
On the Co-Design ofQuantum Software and Hardware

Gushu Li
University of California
Santa Barbara, USA

gushuli@ece.ucsb.edu

Anbang Wu
University of California
Santa Barbara, USA
anbang@cs.ucsb.edu

Yunong Shi
Amazon Braket
New York, USA

shiyunon@amazon.com

Ali Javadi-Abhari
IBM Quantum

Yorktown Heights, USA
ali.javadi@ibm.com

Yufei Ding
University of California
Santa Barbara, USA

yufeiding@cs.ucsb.edu

Yuan Xie
University of California
Santa Barbara, USA

yuanxie@ece.ucsb.edu

ABSTRACT

A quantum computing system naturally consists of two compo-

nents, the software system and the hardware system. Quantum

applications are programmed using the quantum software and then

executed on the quantum hardware. However, the performance

of existing quantum computing system is still limited. Solving a

practical problem that is beyond the capability of classical com-

puters on a quantum computer has not yet been demonstrated. In

this review, we point out that the quantum software and hardware

systems should be designed collaboratively to fully exploit the po-

tential of quantum computing. We first review three related works,

including one hardware-aware quantum compiler optimization,

one application-aware quantum hardware architecture design flow,

and one co-design approach for the emerging quantum computa-

tional chemistry. Then we discuss some potential future directions

following the co-design principle.

CCS CONCEPTS

· Computer systems organization→ Quantum computing; ·

Hardware → Quantum computation.

KEYWORDS

quantum computing; quantum compiler; superconducting quantum
architecture; software-hardware co-design
ACM Reference Format:

Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, and Yuan
Xie. 2021. On the Co-Design of Quantum Software and Hardware. In The
Eight Annual ACM International Conference on Nanoscale Computing and
Communication (NANOCOM ’21), September 7ś9, 2021, Virtual Event, Italy.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3477206.3477464

1 INTRODUCTION

Quantum computing has become the new ’race to the moon’ pur-
sued with global pride and tremendous investments due to its strong
potential in some important applications, including quantum simu-

lation [10], combinatorial optimization [9], machine learning [4],

NANOCOM ’21, September 7ś9, 2021, Virtual Event, Italy
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8710-1/21/09.
https://doi.org/10.1145/3477206.3477464

Control interface: microwave, laser, ……

Qubit coupling: resonator, motion, ……

Qubit technology: superconducting, ion-trap, ……

Application: simulation, optimization, ……

Programming language: QASM, Quil, ……

Compiler: Qiskit terra, quilc, ……

Software

Hardware

Co-design

Figure 1: Quantum computing system stack

cryptography [29], etc. To build a quantum computing system re-

quires a multi-discipline effort from both theory and engineering.

Similar to a classical computer, a quantum computing system can

also be divided in the software system and hardware system. Fig-

ure 1 shows some key components and their examples in a quantum

computing system stack.

On the hardware side, we now have several candidate underlying

technologies to implement the qubits (e.g., superconducting quan-

tum circuit [8], ion trap [13], photonics [3]). The qubits are coupled

together (e.g., by resonators [15] for superconducting qubits, by mo-

tion for ion trap qubits [6]) formulate a larger-size quantum system

and then controlled by analog signals like microwave or laser. On

the software side, we have quantum program languages (e.g., Open-

QASM [7], Q# [31], Scaffold [1]) that can describe the quantum

algorithms. Recently there are also high-level libraries for different

quantum applications, like Qiskit Aqua [2], OpenFermion [22]. then

the quantum programs can be compiled and optimized through

quantum compilers (e.g., Qiskit Terra [2], ScaffCC [12]).

Nevertheless, state-of-the-art quantum systems are far from be-

ing mature. We are still waiting the demonstration of the first

practical application that is intractable on classical computers but

solvable with a quantum computer. Practical quantum applications

require a high volume of resources, including a large number of

qubits, many operations, and a long execution time. Yet, existing

hardware are still too noisy to maintain many qubits coherently

for long time and the operations are also imperfect. This probably

requires a shift on the entire quantum computing system stack.

In this review, we argue that software-hardware co-design ap-

proach may become a solution to this problem and pave the way

towards practical quantum computing. Following the co-design

principle, the applications can be made hardware friendly, the hard-

ware can be constructed more efficiently, and the compiler opti-

mizations for the target application onto the target hardware can be

more effective. In the rest of this paper, we will discuss three works.

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0002-6233-0334
https://doi.org/10.1145/3477206.3477464
https://doi.org/10.1145/3477206.3477464
https://creativecommons.org/licenses/by/4.0/

The first work is to map a quantum program to a superconducting

quantum architecture effectively and efficiently. The second work,

lying in the opposite direction, tailors the superconducting quan-

tum processor architecture to a specific program. Putting these two

together, the third work develops a holistic co-design for the quan-

tum computation chemistry, leading to a wide range of benefits

across multiple system stacks. Finally, we discuss several potential

future research directions under the co-design principle.

2 MAPPING QUANTUM SOFTWARE ONTO
QUANTUM HARDWARE ARCHITECTURE

In this section, we introduce a quantum compiler optimization

algorithm (proposed in [16]) that can efficiently and effectively map

the logical qubits in a quantum program onto the physical qubits

in a connectivity-constrained superconducting quantum processor

architecture with small mapping overhead and compilation time.

