
ENMC: Extreme Near-Memory Classification via Approximate
Screening

Liu Liu∗
liu_liu@ucsb.edu
UC Santa Barbara

USA

Jilan Lin∗
jilan@ucsb.edu

UC Santa Barbara
USA

Zheng Qu
zhengqu@ucsb.edu
UC Santa Barbara

USA

Yufei Ding
yufeiding@cs.ucsb.edu

UC Santa Barbara
USA

Yuan Xie
yuanxie@ece.ucsb.edu
UC Santa Barbara

USA

ABSTRACT
Extreme classification (XC) is the essential component of large-scale
Deep Learning Systems for a wide range of application domains,
including image recognition, language modeling, and recommen-
dation. As classification categories keep scaling in real-world appli-
cations, the classifier’s parameters could reach several thousands
of Gigabytes, way exceed the on-chip memory capacity. With the
advent of near-memory processing (NMP) architectures, offloading
the XC component onto NMP units could alleviate the memory-
intensive problem. However, naive NMP design with limited area
and power budget cannot afford the computational complexity of
full classification. To tackle the problem, we first propose a novel
screening method to reduce the computation and memory con-
sumption by efficiently approximating the classification output and
identifying a small portion of key candidates that require accu-
rate results. Then, we design a new extreme-classification-tailored
NMP architecture, namely ENMC, to support both screening and
candidates-only classification. Overall, our approximate screening
method achieves 7.3× speedup over the CPU baseline, and ENMC
further improves the performance by 7.4× and demonstrates 2.7×
speedup compared with the state-of-the-art NMP baseline.

CCS CONCEPTS
•Computer systems organization→Neural networks; •Hard-
ware→ Memory and dense storage.

KEYWORDS
Near-memory processing, Extreme classification

ACM Reference Format:
Liu Liu, Jilan Lin, Zheng Qu, Yufei Ding, and Yuan Xie. 2021. ENMC: Extreme
Near-Memory Classification via Approximate Screening. In MICRO’21: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8557-2/21/10.
https://doi.org/10.1145/3466752.3480090

’21), October 18–22, 2021, Virtual Event, Greece. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3466752.3480090

1 INTRODUCTION
Recent advances in many machine intelligence areas, such as nat-
ural language processing (NLP) [30, 37, 40], image recognition
[27, 39, 50], and recommendation[24, 35, 47], involve tackling the
extreme classification problem, where classification category size
is extreme large. For example, in the NLP domain, making pre-
dictions is basically classifying the words with high probabilities.
Similarly, for image recognition tasks and recommendation tasks,
the features generated from hidden neural network layers need to
go through the classification layer to output predictions. As shown
in Fig. 1, extreme classification is the essential component to deal
with large-scale problems.

A

h1

x1

A

h2

x2

A

h3

x3

…

…

…
…

Dense
Features

Sparse
Features

Face
Recognition

Language
Modeling

Recommendation
System

10k-1M
Categories Predictions

Extreme Classification

30%~60% Runtime Overhead

W

Figure 1: Extreme Classification serves as the common com-
ponent of large-scaleDeep Learning applications. The classi-
fier processeswith hidden representations fromapplication-
specific hidden layers and generates predictions as used in
recognition, language, and recommendation.

As classification categories keep scaling in real-world applica-
tions, the classifier’s parameters could reach hundreds of gigabytes,
far beyond the on-chip memory capacity. For large-scale NLP mod-
els, the vocabulary sizes are in the range of hundreds of thousands,
contributing hundreds of megabytes data [40, 42]. For recommen-
dation systems, using commodity datasets to solve industry-level
problems would require classification on the scale of 100M cate-
gories [27, 39], consuming around 190GB memory.

Due to the large memory footprint of extreme classification, ac-
cessing system memory for the classifier’s weight data becomes

https://doi.org/10.1145/3466752.3480090
https://doi.org/10.1145/3466752.3480090

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Liu Liu, Jilan Lin, ZhengQu, Yufei Ding, and Yuan Xie

A

h1

x1

A

h2

x2

A

h3

x3

…

…

…

…

Dense
Features

Sparse
Features

Softmax-Memory (To be more detailed)

CX
L

/ G
en

-Z
 /

O
pe

nC
AP

I /
…

DR
AM

DR
AM

DR
AM

DR
AM

DR
AM

DR
AM

DR
AM

DR
AM

ßß

Lightweight Classifier

ScreenerExecutor

Host

Application Frontend Screening Algorithm ENMC DIMM Architecture

Extracted
Feature Projectio

n x Approximate Weight

Candidate-Only Classification

x
Full

Streaming Process

Streaming

Process

Figure 2: The overview of our Approximate Screening algorithm and NMP architecture co-design. Instead of full classification,
our co-design essentially performs candidates-only classification, where the candidates are based on the screening method.
Our NMP architecture design features a Screener and an Executor to collaboratively process candidates-only classification.

the bottleneck of system performance. We characterize the state-of-
the-art Transformer-based language model [33] and show that the
final classification layer consumes 50% of overall model inference
time. While GPUs and specialized accelerators can boost the per-
formance of DNN layers [6, 14], they suffer from inter-device data
movements when executing the memory-intensive classification
layer, as the memory usage exceeds device memory capacity.

Emerging Near-Memory Processing (NMP) technologies [15,
20] have the potential to address the memory-bound problem of
extreme classification. However, naive NMP designs cannot support
the computational complexity of full classification due to the area
and power limitations. Even the classifier weight data are stored
and processed near-memory, the low operational intensity of linear
transformation, which is basically matrix-vector multiplication, is
still causing performance degradation when accessing weight data
from DRAM modules.

Therefore, we propose the first end-to-end solution to address
the memory-bound problem of extreme classification with NMP
architecture. Fig. 2 gives an overview of the proposed software
and hardware co-design. To reduce the overhead of classification,
we propose an approximate screening algorithm that directly re-
duces the required computations and data access involved in linear
transformations. As demonstrated in Fig. 2, given the extracted fea-
ture vectors from the application front-end, a learned lightweight
classifier firstly performs approximate classification to efficiently
identify the set of important candidates in the category space. Af-
terwards, the classifier will trigger candidates-only computation
to generate accurate classification results, while the rest can di-
rectly utilize the approximate results computed from the screening
phase. Therefore, a large amount of computations and data load-
ing of classification are saved. Our experiments (Section 7.1) show
that the proposed screening method achieves better trade-off for
classification accuracy and computation saving, compared with
conventional low-rank approximation-based method [37].

To fully leverage the approximate screening method, we fur-
ther propose the Extreme Near-Memory Classification architec-
ture, namely ENMC. Here we highlight the key features of our
ENMC design as follows: Firstly, as shown in Fig. 2, we deploy
a dual-module architecture that contains a Screener module and

an Executor module that run in parallel. The Screener performs
approximate screening efficiently, as described in Section 5, and
predicts the classification candidates in advance. For each candidate
selected in a batch, the ENMC controller will generate instructions
for accurate computations handled by the Executor. The computing
modules are deployed at the rank level such that there is no need
to invade the DRAM chips. Secondly, we design the ENMC instruc-
tion set to facilitate the workloads accommodation between host
processor and ENMC, and support the communications between
the Screener and the Executor. We define the instruction format
by leveraging the reserved command space so that it is compati-
ble with the commodity DDR interface. Thus, our ENMC DIMM
can also support regular memory requests. Finally, we provide the
system-level design, including application workflow and program
compiler support, to make the ENMC architecture cooperate with
the software framework. Our design could be easily extended no
matter the host processors are CPUs, GPUs, or domain-specific
accelerators.

Our contributions are as follows:

• We study extreme classification in different applications and
identify the memory-bound problem (Section 3).

• We present the approximate screening method to signif-
icantly reduce the computational complexity of extreme
classification by selecting key candidates and avoiding full
classification (Section 4). The evaluation results show that
our approximate screening method boosts the classification
performance by 7.3×.

• Wepropose the near-memory architecture design, i.e., ENMC,
with support for the Screener and the Executor (Section 5).

• We build a cycle-accurate simulator that interfaced with
Ramulator [18] to evaluate the performance of ENMC, and
it provides 7.4× average speedup over the CPU baseline
and 2.7× speedup compared with the state-of-the-art NMP
baseline.

We introduce the preliminary background in Section 2 and dis-
cuss our evaluation methodology and experimental results in Sec-
tion 6 and Section 7.

ENMC: Extreme Near-Memory Classification via Approximate Screening MICRO ’21, October 18–22, 2021, Virtual Event, Greece

2 PRELIMINARIES
In this section, we first introduce the preliminary background for
future discussions, including extreme classification workloads, sys-
tem architectures for inference, and near-memory processing tech-
niques.

2.1 Extreme Classification
The Extreme Classification problem refers to multi-class or multi-
label classification with extremely large category volume. Many
large-scale NLP and recommendation applications can be modeled
as a feature extraction part with an extreme classifier. For example,
in NLP applications, the typical sequence-to-sequence modeling
consists of a stack of encoders, a stack of decoders, and a final
classification layer [29, 40, 44]. Each encoder and decoder is a type
of DNN layer, such as Transformer layers [42] and recurrent neural
networks [44]. The encoders process input embeddings into hidden
representations repeatedly. The decoders that attend over all hidden
states from the encoder stack process queries from the previous
decoder layer and output decoded hidden vectors. The final classi-
fication layer turns the hidden vector from the last decoder layer
into a translated word as in translation tasks or probabilities as in
language modeling tasks. The classification layer consists of a large
linear layer followed by a softmax layer. One way to interpret the
linear layer is performing the inner-products of the hidden vector
from the decoder stack and a number of weight vectors, which
correspond to the target vocabulary size. The softmax function
then normalizes the inner-products into probabilities.

