Downloaded 10/25/21 to 207.152.71.46 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

(Near-)Linear-Time Randomized Algorithms for Row Minima in Monge Partial
Matrices and Related Problems

Timothy M. Chan*

Abstract

We revisit classical problems about searching in totally
monotone and Monge matrices, which have many appli-
cations in computational geometry and other areas. We
present a number of new results, including the following:

e A randomized algorithm that finds the row minima in an
n X n Monge staircase matrix in O(n) expected time; this
improves a longstanding O(na(n)) bound by Klawe and
Kleitman (1990) for totally monotone staircase matrices.

e A randomized algorithm that reports the K smallest
elements (in an arbitrary order) in an n x n Monge
(complete or staircase) matrix in O(n + K) expected
time; this improves and extends a previous O(n+ K logn)
algorithm by Kravets and Park [SODA’90].

e A randomized algorithm that reports the K smallest
elements (in an arbitrary order) in an n x n totally
monotone (complete) matrix in O(n+ K log™ n) expected
time.

e A randomized algorithm that reports the k; smallest
elements in the i-th row, for every ¢, in an n X n
totally monotone (complete) matrix in O((n + K)log™ n)
expected time, where K =Y k;.

e A randomized algorithm that finds the row min-
ima in an n X n totally monotone “v-matrix” in
O(na(n)log” nloglogn) expected time; this answers an
open question by Klawe [SODA’90]. The log™* n factor can
be removed in the Monge case.

1 Introduction

Totally monotone and Monge matrices. Totally
monotone matrices and Monge matrices arise in many
subareas of algorithms, including computational geom-
etry, dynamic programming speedups, shortest paths
in planar graphs, and combinatorial optimization. An
mxn matrix! A is concave totally monotone iff for every
i<i and j <j’,
Aliyj] > Ali,j') = A[i',j] > Al 5]
The matrix A is concave Monge iff for every i < i’ and
Jj<j,
Ali, 5] + A[i', 5] < Ald, §'] + A[, 5]

Department of Computer Science, University of Illinois at
Urbana-Champaign (tmc@illinois.edu). This research has been
supported in part by NSF Grant CCF-1814026.

INote that some papers on this topic switch m and n for
rectangular matrices.

3

Clearly, the Monge property (also known as the “quad-
rangle inequality”) implies total monotonicity. Al-
though the converse is not necessarily true, in most
applications, total monotonicity is actually proved by
establishing the Monge property.

Convex total monotonicity and the convex Monge
property can be defined similarly but with > and <
reversed. (Note that a convex totally monotone or
Monge matrix can be turned into a concave totally
monotone or Monge matrix by reversing the order of
the columns.)

By default, a matrix will refer to a complete ma-
trix where all entries are filled. In the case of a par-
tial matrix where some entries may be unfilled, the
definitions are similar: the conditions should hold for
all i < ¢ and j < j' whenever all four elements
Ali, g1, A[i', j'], Ali, j'), Ali’, j] are filled.

The seminal work on the topic is the SMAWK algo-
rithm by Aggarwal, Klawe, Moran, Shor, and Wilber [4]
(named after the initials of the authors), which can
compute the minima of all the rows of an m X n to-
tally monotone (complete) matrix A in linear O(m + n)
time. In fact, the time bound is O(n(1 + log [2])) if
a compact output representation is allowed; this bound
is optimal. The input A may be given implicitly—we
only assume that any matrix entry can be evaluated
on demand in constant time. (Even more restrictively,
the only primitive operation required is comparing two
elements in a common row.) The SMAWK algorithm
has numerous applications, which we will refrain from
exhaustively listing (see various surveys, e.g., [9, 21]).

Row minima in partial matrices. An important line
of work have followed subsequently, aiming to develop
row minima algorithms for more general types of totally
monotone partial matrices. Aggarwal and Klawe [3]
began studying the case of staircase matrices: A falling
staircase matriz is a partial matrix such that the filled
entries in each row form a suffix of the row, and the filled
entries in each column form a prefix of the column. For
example, this include the case of an upper triangular
matrix, with entries Ali, j] filled for ¢ < j. Similarly,
a rising staircase matriz is a partial matrix such that

Copyright © 2021

1465 Copyright for this paper is retained by authors

Downloaded 10/25/21 to 207.152.71.46 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

the filled entries in each row form a prefix of the row,
and the filled entries in each column form a prefix
of the column. (See Figure 1(a,b).) Row minima in
concave totally monotone, falling staircase matrices (or
convex totally monotone, rising staircase matrices) can
be found in linear time directly by SMAWK, since the
unfilled entries may be filled with large numbers while
preserving total monotonicity. However, computing row
minima in concave totally monotone, rising staircase
matrices (or convex totally monotone, falling staircase
matrices) is more challenging, and arises in a number
of applications. Aggarwal and Klawe gave an O((m +
n) log log m)-time algorithm for this problem, which was
later improved to an O(na(m) 4+ m)-time algorithm
by Klawe and Kleitman [27] in 1990. Their result
is notable for being one of a few algorithms in the
literature that has an original recursion with inverse
Ackermann complexity (not directly due to the use
of union-find data structures or the combinatorics of
Davenport-Schinzel sequences).

In SODA’90, Klawe [26] introduced more general
classes of partial matrices: A skyline matrixz is a partial
matrix such that all the defined entries in each column
form a suffix of the column. A v-matriz is a partial ma-
trix such that all the defined entries in each column oc-
cur contiguously (but not necessarily as a prefix or suf-
fix). Similarly, an h-matriz is a partial matrix such that
all undefined entries in each row occur contiguously.
(See Figure 1.) Klawe proved an Q(na(n)) lower bound
for the number of evaluations of matrix entries to com-
pute row minima for totally monotone v-matrices and
h-matrices for m = ©(n). She then described row min-
ima algorithms for totally monotone skyline matrices re-
quiring O(na(m) loglogm+m) time and O(na(m)+m)
comparisons, or alternatively O(nloglogm + m) time
and comparisons. In the introduction of her paper, she
raised the question of finding any o(n log m+m)-time al-
gorithm more generally for totally monotone v-matrices
(or h-matrices).

In the intervening 30 years, no further improve-
ments have been reported on these problems since the
papers by Klawe and Kleitman and by Klawe.

New results. In this paper, we give the first linear-
time algorithm for computing row minima in an m X
n concave Monge, rising staircase matrix (or convex
Monge, falling staircase matrix). The algorithm is
randomized, Las-Vegas style. This improves Klawe
and Kleitman’s longstanding O(na(m) + m) bound.
More precisely, the expected time bound of our algo-
rithm (assuming a compact output representation) is
O(n(1+log [])), matching that of SMAWK. From the
practical perspective, the improvement of an « factor

may seem slight, but from the theoretical perspective,
the result interestingly demonstrates that appearance of
inverse Ackermann is unnecessary for this and related
problems, and cleans up some of the time bounds re-
ported in the literature.