This algorithm, SABRE, has been integrated several industry and

academia quantum compiler infrastructures, e.g., IBM’s Qiskit[2],

the Oak Ridge National Lab’s qcor compiler [21].

q1

q0

q2

q3

H

X

q0

q1 q2

q3

Figure 2: Example of a quantum circuit and a 4-qubit super-

conducting quantum processor architecture

2.1 Background

To illustrate the qubit mapping problem, we first briefly introduce

the quantum program and the related hardware constraint. The

quantum bit, also known as qubit, is the basic information process-

ing unit in quantum computing. A classical bit has two deterministic

states, ‘0’ and ‘1’. One qubit also has two basis states, usually de-

noted as |0⟩ and |1⟩. Different from classical bit, one qubit can be

the linear combination of the two basis states, which can be rep-

resented by |Ψ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, where 𝛼, 𝛽 ∈ C and |𝛼 |2 + |𝛽 |2 = 1.

The state vector is (𝛼, 𝛽). Moreover, two or more qubits can be

entangled. The state of a two-qubit system can be represented by

|Ψ⟩ = 𝛼00 |00⟩ + 𝛼01 |01⟩ + 𝛼10 |10⟩ + 𝛼11 |11⟩, whose state vector

is (𝛼00, 𝛼01, 𝛼10, 𝛼11). We can apply quantum gates to manipulate

the state of the qubits. The gates can be classified by the numbers

of qubits they are applied on. For example, single-qubit gates are

applied on one qubit and two-qubit gates are on two qubits.

Quantum circuit is a conventional diagram to represent a quan-

tum program [23]. One example quantum circuit is shown on the

left of Figure 2. In quantum computing, the qubit is the basic in-

formation processing unit (the quantum analogy of bit in classical

computing). In a quantum circuit, each horizontal line represents

one qubit. The circuit in Figure 2 has four qubits labeled by 𝑞1, 𝑞2,

𝑞3, and 𝑞4. In this paper, we assume all gates are decomposed into

single-qubit gates (the squares in the circuit in Figure 2) and CNOT

gates (one type of gate on two qubits, the vertical lines in Figure 2

circuit). On IBM’s superconducting devices, the single-qubit gates

and the CNOT gate constitute the gate set that is directly supported

on hardware.

After introducing the quantum circuit, we then explain the con-

nectivity constraint of superconducting quantum processor archi-

tecture. The qubit connectivity of a superconducting quantum pro-

cessor can be presented by a graph. One example qubit connectivity

graph is shown on the right of Figure 2. Each node in the graph

represents one physical qubit. The two-nodes are connected by an

edge only when there are physical resonators connection the two

corresponding physical qubits of the two nodes. For superconduct-

ing quantum processor, to execute a two-qubit gate directly on two

physical qubits requires a resonator between them. When fabri-

cating a superconducting quantum processor chip, the resonators

can only qubits that are physically nearby due to the wire rout-

ing constraints. Therefore, some physical qubit pairs may not be

connected and we cannot directly apply two-qubit gates on those

physical qubits pairs. For example, in the example in Figure 2, the

four physical qubits are connected in a square. The qubit pairs on

the edges of the square are connected while the qubit pairs on the

two diagonals are not connected. The two-qubit gates cannot be

applied on the diagonal physical qubit pairs.

Such a qubit connectivity constraint will make some two-qubit

gates in the quantum circuit not executable. For example, in Fig-

ure 2, suppose we map the four logical qubits to the example device

as shown on the right. It can be noticed that the last two-qubit

gate applied on 𝑞0 and 𝑞2 are not executable because they are

mapped to a pair of physical qubits on the diagonal and there is

no resonator connecting them. To address this problem and make

the quantum circuit executable on a connectivity-constrained su-

perconducting quantum processor, a quantum compiler needs to

transform the quantum circuit and make it hardware compatible.

Some SWAP gates will be inserted into the circuit to modify the

logical-physical qubit mapping during the program execution. A

SWAP gate does nothing logically but just exchange the mapping

between two qubits. It should be noticed that one SWAP gate is

implemented by three CNOT gates and has a relatively high error

rate. Therefore, it is desirable to minimize the number of SWAPs in-

serted during the compilation. This is known as the qubit mapping

problem, which has been proved to be NP-Complete [30].

2.2 SABRE Algorithm: Key Ideas

We propose a SWAP-based BidiREctional heuristic search algo-

rithm, named SABRE. SABRE is designed to have good scalabil-

ity to accommodate large size circuits but also maintain a good

compilation result with low overhead. The first key design is the

SWAP-based search. Some previous work [32] employed a mapping-

based search which divides the input circuit into different layers

and then search for a mapping in each layer. This will incur a high

search complexity because the number of mappings grows exponen-

tially with the number of qubits. Instead of searching for a mapping,

SABRE searches candidate SWAPs. For example, in Figure 3, SABRE

will divide the circuit into three parts. The front layer contains gates

that are ready to execute and their two-qubit dependencies should

be resolved first. Some gates right after the front layer are called the

near-term gates and the remaining gates are temporarily ignored.