Also, in large-scale recommendation systems such as commodity
product recommendation and webpage recommendation, extreme
classification refers to the problem of multi-class prediction [4, 24,
27, 39]. First, the hidden layers, e.g., DNNs, take dense features and
sparse features from users as input. Then, the classification layer
maps the output of the last hidden layer, usually through softmax
normalization, to a probability distribution. For real-world scenarios
and next-generation applications, the final classification layer is
becoming even more challenging as the computational complexity
and the memory usage grows linearly with the category size.

2.2 System Architecture
GPUs and domain-specific accelerators are widely used to process
compute-intensive models in the front-end, such as CNNs, RNNs,
and Transformers [42]. In contrast, for memory-intensive front-
ends like recommendation models and embedding look-ups, CPUs
are more favored because of the larger memory capacity. In these
scenarios, the processing units (CPU/GPU/accelerator) typically
allocate the classification parameters in the local memory, as shown
in the Figure 3(a).

As we point out in the Section 2.1, the tremendous classifica-
tion categories essentially need enormous memory capacity. For
example, the largest dataset in an academic extreme classification
repository [4] consists of 3 million categories, while industries have
reported 50 million to 100 million categories used in classification
[27, 39]. With the hidden size of 512, the memory usage of classifi-
cation alone is reaching 190GB. The need for memory is increasing
with the scaling of problem size in applications, easily exceeds
the device memory capacity and even system memory capacity.

CPU

DIMM 0

DIMM 1

DIMM 0

DIMM 1
CH 0 CH 1

CXL / Gen-Z / OpenCAPI Fabric

CPU GPU Accelerator

DIMM 0

DIMM 1

DIMM 0

DIMM 1

DIMM 0

DIMM 1

DIMM 0

DIMM 1

Media Controller

(a) (b)

Figure 3: The system architecture of classification work-
loads: (a) Host-only system; (b) A pooled memory architec-
ture to extend the memory capacity.

Therefore, we also consider the system architecture employing a
memory pool to store the classification parameters, as shown in
Figure 3(b). Facilitated by emerging memory protocols such as Gen-
z [19], GPUDirect [36], CXL [41], etc., the pooled memory could
easily stack from 1TB to 10TB DRAMs to tackle the application
requirement.

2.3 Near-Memory Processing
As DNNs now appear to overwhelm almost every domain in our
daily life and such applications are increasingly bandwidth-hungry,
near-memory processing (NMP) technique is getting growing at-
tention to accelerate these workloads. Leveraging the large internal
bandwidth provided by rank parallelism or inside thememory chips,
conventional NMPs put customized computation logic beside the
data and saves the system bandwidth and memory access latency.

Different NMP techniques can be categorized by the distance
between the computation logic andDRAMcell array. Herewe gener-
ally refer two types of NMP techniques for a DRAM-based memory
subsystem: intrusive and non-intrusive NMP. The intrusive NMP
hacks the architecture inside the DRAM device, and the computa-
tion logic could be placed at the logic die for a 3D-stacking DRAM
module [2, 16, 17, 31, 49], or directly beside the DRAM banks to
gain higher bandwidth [10, 11, 22, 38, 46]. The non-intrusive NMP
makes use of the rank-level parallelism in the current memory
hierarchy. It tries to leverage commodity DRAM chips and places
the processing unit at each rank on the DIMM, and thus higher
bandwidth can be achieved with multiple ranks in a memory chan-
nel [15, 20, 21]. Our ENMC design takes the non-intrusive NMP
approach since it requires minimized hardware changes in existing
DRAM technology and does not need the support from the DRAM
vendors.

3 MOTIVATION
As discussed in Section 2, the classification layer is the essential
component in NLP tasks and large-scale recommendation systems.
In Figure 4, we show the breakdown of model parameters and
operations into classification and non-classification, i.e., input em-
bedding and hidden layers. For the three NLP tasks, classifiers
consume a significant amount of parameters and operations. When

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Liu Liu, Jilan Lin, ZhengQu, Yufei Ding, and Yuan Xie

classification category sizes scale to millions as in large-scale rec-
ommendation, classification layers become the major bottleneck.
We observe similar breakdown on execution time.

0
20
40
60
80
100

GN
MT
-E3
2K

LS
TM
-W
33
K

Tr
an
sfo
rm
er
-W
26
7K

XM
LC
NN
-6
70
K

XM
LC
NN
-S1
M

XM
LC
NN
-S1
0M

XM
LC
NN
-S1
00
M

Pe
rc
en
ta
ge
(%
) (a) Parameter Breakdown

Classification Non-Classification

0
20
40
60
80
100

GN
MT
-E3
2K

LS
TM
-W
33
K

Tr
an
sfo
rm
er
-W
26
7K

XM
LC
NN
-6
70
K

XM
LC
NN
-S1
M

XM
LC
NN
-S1
0M

XM
LC
NN
-S1
00
M

Pe
rc
en
ta
ge
(%
)

(b) Operation Breakdown

Classification Non-Classification

Figure 4: The breakdown of parameters and operations into
classification and non-classification. Classification layers
consume a large portion and become the bottleneck when
categorize sizes scale.

3.1 Opportunity
The root cause for extreme classification being the bottleneck is
from the large memory footprint and the low operational intensity.
We show in Fig. 5(a) that classifiers consume memory in the order
of hundreds megabytes or even gigabytes, far beyond the on-chip
memory capacity of modern GPUs or NPUs. The execution time
of classification increases linearly with category size and hidden
dimensions. From the perspective of DL practitioners and algorithm
developers, using larger vocabulary or category and hidden dimen-
sions is almost always a way to improve model quality. However,
the increasing memory usage will worsen the memory-bounded ex-
ecution problem. For recommendation systems, the increasing need
for an enormous number of items results in even more challenging
requirement to accommodate the classifier.

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E-3

1E-2

1E-1

1E+0

1E+1

GN
MT
-E
32
K

LS
TM
-W
33
K

Tr
an
sfo
rm
er
-W
26
7K

XM
LC
N
N-
67
0K

XM
LC
N
N-
S1
M

XM
LC
N
N-
S1
0M

XM
LC
N
N-
S1
00
M

T
im
e
(m
s)

Execution Time
Memory Footprint

Pe
rf
or
m
an
ce
(G
O
P/
s)

Operation Density (Ops/Byte)

Approx. Screening
Cand. Classification
Frontend Model

100

101

102

103

10-1 100 101 102 103
10-3

10-2

10-1

100

101

Time (s) Memory (MB)(a) (b)

Figure 5: (a) The memory footprint and the execution time
on CPU of classification layers scale linearly with the num-
ber of categories. (b) Roofline analysis of the major compo-
nents. Darker color indicates larger batch size.

Opportunity of approximation: In extreme classification, out-
puts from classifier are probabilities. While we should compute all
the outputs of the linear transformation using all classifier parame-
ters, many applications require only the probabilities of the most
top words. For example, in neural machine translation, we only use
the top-K values of softmax-normalized probabilities to select the
translated words, where K is the beam search size when applied.
Therefore, we could have only the top-K probabilities to be accu-
rate, then having the rest to be approximate, aiming at significantly
reduced computations and data accesses. In the next section, we

explore the opportunity of using approximation to achieve efficient
extreme classification.

Opportunity of NMP: Although approximation can greatly
reduce the computation amount in extreme classification, approx-
imate screening is still bounded by the memory bandwidth. As
shown in Fig. 5(b), we plot the data points for our approximate
screening, candidate-only classification, and front-end neural net-
works in a CPU’s roofline model. Both screening and classification
exhibit low operation intensity after we eliminate redundant com-
putations and reduce hidden dimensions. Therefore, different from
the front-end models that are often bounded by computation capa-
bility, approximate screening and candidate-only classification can
benefit from the large bandwidth of NMP architectures.

3.2 Limitations of Existing NMP
Asmentioned above, due to thememory-bounded execution pattern
of XC, NMP-enabled systems could leverage the near-data capability
to avoid significant amount of off-chip memory traffic. However,
existing NMPs often employ a homogeneous architecture equipped
with unified floating-point and integer compute units [3, 9, 20]. Our
proposed screening method explores a heterogeneous computation
pattern that includes a low-precision approximate screening phase
and a full-precision candidate-only classification phase. Therefore,
our NMP architecture features a dedicate resource management of
both phases and a customized pipeline design.

4 APPROXIMATE SCREENING
In Section 3, we discuss the potential of using NMP to alleviate the
memory pressure of executing extreme classification. However, the
limited computing capability of NMP logic cannot afford the com-
putations of extreme classification. In other words, the execution
of full classification on NMP core becomes the bottleneck.

We find that not all computations in classification are useful.
In fact, only a small portion of classification results contribute to
model predictions. For example, in language modeling tasks, only
output probabilities of the most important words need to be accu-
rate. Thus, we propose an efficient approximation method that can
estimate the subset of output probabilities that need accurate com-
putations and then populate the rest probabilities with approximate
results. Similarly, for other classification-involved tasks, we only
need accurate computations for a small number of key candidates
and use approximate results for the remaining outputs.