To be fair, we should reiterate that Klawe and Kleit-
man’s algorithm works more generally for totally mono-
tone staircase matrices, not just Monge staircase ma-
trices. But as mentioned, in most (if not all) known
applications involving total monotonicity, the Monge
property is satisfied. Indeed, in Appendix A, we list a
number of applications of our new algorithm in compu-
tational geometry and dynamic programming speedups.
A more limiting disadvantage of our algorithm is that
it does not generalize to the “online” setting, unlike
Klawe and Kleitman’s (see their paper for the defini-
tion), which is required in some applications to dynamic
programming speedups.

We also answer Klawe’s open question [26] about
v-matrices, by giving the first nontrivial algorithm
for finding the row minima in an m X n to-
tally monotone v-matrix, with expected running time
O(na(m)log” mloglogm + m) (or more precisely,
O(na(m)log* mloglog m + na(m)log [21])). The log*
factor can be removed in the Monge case.

(< K)-selection and other related problems. In
addition to row minima, we also consider a number
of related, basic problems about searching in a totally
monotone or Monge matrix:

o (< K)-selection: report the K smallest elements (in
an arbitrary order).

o (< t)-reporting: report all elements that are at most
t (in an arbitrary order).

e row (< ky,...,kn)-selection: for each i = 1,...,m,
report the k; smallest elements (in an arbitrary
order) in the i-th row.

e row (< ty,...,t,)-reporting: for each i = 1,...,m,
report all elements that are at most ¢; (in an arbitrary
order).

For the last three problems, we use K to denote
the total output size (e.g., for the third problem, K =
>, k). For example, the standard row minima problem
corresponds to row (< 1,. .., 1)-selection. Note that row
(< ty,...,tm)-reporting is equivalent to (< t)-reporting,
by translating the values in each row (i.e., changing
Ali,j] to Ali,j] — t;); this operation preserves total
monotonicity and the Monge property. The (< K)-
selection and the (< t)-reporting problem have similar
complexity, since there is a straightforward reduction

Copyright © 2021

1466 Copyright for this paper is retained by authors

Downloaded 10/25/21 to 207.152.71.46 Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

(a) (b) (c) (d) (e)

Figure 1: (a) Falling staircase matrix; (b) rising staircase matrix; (c) skyline matrix; (d) v-matrix; (e) h-matrix.

of the latter to the former, and a simple randomized
reduction of the former to the latter (see Section 5.1).
In a companion paper [14], we explore more related
problems such as selection of the K-th smallest element.

In SODA’90, Kravets and Park [29] studied the row
(< k,...,k)-selection problem for a totally monotone
(complete) matrix, and obtained an algorithm running
in O((m + n)k) time. Note that although mk may
be a trivial lower bound if we require an explicit
output representation of size Q(mk), the nk term isn’t
obviously a lower bound.

Kravets and Park further obtained an O(m + n +
K log ™2)-time algorithm for the (< K')-selection prob-
lem for a totally monotone (complete) matrix whose
transpose is also totally monotone—in particular, a
Monge matrix satisfies this extra condition. (One natu-
ral application is in computing the K farthest pairs for
a planar point set in convex position.) They left open
the question of whether a comparable result exists for
arbitrary totally monotone matrices.

More new results. We give the first linear (O(m +
n+ K)) time algorithm for the (< ¢)-reporting and the
(< K)-selection problem for an m X n totally mono-
tone (complete) matrix whose transpose is also totally
monotone (and thus for a Monge matrix). The algo-
rithm is randomized. This improves Kravets and Park’s
result by a logarithmic factor. The same result holds for
Monge staircase matrices (for which no previous results
were known).

We also obtain an almost linear-time randomized
algorithm for (< t¢)-reporting and (< K)-selection
for an arbitrary m X n totally monotone (complete)
matrix. The running time is O(m + n + K log" n) (or
alternatively, O(m + nlog®n + K) for an arbitrarily
large constant ¢). This answers the above-mentioned
open question by Kravets and Park.

We similarly obtain an almost linear-time random-
ized algorithm for the row (< ky,...,k;,)-selection
problem for an arbitrary m x n totally monotone (com-
plete) matrix. The running time is O((n+K)log™ n) (or
alternatively, O((m+n)log® n+ K)). Notice that even
in the special case of row (< k, ..., k)-selection, our time
bound, approaching O(mk + n), improves Kravets and
Park’s previous O((m + n)k) bound, ignoring iterated

logarithmic factors.

Techniques, and connection with pseudo-lines.
To obtain our solutions, instead of working with ma-
trices, we take a geometric perspective (ironically, the
original SMAWK paper took the opposite philosophy,
of reducing geometric problems to matrix searching).

We view the columns of a totally monotone
matrix as pseudo-lines in the plane: A set of n
curves in the plane forms a pseudo-line family if
each curve is z-monotone (i.e., each vertical line
intersects the curve exactly once) and each pair of
curves intersects at most once. From an m X n totally
monotone matrix A, for each j = 1,...,n, we can
form a polygonal curve v; passing through the points
(—00,4), (1, A[L,4]), (2, A[2,5]), . . ., (m, A[m, j]), (o0, —j).
Concave total monotonicity implies that these curves
are indeed pseudo-lines (ignoring degeneracies), as
shown in Figure 2(a). Consequently:

e The row minima problem corresponds to evaluating
the lower envelope of these n pseudo-lines at the z-
coordinates 1,...,m (in other words, computing a
“discretized” lower envelope). See Figure 2(b).

e The row (< ti,...,¢,)-reporting problem corre-
sponds to reporting all (i,7) index pairs such that
the point (4,t;) is above the pseudo-line ~;. This is
equivalent to answering n offline “pseudo-halfplane
range reporting queries” on a set of m points.

Certain types of partial matrices also have geometric
interpretations: v-matrices correspond to pseudo-line
segments, and skyline matrices correspond to pseudo-
rays (pseudo-line segments that are unbounded in one
direction).