SABRE will select from all possible SWAPs associate with at least

one qubit in the front layer (e.g., SWAPs on the red arrows). In this

example, we tend to SWAP 𝑞3 and 𝑞7 because the two gates in the

front layer will become executable and the distance between 𝑞2

and 𝑞7 (appear in one near-term gate) is also reduced.

q2 q4

q1 q3

q5

q6

q7

q8q9

CNOT q1, q7

CNOT q3, q8

CNOT q2, q7

……

……

……

Ready to execute

(Front Layer)

Near-term gates

(Need to be considered)

Low priority qubits
Original Code:

Long-term gates

(Temporarily ignored)

Figure 3: Example of SWAP-Based Heuristic Search

We also designed a sophisticated cost function to evaluate all

candidate SWAPs. The cost function is shown in Equation 1. In this

equation 𝐹 is the front layer. 𝐸 is the set of near-term gates. 𝐷 is the

matrix that records the SWAP distance between any two physical

qubits. 𝜋 is the mapping from logical qubits to physical qubits.𝑊

is a parameter to control how much we hope to consider about the

near-term gates. Overall, this cost function tends to select a SWAP

gate that can minimize the sum of distance between the qubit pairs

of the two-qubit gates in the front layer. Also, the cost function will

also reduce the distances of qubit pairs in the near-term gates. But

it is controlled by the parameter𝑊 to ensure that gates in the front

layer have a higher priority.

𝐶𝑜𝑠𝑡 (𝑆𝑊𝐴𝑃) =𝑚𝑎𝑥 (𝑑𝑒𝑐𝑎𝑦 (𝑆𝑊𝐴𝑃.𝑞1), 𝑑𝑒𝑐𝑎𝑦 (𝑆𝑊𝐴𝑃.𝑞2))

∗{
1

|𝐹 |

∑

𝑔𝑎𝑡𝑒∈𝐹

𝐷 [𝜋 (𝑔𝑎𝑡𝑒.𝑞1)] [𝜋 (𝑔𝑎𝑡𝑒.𝑞2)]

+𝑊 ∗
1

|𝐸 |

∑

𝑔𝑎𝑡𝑒∈𝐸

𝐷 [𝜋 (𝑔𝑎𝑡𝑒.𝑞1)] [𝜋 (𝑔𝑎𝑡𝑒.𝑞2)]}

(1)

In addition, we introduce a 𝑑𝑒𝑐𝑎𝑦 function. This function will

record whether the qubit is moved recently. If so, the cost function

will be increased and tend not to select SWAPs that involve with

recently moved qubits. This feature can help reduce the circuit

depth in the post-mapping circuit because the cost function can

select non-overlapped SWAPs. For the initial mapping, we propose a

reversal search scheme. This scheme starts from a random mapping

and then search for SWAPs until reaching the end the input circuit

with a final mapping. Then the input circuit is reversed and we

search back from the end to the beginning of the input circuit.

The final mapping can update the original random mapping since

it carries the information from the entire circuit. In practice, we

search forward and backward several times and keep the best initial

mapping encountered.

SABRE is evaluated with various benchmarks on the IBM 20-

qubit chip model [11] compared with the baseline [32]. Experimen-

tal results show that SABRE is able to find the optimal mapping for

small benchmarks and the number of additional gates is reduced by

91% or even fully eliminated. For larger benchmarks, SABRE can

demonstrate exponential speedup against the previous solution

(usually 1000× speedup) and still outperform it with around 10%

reduction in the number of additional gates on average with the

assistance of the high-quality initial mapping generated by our

proposed method. In some cases, the baseline cannot even finish

execution due to exponential execution time and memory require-

ment, while SABRE can still work with short execution time and

low memory usage. By tuning the decay parameters in our algo-

rithm, SABRE shows the ability to control the generated circuit

quality with about 8% variation in generated circuit depth by vary-

ing the number of gates. Please kindly refer to [16] for more detailed

algorithm design and evaluation results.

3 QUANTUM HARDWARE ARCHITECTURE
DESIGN FOR QUANTUM SOFTWARE

In the last section, we discussed how to efficiently map a quantum

program onto quantum hardware using a quantum compiler and

the modifications are on the software side. In this section, we will

explore this mapping problem in the opposite direction and find

a qubit connectivity architecture that can be mapped onto with

lower overhead. A straightforward solution is to have dense con-

nectivity so that two-qubit gates are directly supported on more

physical qubit pairs and the mapping overhead can naturally be

reduced. However, trivially increasing the qubit connections may

not be efficient because it becomes more difficult to fabricate a

complex superconducting quantum processor and one supercon-

ducting quantum processor with dense connections usually has

lower yield rate. An intrinsic trade-off lies between the processor

yield rate and the mapping overhead. Our work [17], leveraging

the application-specific design principle, proposes a superconduct-

ing quantum processor architecture design flow that can generate

architectures with both high yield rate and low mapping overhead

for the target quantum program.