4.1 Screening Method Overview
Given a d-dimensional vector (ℎ ∈ R𝑑) from hidden DNN layers,
where 𝑑 is the hidden dimension, the softmax classification trans-
forms the hidden vector ℎ to a l-dimensional probability space.
We denote the output probability vector as 𝑧 ∈ R𝑙 , where 𝑙 is the
vocabulary size. The transformation is essentially matrix-vector
multiplication as

𝑧 =𝑊ℎ + 𝑏 (1)

where𝑊 ∈ R𝑙×𝑑 is the classifier weight matrix and 𝑏 ∈ R𝑙 is the
bias vector. Then, the softmax function normalize the output vector

ENMC: Extreme Near-Memory Classification via Approximate Screening MICRO ’21, October 18–22, 2021, Virtual Event, Greece

D
R
A
M

D
R
A
M

D
R
A
M

D
R
A
M

D
R
A
M

D
R
A
M

D
R
A
M

D
R
A
M

TremendousWeight

Prediction❹

Screening Algorithm ENMC DIMMArchitecture

d

𝑙 – Num Categories
d ×

Feature
= Classifications (Ideal Accuracy)

ScreeningWeight

𝑙k
×

Projected
Feature

= Approximations
(Degraded Accuracy)

k

❶ Screener Learning (Offline)

❷ Approximate Screening

❸ Threshold Filtering

× =
d

❹ Candidate-only Classification

❺ Classifications (NoAccuracy Loss)

(a)

(b)

(c)

Original Classification

Figure 6: Illustration of approximate screening: (1) the
screener learns from full classifier at the offline learning
phase; (2) the screening step computes approximate results,
involving lightweight Screener weights and the projection
matrix, and selects candidates among approximate results;
(3) the threshold filtering step selects key candidates; (4)
only the corresponding vectors in the full classification
weights are used to compute candidates-only accurate re-
sults; (5) the final results before softmax normalization com-
bine both approximate and accurate results.

𝑧 into probability distribution as

𝑝𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑧𝑖) =
𝑒𝑥𝑝 (𝑧𝑖)∑
𝑗 𝑒𝑥𝑝 (𝑧 𝑗)

(2)

where 𝑝𝑖 is the i-th element of output probability vector 𝑝 . The
probability vector is then used to perform next word predictions
as in language modeling or translation. While softmax is the most
common normalization function used in classification, our method
is capable to other non-linear functions used in classification such
as sigmoid [24].

As discussed in Section 3, the memory-intensive transformation
is a good candidate of NMP architectures. However, the computa-
tional complexity is not affordable for NMP. Our proposal seeks
redundancy in extreme classification and uses low-cost approx-
imated computations to mitigate the computational burden. We
introduce a low-dimensional and low-precision screening module
that can approximate the original classifier. We first discuss how to
reduce computations at inference time given the screening mod-
ule. After that, we explain the learning process to obtain such a
screening module.

4.2 Inference Process
As shown in Figure 6(a), the standard classification is essentially
matrix-vector multiplication followed by softmax normalization.
The execution is bounded by accessing𝑊 from DRAM modules.

We construct the approximate screening module with a projec-
tion matrix 𝑃 and a reduced-hidden-dimension weight matrix 𝑊̃ .

The initialization of the projection matrix is according to standard
sparse random projection [1], and the overhead is negligible (less
than 0.1%) compared with classifier weights as the projection ma-
trix 𝑃 can be represented in 2-bit format. The process of computing
approximate results can be expressed as

𝑧 = 𝑊̃ 𝑃ℎ + 𝑏 (3)

where 𝑊̃ ∈ R𝑙×𝑘 and 𝑃 ∈
√

3
𝑘
· {−1, 0, 1}𝑘×𝑑 .

Figure 6(b) illustrates the process: the d-dimensional hidden
vector ℎ is first projected to a lower k-dimensional space, and the
low-dimensional vector multiplies 𝑊̃ to get approximated output 𝑧.
Compared with full classification, the accessed approximate weight
volume is significantly reduced since 𝑘 << 𝑑 . Furthermore, we can
reduce the precision of running the screening module to further
reduce accessed data.

After obtaining the approximate results, i.e., 𝑧, we estimate the
importance of all 𝑙 values and select the most important𝑚 values,
referred as candidates, that require accurate computations. The
estimation can be donewith top-m searching or thresholding, where
the threshold value can be tuned on validation sets.

Only for the candidates that need accurate computations, our
method then need to access full classifier weights𝑊 , i.e., a small
portion of totally 𝑙 weight vectors. These weight vectors then multi-
ply with the original hidden vector to produce the accurate results
for the candidates, as shown in Figure 6(c). The final outputs before
softmax function is a mixed vector with approximate values from
screening and accurate values from full𝑊 .

Algorithm 1: Training algorithm for the parameters of the
Screener
Data: Batched context vectors {ℎ𝑖 }𝑆𝑖=1, where ℎ𝑖 ∈ R

𝑑 from
hidden layers; trained classifier weights𝑊 ∈ R𝑙×𝑑
and bias 𝑏 ∈ R𝑙 ; projection matrix 𝑃 .

Result: Screener weights 𝑊̃ ∈ R𝑙×𝑘 and bias 𝑏 ∈ R𝑙 .
1 Initialize projection matrix 𝑃 ∈

√
3
𝑘
· {−1, 0, 1}𝑘×𝑑 ;

2 for 𝑖𝑡 ∈ all iterations do
3 Compute loss according to Eq. (4);
4 Update 𝑊̃ , 𝑏 with 𝑆𝐺𝐷 (min 𝐿𝑜𝑠𝑠);
5 end

4.3 Learning Algorithm
Here, we discuss the learning procedure to obtain screening mod-
ule. The goal for screening is to approximate the classifier well.
Therefore, we regard the outputs 𝑧 from full classifier as the learn-
ing target and train the screening module weights 𝑊̃ to fit. The
optimization objective function is

𝐿 =
1
𝑠

∑
𝑠

| | (𝑊ℎ + 𝑏) − (𝑊̃ 𝑃ℎ + 𝑏) | |22 (4)

where 𝑠 is the mini-batch size of training samples. During training,
the classifier parameters, i.e.,𝑊 and 𝑏, as well as the parameters of
hidden layers are fixed and will not be changed. We only update the
screening module’s parameters 𝑊̃ and 𝑏. The projection matrix 𝑃

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Liu Liu, Jilan Lin, ZhengQu, Yufei Ding, and Yuan Xie

Index Buffer
⧁ ⧁ ⧁ ⧁

ECMC Inst?
Output Ctrl

Screening WeightHidden Features

⨂ ⨂ ⨂ ⨂
⨁ ⨁ ⨁ ⨁

Partial Sum

F W

⨂ ⨂
⨁ ⨁

PSum

Screener (INT4)

Threshold Filtering

indices

Special Function

Executor (FP32)
CMD Gen

DRAM Controller

Addr Gen
Req

Queue

ACT/PREC/ADDR

DDR C/A

Output Buffer

DDR C/A
ENMC Inst

DATA

Inst
FIFO

Candidate
Generator

DRAM DRAM DRAM DRAM DRAM DRAM DRAM DRAM

Status Regs

Inst Decoder

ENMC Controller

Processor

ENMC DIMM

Memory Controller

ENMC Inst. Encoder

ENMC DIMM

ENMC DIMM

ENMC DIMM

Rank.0
Rank.1

ENMC On-DIMM Logic

DIMM.0

Figure 7: The architecture overview of an ENMC DIMM. The ENMC logic is located at each rank to leverage the large rank-
level bandwidth. The ENMC mainly consists of a controller to decode instructions, a DRAM controller to generate DDR C/A
commands, a screener to perform approximation, and an executor to process full-precision classification.

is constructed and initialized before distillation and stays constant
during distillation and inference.

Our learning algorithm uses the default training and validation
datasets and does not need extra training data. The convergence
happens in a several training epochs, much faster than original
model training. Algorithm 1 gives the overall training of screening
parameters.

5 ENMC ARCHITECTURE
In this section, we introduce the architecture design of the ENMC.
We first give a glimpse of the design overview, followed by the
microarchitecture details. Then, we present the ENMC instruction
set and system-level design.

5.1 Design Overview
We have yet exploited the opportunity of eliminating the redun-
dancy in the extremely-large weight and forecasting the classifica-
tion results with much smaller overhead using lightweight screen-
ing algorithm. Although the computation bottleneck is alleviated
with our proposed approximate screening framework, the tremen-
dous classification dimension is still bandwidth-hungry, and con-
ventional processor-memory systems are hardly able to overcome
the memory throughput wall. Therefore, in this section, we further
co-architect the near-data processing subsystem, Extreme Near-
Memory Classifier (ENMC), to facilitate the processor computing
the extreme classification. The design goal of such near-data archi-
tecture is to leverage the large bandwidth provided by rank-level
parallelism in a DRAM channel, and process the classification in
data stream through dedicate on-DIMM hardware.

Specifically, we highlight the features of our ENMC design as
follows:

First, we deploy a dual-module architecture that contains a
Screener module and an Executor module that runs in parallel. The
Screener performs fixed-point screening as described in Section 4,

and predicts the classification candidates in advance. Since the clas-
sification weight is low-dimensional and quantized, the Screener is
able to process the data in a streaming manner, such that the large
rank-level bandwidth can be leveraged. For each candidate found in
a batch, the ENMC Controller will generate instructions for further
full-precision computations which are completed by the Executor.
We put these computation logic at the rank level such that there is
no need to invade the DRAM chips.

Second, we design the ENMC instruction set to facilitate the
workloads accommodation from host processors and support the
communications between the Screener and Executor modules. We
define the instruction format by leveraging the unused address
line and data line in the PRECHARGE command to ensure the
compatibility with the commodity DDR interface. Thus, regular
memory requests can also be served with our ENMC DIMM.

Third, we provide the system-level design, including the program
compiler support and application workflow , to make the ENMC
architecture cooperate with the software framework. Our design
could be easily extended to support different scenarios where the
host processors could be CPU, GPU, or domain-specific accelerators.

