce a quantum compiler optimization
algorithm (proposed in [16]) that can efficiently and effectively map
the logical qubits in a quantum program onto the physical qubits
in a connectivity-constrained superconducting quantum processor
architecture with small mapping overhead and compilation time.
This algorithm, SABRE, has been integrated several industry and
academia quantum compiler infrastructures, e.g., IBM’s Qiskit[2],
the Oak Ridge National Lab’s qcor compiler [21].
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Figure 2: Example of a quantum circuit and a 4-qubit super-
conducting quantum processor architecture
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2.1 Background

To illustrate the qubit mapping problem, we first briefly introduce
the quantum program and the related hardware constraint. The
quantum bit, also known as qubit, is the basic information process-
ing unit in quantum computing. A classical bit has two deterministic
states, ‘0’ and ‘1’. One qubit also has two basis states, usually de-
noted as |0) and |1). Different from classical bit, one qubit can be
the linear combination of the two basis states, which can be rep-
resented by |¥) =  |0) + 8|1), where a, f € C and |a|? + |8]> = 1.
The state vector is (@, f). Moreover, two or more qubits can be
entangled. The state of a two-qubit system can be represented by
[¥) = agp |00) + apy |01) + 19 |10) + 11 [11), whose state vector
is (0500, a1, &10, 0(11). We can apply quantum gates to manipulate
the state of the qubits. The gates can be classified by the numbers
of qubits they are applied on. For example, single-qubit gates are
applied on one qubit and two-qubit gates are on two qubits.
Quantum circuit is a conventional diagram to represent a quan-
tum program [23]. One example quantum circuit is shown on the
left of Figure 2. In quantum computing, the qubit is the basic in-
formation processing unit (the quantum analogy of bit in classical
computing). In a quantum circuit, each horizontal line represents
one qubit. The circuit in Figure 2 has four qubits labeled by g1, g2,
q3, and ¢4. In this paper, we assume all gates are decomposed into
single-qubit gates (the squares in the circuit in Figure 2) and CNOT
gates (one type of gate on two qubits, the vertical lines in Figure 2
circuit). On IBM’s superconducting devices, the single-qubit gates

and the CNOT gate constitute the gate set that is directly supported
on hardware.

After introducing the quantum circuit, we then explain the con-
nectivity constraint of superconducting quantum processor archi-
tecture. The qubit connectivity of a superconducting quantum pro-
cessor can be presented by a graph. One example qubit connectivity
graph is shown on the right of Figure 2. Each node in the graph
represents one physical qubit. The two-nodes are connected by an
edge only when there are physical resonators connection the two
corresponding physical qubits of the two nodes. For superconduct-
ing quantum processor, to execute a two-qubit gate directly on two
physical qubits requires a resonator between them. When fabri-
cating a superconducting quantum processor chip, the resonators
can only qubits that are physically nearby due to the wire rout-
ing constraints. Therefore, some physical qubit pairs may not be
connected and we cannot directly apply two-qubit gates on those
physical qubits pairs. For example, in the example in Figure 2, the
four physical qubits are connected in a square. The qubit pairs on
the edges of the square are connected while the qubit pairs on the
two diagonals are not connected. The two-qubit gates cannot be
applied on the diagonal physical qubit pairs.

Such a qubit connectivity constraint will make some two-qubit
gates in the quantum circuit not executable. For example, in Fig-
ure 2, suppose we map the four logical qubits to the example device
as shown on the right. It can be noticed that the last two-qubit
gate applied on g0 and g2 are not executable because they are
mapped to a pair of physical qubits on the diagonal and there is
no resonator connecting them. To address this problem and make
the quantum circuit executable on a connectivity-constrained su-
perconducting quantum processor, a quantum compiler needs to
transform the quantum circuit and make it hardware compatible.
Some SWAP gates will be inserted into the circuit to modify the
logical-physical qubit mapping during the program execution. A
SWAP gate does nothing logically but just exchange the mapping
between two qubits. It should be noticed that one SWAP gate is
implemented by three CNOT gates and has a relatively high error
rate. Therefore, it is desirable to minimize the number of SWAPs in-
serted during the compilation. This is known as the qubit mapping
problem, which has been proved to be NP-Complete [30].