3.1 Frequency Collision & Yield Problem

Before introducing the superconducting architecture design flow,

we first review some background about superconducting qubits and

the frequency collision defect on superconducting quantum pro-

cessors. In this paper, we focus on the fixed-frequency Josephson-

junction-based transmon qubits [14] and all-microwave cross-reso-

nance two-qubit gates [25]. One transmon qubit is an anharmonic

oscillator with discrete energy spectrum. In practice, we use the

ground state |0⟩ and the first excited state |1⟩ as the computational

basis and the qubit frequency is the energy gap between the |0⟩ and

|1⟩ states divided by the Planck constant. A typical qubit frequency

is around 𝑓 = 5𝐺𝐻𝑧.

j

k

k

k

k

i

ii

i

i

j

 Conditions Thresholds

1 𝑓𝑗 ≅ 𝑓𝑘 ±17𝑀𝐻𝑧

2 𝑓𝑗 ≅ 𝑓𝑘 − 𝛿/2 ±4𝑀𝐻𝑧

3 𝑓𝑗 ≅ 𝑓𝑘 − 𝛿 ±25𝑀𝐻𝑧

4 𝑓𝑗 > 𝑓𝑘 − 𝛿

5 𝑓𝑖 ≅ 𝑓𝑘 ±17𝑀𝐻𝑧

6 𝑓𝑖 ≅ 𝑓𝑘 − 𝛿 ±25𝑀𝐻𝑧

7 2𝑓𝑗 + 𝛿 ≅ 𝑓𝑘 + 𝑓𝑖 ±17𝑀𝐻𝑧

Condition 1, 2, 3, 4

Condition 5, 6, 7

Conditions 1, 2, 3, 4

Conditions 5, 6, 7

Figure 4: Frequency Collision Conditions (𝛿 = −340𝑀𝐻𝑧)

Coupling

Degree

List

Coupling

Strength

Matrix

Layout

Design

Hardware Architecture Design Flow

Bus

Selection

Frequency

Allocation

Location

Constraint

Connection

Constraint

Collision

Conditions

Physical Constraints
Quantum

Program

Program

Profiling

Efficient

Application-

specific

Architecture

Profiling

Information

Figure 5: Overview of the proposed efficient superconducting quantum processor architecture design flow

Similar to traditional semiconductor technology, variation is in-

evitable when fabricating superconducting quantum processors.

Suppose the frequency of a physical qubit is designed to 𝑓 . The

actual frequency after fabrication will be 𝑓 ′ = 𝑓 + 𝑛𝑓 where

𝑛𝑓 satisfied Gaussian distribution 𝑁 (0, 𝜎). The parameter 𝜎 is

130𝑀𝐻𝑧−150𝑀𝐻𝑧 and can be further suppressed to around 14𝑀𝐻𝑧

with post-processing laser annealing [27]. Since we cannot control

the post-fabrication qubit frequencies very precisely, it is possi-

ble that the frequencies of two or three connected qubits satisfy

some specific conditions. Satisfying these conditions are termed fre-

quency collision and cause defects on the device. Figure 4 summaries

seven qubit frequency collision conditions in IBM’s devices [5, 26].

On the left is a table showing the conditions and thresholds of

different collision situations. Condition 1, 2, 3, and 4 involve two

connected qubits (j and k). Condition 5, 6, and 7 involve three

qubits of which two qubits (k and i) both connect to the other qubit

j. The approximate equations and the corresponding thresholds

determine whether one frequency collision happens. For example,

if qubit 𝑗 and 𝑘 are connected and |𝑓𝑗 − 𝑓𝑘 | < 17𝑀𝐻𝑧, then the

first condition is satisfied and frequency collision occurs. Note that

the fourth condition has no threshold because it is an inequality

rather than an approximate equation. On the right is a graphical

illustration, showing the geometric locations of the qubits that may

have frequency collisions of different conditions in two subfigures.

Each node represents a qubit and the gray square represents that

any two of the four surrounding qubits are connected.

3.2 Efficient Architecture Design: Overview

Optimizing the yield rate and reducing the mapping simultaneously

are difficult due to the intrinsic trade-off between these two ob-

jectives. We are able to overcome this challenge by leveraging the

application-specific design principle. By trading in the generaliz-

ability of the architecture and only targeting a specific program,

it is then possible to realize the two aforementioned objectives

simultaneously. We can deploy more hardware resources only on

those locations where the performance of on the target program

can be increased most.

Our end-to-end design flow proposed in [17] is depicted in Fig-

ure 5. It has two major steps, the program profiling and the archi-

tecture design. In the program profiling stage, our design flow will

extract the logical two-qubit gate information because the two-qubit

gate introduces the mapping problem and its underlying hardware

support, the qubit connection, causes the frequency collision. We

organize the two-qubit gate information in two data structures:

the coupling degree list and the coupling strength matrix. The cou-

pling degree list records the number of two-qubits associated with

one qubit and the coupling strength matrix records the number of

two-qubits between all logical qubit pairs. For example, figure 6

shows the profiling results of two different programs (the indices

of rows and columns represent the qubit indices). The number two-

qubit gates between different qubit pairs varies significantly and

the two-qubit gate patterns are also different for different programs.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0