5.2 ENMC Microarchitecture
We now introduce the microarchitecture of ENMC. We first present
the design overview, followed by the implementation details of
each component.

Overview. We put ENMC on the DIMM board between the
DRAM devices and the DDR PHY, such that the host processor
could interface with ENMC through standard memory channels.
Fig. 7 illustrates the details of the proposed ENMC architecture.
The host processor contains several memory channels, which are
deployed as the ENMC DIMMs. The ENMC logic locates at each
rank of a ENMC DIMM, and thus enjoys scaling bandwidth offered
by larger number of ranks. The on-DIMM ENMC architecture con-
sists of a ENMC controller, a DRAM controller, and two processing
units: the Executor and the Screener. The ENMC controller buffers

ENMC: Extreme Near-Memory Classification via Approximate Screening MICRO ’21, October 18–22, 2021, Virtual Event, Greece

the instruction from the host processor for approximate screen-
ing. It also generates instructions for full-precision computation
according to the candidate indices provided by the Screener. Then,
it decodes the formatted instructions to generate control signals for
data access, computation, and output transmission. The DRAM con-
troller works as a simplified memory controller that processes data
access requests in ENMC instructions and generates the standard
DDR C/A signals to the DRAM chips. The Screener and Executor
take charge of the approximate screening and the full-precision
computation as described in Section 4.2, respectively. The Screener
performs dimension-reduced INT4 computations to efficiently ap-
proximate the classifier’s output. A preloaded threshold is used
to filter out the important candidates based on the approximate
results. Apart from floating-point arithmetic, the Executor is also
equipped with a special-function unit to process the non-linear
activation in the final layer. The two computation modules works
in parallel and write results to the output buffer that returns them
to the host processor asynchronously.

ENMC Controller. The ENMC controller has two main func-
tionalities: processing the instructions from host processor (i.e.,
screening computation) and generating instructions for the Execu-
tor (i.e., candidate-only computation). It is made of status register
files, an instruction buffer, an instruction decoder, and an instruction
generator. The status register files are used for ENMC initialization
and stores information such as addresses and sizes of input features,
vocabulary, and screening weight. It also includes the instruction
counter. The instruction buffer is a FIFO, and both the host proces-
sor and instruction generator could push instructions into it. The
instruction decoder sequentially reads from the FIFO and generates
control signals to corresponding ENMC components. For exam-
ple, an instruction of accessing a piece of tiled screening weight
would result in a read request to the DRAM controller and a select
signal to the top DEMUX that chooses the integer weight buffer.
Meanwhile, a full-precision computation instruction would lead to a
triggering signal to the floating-point MAC array, which reads data
from two input buffers and writes results to the partial sum (PSUM)
buffer. The instruction generator receives the indices of classifica-
tion candidates from the Screener (batch_id, candidate_id) , and
then reads the constant reg to generate corresponding instruction
for candidate-only computation in full-precision.

DRAM Controller. The DRAM controller employs a similar ar-
chitecture as the host-side memory controller and consists of a
request queue, a command generator, and an address generator. The
request buffer takes memory request from the ENMC controller.
The command and address generators initiate standard DDR4 C/A
signals that are sent to all the DRAM chips. For hardware simplic-
ity, we do not deploy unnecessary features like queue prioritizing,
request coalescing, etc.

Screener. The Screener processes the approximate screening
phase in the approximate screening algorithm with fixed-point
precision. We put two input buffers (feature buffer and screening
weight buffer), a fixed-point multiply-accumulate (MAC) array, a
partial sum (PSUM) buffer, a threshold filter, and an instruction
translator in the Screener. The MAC array performs the screening
computation over the two input buffers and accumulates with the
intermediate results in the PSUM buffer. After a tiled screening is
finished, the data in the PSUM buffer are filtered with a comparator

array. The indices of values larger than the threshold are buffered
and later sent to the ENMC controller.

Executor. The Executor computes candidate-only classification
under full-precision. Comparedwith the Screener, it applies floating-
point MAC array and has an extra special-function unit that per-
forms the non-linear activation such as Softmax and Sigmoid. We
also put an output buffer below the special-function unit, which
caches both the results from the Screener and the Executor. The
output buffer keeps the state of the data with status reg files and
notifies the ENMC controller (by pushing a RETURN instruction)
when finishing a batched/tiled data.

5.3 ENMC Instruction Set
The design goal of the ENMC instruction set is to make the host
processor able to communicate with ENMC DIMM through stan-
dard DDR4 memory channels. Inspired by FIRDRAM [22], we issue
ENMC instructions from the memory controller with PRECHARGE
command combining special addresses and data. For example, ac-
cording to the DDR4 JEDEC specification, for a 4Gb DIMM with 8
×8 DRAM chips, the row address space consumes 14 bits, i.e., A0-
A13 in the C/A bus, and the data bus is 64-bit. Normal PRECHARGE
command sets all the row address bits to be low, since no row in-
formation is needed. Therefore, an ENMC instruction could be
accommodated with sending a PRECHARGE command but turning
on the row address signals. Given this insight, we design the ENMC
instruction formatted in 13-bit command and 64-bit data that trans-
mits through signal A0-A12 and D/Q bus. With that, we first present
the instruction specification and explains the instruction in details.
Then, we define the instruction format.

Opcode=2 BufferID=0 BufferID=1

Opcode=9 RegID=7RD

MUL_ADD_FP32 buffer_0, buffer_1

QUERY reg_7

Opcode=9 RegID=7WT

INIT reg_7, v

5-bit 4-bit

5-bit

4-bit

5-bit1-bit

5-bit 5-bit1-bit

DATA

Figure 8: Instruction Format

Instruction Specification. As shown in Table 1, the ENMP in-
struction set consists of four types of instructions: Initialization,
Data Transfer, Compute, and Control. (a) Initialization. The initial-
ization instruction is used to write the status reg files in the ENMC
controller, in order to initiate the parameters of a classification
task. It specifies which reg to write and the corresponding value.
(b) Data Transfer. The data transfer instructions are used to access
the on-DIMM buffers, such as loading data to the input feature
buffer or writing back the results to the PSUM buffer with specific
addresses. Also, we use the instruction MOVE to transfer data in

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Liu Liu, Jilan Lin, ZhengQu, Yufei Ding, and Yuan Xie

Table 1: The ENMP instruction set

ENMC Instruction Set
Type Instruction Description
Initialization INIT reg, data Initialize the ENMC module by writing a particular register

Data Transfer
LDR buffer, addr
STR buffer, addr
MOVE buffer1, buffer2

load/store the quantized feature data into/from the INT4 feature buffer
(weight buffer, with specified address addr

Compute

ADD_INT4 buffer1, buffer2
MUL_INT4 buffer1, buffer2
ADD_FP32 buffer1, buffer2
MUL_FP32 buffer1, buffer2

add/multiply the data in two specified buffer buffer1, buffer2

MUL_ADD_INT4
MUL_ADD_FP32

multiply the data in feature buffer and weight buffer, and accumulate
they with the partial sum buffer

FILTER buffer filter the data in the specific buffer and write the results to the index buffer

SIGMOID, SOFTMAX special functions such as Sigmoid and Softmax that run on specialized hardware
for the data in the FP32 partial sum buffer

Control BARRIER, NOP synchronization and bubble instruction to let the controller wait for memory
accesses, compute operation, data movement, etc.

QUERY reg query the value in the specific reg
RETURN return the data in the output buffer
CLR clear and reset all buffers and registers

two buffers, such as storing results in the PSUM buffer to the out-
put buffer. (c) Compute. The compute instructions corresponds to
the computation operations in the two computing units, including
ADD, MUL, MUL_ADD, and denotes the operation precision. FIL-
TER instruction is used to filter out the candidates. There are also
instruction for special functions such as SOFTMAX and SIGMOID
that operate on the PSUM buffer in the Executor. (d) Control. The
control instructions include BARRIER for synchronization, NOP
for stalling, RETURN to send back the output buffer data, and CLR
to reset the ENMC. We also design a QUEUE instruction for the
host processor to pull the status counters in each component.

Instruction Format. As shown in the Fig. 8, a typical ENMC
command without data or address takes 13 bits, where the opcode
is 5 bits and the rest 8 bits are used to specify which buffer to
operate on. For example, Fig. 8(a) shows the instruction format
for performing multiply-accumulate in the Screener. For the status
register accessing instruction, QUERY and INIT shares the same
opcode, and we use one bit after opcode to specify the read or
write operation, and 5 bits to specify the register index, as shown in
Fig. 8(b). Moreover, for instructions that involves values (i.e., data
or address) that exceeds the length of row addresses, the DQ bus
is further utilized. For example, when the host processor tries to
write the status reg in the ENMC controller, the command address
bus specifies the write operand and the ID of target regwith INIT
instruction, and the DQ bus transmits the desired data in burst
manner following the ENMC command.

5.4 System Design
In this subsection, we further architect the system-level design to
facilitate existing software solutions running on the ENMCmemory.
We first present the programming support that wraps up ENMC
instructions into high-level APIs such that a program could call
the ENMC kernels directly. Second, we show the execution flow
to demonstrate how the host processor interacts with the ENMC
DIMM.

Illustrative Application Program

import ENMC

//Host Preprocess
model = app_model()
model = load(path)
...