The above viewpoint allows us to leverage the
rich body of techniques from computational geometry,
concerning lower envelopes of lines or line segments,
halfplane range searching, and randomized geometric
divide-and-conquer. (Even if some of the ideas could
be translated back in matrix terms, the geometric per-
spective is helpful to avoid “reinventing the wheel”.)
Certain techniques for lines or line segments may be
adapted for pseudo-lines or pseudo-line segments with-
out much difficulty. However, not all existing techniques

Copyright © 2021

1467 Copyright for this paper is retained by authors

Downloaded 10/25/21 to 207.152.71.46 Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

= o [~
w -

EIEFINEEES
S 1S

—_

=

-

1=

w (oo | =
1)

13

o

(a)

Figure 2: (a) Columns in a totally monotone matrix map to pseudo-lines. (b) A lower envelope of pseudo-lines.

can be generalized. The following key differences make
the problems here more challenging:

e First, we are aiming for linear or almost linear
time bounds. Traditional algorithms for computing
lower envelopes of line segments or halfspace range
reporting require at least nlogn time. To beat
nlogn in a comparison model, we need to exploit
the fact that the input x-coordinates ({1,...,m}) are
pre-sorted (trivially), and the input pseudo-lines are
also pre-sorted (by y-values at z = —o0 or =).

e Primitive operations are limited. Although we can
evaluate the y-value of a pseudo-line at a given z-
coordinate in constant time, computing the intersec-
tion of two pseudo-lines now requires binary search,
taking O(logm) time.>

e Certain operations for points and lines do not easily
generalize to points and pseudo-lines. For example,
although it is possible to determine the orientation
of three input pseudo-lines in O(log m) time, we can-
not determine the orientation of three input points
(in particular, we cannot compute the convex hull ef-
ficiently), since assigning orientation to a point triple
require a global examination of the relationship of the
points with all the pseudo-lines. And we cannot use
standard point-line duality and work in dual space.?

From the geometric perspective, one can see that
Klawe’s Q(na(n)) lower bound for v-matrices [26] is

not really evidence to suggest optimality of Klawe and

ZFor example, this issue explains why the dualized Graham’s
scan [23], which can computing the lower envelope of n pre-sorted
lines in linear time, cannot directly solve the row minima prob-
lem for totally monotone matrices; Graham’s algorithm requires
O(n) intersection operations and would now take O(n logm) time.
(However, a known randomized incremental algorithm for com-
puting lower envelopes can be adapted—see Appendix B.)

3A duality transform for points and pseudo-lines actually
exists, as shown by Agarwal and Sharir [2], but is too expensive
to compute for our purposes.

Kleitman’s result for staircase matrices, since v-matrices
correspond to pseudo-line segments, whose lower en-
velopes have ©(na(n)) worst-case combinatorial com-
plexity [38], but staircase (and skyline) matrices corre-
spond to pseudo-rays, whose lower envelopes have linear
combinatorial complexity.

The connection between totally monotone matrices
and pseudo-lines is certainly not new. For example, see
a recent paper by Kaplan et al. [25] (who used this
pseudo-line perspective to obtain data structures for
Monge matrices, though these were later improved [22]),
or the paper by Klawe [26] (whose lower bounds were ob-
tained by relating row minima in v-matrices to lower en-
velopes of line segments), or a work by Felzenszwalb and
Huttenlocher [20] (who noted an application of SMAWK
to solve a discrete lower envelope problem). On the
other hand, the connection was overlooked by some re-
searchers (for example, Millman et al. [32] studied the
discrete lower envelope problem for pseudo-lines and
proposed a new randomized linear-time algorithm that
rederived the SMAWK result, without realizing it!).

As we have mentioned, point-line duality is no
longer available, which limits the geometric techniques
that we can use. New geometric ideas are thus needed
to obtain our O(m +n + K log™ n)-time (< t)-reporting
algorithm for totally monotone matrices. In the Monge
case, we observe that something analogous to duality
is possible, simply by transposing the matrix! (The
Monge property is preserved by transposition.) The
(< t)-reporting problem is symmetric with respect to
transposition, but the row minima problem is not.
To obtain our linear-time results for Monge staircase
matrices, it is essential that we solve both problems
simultaneously, with the row minima algorithm invoking
the (< t)-reporting algorithm, and vice versa. Our
algorithms will use recursion in interesting, original
ways.

Copyright © 2021

1468 Copyright for this paper is retained by authors

Downloaded 10/25/21 to 207.152.71.46 Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

2 (< t)-Reporting for Monge Matrices
We begin by studying the row (< ¢y, ...,t,,)-reporting
problem for an m X n (complete) matrix A in the case
when both A and its transpose are totally monotone. In
particular, a Monge matrix satisfies this property. As
noted in the introduction, it suffices to consider (< ¢)-
reporting problem. To enable recursive randomized
algorithms, we allow the input to be random, in which
case, we use m and n to denote the expected number of
rows and columns in A respectively. We let K denote
the ezpected number of output elements. Let T'(m, n, K)
be the expected time needed to solve the problem. In
case when we know that the number of columns is
always upper-bounded by N, we let Ty (m,n, K) be the
expected time under these parameters.

In geometric terms, the problem reduces to the
following;:

Given a set P of points of (expected) size m and a set
L of pseudo-lines of (expected) size n in the plane,
report all pairs (p,£) € P x L with p above £.

K is the (expected) number of output pairs. By a linear
scan over the output pairs, we can easily report all
pseudo-lines of L below p for each point p € P, or
equivalently, report all points of P above ¢ for each
pseudo-line ¢ € L. This problem can thus be viewed
as offline pseudo-halfplane range reporting.

The points of P are pre-sorted by z-coordinates,
and the pseudo-lines of L are pre-sorted by pseudo-
slope, where the pseudo-slope of a pseudo-line refers to
its rank of its y-value at x = oo among all pseudo-
lines of L. (In the (< t)-reporting problem, all points
of P actually have the same y-coordinate ¢.) The
only allowed primitive operation is evaluating the y-
coordinate of a pseudo-line ¢ € L at the z-coordinate
of a point p € P. For simplicity, we assume no
degeneracies, e.g., no two pseudo-lines have the same y-
coordinate at an z-coordinate of P (this may be avoided
by perturbation).

Our algorithm builds on a randomized divide-and-
conquer approach, which is well known in computational
geometry since the work of Clarkson and Shor [17, 34],
and has been used before in halfspace range report-
ing [11]. We incorporate some extra ideas, leading to
a new recurrence with linear complexity.

Clarkson—Shor-style divide-and-conquer. Let s
and b be parameters to be set later. Take a random
sample R of L of size . Consider the lower envelope
LE(R), which has O(%) vertices, and take its vertical
decomposition VD(R), i.e., a division of the region be-
low LE(R) into O(2) cells formed by drawing downward
rays from the vertices of LE(R). We use a discretized

A

Figure 3: A cell A (after rounding) in the vertical
decomposition of LE(R), and its conflict list L.

version of the envelope, with z-coordinates of vertices
“rounded” to the x-coordinates of P. (See Figure 3.) By
SMAWK,* the discretized lower envelope can be found
in O(m + 2) time. We can compute P N A for all cells
A € VD(R) by a linear scan over the z-pre-sorted point
set P and LE(R); each subset can be kept sorted by z.