0

0

0

0

0

0

0

0

8

16

16

6

0

6

0

0

0

0

0

0

0

0

4

4

16

20

10

0

6

0

0

0

0

0

0

0

0

0

0

8

16

6

0

6

0

0

0

0

0

0

0

8

0

12

12

16

4

4

0

0

0

0

0

0

0

0

0

4

8

16

16

4

4

4

0

0

0

0

0

0

8

0

4

4

8

12

22

4

10

0

0

0

0

0

8

0

0

8

0

8

20

8

0

0

0

0

0

8

0

0

0

0

64

30

0

6

132

44

44

0

4

0

0

4

4

8

64

0

32

70

104

64

0

0

8

4

0

12

8

4

0

30

32

0

60

144

40

40

16

16

8

12

16

8

8

0

70

0

132

92

4

4

16

20

16

16

16

12

20

6

104

60

132

0

56

24

42

6

10

6

4

4

22

8

132

64

144

92

56

0

58

64

0

0

0

4

4

4

0

44

0

40

4

24

58

0

6

6

6

0

4

10

0

44

0

40

4

42

64

0

160

160

214

214

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0

0

0

0

0

0

0

0

64

48

32

16

0

0

0

96

64

32

0

0

64

0

96

48

0

0

48

96

0

64

0

0

32

64

96

0

0

0

16

32

48

64

0

0

0

0

0

0

0

0

588

588

768

768

748

748

720

720

748

748

768

768

588

588

0

100

200

300

400

500

600

700

UCCSD_ansatz_8, 8 qubits, VQE Misex1_241, 15 qubits, quantum arithmatic

Figure 6: Coupling strength matrices of two programs

The second step is to generate an architecture design based

on the profiling information. We decompose the superconducting

quantum processor architecture design into three key subroutines,

layout design, bus selection, and frequency allocation. Each sub-

routine targets different hardware components and configurations

with profiling results and physical constraints incorporated. In the

layout design, we focus on the qubit placement and put the qubits

and try to make those qubit pair with more two-qubit gates between

them nearby in order to reduce the mapping overhead later. We also

assume that physical qubits can only be placed on the nodes of a 2D

grid to ensure a modular design. Then, the bus selection subroutine

will determine how the physical qubits are connected. We only

add qubit connections (also termed as qubit buses) to the locations

that are expected to reduce the mapping overhead most according

to the profiling information. Finally, the frequency allocation sub-

routine will allocate frequencies to all placed physical qubits. The

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 1.1 1.2 1.3 1.4 1.5

misex1_241, 15-qubit

radd_250, 13-qubit

(1)

(2)
(3)

(4)

0.980.9 0.95 1 1.05 1.1

ibm eff-full eff-rd-bus eff-5-freq eff-layout-only

1.6

gp eff-full eff-rd-bus eff-5-freq eff-layout-only

Figure 7: Yield vs performance of the generated archi-

tectures for ‘misex’ program when the fabrication noise

strength 𝜎 = 30𝑀𝐻𝑧. X-axis represents the relative perfor-

mance. Y-axis represents the yield rate.

subroutine will increase the final yield rate by trying to avoid the

frequency collision conditions on the generated architecture.

We compare the architectures generated from our design flow

with general-purpose regular architectures [5, 11]. Figure 7 shows

the yield and performance of the generated architecture for ‘mi-

sex’ program. X-axis represents the relative performance indicated

by the post-mapping gate count. Y-axis represents the yield rate

simulated by IBM’s yield model [5]. The gp configurations are

four general purpose architectures and the eff-full represents the

architectures will all optimizations enabled in our design flow. It

can be observed that the eff-full architectures can provide similar

performance with 100 × −1000× yield rate improvement. We also

carefully designed breakdown experiments to study the effect of

different stages in the proposed design flow. Please kindly refer

to [17] for more design flow details and evaluation results on more

benchmarks.

4 SOFTWARE-HARDWARE CO-DESIGN FOR
QUANTUM COMPUTATIONAL CHEMISTRY

In the last section, we introduced a design flow that can gener-

ate a superconducting quantum architecture for a target quantum

program. However, this flow only starts from the low-level gate

sequence and only considers the two-qubit gate patterns of a spe-

cific program instance. Therefore, the architectures generated can

only accommodate the specific input program and may not support

other programs of the same category. In our follow-up work [18],

we overcome this shortcoming for the domain of computational

chemistry and co-design the software and hardware via the high-

level domain knowledge instead of the low-level program pattern.

The proposed solution is then applicable to the full family of com-

putational chemistry problems sharing a similar structure.

4.1 Variational Quantum Eigensolver, Ansatz,
and Pauli Strings

We select computation chemistry as our target because chemistry

simulation has many practical usages but large-scale chemistry sim-

ulation is intractable on classical computer. Quantum computers are

naturally suited to simulate chemistry system []. Variational Quan-

tum Eigensolver (VQE) [24] is the leading quantum algorithm with

q1

q0

q2

q3 In
it

ia
li

z
a

ti
o

n

M
e

a
s
u

re
m

e
n

t

……

UCCSD ansatz

e
x
p
(𝑖
𝜃
!
𝑋
𝑌
𝑋
𝑌
)

e
x
p
(𝑖
𝜃
!
𝑌
𝑋
𝑋
𝑌
)

e
x
p
(𝑖
𝜃
"
𝑍
𝑍
𝑍
𝑍
)

Figure 8: A VQE circuit example with UCCSD ansatz

modest resource requirement and some noise-resilience. Figure 8

shows a VQE circuit example. This circuit has three components,

the initialization, the ansatz (parameterized circuit), and the final

measurement which can obtain the expectation of an observable.