//Initialize ENMC Params
ENMC.initial_classifier(\

model.classifier.w, model.classifier.b)
ENMC.initial_screener(\

model.proj_M, model.screen_w, model.screen_b)

for (batch_id, x) in batched_dataset:
//Host Inference
x = model.lstm(x)

//ENMC Classification
x = model.classifier(batch_id, x)

NEC Instructions
LOAD_FEA_INT4 0x4fe3
LOAD_W_INT4 0x4a62
MUL_ADD_INT4 fea_int4, w_int4
…
FILTER psum_int4
TRANSLATE
LOAD_FEA_FP32 0x4cea
LOAD_W_FP32 0x41eb
MUL_ADD_FP32 fea_FP32, w_FP32
…
RETURN spec_func, index

ENMC Instructions

//Initialization
INIT rx0, addr_w
INIT rx1, addr_b
INIT rx2, dim0_w
INIT rx3, dim1_w
...

//Run Classification
INIT r0, batch_id
INIT r1, batch_size
LOAD buffer0, 0x4cea4fe2
LOAD buffer1, 0xa1ebea62
MUL_ADD_INT4 buffer0, buffer1
LOAD buffer0, 0x4cea50e2
...
FILTER psum0
BARRIER
LOAD buffer2, 0xb2eef3a2
LOAD buffer3, 0xa97fac44
MUL_ADD_FP32 buffer2, buffer3
...

Figure 9: An illustrative example of programming support
of ENMC. The ENMC APIs are wrapped as high-level func-
tion libraries, which are further compiled into ENMC in-
structions.

Programming Support. Following previous NMP solutions [15,
20], we divide the application code into kernels running on the
host processor and ENMC in a heterogeneous manner. Therefore,
the host processor calls the provided APIs to offload specific clas-
sification tasks. Fig. 9(a) shows an illustrative application code
in Python style. We wrap up the functions that runs on ENMC
DIMM into a Python package, such as initializing the Screener and
screening-based classification. Therefore, a programmer could build
a machine-learning model transparently using the ENMC package.
Inside an ENMC object of classifier, we implement the approximate
screening algorithm in the forward function with pretrained projec-
tion matrix and screening weight. Furthermore, when translating
the applications into ENMC instructions, the compiler tiles the
operation with initialized parameters and hardware configurations
and executes the instruction in a loop. The ENMC instructions are
further packed into a memory request packet and routed to the

ENMC: Extreme Near-Memory Classification via Approximate Screening MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Table 2: Evaluated models and datasets.

Application Dataset Dataset Type Num. Categories Inference Model Model Type Hidden Size Abbr.
NLP Wikitext-2 Language Modeling 33,278 LSTM RNN 1500 LSTM-W33K
NLP Wikitext-103 Language Modeling 267,744 Transformer DNN 512 Transformer-W268K
NMT WMT16, en-de Translation 32,317 GNMT DNN 1024 GNMT-E32K

Recommendation Amazon-670k Multi-label Classification 670,091 XMLCNN CNN 512 XMLCNN-670K

memory controller, which transmits them to the ENMC DIMM, as
shown in Fig. 9(b).

Execution Timeline

Prep. DNN/Non-DNN
Inference

ENMC
Inst.

DNN/Non-DNN
Inference

ENMC
Inst.

Prep. DNN/Non-DNN
Inference

Extreme
Classification

DNN/Non-DNN
Inference

Extreme
Classification

Host-only System

Scr.
Can.

Scr.
Can.

ENMC System

Batch 0 Batch 1

Host

Memory Access Memory Access

Processor

ENMC DIMM

Memory Controller
ENMC Inst. Encoder

ENMC DIMM

ENMC DIMM

ENMC DIMM

Host

ENMC

Mem
ReqMe
m
Req

Figure 10: The ENMC workflow compared with a host-only
system. ENMC offloads the classification tasks to the ENMC
DIMMs by sending the instructions as memory requests
through the memory controller.

Execution Flow. Fig. 10 presents the ENMCworkflow compared
with a host only system. The execution of front-end feature extrac-
tion (DNN-based or non-DNN-based) and the classification can be
treated in a decoupled way. To be more specific, the host in the
ENMC system is dedicated to run the feature extraction and offloads
the classification tasks to the ENMC memory. The ENMC memory
works as a regular main memory for data accessing in the first
phase, and performs screening approximation and candidate-only
classification in the second phase.

6 EVALUATION METHODOLOGY
In this section, we discuss the methodology of evaluating the ENMC
co-design, including the implementation details and performance
metrics.

6.1 Software Evaluation
We implement the approximate screening algorithm on top of exist-
ing pre-trained models in the PyTorch machine learning framework
[34]. The screening parameters are trained under mean-square-
error (MSE) loss using the original training and validation datasets
till convergence. Both the input features and the screening parame-
ters are further quantized at inference time. We set the number of
candidates, screening parameters size, and quantization precision
adjustable for sensitivity studies.

Workloads. We evaluate our method on different tasks includ-
ing Language Modeling (LM) [28], Neural Machine Translation
(NMT) [40], and product-to-product recommendation [26]. For LM,

we use the Wikitext-2 and Wikitext-103 datasets [29] and evaluate
on both long short-term memory networks (LSTM) and Trans-
former networks. For NMT, we use the WMT16 English-to-German
dataset and evaluate on Google’s Neural Machine Translation Sys-
tem (GNMT) [44]. For product recommendation, we use the Ama-
zon670K dataset [4] and evaluate on a Convolutional Neural Net-
work based model [24]. Table 2 lists the applications, the models,
and the datasets used in our evaluation, as well as the number of cat-
egories and the hidden dimensions. We also synthesize three larger
datasets with 1 million, 10 million, and 100 million categories to
study the scalability of ENMC (namely S1M, S10M, and S100M). For
detailed and reproducible implementation, we will submit our im-
plementation for artifact evaluation and open-source our repository
after the anonymous review process.

Baselines. For comparison, we include two other approximation
methods for classification: SVD-softmax [37] and FGD [48]. The
SVD-softmaxmethod leverages singular value decomposition (SVD)
to approximate the classification weight with principle singular
values; the FGD method uses graph-based nearest neighbor search
to approximate top-k classification results. We implement both
baselines in our PyTorch-based framework.

Table 3: ENMC Configurations

DRAM Configuration
Spec DDR4-2400MHz DRAM Chip 8Gb×8
Channels 8 Ranks/CH 8
Queue 64-entry Capacity/CH 64GB

Timing CL-tRCD-tRP: 16-16-16
tRC=55, tCCD=4, tRRD=4, tFAW=6

ENMC Configuration
Tech Node 28nm Frequency 400MHz
Executor
Buffer 256B+256B Screener

Buffer 256B+256B

FP32 MAC 16 INT4 MAC 128

6.2 Hardware Evaluation
We implement the ENMC logic in RTL and synthesize it with Design
Compiler for hardware parameters including timing, power, and
area. We build a cycle-accurate simulator for the ENMC DIMM
that interfaces with Ramulator [18] to derive the DRAM timing
information. Since the host processor and the ENMCDIMM execute
the feature extraction phase and the classification phase separately
without complicated feature interactions in between, we simulate
a simple host model that only issues ENMC instructions regularly
according to the status registers.

Configurations.As shown in Table 3, the ENMCDIMM is based
on DDR4-2400 specifications. Each rank consists of 8×8 DRAM

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Liu Liu, Jilan Lin, ZhengQu, Yufei Ding, and Yuan Xie

80

82

84

86

88

90

0 5 10 15

Pe
rp

le
xi

ty
(L

ow
er

 t
he

 B
et

te
r)

Computation Saving

(b) LSTM-W33K

AS (Ours) SVD

30

45

60

75

90

0 5 10 15 20 25

Pe
rp

le
xi

ty
(L

ow
er

 t
he

 B
et

te
r)

Computation Saving

(c) Transformer-W267K

AS (Ours) SVD

0

5

10

15

20

25

0 10 20 30

BL
EU

(H
ig

he
r

th
e

Be
tt

er
)

Computation Saving

(a) GNMT-E32K

AS (Ours) SVD

12

16

20

0 5 10 15 20 25 30 35

A
cc

ur
ac

y
(H

ig
he

r
th

e
Be

tt
er

)

Computation Saving

(d) XMLCNN-A670K

AS (Ours) SVD

5

10

15

20

25

0 5 10 15

BL
EU

(H
ig

he
r

th
e

Be
tt

er
)

Performance Speedup

AS (Ours)
SVD
FGD

82

84

86

88

90

0 2 4 6 8 10

Pe
rp

le
xi

ty
(L

ow
er

th
e

Be
tt

er
)

Performance Speedup

AS (Ours)
SVD
FGD

25

45

65

85

105

0 10 20 30

Pe
rp

le
xi

ty
(L

ow
er

th
e

Be
tt

er
)

Performance Speedup

AS (Ours)
SVD
FGD

5

10

15

20

0 10 20 30

A
cc

ur
ac

y
(H

ig
he

r
th

e
Be

tt
er

)

Performance Speedup

AS (Ours)
SVD
FGD

(a) GNMT-E32K (b) LSTM-W33K (c) Transformer-267K (d) XMLCNN-670K

Figure 11: Quality vs. Speedup trade-off of Approximate Screening (AS) and two baselines: SVD and FGD.

chips that add to a total capacity of 8Gb. We put 8 memory chan-
nels for the host processor, and there are 8 ranks per channel,
contributing to 64GB capacity and 21.3 GB/s bandwidth per chan-
nel. In addition, we synthesize our ENMC logic with TSMC 28nm
technology, running on the frequency of 400MHz. The two input
buffers and accumulation buffer in both Screener and Executor are
256B. We put 64 INT4 MACs and 16 FP32 MACs on each DIMM.
For non-linear activations in the executor, we approximate the
exponential function with Taylor expansion to the 4𝑡ℎ order.

Table 4: Comparing ENMC with three NMP baselines, all
configured with similar area and power budget.