2.2 SABRE Algorithm: Key Ideas

We propose a SWAP-based BidiREctional heuristic search algo-
rithm, named SABRE. SABRE is designed to have good scalabil-
ity to accommodate large size circuits but also maintain a good
compilation result with low overhead. The first key design is the
SWAP-based search. Some previous work [32] employed a mapping-
based search which divides the input circuit into different layers
and then search for a mapping in each layer. This will incur a high
search complexity because the number of mappings grows exponen-
tially with the number of qubits. Instead of searching for a mapping,
SABRE searches candidate SWAPs. For example, in Figure 3, SABRE
will divide the circuit into three parts. The front layer contains gates
that are ready to execute and their two-qubit dependencies should
be resolved first. Some gates right after the front layer are called the
near-term gates and the remaining gates are temporarily ignored.
SABRE will select from all possible SWAPs associate with at least



one qubit in the front layer (e.g., SWAPs on the red arrows). In this
example, we tend to SWAP g3 and ¢7 because the two gates in the
front layer will become executable and the distance between g2
and q7 (appear in one near-term gate) is also reduced.

Original Code:

I . Long-term gates
L _ == _ _ _(Temporarily ignored)

Figure 3: Example of SWAP-Based Heuristic Search

We also designed a sophisticated cost function to evaluate all
candidate SWAPs. The cost function is shown in Equation 1. In this
equation F is the front layer. E is the set of near-term gates. D is the
matrix that records the SWAP distance between any two physical
qubits. 7 is the mapping from logical qubits to physical qubits. W
is a parameter to control how much we hope to consider about the
near-term gates. Overall, this cost function tends to select a SWAP
gate that can minimize the sum of distance between the qubit pairs
of the two-qubit gates in the front layer. Also, the cost function will
also reduce the distances of qubit pairs in the near-term gates. But
it is controlled by the parameter W to ensure that gates in the front
layer have a higher priority.

Cost(SWAP) = max(decay(SWAP.q1),decay(SWAP.q2))

i Y, Dlr(gate.qn)]ln(gate.q,)]
gate€F (1)

W Z D[n(gate.q1)][r(gate.q2)]}
|E| gate€E

In addition, we introduce a decay function. This function will
record whether the qubit is moved recently. If so, the cost function
will be increased and tend not to select SWAPs that involve with
recently moved qubits. This feature can help reduce the circuit
depth in the post-mapping circuit because the cost function can
select non-overlapped SWAPs. For the initial mapping, we propose a
reversal search scheme. This scheme starts from a random mapping
and then search for SWAPs until reaching the end the input circuit
with a final mapping. Then the input circuit is reversed and we
search back from the end to the beginning of the input circuit.
The final mapping can update the original random mapping since
it carries the information from the entire circuit. In practice, we
search forward and backward several times and keep the best initial
mapping encountered.

SABRE is evaluated with various benchmarks on the IBM 20-
qubit chip model [11] compared with the baseline [32]. Experimen-
tal results show that SABRE is able to find the optimal mapping for
small benchmarks and the number of additional gates is reduced by
91% or even fully eliminated. For larger benchmarks, SABRE can
demonstrate exponential speedup against the previous solution
(usually 1000x speedup) and still outperform it with around 10%
reduction in the number of additional gates on average with the

assistance of the high-quality initial mapping generated by our
proposed method. In some cases, the baseline cannot even finish
execution due to exponential execution time and memory require-
ment, while SABRE can still work with short execution time and
low memory usage. By tuning the decay parameters in our algo-
rithm, SABRE shows the ability to control the generated circuit
quality with about 8% variation in generated circuit depth by vary-
ing the number of gates. Please kindly refer to [16] for more detailed
algorithm design and evaluation results.