The initialization and the final measurement are shallow and the

majority of a VQE circuit is the ansatz. An ansatz is a parameter-

ized quantum circuit. When executing a VQE algorithm, a classical

optimizer will tune the parameters in the ansatz to minimize the

measured expectation value of an observable. For chemistry simu-

lation, the observable is usually the Hamiltonian (energy operator)

of the simulated system and minimizing the energy means that we

reach the ground state of the system. We refer [20] for a compre-

hensive introduction to quantum computational chemistry.

Since the majority of a VQE circuit is the ansatz, it naturally

becomes our optimization target. The ansatz design is critical to the

performance of a VQE algorithm since it determines how In this

paper, we focus on the UCCSD (Unitary Coupled Cluster Singles

and Doubles) chemistry-inspired ansatz [24] which the ‘standard’

ansatz for chemistry simulation. Usually, it can be expected that

tuning the parameters in UCCSD can yield a good approximation

of the true ground state. However, the size of a UCCSD ansatz is

very large with 𝑂 (𝑛4) parameters (𝑛 is the number qubits). In the

quantum circuit, the UCCSD ansatz is turned into a series of circuit

blocks and each block is a Pauli string simulation circuit block,

which will be introduced later in this section.

q0

q1

q2

q3

θ

θ

(c)θ
R θ

θ
θ

q0

q1

q2q3

θ

θ

θ
θ

θ
θ

q0

q1

q2

q3

q0 q1

θ

θ

(b)

θ
θ

θ
R θ

q0 q1 q2 q3

Three equivalent synthesis r θ

θ

θ
θ

θ
θ

q0

q1

q2

q3

q1 q

θ

θ

(d)

θ
θ

R θ
θ

q1 q3 q0q2

lts for: exp(iθZ Z Z Z)

θ

θ
θ

θ
θ

CNOT gates in a 4-qubit Pauli string simulation

Figure 9: Three different valid CNOT trees

Before introducing the Pauli string simulation circuit, we first

define the Pauli string. An 𝑛-qubit Pauli string 𝑃 is an array of

𝑛 operators (on the 𝑛 qubits), each of which is one of the three

Pauli operators {𝑋,𝑌, 𝑍 } or the identity operator 𝐼 . For example,

𝑃 = 𝑋𝑌𝐼𝑍 is a 4-qubit Pauli string. A Pauli string simulation circuit

is to implement 𝑒𝑥𝑝 (𝑖𝜃𝑃). In such a circuit block, the two-qubit

CNOT gates have a unique pattern. All qubits whose operators are

not the identity operator will be connected by the CNOT gates in a

(a) Ansatz Compression (b) XTree Architecture (c) Block-Wise Compilation

IIXY

IIYX

……

XYXY

YXXY

IIII

ZZZZ

……

XXXX

XXYY

Ansatz: Hamiltonian:

Sparse connection

q0 q1

q2 q3

exp(𝑖𝜃𝑋𝑌𝑋𝑌) q0

q1

q2

q3

Synthesize based on current mappingIdentify critical parameters

Figure 10: Overview of the Pauli-string-centric software-hardware co-design

tree structure while the exact structure of the CNOT tree can be

flexible. For example, Figure 9 shows three valid tree structures of

a 4-qubit Pauli string simulation circuit. The circuits are shown on

the upper half and the corresponding tree graphs are below the

circuits.

4.2 Pauli-String-Centric Co-Designing

It can be observed that the Pauli string is the central building block

of VQE chemistry simulation. The ansatz consists of an array of

Pauli string simulation circuits. These circuits have a unique CNOT

gate pattern that can be leveraged. Figure 10 shows the overview

of our co-design for variational quantum chemistry simulation. It

comes with three major components.

Ansatz Compression: In order to compress the ansatz and

prune some parameters, we need to identify critical parameters

that are expected to change the final measured energy most. As

shown in Figure 10 (a), we evaluate the importance of a parame-

ter by comparing the Pauli strings associated with this parameter

with the Pauli strings from the Hamiltonian of the simulated sys-

tem. This is possible because the Pauli simulation circuit can be

interpreted as a rotation along an axis in a high-dimensional space

and we can predict how it can change the projection along an

axis where the projection can be considered as a measurement.

After selecting the important parameters, we also order them in

a hardware-friendly order so that the constructed ansatz can be

better mapped to hardware later.

XTree Architecture: As explained in the last section, we hope

to reduce the number of qubit connections for a higher yield rate.

Since the UCCSD ansatz is composed of a series of Pauli string

simulation circuits and the CNOT gates are in a tree structure, we

can naturally connect the physical qubits in a tree structure (e.g.,

Figure 10 (b)). This can be very efficient since the tree structure

requires the minimum number of connections to connect all qubits.