NMP Designs Configuration Est. Area -𝑚𝑚2 Est. Power -𝑚𝑊

NDA [9] 4*4 Functional Units
+ 1KB Memory 0.445 293.6

Chameleon [3] 4*4 Systolic Array
+ 1KB Memory 0.398 249.0

TensorDIMM [20] 16-lane VPU
+ 512B Queue * 3 0.457 303.5

ENMC (Ours) FP32 * 16 + INT4 * 128
+ 256B Buffer * 4 0.442 285.4

Baselines. We compare ENMC with CPU and other NMP ar-
chitectures, and all of them are equipped with the approximate
screening algorithm. The CPU baseline is Intel Xeon Platinum
8280 @ 2.7GHz. It has 28 physical cores and 6 DDR4-2666 memory
channels, contributing to a total memory capacity of 512 GB and
128GB/s ideal bandwidth. Three state-of-the-art DRAM-based NMP
architectures are also selected for evaluation:

NDA [9] provides a near-data acceleration solution by stacking
coarse-grain reconfigurable accelerators (CGRA) with DRAM de-
vices. The CGRA mainly consists of functional units, switches, and
memory.

Chameleon [3] is similar to NDA by employing a 2D architec-
ture and focusing on how to integrate the accelerator with com-
mercial DRAM. As Chameleon could work with any programmable
compute unit, we put a systolic array as the accelerator core to
distinguish it from NDA.

TensorDIMM [20] is a NMP architecure for deep learning appli-
cations, especially for recommendation workloads. It leverages the
VPU to accelerate the embedding operations in recommendation
systems.

For a fair comparison, we configure the ENMC and three base-
lines with approximately the same area and power budget, as shown
in Table 4; the control logic and DRAM device controller are ex-
cluded.

7 EVALUATION
In this section, we evaluate the screening method for extreme clas-
sification and the micro-architecture of near-memory processing
cores. For the method, we show the trade-offs between inference
quality and speedup to CPU execution time of full classification.
Then, we present the speedup of classification enabled by NMP
co-design and the system performance improvements.

84.9 84.9 84.7 85.6 86.2

121.0

80

90

100

110

120

130

0.10.150.20.250.30.35

Pe
rp
le
xi
ty

(a) Parameter Reduction Scale

84.7 84.7 84.8 84.7 84.9

89.0

84

85

86

87

88

89

90

FP32 INT16 INT8 INT4 INT3 INT2

(b) Precision of Screening

Figure 12: Comparing different (a) parameter reduction
scales and (b) quantization levels of AS.

7.1 Algorithm-level Evaluation
Overall model quality.We post the hypothesis that extreme clas-
sification can afford approximation. Here we provide experimental
results to support the hypothesis. Overall, our method can achieve
significant computation saving with negligible model quality degra-
dation. We can trade-off model inference quality to the acceptable
extend for more computation reduction.

As shown in Fig. 11(a), compared with using full classification as
in NMT tasks, our method can achieve speedup of 11.8× without
any loss in translation quality measured by BLEU score. As for
LM tasks, the speedups can reach 5.7× to 6.3× while preserving
perplexity results, as shown in Fig. 11(b) and (c). Similarly, for
product recommendation, our method can achieve 17.4× speedup
with only 0.5% drop in accuracy, as shown in Fig. 11(d).

Because of the well approximation that our method achieves, the
screening phase can effectively select the key candidates for classi-
fication. Using the NMT task as an example, at every decoding step,
we want the most likely word or a few words if using beam search.
With Approximate Screening, we can identify the key candidates
and compute the accurate probabilities of these words for transla-
tion, saving redundant computations for the remaining words in
the vocabulary. We set the overhead of Approximate Screening to
be 3.1% of full classification.

Compared with two other approximation methods, our method
achieves better quality-speedup trade-off, as shown in Figure 11.
Besides, the computation overhead of SVD-based approximation is

ENMC: Extreme Near-Memory Classification via Approximate Screening MICRO ’21, October 18–22, 2021, Virtual Event, Greece

11.8 14.5 9.7 16.8
47.1

11.2 16.1 5.9 7.2 4.9 8.4
23.5

5.6 8.1 3.0 3.6 2.4 4.2 11.8 2.8 4.0 3.1 9.0 8.9 16.8
48.4

3.6 10.4 9.0 15.4
48.3

3.3 8.9 8.7 16.4
47.1 56.6 70.4

45.8
79.2

221.5

52.5
75.9

29.2 36.5 23.7
41.0

114.8

27.2 39.4
14.9 18.2 12.1 20.8

58.5

13.9 20.0

020406080100120140160180200220240

E32K W33K W267K A670K S1M S10M S100M E32K W33K W267K A670K S1M S10M S100M E32K W33K W267K A670K S1M S10M S100M

Batch Size = 1 Batch Size = 2 Batch Size = 4

ENMC Performance

TD TD-Large RTX 3090 ENMC

7.3

16.0
10.2

20.7

56.5

0
20
40
60
80

E32K W33K W267K A670K S1M S10M S100M E32K W33K W267K A670K S1M S10M S100M E32K W33K W267K A670K S1M S10M S100M

Batch Size = 1 Batch Size = 2 Batch Size = 4 GM
Xeon 8280 NDA Chameleon TensorDIMM ENMC

99.6 382.5 98.7 600.7 163.9 312.4 158.3

GM

Figure 13: The performance results of ENMC, CPU, NDA, Chameleon, and TensorDIMM, normalized to vanilla CPU; all
schemes are equipped with approximate screening.

4×more than ours. We infer that the improvement of our method is
due to the learning-based approximation and no strong requirement
for classifier weights to be low-rank.

Sensitivity on Approximate Screening. Intuitively, better ap-
proximation costs larger computation and data overhead, while
achieving better model quality with screening. We show different
parameter sizes of the screening module and the corresponding
quality. Fig. 12(a) shows different parameter reduction scales of the
screening module vs. full classifier; we choose the scale to be 0.25
as the good quality preserving. As shown in Fig. 12(b), we use 4-bit
fixed-point quantization on the screening module as this quantiza-
tion level maintains approximation as using single floating-point
precision.

7.2 Architecture-level Evaluation
Performance. As described in Section 6, we compare ENMC with
four baselines. As shown in Fig. 13, we take the batch size of 1, 2, 4
and normalize the performance results to the full-classification CPU
baseline for each workload, and arrange the results according to the
size of classification across the 𝑥-axis. Our approximate screening
demonstrates 7.3× performance speedup on average in CPU base-
line, and the ENMC offers a total 56.5× speedup over the CPU. Also,
3.5×, 5.6×, and 2.7× average are observed when compared with
NDA, Chameleon, and TensorDIMM respectively. First, we find
ENMC provides significant speedups of 55.5×-600.7× when we do
low-latency inference with batch size of 1, because ENMC processes
the inference in a streaming manner over the lightweight classifi-
cation. The huge performance gain in XMLCNN-670K workload is
because we considerably reduces the number of candidates by 50×.
Second, the three NMP baselines benefit from large internal band-
width and offer 10.2-20.7× speedup over the CPU baseline. However,
our ENMC could further boost their performance by 2.7-5.6× with
heterogeneous resource management and dataflow customization.
This result aligns our assumption that the performance of naive
NMP solutions is bounded by the limited on-DIMM buffers and
computation resources. Because they employ homogeneous FP32
computation units and hardly meets the throughput requirement in
the screening phase. ENMC eliminates the redundant computation
and needs only a small portion of FP32 computations. The entire
screening phase is processed with lightweight INT4 units in stream.

EnergyConsumption.Weevaluate the energy results of ENMC
against TensorDIMM and TensorDIMM-Large for a fair comparison.
As shown in Fig. 14, we reduce the average energy cost by 5.0×
and 8.4× compared with TensorDIMM and TensorDIMM-Large,

0
0.2
0.4
0.6
0.8
1

TD

TD
-L

EN
M
C

TD

TD
-L

EN
M
C

TD

TD
-L

EN
M
C

TD

TD
-L

EN
M
C

TD

TD
-L

EN
M
C

E32K W33K W267 A670 S1M

DRAM Static DRAM Access Computation & Control

Figure 14: Energy breakdown by DRAM static cost, DRAM
access, and computation & control logic, normalized to Ten-
sorDIMM.

20

40

60

80

100

1X 2X 4X 8X 16X 32X 64X

A
cc

ur
ac

y
(%

)

Parameter Reduction

XMLCNN-A13K

SVD AS (Ours)

20

40

60

80

100

1X 2X 4X 8X 16X 32X 64X

A
cc

ur
ac

y
(%

)

Parameter Reduction

FCONV-E34K

SVD AS (Ours)

20

40

60

80

100

1X 2X 4X 8X 16X 32X 64X

Sc
or

e
(L

ow
er

 th
e

Be
tt

er
)

Parameter Reduction

Transformer-W267K

SVD AS (Ours)

20

40

60

80

100

1X 2X 4X 8X 16X 32X 64X

Sc
or

e
(L

ow
er

 th
e

Be
tt

er
)

Parameter Reduction

LSTM-W33K

SVD AS (Ours)

20

40

60

80

100

1X 2X 4X 8X 16X 32X 64X

A
cc

ur
ac

y
(%

)

Parameter Reduction

XMLCNN-A670K

SVD AS (Ours)

5.59 6.00 7.08
14.71

7.36 8.32 11.75

25.09

11.34 14.62

44.01

0

10

20

30

40

50

60

XMLCNN-670K XMLCNN-1M XMLCNN-10M XMLCNN-100M

TD TD-L ENMC

118.5

Figure 15: The end-to-end performance scalability com-
pared with TensorDIMM and TensorDIMM large.

respectively. Particularly, we breakdown the energy consumed by
the DRAM static cost, DRAM access, and on-DIMM computation
and control logic. We observe that the significant energy reduction
of ENMC comes from two facts: First, the co-designed approxima-
tion algorithm greatly reduces the DRAM accesses in ENMC. In
ENMC, we perform INT4 and low-dimensional screening during the
classification phase, while TensorDIMM and TensorDIMM-Large
need to operate over the full classification weight. Moreover, due
to the limited logic-side buffer size, TensorDIMM cannot store the
intermediate results in a matrix multiplication operation. Thus,
the buffer overflow results in frequent DRAM memory accesses.
Second, the reduced execution time leads to the background energy
reduction of the DRAM modules. As the DRAM takes a noticeably
portion of power for refreshing, ENMC reduces the DRAM static
energy consumption by 9.3× and 4.8× compared with TensorDIMM
and TensorDIMM-Large.