3 QUANTUM HARDWARE ARCHITECTURE
DESIGN FOR QUANTUM SOFTWARE

In the last section, we discussed how to efficiently map a quantum
program onto quantum hardware using a quantum compiler and
the modifications are on the software side. In this section, we will
explore this mapping problem in the opposite direction and find
a qubit connectivity architecture that can be mapped onto with
lower overhead. A straightforward solution is to have dense con-
nectivity so that two-qubit gates are directly supported on more
physical qubit pairs and the mapping overhead can naturally be
reduced. However, trivially increasing the qubit connections may
not be efficient because it becomes more difficult to fabricate a
complex superconducting quantum processor and one supercon-
ducting quantum processor with dense connections usually has
lower yield rate. An intrinsic trade-off lies between the processor
yield rate and the mapping overhead. Our work [17], leveraging
the application-specific design principle, proposes a superconduct-
ing quantum processor architecture design flow that can generate
architectures with both high yield rate and low mapping overhead
for the target quantum program.

3.1 Frequency Collision & Yield Problem

Before introducing the superconducting architecture design flow,
we first review some background about superconducting qubits and
the frequency collision defect on superconducting quantum pro-
cessors. In this paper, we focus on the fixed-frequency Josephson-
junction-based transmon qubits [14] and all-microwave cross-reso-
nance two-qubit gates [25]. One transmon qubit is an anharmonic
oscillator with discrete energy spectrum. In practice, we use the
ground state |0) and the first excited state |1) as the computational
basis and the qubit frequency is the energy gap between the |0) and
|1) states divided by the Planck constant. A typical qubit frequency
is around f = 5GHz.

Conditions Thresholds
1 fi = fi +17MHz
2| fi=fi—6/2 +4MHz k)
3| fj=fi—90 +25MHz Conditions 1,23, 4
4 fi>fk—6
5 fi=fi +17MHz
6 fizfi—96 +25MHz _
7 2]5- +6=fi +fi| £17MHz C;;{;i.itions 5,6,7

Figure 4: Frequency Collision Conditions (§ = —340MHz)
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Figure 5: Overview of the proposed efficient superconducting quantum processor architecture design flow

Similar to traditional semiconductor technology, variation is in-
evitable when fabricating superconducting quantum processors.
Suppose the frequency of a physical qubit is designed to f. The
actual frequency after fabrication will be f* = f + ny where
ny satisfied Gaussian distribution N(0, ). The parameter o is
130MHz—150MHz and can be further suppressed to around 14MHz
with post-processing laser annealing [27]. Since we cannot control
the post-fabrication qubit frequencies very precisely, it is possi-
ble that the frequencies of two or three connected qubits satisfy
some specific conditions. Satisfying these conditions are termed fre-
quency collision and cause defects on the device. Figure 4 summaries
seven qubit frequency collision conditions in IBM’s devices [5, 26].
On the left is a table showing the conditions and thresholds of
different collision situations. Condition 1, 2, 3, and 4 involve two
connected qubits (j and k). Condition 5, 6, and 7 involve three
qubits of which two qubits (k and i) both connect to the other qubit
j- The approximate equations and the corresponding thresholds
determine whether one frequency collision happens. For example,
if qubit j and k are connected and |f; — fi| < 17MHz, then the
first condition is satisfied and frequency collision occurs. Note that
the fourth condition has no threshold because it is an inequality
rather than an approximate equation. On the right is a graphical
illustration, showing the geometric locations of the qubits that may
have frequency collisions of different conditions in two subfigures.
Each node represents a qubit and the gray square represents that
any two of the four surrounding qubits are connected.

3.2 Efficient Architecture Design: Overview

Optimizing the yield rate and reducing the mapping simultaneously
are difficult due to the intrinsic trade-off between these two ob-
jectives. We are able to overcome this challenge by leveraging the
application-specific design principle. By trading in the generaliz-
ability of the architecture and only targeting a specific program,
it is then possible to realize the two aforementioned objectives
simultaneously. We can deploy more hardware resources only on
those locations where the performance of on the target program
can be increased most.