Block-Wise Synthesis & Mapping: Finally, our compiler will

deploy the VQE circuit onto the XTree architecture. This requires

careful optimization algorithm design since a sparse architecture

like the XTree usually incurs very high mapping overhead. As

shown in Figure 10 (c), the key to our compilation to find the tree

structure that fit the current mapping best. For example, the four

qubits in Figure 10 (c) are on a XTree architecture. Our compiler

will generate the CNOT tree on the right which does not require

any SWAP operations.

E
n

e
rg

y
 (

H
a

rt
re

e
)

E
n

e
rg

y
 d

if
fe

re
n

ce
#

 o
f

it
e

ra
ti

o
n

s

Figure 11: Simulation results of LiH and NaH

Figure 11 shows the VQE simulation results of LiH and NaH

molecules. We compress the UCCSD ansatz and only keep a por-

tion of the critical parameters. ‘10%-90% Param.’ represent that we

keep 10%-90% of the parameters. The ‘Ground State’ is the theoreti-

cal true value. The ‘Orig. UCCSD’ is the original UCCSD without

compression. The simulation accuracy loss is small since the simu-

lated energy difference is very small compared with the absolute

simulated energy. Small-size ansatzes are also faster and require

fewer iterations to converge. For the hardware and compiler, The

XTree architecture with sparse qubit connection has a higher yield

rate compared with conventional grid architecture and the map-

ping overhead can be almost eliminated through our block-wise

synthesis and mapping. Please kindly refer to [18] for more co-

design details and evaluation results on more molecules of different

structures and sizes.

5 CONCLUSION AND FUTURE DIRECTIONS

In this review, we demonstrated that the quantum system perfor-

mance and efficiency can be significantly improved through co-

designing the software and hardware. We introduced some of the

previous works on quantum compiler, superconducting quantum

processor, and solving quantum computational chemistry aligned

with the co-design principle. In the rest of section, we will dis-

cuss some potential research direction from both the hardware

technology side and the software application side.

5.1 Co-Design beyond Superconducting Qubits

The reviewed works are mostly on the superconducting quantum

computing technology because it is one of the leading technolo-

gies in this area and has been adopted by many vend. Meanwhile,

there are several other promising technology candidates whose

architecture design space is not yet fully explored. For example,

for an ion trap quantum computer, one trap cannot maintain many

ions without losing good qubit addressability and multiple traps

would desirable when scaling up. The number of ions in each trap

and the interconnection topology of multiple traps can customized

according to the target application.

Going beyond the near-term noisy devices, the co-design for

future fault-tolerant quantum computers is also worth to study.

Comparing with near-term quantum computing systems, the sys-

tem of a fault-tolerant quantum computer has one more abstraction

layer, the quantum error correction [19], in the middle of the sys-

tem stack to provide long-living logical qubits and precise logical

operations to the quantum programs. The quantum error correc-

tion protocols can be co-designed with respect to the underlying

hardware or high-level application.

5.2 Co-Design beyond Quantum Chemistry

The application of quantum computing is far beyond the scope

of chemistry simulation and there are many other domains. For

example, quantum machine learning is another leading candidate

application of practical quantum computing.We argue that enabling

effective co-design in new domain requires new proper abstractions

that can guide the design of software and hardware. For example,

our co-design in [18] targeting the quantum chemistry simulation

application was carried out through a key concept, Pauli string,

which coordinates the design and optimization at different system

technology stacks. It is not known what abstractions we should use

for software-hardware co-design in other application domains.

One candidate algorithmic target of co-design is the Boolean

function because many quantum algorithms [23] involve an oracle

that is a subroutine implementing a quantum version of the classical

Boolean function. Previous works [28] have studied the compila-

tion of classical oracle as they are abstracted in a Boolean func-

tion hardware-independently and application-independently. The

compilation of classical oracles can possibly be improved through

software-hardware co-design and then benefit a wide range of

quantum algorithms.

ACKNOWLEDGMENTS

We thank Dr. Swamit Tannu for the invitation and Dr. Sergi Abadal

for the help with editing and publishing. This work was supported

in part by NSF 1925717 and 2048144. G. L. was in part funded by

NSF QISE-NET fellowship under the award DMR-1747426.

REFERENCES
[1] Ali J Abhari et al. 2012. Scaffold: Quantum programming language. Technical

Report. PRINCETON UNIV NJ DEPT OF COMPUTER SCIENCE.

[2] MD SAJID ANIS et al. 2021. Qiskit: An Open-source Framework for Quantum
Computing. https://doi.org/10.5281/zenodo.2573505

[3] JM Arrazola et al. 2021. Quantum circuits with many photons on a programmable
nanophotonic chip. Nature 591, 7848 (2021), 54ś60.

[4] Jacob Biamonte et al. 2017. Quantum machine learning. Nature 549, 7671 (2017),
195ś202.

[5] Markus Brink et al. 2018. Device challenges for near term superconducting
quantum processors: frequency collisions. In 2018 IEEE International Electron
Devices Meeting (IEDM). IEEE, 6ś1.

[6] Colin D Bruzewicz et al. 2019. Trapped-ion quantum computing: Progress and
challenges. Applied Physics Reviews 6, 2 (2019), 021314.