For each cell A € VD(R), we compute its conflict
list La, i.e., the list of all pseudo-lines of L intersecting
A. To this end, for each pseudo-line £ € L, we first find
its predecessor and successor with respect to pseudo-
slope, among the pseudo-lines appearing on LE(R); this
can be done for all ¢ by one linear scan in O(n) time,
since the pseudo-lines are pre-sorted by pseudo-slope.
For each £ € L, we can start at the vertex v of LE(R)
that is defined by its predecessor and successor, and
then do a linear search in both directions from v, to
find all cells A € VD(R) intersected by ¢. (Note that
in these steps, we do not need to compute intersections
of pseudo-lines; we just need to test whether a pseudo-
line is above a point incident on another pseudo-line.)
The total time of these linear searches is proportional
to the total number of conflicts O3 Acvp(r) [Lal)-
By a standard analysis of Clarkson and Shor [17, 34],
>_aevp(r) [Lal has expected value O((%)s) = O(n).
By a linear scan over the pre-sorted set L, all the La’s
can be kept sorted by pseudo-slope.

For each A € VD(R) with |La| < bs, we recursively
solve the subproblem for PN A and La. Let P’ be the
set of all remaining points of P, i.e., those that are above
LE(R) or lie in cells A with |La| > bs. We solve the
problem for P’ and L by another recursive call.

The number of points p € P that are above more
than b pseudo-lines is at most %. For each point p € P
that are above at most b pseudo-lines, the probability
that p is above LE(R) is at most 2. Furthermore, by
Clarkson and Shor’s analysis [17, 34] (see also [11]), the
expected value of |La(p)| for the cell A(p) € VD(R)
containing p is O(s) for any fixed p. Thus, by Markov’s
inequality, the probability that |La,| > bs is O(3) for
any fixed p. Hence, the expected size of P’ is at most

1Tt is possible to avoid SMAWK and get a more self-contained

algorithm—in fact, we will do just that in Section 3.

Copyright © 2021

1469 Copyright for this paper is retained by authors

Downloaded 10/25/21 to 207.152.71.46 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

O(5 +2b4+m2).
Choose s = b%. The expected size of P’ is then
O(™+£E). We then obtain the following recurrence:

T(m,n,K) < ZTO(bS)(mi,ni,Ki) +
i

(2.1) T(O(ZEE) n, K') + O(m +n),

for some m;’s, K;’s, and K’ with > ., n; = O(n),
>oymi<m,and), K, + K <K.

The above recurrence by itself does not yield good
results (mainly because n does not decrease in the
T(O(™4), n, K') term), but we will fix this by com-
bining the recurrence with one extra ingredient. . .

Symmetry. Notice that so far, we have only used the
total monotonicity of the input matrix A. Since both
A and the transpose of A are assumed to be totally
monotone, we can actually transpose the input and
obtain

T(m,n,K)=T(n,m,K),

as the (< t)-reporting problem is unchanged after
transposition. This is the extra ingredient we need.

Putting it all together. We will not use recursion for
the subproblems associated with the cells A € VD(R),
but instead use any naive algorithm with running time
O((m+n)log®Y) N+K) (there are many options, one of
which is to use the O(m~+nlog'® N+ K)-time algorithm
from Section 4.1, e.g., with ¢ = 1). This way, we can
replace Tops)(mi, ni, K;) with O((m; + ny) 1log®M b +
K;). From (2.1), letting K" = K — K', we get:

T(m,n,K) < O((m+n)log®Pb+K") +
(2.2) T(O(¥),n, K — K").

Note that we have replaced O(™+%) with O(£). This
is because we can initially reduce m to O(K) by
running SMAWK in O(m + n) time, and removing
points of P below LE(L) which do not contribute to the
output. (This extra step is not essential, but simplifies
calculations.)

Using symmetry to rewrite T(O(%), n, K — K") as
T(n, O(%), K — K") and applying (2.2) a second time,
we get:

T(m,n,K) < O((m—i—n—l—%)logo(l)b—i—K’”)—i—

T(O(%)v O(%)v K — KW)

for some K" < K.
Now we expand the recurrence using an increasing

sequence of parameters by, bo, .. .:

T(m,n,K) < O ((m +n+ %)logO(l) by + K{" +

(% + %) log® M by + K’

+ (£ + £)log? b3+K§”+---)

for some K}"’s with >, K" < K.

Finally, choosing b; = 2 (and noting that
5. j9M /21 = O(1)), we conclude that T(m,n, K) =
O(m+n+ K).

THEOREM 2.1. Given an m X n totally monotone ma-
triz whose transpose is also totally monotone, we can
report all K elements that are at most a given value t
(in an arbitrary order) in O(m +n+ K) expected time.

Remarks. This result appears new even in the case of
lines (rather than pseudo-lines), yielding an O(m + n +
K)-time randomized algorithm for 2D offline halfplane
range reporting, assuming that the input points are pre-
sorted by x and the lines pre-sorted by slope. Here, sym-
metry T'(m,n, K) = T(n,m, K) follows from standard
point-line duality. In contrast, standard algorithms for
2D halfplane or 3D halfspace range reporting [11, 16]
require O((m + n)logn + K) time and do not exploit
input pre-sortedness.

The ideas behind our algorithm (the usage of
Clarkson—Shor divide-and-conquer combined with sym-
metry or duality) has similarities with some known work
on offline 3D dominance range reporting; for exam-
ple, see [1, proof of Theorem 3] (the algorithm there
only considered one round of bootstrapping with dual-
ity, since the target time bound was O(nloglogn + K),
whereas our algorithm uses multiple rounds and is more
interesting).

Derandomization appears very difficult (lower en-
velopes of random samples may be derandomized using
deterministic construction of shallow cuttings [15], but
this requires at least Q(nlogn) time).

3 Generalization to Monge Staircase Matrices

We now extend our linear-time algorithm for (< ¢)-
reporting to Monge staircase matrices. At the same
time, we obtain a linear-time algorithm for row minima
in Monge staircase matrices. (As mentioned in the
introduction, the difficult cases are concave Monge,
rising staircase matrices and convex Monge, falling
staircase matrices.)

Let Timinima(m,n) be the expected time needed to
solve the row minima problem for a Monge staircase
matrix where m and n are the expected number of rows
and columns respectively.

Copyright © 2021

1470 Copyright for this paper is retained by authors

Downloaded 10/25/21 to 207.152.71.46 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

In geometric terms, the generalization to staircase
matrices corresponds to the setting where the pseudo-
lines are replaced with pseudo-line segments, all un-
bounded on one side, say, the left side. Further-
more, the z-coordinates of the segments’ right endpoints
are monotonically increasing or decreasing with their
pseudo-slopes: we refer to such curves as monotone
pseudo-rays.