End-to-End Scalability.We evaluate the scalability of perfor-
mance considering the end-to-end performance over large synthetic
datasets. As shown in Fig. 15, we restrict the application to the same
front-endmodel of XMLCNN, and the performance of TensorDIMM,

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Liu Liu, Jilan Lin, ZhengQu, Yufei Ding, and Yuan Xie

TensorDIMM-Large, and ENMC is normalized to the CPU baseline.
For comparison, ENMC achieves 4.7× and 2.9× speedup over Ten-
sorDIMM and TensorDIMM-Large. Particularly, for the two smaller
datasets, ENMC achieves 2.2× and 1.6× speedups, while for the
two tremendous datasets, ENMC achieves 7.1× and 4.2× speedups,
compared with TensorDIMM and TensorDIMM-Large, respectively.
The excellent scalability of ENMC comes from the fact that the
ENMC processes the lightweight classification in stream and does
not need to buffer large intermediate results back to DRAM.

Table 5: Area and Power Estimation.

Area (𝑚𝑚2) Power (𝑚𝑊) Area (𝑚𝑚2) Power (𝑚𝑊)
INT4 MAC 0.013 10.4 FP32 MAC 0.145 58.0
Compute Buffer 0.061 56.8 Control Buffer 0.053 49.3
ENMC Ctrl 0.035 32.9 DRAM Ctrl 0.135 78.0

Total Area 0.442𝑚𝑚2; Total Power 285.4𝑚𝑊

Area and Power. Table 5 shows the breakdown area and power
estimation of ENMC. The total area of ENMC logic is 0.388𝑚𝑚2,
and the total power is 264.6mW, which are comparable to prior
NMP architectures such as RecNMP [15]. Specifically, the compute
unit (INT4 and FP32 MAC arrays) takes 40.8% of the total area and
25% of the total power. The buffers made of register files in the
Screener and the Executor compose of 23.5% of the total area and
32.2% of the total power. Finally, the ENMC controller and DRAM
controller takes 9.0% and 34.8% of the area, and 12.4% and 29.5% of
the power, respectively.

8 RELATEDWORK
Near-memory processing (NMP). NMP techniques are widely
used to solve the memory-bound problems, due to the large inter-
nal bandwidth provided [2, 10, 11, 16, 17, 22, 31, 38, 46, 49]. The
most related work to our ENMC are the non-intrusive DRAM-based
NMP architectures [3, 9, 15, 20, 21]. NDA [9] and Chameleon [3]
are general-purpose NMP designs that make effort on communica-
tion and interconnection between the accelerator cores and DRAM
devices. TensorDIMM [20], TensorCasting [21], and RecNMP [15]
particularly focus on the recommendation applications and identify
the performance bottleneck as embedding operations. Therefore,
they design specialized architecture for inference or training phases
for recommendation systems. Our ENMC distinguishes from the
above work as we propose an algorithm-architecture co-design for
extreme classification workloads. Prior NMP designs are for the em-
bedding layers in DNNmodels, but those work fall short in handling
full-precision matrix multiplications as in extreme classification
workloads.

On the other hand, intrusive NMP architectures are also broadly
studied based on 3D-stacking memory technology, such as HBM
and HMC [2, 10, 16, 17, 22, 31, 49]. These NMP designs tend to enjoy
larger bandwidth by connecting accelerators and DRAM dies with
through-silicon vias (TSVs). Recently, Samsung announced the first
industry’s HBM2-PIM, which takes the advantage of the AI engine
directly inside memory banks. However, 3D memory often suffers
from limited capacity and hardly meets the scalability demand in
extreme classification tasks.

Algorithms for efficient classification. Prior studies propose
approximation methods for softmax classification as typically used
in NLP applications [5, 37, 48]. However, thesemethods only demon-
strate effectiveness at small-scale vocabulary sizes and cannot keep
up with the increasingly scaling of vocabulary size. Without NMP
architectures, the performance improvements from approxima-
tion saturate as the memory-bounded problem being neglected.
Model compression techniques are orthogonal to our method and
can be integrated to further reduce data access of classification
[7, 8, 12, 13, 32, 43, 45, 51, 52].

Methods for training extreme classification use softmax variants,
such as KNN softmax and selective softmax [39], to select active
classes from training samples. However, active class selection re-
quires the knowledge of true labels of training samples, making
it impractical for inference usage. MACH [27] uses a divide-and-
conquer method to search over the entire classes in parallel, but
the work cannot mitigate overall memory usage much and suffers
from classification accuracy drop.

We suggest collaborative design considerations from both ML
experts and hardware designers. From the algorithm side, pure ap-
proximation methods do not mitigate the memory-intensive nature
of extreme classification and also suffer from accuracy drop. From
the architecture side, emerging NMP architectures are suitable for
mitigating the memory-intensive extreme classification by bring
the computations near memory. However, we need careful dataflow
and customization to make it practical. In the context of distributed
inference [23, 25], our design can scale-out from single-node to
distributed nodes, where each node keeps an approximate screener.
We envision ENMC co-design would support and enable future
research on efficient methods for extreme classification.

9 CONCLUSION
In this paper, we address the extreme classification problem with
NMP-based software-hardware co-design. We propose an approxi-
mate screening algorithm to reduce the computational complexity
and memory consumption of extreme classification. We further
design a near-memory architecture to utilize efficient candidates-
only classification enabled by our screening method. Finally, our
approximate screening method achieves 7.3× speedups, and the
ENMC architecture further improves the performance by 7.4× and
demonstrates 2.7× speedup comparedwith the state-of-the-art NMP
baseline.

ACKNOWLEDGMENTS
We thank the anonymous reviewers of MICRO 2021 for their helpful
comments and suggestions. We also thank Shuangchen Li, Peng
Gu, Fengbin Tu, and Zhenyu Gu for their insightful feedback of this
research. This work was supported in part by NSF 1925717. Use was
made of computational facilities purchased with funds from the
National Science Foundation (OAC-1925717) and administered by
the Center for Scientific Computing (CSC). The CSC is supported
by the California NanoSystems Institute and the Materials Research
Science and Engineering Center (MRSEC; NSF DMR 1720256) at
UC Santa Barbara.

ENMC: Extreme Near-Memory Classification via Approximate Screening MICRO ’21, October 18–22, 2021, Virtual Event, Greece

REFERENCES
[1] Dimitris Achlioptas. 2001. Database-friendly random projections. In Proceed-

ings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. ACM, 274–281.

[2] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
2015. A scalable processing-in-memory accelerator for parallel graph process-
ing. In Proceedings of the 42nd Annual International Symposium on Computer
Architecture. 105–117.

[3] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and Nam Sung Kim.
2016. Chameleon: Versatile and practical near-DRAM acceleration architecture
for largememory systems. In 2016 49th annual IEEE/ACM international symposium
on Microarchitecture (MICRO). IEEE, 1–13.

[4] K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. 2016.
The extreme classification repository: Multi-label datasets and code. http:
//manikvarma.org/downloads/XC/XMLRepository.html

[5] Pei Hung Chen, Si Si, Sanjiv Kumar, Yang Li, and Cho Jui Hsieh. 2019. Learning
to screen for fast softmax inference on large vocabulary neural networks. In
International Conference on Learning Representations (ICLR). arXiv:1810.12406
https://openreview.net/forum?id=ByeMB3Act7

[6] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2017. Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE Journal of Solid-State Circuits 52, 1 (2017), 127–138.

[7] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang,
Vijayalakshmi Srinivasan, and Kailash Gopalakrishnan. 2018. Pact: Parameterized
clipping activation for quantized neural networks. arXiv preprint arXiv:1805.06085
(2018).

[8] Xiaoliang Dai, Hongxu Yin, and Niraj K Jha. 2018. Grow and prune compact, fast,
and accurate LSTMs. arXiv preprint arXiv:1805.11797 (2018).

[9] Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and Nam Sung
Kim. 2015. NDA: Near-DRAM acceleration architecture leveraging commodity
DRAM devices and standard memory modules. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 283–295.

[10] Peng Gu, Xinfeng Xie, Yufei Ding, Guoyang Chen, Weifeng Zhang, Dimin Niu,
and Yuan Xie. 2020. iPIM: Programmable in-memory image processing accelera-
tor using near-bank architecture. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 804–817.

[11] Peng Gu, Xinfeng Xie, Shuangchen Li, Dimin Niu, Hongzhong Zheng, Krishna T
Malladi, and Yuan Xie. 2020. DLUX: a LUT-based Near-Bank Accelerator for Data
Center Deep Learning Training Workloads. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (2020).

[12] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[13] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. In Advances in neural information
processing systems. 1135–1143.