Our end-to-end design flow proposed in [17] is depicted in Fig-
ure 5. It has two major steps, the program profiling and the archi-
tecture design. In the program profiling stage, our design flow will

extract the logical two-qubit gate information because the two-qubit
gate introduces the mapping problem and its underlying hardware
support, the qubit connection, causes the frequency collision. We
organize the two-qubit gate information in two data structures:
the coupling degree list and the coupling strength matrix. The cou-
pling degree list records the number of two-qubits associated with
one qubit and the coupling strength matrix records the number of
two-qubits between all logical qubit pairs. For example, figure 6
shows the profiling results of two different programs (the indices
of rows and columns represent the qubit indices). The number two-
qubit gates between different qubit pairs varies significantly and
the two-qubit gate patterns are also different for different programs.
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Figure 6: Coupling strength matrices of two programs

The second step is to generate an architecture design based
on the profiling information. We decompose the superconducting
quantum processor architecture design into three key subroutines,
layout design, bus selection, and frequency allocation. Each sub-
routine targets different hardware components and configurations
with profiling results and physical constraints incorporated. In the
layout design, we focus on the qubit placement and put the qubits
and try to make those qubit pair with more two-qubit gates between
them nearby in order to reduce the mapping overhead later. We also
assume that physical qubits can only be placed on the nodes of a 2D
grid to ensure a modular design. Then, the bus selection subroutine
will determine how the physical qubits are connected. We only
add qubit connections (also termed as qubit buses) to the locations
that are expected to reduce the mapping overhead most according
to the profiling information. Finally, the frequency allocation sub-
routine will allocate frequencies to all placed physical qubits. The
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Figure 7: Yield vs performance of the generated archi-
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strength ¢ = 30MHz. X-axis represents the relative perfor-
mance. Y-axis represents the yield rate.

subroutine will increase the final yield rate by trying to avoid the
frequency collision conditions on the generated architecture.

We compare the architectures generated from our design flow
with general-purpose regular architectures [5, 11]. Figure 7 shows
the yield and performance of the generated architecture for ‘mi-
sex’ program. X-axis represents the relative performance indicated
by the post-mapping gate count. Y-axis represents the yield rate
simulated by IBM’s yield model [5]. The gp configurations are
four general purpose architectures and the eff-full represents the
architectures will all optimizations enabled in our design flow. It
can be observed that the eff-full architectures can provide similar
performance with 100 X —1000x yield rate improvement. We also
carefully designed breakdown experiments to study the effect of
different stages in the proposed design flow. Please kindly refer
to [17] for more design flow details and evaluation results on more
benchmarks.

4 SOFTWARE-HARDWARE CO-DESIGN FOR
QUANTUM COMPUTATIONAL CHEMISTRY

In the last section, we introduced a design flow that can gener-
ate a superconducting quantum architecture for a target quantum
program. However, this flow only starts from the low-level gate
sequence and only considers the two-qubit gate patterns of a spe-
cific program instance. Therefore, the architectures generated can
only accommodate the specific input program and may not support
other programs of the same category. In our follow-up work [18],
we overcome this shortcoming for the domain of computational
chemistry and co-design the software and hardware via the high-
level domain knowledge instead of the low-level program pattern.
The proposed solution is then applicable to the full family of com-
putational chemistry problems sharing a similar structure.

4.1 Variational Quantum Eigensolver, Ansatz,
and Pauli Strings

We select computation chemistry as our target because chemistry
simulation has many practical usages but large-scale chemistry sim-
ulation is intractable on classical computer. Quantum computers are
naturally suited to simulate chemistry system []. Variational Quan-
tum Eigensolver (VQE) [24] is the leading quantum algorithm with

UCCSD ansatz

q0 —
ql —
q2 —
a3 —

Initialization
exp(i6,XYXY)
exp(i6,YXXY)
exp(i6,ZZ77)
Measurement

Figure 8: A VQE circuit example with UCCSD ansatz

modest resource requirement and some noise-resilience. Figure 8
shows a VQE circuit example. This circuit has three components,
the initialization, the ansatz (parameterized circuit), and the final
measurement which can obtain the expectation of an observable.
The initialization and the final measurement are shallow and the
majority of a VQE circuit is the ansatz. An ansatz is a parameter-
ized quantum circuit. When executing a VQE algorithm, a classical
optimizer will tune the parameters in the ansatz to minimize the
measured expectation value of an observable. For chemistry simu-
lation, the observable is usually the Hamiltonian (energy operator)
of the simulated system and minimizing the energy means that we
reach the ground state of the system. We refer [20] for a compre-
hensive introduction to quantum computational chemistry.