For a set P of points of (expected) size m and a
set L of monotone pseudo-rays of (expected) size n, the
(< t)-reporting problem is to find all pairs (p,¢) € Px L
with p above £. For a set X of values of (expected) size
m and a set L of monotone pseudo-rays of (expected)
size n, the row minima problem is to evaluate the lower
envelope of L at the x-coordinates of X. It is assumed
that the x-coordinates of P or X are pre-sorted, and
the pseudo-rays of L are pre-sorted by pseudo-slope.
(For the row minima problem, a compact representation
of the output is allowed: if the answers for multiple
consecutive values in X are defined by the same pseudo-
ray in L, they may be reported once.)

For bootstrapping purposes, we will need an O((m+
n)1log® Y N + K) algorithm for (< t)-reporting. There
are many options, one of which is to use binary divide-
and-conquer to reduce to the pseudo-line case: We com-
pute the median z-coordinate x,, of the rays’ endpoints,
let Py (resp. P») be the points left (resp. right) of x = z,,
and L; (resp. La) be the pseudo-rays whose endpoints
are left (resp. right) of z = x,,,. We recursively solve
the problem for P, and L, and for P, and Lo, and fi-
nally solve the problem for P, and Lo by viewing the
pseudo-rays of Lo as pseudo-lines and invoking, say,
the O(m + nlog'® N + K) algorithm from Section 4.1,
e.g., with ¢ = 1. This yields a total time bound of
O((m +nlog'® N)log N + K).

(< t)-reporting algorithm. We solve the (< t)-
reporting problem for monotone pseudo-rays by adapt-
ing the Clarkson—Shor-style divide-and-conquer algo-
rithm from Section 2. We point out the key differences:

The lower envelope of pseudo-rays (even without
monotonicity) still has a linear number of vertices
(which include both intersections and segment end-
points that are visible from below), since their lower
envelope complexity is related to order-2 Davenport-
Schinzel sequences [38]. Thus, LE(R) still has expected
size O(%). However, we can no longer use SMAWK
to compute LE(R); instead, the discrete lower envelope
computation now requires Tininima(m, %) time. The to-
tal conflict list size 3 A cyp(g) |Lal is again bounded by
O(n) in expectation. To compute the conflict lists of all
cells in VD(R), it suffices to compute the conflict lists of
all vertices of LE(R), where the conflict list of a vertex v

is defined as the list of all pseudo-rays of L below v. This
is because a pseudo-ray { intersects a cell A iff £ is below
at least one of the two vertices of A or the right end-
point of £ is in A. (We can easily identify the endpoints
inside every cell by one left-to-right linear scan.) Now,
computing the conflict lists of the vertices of LE(R) cor-
responds to a row (< ty,. ..,y)-reporting problem. As
noted in the introduction, row (< tq,...,t;,)-reporting
reduces to (< t)-reporting, by translating the values in
each row (namely, resetting A[i, j] to Ali,j] — t;)—this
operation preserves the Monge property. So, the con-
flict list computation can be done by an extra recursive
calll The recursion is for a subproblem with O(%) ex-
pected number of points and n pseudo-rays, with O(n)
expected output size. (Fortunately, this extra subprob-
lem will not hurt the recurrence too much.)

With s = b?, recurrence (2.1) is changed to the
following:

T(m,n, K) S Tminima(ma l%) + T(O(%),H,O(n)) +
ZTO(b3)(mianiaKi) +

(3.3) T(O(ZEE) n, K') + O(m +n),

for some m;’s, K;’s, and K’ with) .n; = O(n),
>oymi <m,and) K, + K <K.

In addition, we still have symmetry T'(m,n, K) =
T(n,m, K), because the transpose of a Monge staircase
matrix is still a Monge staircase matrix (after reversing
the order of the rows and the order of the columns).

Row minima algorithm. We solve the row minima
problem, i.e., the discrete lower envelope problem, sim-
ilarly by Clarkson—Shor-style divide-and-conquer. Take
a random sample R of L of size 7. Recursively com-
pute the (discrete) lower envelope LE(R) and consider
its vertical decomposition VD(R). Compute the con-
flict lists of all cells A € VD(R). As before, this reduces
to a reporting problem for an expected O(%) number
of points and n pseudo-rays, with O(n) expected out-
put size. For each cell A € VD(R), let ma be the
number of z-values of X in the z-projection of A; note
that Y-\ cyp(r) ma is equal to m (in expectation). For
each cell A € VD(R), compute the lower envelope of
L. For example, we can adapt a naive O(|Lal|?)-time
algorithm for this purpose. However, in the discrete set-
ting, the computation of the intersection of two pseudo-
rays cannot be done in constant time, but requires
O(log ma) time by binary search (we only need to know
the position of the intersection relative to ma x-values).
So, the naive algorithm requires O(|La|*logma) time.
By a standard analysis of Clarkson and Shor [17, 34],

E [ZAGVD(R) |LA|4} = 0((2)s*) = O(ns®). By con-

Copyright © 2021

1471 Copyright for this paper is retained by authors

Downloaded 10/25/21 to 207.152.71.46 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

cavity of the log® function and Jensen’s inequality,
> AcVD(R) log®ma < O(IR|(1 + log*(3° A ma/IR]))).
By Jensen’s inequality again, E [ZAEVD(R) log? mA] <
O(2(1 + log? [£7m1)). Hence, by the Cauchy—Schwarz
inequality,

E [alLal*logma]
VE[S A [Lal1] - E[S 5 log? ma]

= O(y/ns? - (1 +log? [2m]))
= O(sn(1+log [22])).

IN

Choose s to be a sufficiently large constant. We
then obtain:

Tinima(m,) < Thinima(m, 5) + T(O(n),n,0(n))
(3.4) + O(n(1 +1og [Z1)),

Putting it all together. Expanding (3.4) and noting
that Y-, 3+ (1+log [2' ") O(n(1+log [22])), we get:

Tminima

. ZT (3):3:03) +

(3.5) O(n(l +log [22])).

In (3.3), we can replace Tos)(mi,nq, K;) with
O((m; + n;)1log®M b + K;) using an aforementioned
naive algorithm. Thus,

T(m7 n, K) S Tminima(m7 O(b%)) +
T(O(g),n,0(n)) +
O((m+n)log®P b+ K — K') +

(36) T(O(=45),n, K.