[7] Andrew W Cross et al. 2021. OpenQASM 3: A broader and deeper quantum
assembly language. arXiv preprint arXiv:2104.14722 (2021).

[8] Michel H Devoret and Robert J Schoelkopf. 2013. Superconducting circuits for
quantum information: an outlook. Science 339, 6124 (2013), 1169ś1174.

[9] Edward Farhi et al. 2014. A quantum approximate optimization algorithm. arXiv
preprint arXiv:1411.4028 (2014).

[10] Iulia M Georgescu et al. 2014. Quantum simulation. Reviews of Modern Physics
86, 1 (2014), 153.

[11] IBM. 2018. IBM Q Experience Device. https://www.research.ibm.com/ibm-
q/technology/devices/.

[12] Ali JavadiAbhari et al. 2014. ScaffCC: a framework for compilation and analysis
of quantum computing programs. In Proceedings of the 11th ACM Conference on
Computing Frontiers. ACM, 1.

[13] David Kielpinski et al. 2002. Architecture for a large-scale ion-trap quantum
computer. Nature 417, 6890 (2002), 709ś711.

[14] Jens Koch et al. 2007. Charge-insensitive qubit design derived from the Cooper
pair box. Physical Review A 76, 4 (2007), 042319.

[15] Philip Krantz et al. 2019. A quantum engineer’s guide to superconducting qubits.
Applied Physics Reviews 6, 2 (2019), 021318.

[16] Gushu Li et al. 2019. Tackling the qubit mapping problem for nisq-era quan-
tum devices. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. ACM,
1001ś1014.

[17] Gushu Li et al. 2020. Towards efficient superconducting quantum processor
architecture design. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems. 1031ś
1045.

[18] Gushu Li et al. 2021. Software-Hardware Co-Optimization for Computa-
tional Chemistry on Superconducting Quantum Processors. arXiv preprint
arXiv:2105.07127 (2021).

[19] Daniel A Lidar and Todd A Brun. 2013. Quantum error correction. Cambridge
university press.

[20] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C Benjamin, and Xiao
Yuan. 2020. Quantum computational chemistry. Reviews of Modern Physics 92, 1
(2020), 015003.

[21] Alexander Mccaskey et al. 2021. Extending C++ for Heterogeneous Quantum-
Classical Computing. ACM Transactions on Quantum Computing 2, 2, Article 6
(July 2021), 36 pages. https://doi.org/10.1145/3462670

[22] Jarrod R McClean et al. 2020. OpenFermion: the electronic structure package for
quantum computers. Quantum Science and Technology 5, 3 (2020), 034014.

[23] Michael A Nielsen and Isaac L Chuang. 2010. Quantum Computation and Quan-
tum Information. Quantum Computation and Quantum Information, by Michael A.
Nielsen, Isaac L. Chuang, Cambridge, UK: Cambridge University Press, 2010 (2010).

[24] Alberto Peruzzo et al. 2014. A variational eigenvalue solver on a photonic
quantum processor. Nature communications 5 (2014), 4213.

[25] Chad Rigetti and Michel Devoret. 2010. Fully microwave-tunable universal gates
in superconducting qubits with linear couplings and fixed transition frequencies.
Physical Review B 81, 13 (2010), 134507.

[26] Sami Rosenblatt et al. 2019. Enablement of near-term quantum processors by
architectural yield engineering. Bulletin of the American Physical Society (2019).

[27] Sami Rosenblatt et al. 2019. Laser annealing qubits for optimized frequency
allocation. US Patent App. 10/340,438.

[28] Vivek V Shende et al. 2006. Synthesis of quantum-logic circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 25, 6 (2006), 1000ś
1010.

[29] Peter W Shor. 1999. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review 41, 2 (1999), 303ś332.

[30] Marcos Yukio Siraichi et al. 2018. Qubit allocation. In Proceedings of the 2018
International Symposium on Code Generation and Optimization. ACM, 113ś125.

[31] Krysta Svore et al. 2018. Q#: Enabling scalable quantum computing and devel-
opment with a high-level dsl. In Proceedings of the Real World Domain Specific
Languages Workshop 2018. ACM, 7.

[32] Alwin Zulehner et al. 2018. Efficient mapping of quantum circuits to the IBM
QX architectures. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2018. IEEE, 1135ś1138.

https://doi.org/10.5281/zenodo.2573505
https://www.research.ibm.com/ibm-q/technology/devices/
https://www.research.ibm.com/ibm-q/technology/devices/
https://doi.org/10.1145/3462670

	Abstract
	1 Introduction
	2 Mapping Quantum Software onto Quantum Hardware Architecture
	2.1 Background
	2.2 SABRE Algorithm: Key Ideas

	3 Quantum Hardware Architecture Design for Quantum Software
	3.1 Frequency Collision & Yield Problem
	3.2 Efficient Architecture Design: Overview

	4 Software-Hardware Co-Design for Quantum Computational Chemistry
	4.1 Variational Quantum Eigensolver, Ansatz, and Pauli Strings
	4.2 Pauli-String-Centric Co-Designing

	5 Conclusion and Future Directions
	5.1 Co-Design beyond Superconducting Qubits
	5.2 Co-Design beyond Quantum Chemistry

	Acknowledgments
	References