Since the majority of a VQE circuit is the ansatz, it naturally
becomes our optimization target. The ansatz design is critical to the
performance of a VQE algorithm since it determines how In this
paper, we focus on the UCCSD (Unitary Coupled Cluster Singles
and Doubles) chemistry-inspired ansatz [24] which the ‘standard’
ansatz for chemistry simulation. Usually, it can be expected that
tuning the parameters in UCCSD can yield a good approximation
of the true ground state. However, the size of a UCCSD ansatz is
very large with O(n*) parameters (n is the number qubits). In the
quantum circuit, the UCCSD ansatz is turned into a series of circuit
blocks and each block is a Pauli string simulation circuit block,
which will be introduced later in this section.

q0 q0 +— q0 —¢——
q1 ¢ ql ql
Ve

q2 i q2 - 2 —§
a3 P~ qS-@—@—J} @B3—&

q0 > ql—>9g2—>q93 gql—>q3—> g2« q0

N7

q0— g3« q2
ql CNOT gates in a 4-qubit Pauli string simulation

Figure 9: Three different valid CNOT trees

Before introducing the Pauli string simulation circuit, we first
define the Pauli string. An n-qubit Pauli string P is an array of
n operators (on the n qubits), each of which is one of the three
Pauli operators {X, Y, Z} or the identity operator I. For example,
P = XYIZ is a 4-qubit Pauli string. A Pauli string simulation circuit
is to implement exp(i6P). In such a circuit block, the two-qubit
CNOT gates have a unique pattern. All qubits whose operators are
not the identity operator will be connected by the CNOT gates in a
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Figure 10: Overview of the Pauli-string-centric software-hardware co-design

tree structure while the exact structure of the CNOT tree can be
flexible. For example, Figure 9 shows three valid tree structures of
a 4-qubit Pauli string simulation circuit. The circuits are shown on
the upper half and the corresponding tree graphs are below the
circuits.

4.2 Pauli-String-Centric Co-Designing

It can be observed that the Pauli string is the central building block
of VQE chemistry simulation. The ansatz consists of an array of
Pauli string simulation circuits. These circuits have a unique CNOT
gate pattern that can be leveraged. Figure 10 shows the overview
of our co-design for variational quantum chemistry simulation. It
comes with three major components.

Ansatz Compression: In order to compress the ansatz and
prune some parameters, we need to identify critical parameters
that are expected to change the final measured energy most. As
shown in Figure 10 (a), we evaluate the importance of a parame-
ter by comparing the Pauli strings associated with this parameter
with the Pauli strings from the Hamiltonian of the simulated sys-
tem. This is possible because the Pauli simulation circuit can be
interpreted as a rotation along an axis in a high-dimensional space
and we can predict how it can change the projection along an
axis where the projection can be considered as a measurement.
After selecting the important parameters, we also order them in
a hardware-friendly order so that the constructed ansatz can be
better mapped to hardware later.

XTree Architecture: As explained in the last section, we hope
to reduce the number of qubit connections for a higher yield rate.
Since the UCCSD ansatz is composed of a series of Pauli string
simulation circuits and the CNOT gates are in a tree structure, we
can naturally connect the physical qubits in a tree structure (e.g.,
Figure 10 (b)). This can be very efficient since the tree structure
requires the minimum number of connections to connect all qubits.

Block-Wise Synthesis & Mapping: Finally, our compiler will
deploy the VQE circuit onto the XTree architecture. This requires
careful optimization algorithm design since a sparse architecture
like the XTree usually incurs very high mapping overhead. As
shown in Figure 10 (c), the key to our compilation to find the tree
structure that fit the current mapping best. For example, the four
qubits in Figure 10 (c) are on a XTree architecture. Our compiler
will generate the CNOT tree on the right which does not require
any SWAP operations.