Using symmetry to rewrite T(O(g),n,0(n))
as T(n,0(%),0(n)) and T(O(ZEE) n,K') as
T(n,O(™+%), K') and applying (3.6) to expand these
two terms, and setting m = n, we get:

T(n,n,K) < Tinima(n, O(3x)) +
O((n+ £)10g® M b+ KY) +

(3.7) > T(O(E

for some K{/,..., K} with K{f +---+ K < K + O(n).
Rewriting Tininima(n, O(3z)) using (3.5), we obtain:

), K7)

T(nvnaK) < O((K)10g0(1)b_’_K-(/)//) +

ZT]7],KW)

2
for some n;-’s and K’-”’s with ZAn’- = O(Zj ”2/5’

#) _ O(’n+K> and KW"‘Z K/// < K+O(Z- ”/b +
n) =K + O(n).

Now we expand the recurrence using an increasing
sequence of parameters by, bs,... (and note that the
expression co(- - co((co(n+K) /b1 +K)/ba+---+ K)/b;
is upper-bounded by O(“jK), assuming b; > ¢ for some

sufficiently large constant ¢ depending on c¢g):

Tn,nK) < O (n+ K)logo(l) by + K" +

(n+ +)logO(l) by —I—K”H +
(ngQK + E) logo(l) bs + Ké/“ + .-)

for some K"’s with 3, K" < K—&—O(n—f—%—i— ”btK +
) =K +0(n).
Finally, choosing b; = ¢ (and noting that
3. j9W /el = O(1)), we conclude that T(n,n, K) =
O(jn+K). This implies that T'(m, n, K) = O(m+4n+K).
Substituting this back into (3.5), we can also con-
clude that Tininima(m, n) = O(n(1 +log [22])).

THEOREM 3.1. Given an mxn Monge staircase matriz,
we can report all K elements that are at most a given
value t (in an arbitrary order) in O(m-+n+ K) ezpected
time.

Given an m X n Monge staircase matriz, we can
report the row minima in O(n(1+log [2])) < O(m+n)
expected time.

Remarks. Note that all the translation and transpo-
sition operations on the input matrix are to be done
implicitly (we just need to remember an offset value per
row and per column).

The row minima or lower envelope part of the
algorithm here is similar to (and is modelled after) the
randomized divide-and-conquer algorithm by Millman
et al. [32] for discrete lower envelope of pseudo-lines,
which also runs in O(n(1 + log [2])) expected time.
(For pseudo-lines, the conflict list computation is easier
and does not require halfplane range reporting.)

Note how crucial it is that we solve both the (< ¢)-
reporting and the lower envelope problem simultane-
ously: the (< t)-reporting algorithm requires lower en-
velopes of samples, and the lower envelope algorithm
requires (< t)-reporting to compute conflict lists.

Certain applications require solving the row min-
ima problem for double staircase matrices. Aggarwal
and Klawe [3] observed that such matrices can be de-
composed into staircase matrices, but alternatively, it
is straightforward to adapt our row minima algorithm
directly to handle double staircase matrices (since such
matrices are closed under transposition and the lower

Copyright © 2021

1472 Copyright for this paper is retained by authors

Downloaded 10/25/21 to 207.152.71.46 Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

envelope of the corresponding pseudo-segments still has
linear complexity).

4 (< t)-Reporting for
Matrices

Totally Monotone

We now investigate the (< ¢)-reporting problem more
generally for an arbitrary totally monotone (complete)
matrix A. We don’t have symmetry now, and so will
propose a different recursive approach.

In this section, we let n denote the mazximum
number of columns in A (instead of expected). We
still use m to denote the expected number of rows in A,
and K denote the expected number of output elements.
Redefine T'(m,n, K) be the expected time needed to
solve the problem under these parameters.

4.1 First almost linear algorithm. A (pseudo-
)concave chain refers to the lower envelope of a subset
of pseudo-lines in L. In the few-concave-chains case of
the problem, the points of P lie on g concave chains.
For each point p, we are given a label of the chain it
is on, and its incident pseudo-line. (By a linear scan
over P, we can thus obtain a sorted list of points on
each chain.) Let Tehains(m, n, K; g) denote the expected
time needed to solve this special case of the problem.

Our algorithm consists of two parts: a reduction
of the general problem to the few-concave-chains case,
and a reduction of the few-concave-chains case back to
smaller instances of the general problem.

Part I: reducing to the few-concave-chains case.
For each ¢+ = 0,...,logn — 1, let R; be a random
sample of L where each element is chosen independently
with probability % (these logn samples are chosen
independently).

For each p € P, find the smallest i* such that p
is below LE(R;-), and lift p upward to a point p; on
LE(R;+). (See Figure 4.) Let Py = {py : p € P}, which
is a point set lying on logn concave chains. We solve
the problem for Py and L. Afterwards, we can find the
pseudo-lines below each p € P by a linear search over
the pseudo-lines below py. (If py does not exist, we do
linear search over all n pseudo-lines.)

Expected output size. Fix a point p € P having k
pseudo-lines below it. The probability that p is above
LE(R;) is 1—(1—). Thus, the probability that i* = i
is(1-%)F 1-1-55)%) - (1—(1—5=)k) . Let
io = |log k]. It follows that Pr[i* = ig] = Q(1), and for
i > i, Pr[i* = i] < O(£)? (as a loose upper bound).
Let z be the number of pseudo-lines above p and
below p;. Conditioned on i* = ¢, the expected value of

z is at most 2°. Thus, E[z] < E[2] < 20 +3772, | 2°.

Dy

LE(R))

LE(R;)
LE(Ry)

Figure 4: Lower envelopes of random samples, and
lifting of a point p. (In general, the envelopes might
intersect.)

Prli* =i] < O(20 4372, 1 2(3)%) = O(k). It follows
that the expected total output size for the problem for
Py and L is O(K).

As an aside, note that conditioned on i* = ig, the
probability that z < ak is at least 1—(1— 55)" = Q(a).
Since Pr[i* = ig] = Q(1), we get Pr[z < ak] = Q(«)
unconditionally, for any o < O(1). This fact will be
useful later.

Running time. It remains to analyze the time needed
to compute i* and p; for every p € P. For each ¢ =0 to
logn — 1, we run SMAWK [4] on P and R; to evaluate
LE(R;) at the z-coordinates of P; for each point p € P,
if p is below LE(R;), we set pt to the point on LE(R;)
at p’s z-coordinate (found by SMAWK) and remove p
from P, before proceeding to the next iteration.