[14] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of a
Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium
on Computer Architecture (ISCA ’17). Association for Computing Machinery, New
York, NY, USA, 1–12. https://doi.org/10.1145/3079856.3080246

[15] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra,
Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee,
Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz,
Mikhail Smelyanskiy, Xiaodong Wang, Brandon Reagen, Carole-Jean Wu, Mark
Hempstead, and Xuan Zhang. 2020. RecNMP: Accelerating Personalized Rec-
ommendation with Near-Memory Processing. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). 790–803. https:
//doi.org/10.1109/ISCA45697.2020.00070

[16] Chad D Kersey, Hyesoon Kim, and Sudhakar Yalamanchili. 2017. Lightweight
SIMT core designs for intelligent 3D stacked DRAM. In Proceedings of the Inter-
national Symposium on Memory Systems. 49–59.

[17] Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, and Kevin Hsieh. 2017.
Toward standardized near-data processing with unrestricted data placement

for GPUs. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–12.

[18] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2015. Ramulator: A fast and exten-
sible DRAM simulator. IEEE Computer architecture letters 15, 1 (2015), 45–49.

[19] Patrick Knebel, Dan Berkram, Al Davis, Darel Emmot, Paolo Faraboschi, and
Gary Gostin. 2019. Gen-Z Chipsetfor Exascale Fabrics. In 2019 IEEE Hot Chips 31
Symposium (HCS). IEEE Computer Society, 1–22.

[20] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. 2019. Tensordimm: A practical
near-memory processing architecture for embeddings and tensor operations
in deep learning. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture. 740–753.

[21] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. 2020. Tensor Casting: Co-
Designing Algorithm-Architecture for Personalized Recommendation Training.
arXiv preprint arXiv:2010.13100 (2020).

[22] Young-Cheon Kwon, Suk Han Lee, Jaehoon Lee, Sang-Hyuk Kwon, Je Min Ryu,
Jong-Pil Son, O Seongil, Hak-Soo Yu, Haesuk Lee, Soo Young Kim, Youngmin
Cho, Jin Guk Kim, Jongyoon Choi, Hyun-Sung Shin, Jin Kim, BengSeng Phuah,
HyoungMin Kim, Myeong Jun Song, Ahn Choi, Daeho Kim, SooYoung Kim, Eun-
Bong Kim, David Wang, Shinhaeng Kang, Yuhwan Ro, Seungwoo Seo, JoonHo
Song, Jaeyoun Youn, Kyomin Sohn, and Nam Sung Kim. 2021. 25.4 A 20nm 6GB
Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable
Computing Unit Using Bank-Level Parallelism, for Machine Learning Applica-
tions. In 2021 IEEE International Solid- State Circuits Conference (ISSCC), Vol. 64.
350–352. https://doi.org/10.1109/ISSCC42613.2021.9365862

[23] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. 2020. Gshard:
Scaling giant models with conditional computation and automatic sharding. arXiv
preprint arXiv:2006.16668 (2020).

[24] Jingzhou Liu, Wei Cheng Chang, Yuexin Wu, and Yiming Yang. 2017. Deep
learning for extreme multi-label text classification. In SIGIR 2017 - Proceedings
of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. Association for Computing Machinery, Inc, New York, NY,
USA, 115–124. https://doi.org/10.1145/3077136.3080834

[25] Michael Lui, Yavuz Yetim, Özgür Özkan, Zhuoran Zhao, Shin-Yeh Tsai, Carole-
Jean Wu, and Mark Hempstead. 2021. Understanding capacity-driven scale-out
neural recommendation inference. In 2021 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 162–171.

[26] Julian McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics:
understanding rating dimensions with review text. In Proceedings of the 7th ACM
conference on Recommender systems. 165–172.

[27] Tharun Medini, Qixuan Huang, Yiqiu Wang, Vijai Mohan, and Anshumali Shri-
vastava. 2019. Extreme classification in log memory using count-min sketch: A
case study of amazon search with 50m products. In Neural Information Processing
Systems (NeurIPS). arXiv:1910.13830

[28] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2017. Regularizing
and optimizing LSTM language models. arXiv preprint arXiv:1708.02182 (2017).

[29] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016.
Pointer sentinel mixture models. arXiv preprint arXiv:1609.07843 (2016).

[30] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed representations of words and phrases and their compositionality.
arXiv preprint arXiv:1310.4546 (2013).

[31] Lifeng Nai, Ramyad Hadidi, He Xiao, Hyojong Kim, Jaewoong Sim, and Hyesoon
Kim. 2018. CoolPIM: Thermal-aware source throttling for efficient PIM instruc-
tion offloading. In 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 680–689.

[32] Sharan Narang, Erich Elsen, Gregory Diamos, and Shubho Sengupta. 2017. Ex-
ploring sparsity in recurrent neural networks. arXiv preprint arXiv:1704.05119
(2017).

[33] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng,
David Grangier, and Michael Auli. 2019. fairseq: A Fast, Extensible Toolkit for
Sequence Modeling. In Proceedings of NAACL-HLT 2019: Demonstrations.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[35] Yashoteja Prabhu, Anil Kag, Shrutendra Harsola, Rahul Agrawal, and Manik
Varma. 2018. Parabel: Partitioned label trees for extreme classification with
application to dynamic search advertising. In Proceedings of the 2018 World Wide
Web Conference. 993–1002.

[36] Davide Rossetti and S Team. 2015. GPUDIRECT: Integrating the GPU with a
Network Interface. In GPU Technology Conference.

[37] Kyuhong Shim, Minjae Lee, Iksoo Choi, Yoonho Boo, and Wonyong Sung. 2017.
SVD-softmax: Fast softmax approximation on large vocabulary neural networks.

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://arxiv.org/abs/1810.12406
https://openreview.net/forum?id=ByeMB3Act7
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/ISCA45697.2020.00070
https://doi.org/10.1109/ISCA45697.2020.00070
https://doi.org/10.1109/ISSCC42613.2021.9365862
https://doi.org/10.1145/3077136.3080834
https://arxiv.org/abs/1910.13830
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Liu Liu, Jilan Lin, ZhengQu, Yufei Ding, and Yuan Xie

In Neural Information Processing Systems (NeurIPS). 5464–5474.
[38] Hyunsung Shin, Dongyoung Kim, Eunhyeok Park, Sungho Park, Yongsik Park,

and Sungjoo Yoo. 2018. McDRAM: Low latency and energy-efficient matrix
computations in DRAM. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 37, 11 (2018), 2613–2622.

[39] Liuyihan Song, Pan Pan, Kang Zhao, Hao Yang, Yiming Chen, Yingya Zhang,
Yinghui Xu, and Rong Jin. 2020. Large-Scale Training System for 100-Million
Classification at Alibaba. In Proceedings of the ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. 2909–2917. https://doi.org/10.
1145/3394486.3403342 arXiv:2102.06025

[40] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. arXiv preprint arXiv:1409.3215 (2014).

[41] S Van Doren. 2019. HOTI 2019: Compute Express Link. In 2019 IEEE Symposium
on High-Performance Interconnects (HOTI). IEEE Computer Society, 18–18.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762 (2017).

[43] Peiqi Wang, Xinfeng Xie, Lei Deng, Guoqi Li, Dongsheng Wang, and Yuan Xie.
2018. HitNet: hybrid ternary recurrent neural network. In Advances in Neural
Information Processing Systems. 604–614.

[44] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s
Neural Machine Translation System: Bridging the Gap between Human and
Machine Translation. (2016). arXiv:cs.CL/1609.08144

[45] Chen Xu, Jianqiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhirong Wang,
and Hongbin Zha. 2018. Alternating multi-bit quantization for recurrent neural
networks. arXiv preprint arXiv:1802.00150 (2018).

[46] Amir Yazdanbakhsh, Choungki Song, Jacob Sacks, Pejman Lotfi-Kamran, Hadi
Esmaeilzadeh, and Nam Sung Kim. 2018. In-dram near-data approximate accel-
eration for gpus. In Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques. 1–14.

[47] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974–983.

[48] Minjia Zhang, Xiaodong Liu, Wenhan Wang, Jianfeng Gao, and Yuxiong He. 2018.
Navigating with Graph Representations for Fast and Scalable Decoding of Neural
Language Models. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (NIPS’18). Curran Associates Inc., Red Hook, NY,
USA, 6311–6322.

[49] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang
Chen, Christos Kozyrakis, and Xuehai Qian. 2018. GraphP: Reducing communi-
cation for PIM-based graph processing with efficient data partition. In 2018 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 544–557.

[50] Xingcheng Zhang, Lei Yang, Junjie Yan, and Dahua Lin. 2018. Accelerated training
for massive classification via dynamic class selection. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32.

[51] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. 2016. Trained ternary
quantization. arXiv preprint arXiv:1612.01064 (2016).

[52] Michael Zhu and Suyog Gupta. 2017. To prune, or not to prune: exploring
the efficacy of pruning for model compression. arXiv preprint arXiv:1710.01878
(2017).

https://doi.org/10.1145/3394486.3403342
https://doi.org/10.1145/3394486.3403342
https://arxiv.org/abs/2102.06025
https://arxiv.org/abs/cs.CL/1609.08144

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Extreme Classification
	2.2 System Architecture
	2.3 Near-Memory Processing

	3 Motivation
	3.1 Opportunity
	3.2 Limitations of Existing NMP

	4 Approximate Screening
	4.1 Screening Method Overview
	4.2 Inference Process
	4.3 Learning Algorithm

	5 ENMC Architecture
	5.1 Design Overview
	5.2 ENMC Microarchitecture
	5.3 ENMC Instruction Set
	5.4 System Design

	6 Evaluation Methodology
	6.1 Software Evaluation
	6.2 Hardware Evaluation

	7 Evaluation
	7.1 Algorithm-level Evaluation
	7.2 Architecture-level Evaluation

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