LiH

A

< 21| — orig.uccsD —— 70% Param.
Qo of | 10% Param.  —— 90% Param.

t | — 30% P Ground S —160.2
© 1 o Param. roun tate

z 2| | A~ 50% Param.

> \

% 41 A

2 -6 A -160.3
S Baaa., :

0.4 0.9 1.4 1.9 2.4

e
oy e

Energy difference
o
o
2

0.00 s 0.000
0.4 0.9 1.4 19 2.4 13 15 17 19 2.1
——
" —e— Orig. UCCSD —e— 50% Param. 100 ._H—._/_'_'_'_'
S 10% Param. —e— 70% Param.
® —e— 30% Param. —e— 90% Param. 75
bt 80
O 40| o2 %ee_oseese0 00000 000oese ~e—o
® g0) Ctemsiinessisiaree |
0.4 0.9 1.4 19 2.4 11 13 15 17 19

Figure 11: Simulation results of LiH and NaH

Figure 11 shows the VQE simulation results of LiH and NaH
molecules. We compress the UCCSD ansatz and only keep a por-
tion of the critical parameters. ‘10%-90% Param. represent that we
keep 10%-90% of the parameters. The ‘Ground State’ is the theoreti-
cal true value. The ‘Orig. UCCSD’ is the original UCCSD without
compression. The simulation accuracy loss is small since the simu-
lated energy difference is very small compared with the absolute
simulated energy. Small-size ansatzes are also faster and require
fewer iterations to converge. For the hardware and compiler, The
XTree architecture with sparse qubit connection has a higher yield
rate compared with conventional grid architecture and the map-
ping overhead can be almost eliminated through our block-wise
synthesis and mapping. Please kindly refer to [18] for more co-
design details and evaluation results on more molecules of different
structures and sizes.

5 CONCLUSION AND FUTURE DIRECTIONS

In this review, we demonstrated that the quantum system perfor-
mance and efficiency can be significantly improved through co-
designing the software and hardware. We introduced some of the
previous works on quantum compiler, superconducting quantum
processor, and solving quantum computational chemistry aligned



with the co-design principle. In the rest of section, we will dis-
cuss some potential research direction from both the hardware
technology side and the software application side.

5.1 Co-Design beyond Superconducting Qubits

The reviewed works are mostly on the superconducting quantum
computing technology because it is one of the leading technolo-
gies in this area and has been adopted by many vend. Meanwhile,
there are several other promising technology candidates whose
architecture design space is not yet fully explored. For example,
for an ion trap quantum computer, one trap cannot maintain many
ions without losing good qubit addressability and multiple traps
would desirable when scaling up. The number of ions in each trap
and the interconnection topology of multiple traps can customized
according to the target application.

Going beyond the near-term noisy devices, the co-design for
future fault-tolerant quantum computers is also worth to study.
Comparing with near-term quantum computing systems, the sys-
tem of a fault-tolerant quantum computer has one more abstraction
layer, the quantum error correction [19], in the middle of the sys-
tem stack to provide long-living logical qubits and precise logical
operations to the quantum programs. The quantum error correc-
tion protocols can be co-designed with respect to the underlying
hardware or high-level application.

5.2 Co-Design beyond Quantum Chemistry

The application of quantum computing is far beyond the scope
of chemistry simulation and there are many other domains. For
example, quantum machine learning is another leading candidate
application of practical quantum computing. We argue that enabling
effective co-design in new domain requires new proper abstractions
that can guide the design of software and hardware. For example,
our co-design in [18] targeting the quantum chemistry simulation
application was carried out through a key concept, Pauli string,
which coordinates the design and optimization at different system
technology stacks. It is not known what abstractions we should use
for software-hardware co-design in other application domains.

One candidate algorithmic target of co-design is the Boolean
function because many quantum algorithms [23] involve an oracle
that is a subroutine implementing a quantum version of the classical
Boolean function. Previous works [28] have studied the compila-
tion of classical oracle as they are abstracted in a Boolean func-
tion hardware-independently and application-independently. The
compilation of classical oracles can possibly be improved through
software-hardware co-design and then benefit a wide range of
quantum algorithms.
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