SMAWK runs in time linear in |P| and |R;|. The
total expected size of R; over all i is), 5+ = O(n).
Fix a point p € P that has k pseudo-lines below it.
Then p participates in O(i* + 1) calls to SMAWK, and
E[i*] < O(k), since we have earlier shown the stronger
statement E[2°] = O(k). It follows that the total
expected running time of all the calls to SMAWK is
at most O(m + n + K). Thus,

T(m,n,K) < Om+n+K) +
(48) Tchains(m7 n, O(K)a IOg n)

Part II: reducing the few-concave-chains case
to smaller instances. For each point p € P, define
slope(p) to be the pseudo-slope of the pseudo-line that
p is incident on; define the range of p to be the
interval [slope(p™),slope(p™)), where p~ and p™ are the
predecessor and successor of p among the points of P
on p’s chain.

Divide [1,n] into 7 intervals of length b, for a
parameter b to be set later. For each interval I, let
L; be the set of all pseudo-lines of L with pseudo-slopes
in I, and let P; be the set of all points of P whose ranges

Copyright © 2021

1473 Copyright for this paper is retained by authors

Downloaded 10/25/21 to 207.152.71.46 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

intersect I. By a linear scan over the pre-sorted set P,
we can generate all P;’s, each sorted by z. For each I,
we solve the problem for P; and Lj recursively.

Afterwards, for each p € P; found to be above a
pseudo-line £ € L; by the recursive calls, we search
for all points on p’s chain that are above ¢ (and have
not been found before), by doing a linear scan in both
directions from p.

Correctness. Consider a pseudo-line ¢ € Lj for a given
interval I. Suppose that some point of P on a concave
chain « is above £. We claim that at least one point of
Py is above ¢ (and so the linear scans afterwards will
find all points of P above £). Let v be the vertex of v
that is defined by a pair of pseudo-lines (¢, ¢") with the
pseudo-slope of £ between the pseudo-slopes of £ and ¢”.
Consider the predecessor point v~ and successor point
vT of v among the points of P on 7. Then slope(¢) lies in
the range of v~ and the range of v*. So, v=,vT € Pr.
As one of v~ and vT must be above ¢, the claim is
proved.

Running time. Consider an interval I of size b and a
concave chain v. Consider the portion vy of « that is
defined by pseudo-lines with pseudo-slopes in I. The
only points of P on v that have ranges intersecting I
are the points of P on 4y, plus 2 extra points (the
predecessor of the leftmost point on ~; and the successor
of the rightmost point on v7). Summing over all g
chains and all 7 intervals, we can then bound), |Fy|
by m + QQT”.

The linear scans after the recursive calls take O(K)
additional time. Thus,

Tchains(m,n,K; g) < O(ernJrK) +
n/b

(4.9) > T(mi,b, K3),

for some m;’s and K;’s with) .m; < m + 2ng and

S K < K.

Putting it all together. Set ¢ = logn and b =
log?n. Combining (4.8) and (4.9) gives the following
recurrence:

n/log?n
T(m,n, K) < O(m+n+K)+ Z T (mi,log® n, K;),
i=1
for some m;’s and K;’s with). m; < m+ O(@) and
> Ki < O(K). (For the base case, if n drops below a
constant, 7'(m, 0(1), K) = O(m).)
Expanding the recurrence for O(log™n) levels of

recursion (and noting that O(5, + m +-)=

O(n)), we see that T'(m,n,K) = O((m + n)log"n +
K2O(log* n))

Remarks. Slight improvement in the m term is possi-
ble: We can initially reduce m to O(K), as mentioned
before by running SMAWK in O(m + n) time, and re-
moving points of P below LE(L). Thus, T'(m,n, K) <
O(m+n)+T(K,n,K) = O(m-+nlog*n+ K200),

Alternatively, we can stop after ¢+ 1 levels of recur-
sion, and switching to the trivial bound T'(m,n, K) =
O(mn) for the base case. This gives T'(m,n,K) =
O((m +n)log® n + K) for any constant c.

Slight improvement in the m term is again possible:
In Part I, the number of points actually drops to O(n) in
expectation, since on each edge of each chain, only two
points (the leftmost and rightmost) may have nonempty
ranges, and the expected total size of the chains is
O 5v) = O(n). Thus, T(m,n,K) < O(m +n +
K)+T(0(n),n,K) = O(m+nlog'® n + K).

We remark that the general idea of using logarithmi-
cally many random samples of different sizes is inspired
by previous work on halfspace range reporting [11], but
the way we use samples here (not requiring the standard
Clarkson—Shor framework) appears original.

4.2 Refinements. The running time of the preced-
ing algorithm is already very close to linear, but for
those who care about optimizing iterated logarithmic
factors, we offer two modifications to improve the time
bound further: the first to improve the n term, the sec-
ond to improve the K term. Both modifications con-
cerns Part I of the algorithm only.

First modification. We take a random sample R; only
for i =logs,...,logn — 1, where s is a parameter to be
set later. This way, the total size of the R;’s is reduced
to O(Zizlogs %) - O(%)

For the analysis of the expected output size, fix
a point p € P having k pseudo-lines below it. If
k > 4s, our earlier proofs that E[z] < E[2*] = O(k)
and Pr[z < ak] = Q(«) go through unchanged. If
k < 4s, we instead have E[z] < E[2] < O(s +
Yo logsia2 - (5)?) = O(s). The expected output
size for the problem for P; and L is now bounded by
O(K + sm).

Now, p participates in O(i* — logs + 1) calls to
SMAWK, and E[i*—log s] < E[2" /s] = O(1+%). Thus,
the total expected cost for SMAWK is O(m + £ + 2).
(Note the sublinearity of the 2 term; nowhere did we
spend O(n) time outside of the recursive calls.) We get

T(m,n,K) < Om+%+K) +
(4.10) Tehains(m, n, O(K + sm); logn).

Copyright © 2021

1474 Copyright for this paper is retained by authors

Downloaded 10/25/21 to 207.152.71.46 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

Second modification. Next, to mitigate the constant-
factor blow-up in the output size K, we repeat the
procedure d times (with an independent collection of

samples), for another parameter d. Let p%j) be the lifted
point py from the j-th repetition. Redefine p; as the

lowest of Py @) over all j. The number of concave chains
now increases by a factor of d, to at most dlogn, but
the expected output size decreases, as we now show.
Fix a point p € P having k pseudo-lines below
it. Let z() l;)e the number of pseudo-lines above p
(g

and below 2 Let z be the number of pseudo-lines

above p and below p4, i.e., 2 = min, 20 If k < 4s,

we already have E[z] < E[z(V] = O(s). Assume
k > 4s. As we have analyzed earlier, E[z0)] < ck
for some constant ¢, and Pr[z(J) < ak:] Q(ar) for

any o < O(1). Thus, Pr[z > %] (1 - (%)
e“”mTSO@.mmmmnmdmz
o

2ick] < (£)¢ by Markov’s inequality. So, [1<

Zz>1 2dk o)+Zz>1(2’)d lk) < O() = O(g
It follows that the expected output sme for the
problem for Py and L is (1+ O(%))K 4+ O(sm). Thus,

T(m,n,K) < O(d(m+ 2+ L)+ K)+
(4.11) Tepains(m,n, (14 O(%))K + O(sm); dlogn).

Putting it all together. Set g = dlogn, b = log?n,
s = (log" n)*, and d = (log* n)2. Combining (4.11) and
(4.9) yields the following new recurrence (loosely upper-
bounding dlogn by log®n):

T(m,n,K) < O(m(log"n)? + Toemz T K) +

n/log?n

(4.12) >

=1

T(mi, lOg2 n, Kz)7

for some m;’s and K;’s with >, m; < m—f—O(M)

logn

and Z K < (1 =+ O(W))K + O((log* Tl)4)
To solve the recurrence, define ny = n and
n; = log’nj_;, and let h = O(log"n) be the

smallest index such that nj, is below a constant.
h , -/N\2
Note that J[;_,(1 + O(W)) < O&y /i) =
O(1). At the j-th level of the recursion, the
sum of the local m values is bounded by m +

O(Z§':1 %) =m + O(M) (as the se-

log n;
ries is super-geometric), and the sum of the local K

i n(log* n.,)? %
O(K + Y,y (m + "0 1) (log* nyr)t) =

values is 1
ogn ;s

O(K +m(log* n)® + n(l%*:j)ﬁ) The total cost at the j-
th level is O((m+ M)(log nj)? +W+(K+
m(log* n)® + nllog” n;)7)) = O(m(log* n)> + 7(1%?%)2 +

log n;
log n;

K). Since Z 71%) S O((1/]/)2) = O(1), the
total over all h levels is T'(m,n, K) = O(m(log" n)® +
n+ Klog™n).

Final improvement. Finally, we can improve the m
term by using our earlier Clarkson—Shor-style divide-
and-conquer approach. A recurrence similar to (2.1)
still holds, since it does not use symmetry. Choose b =
(log* n)8. Instead of recursion, use the above new algo-
rithm, which allows us to replace Toys)(m;, ni, K;) with
O(m;(log™ b)® + n; + K;log™ b), and T(O(™+E), n, K)
with O(™4E (log* n)® +n + K'log™ n).

Then (2.1) gives T(m,n, K) = O(m(log* log* n)% +
n+ Klog*n).

As noted before, we can initially reduce m to O(K)
after spending O(m + n) time. We get our final time
bound T'(m,n, K) = O(m + n + Klog™ n).

THEOREM 4.1. Given an m X n totally monotone ma-
triz, we can report all K elements that are at most a
given value t in O(m + n + Klog" n) expected time, or
alternatively in O(m +n log'® n + K) expected time for
any constant c.

Remarks. The only primitive operations needed by
the algorithms in this section are comparisons of the
form Ali, j] < Ali, j'] or Ali, j] < t.

We leave open the question of whether the remain-
ing log™ factor can be further reduced. If there were an
O(m(log" n)°M) + n 4 K) algorithm, then bootstrap-
ping with (2.1) would give a time bound with a dou-
bly iterated logarithm. But we don’t even know of an
O(m log® M n + K) algorithm, or for that matter, an
O(m°M™ 4 n + K) algorithm.

It is possible to design a randomized algorithm that
has optimal but unknown time complexity for the (< ¢)-
reporting problem for totally monotone matrices, simi-
lar to results by Larmore [30] on row minima for totally
monotone staircase matrices, or Pettie and Ramachan-
dran [35] on minimum spanning trees. The algorithm in
Section 4.1 reduces the problem to instances of size at
most log(c) n, after a constant number of rounds, and for
such extremely small instances, we can build an optimal
decision tree by “brute force”.

5 Consequences

In this section, we describe applications or variants of
our (< t)-reporting algorithms to solve a number of
related problems.

5.1 (< K)-selection. There is a simple general ran-

domized reduction of the (< K)-selection problem to
(< t)-reporting (this reduction does not require geom-

Copyright © 2021

1475 Copyright for this paper is retained by authors

Downloaded 10/25/21 to 207.152.71.46 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

etry, and has been observed before in other contexts,
e.g., in [12]):

First, we may reduce m to be at most K, by running
arow minima algorithm, selecting the K-th smallest row
minimum tgy, and keeping only rows whose minima are
at most tg.

Now, pick a random sample of n entries from the
entire m X n matrix, and let ¢ be the [%]—th smallest
of the sample, which can be found in O(n) time. Now,
run our (< ¢)-reporting algorithm, with a time limit of
T(m,n,6K). If the output contains between K and 6K
elements, we report the first K smallest elements from
the output in O(m + K) additional time.

The expected rank of ¢ is [%W m, which is between
2K and 3K (since m < K). Straightforward calcula-
tions show that the rank of ¢ is between K and 6K
with probability ©(1). Thus, an O(1) expected number
of trials suffices. The total expected running time is
O(T(m,n,4K)). Consequently, by using Theorems 4.1
and 3.1, we obtain the following:

THEOREM 5.1. Given an m X n totally monotone ma-
triz and a number K, we can report the K smallest el-
ements (in an arbitrary order) in O(m + n + K log™ n)
expected time.

Given an m x n Monge (complete or staircase)
matriz and a number K, we can report the K smallest
elements (in an arbitrary order) in O(m + n + K)
expected time.

5.2 Row (< ki,...,k,)-selection for totally
monotone matrices. We now consider the row (<
k1,...,kn)-selection problem for a totally monotone
matrix, which is trickier than (< K)-selection. Let
Tiseloct (M, n, K) be the expected time needed to solve
this problem where m is the (expected) number of rows,
n is the (maximum) number of rows, and K is the (ex-
pected) sum >, k;.

In geometric terms, the problem reduces to the
following;:

Given a set X of values of (expected) size m, a set
L of pseudo-lines of (maximum) size n in the plane,
and a number k, for each z € X, report the first k,
lowest pseudo-lines of L at z-coordinate x for each
r € X. We let K be the (expected) sum k.

First approach, via sampling. We first give a gen-
eral randomized reduction from row (< kq,...,kp)-
selection to (< t1,...,ty)-reporting, which as men-
tioned reduces to (< t)-reporting (this reduction does
not require geometry):

Take a sample R of 5 columns. Find the
min { 2k; + clogn, k; }-th smallest ¢; for the i-th row

among the columns in R, by recursion. Run
our algorithm for row (< tq,...,t,)-reporting, in
O(T(m,n, K)) time. Search for the answers among the
output entries.

Observe that in the i-th row, the k;-th smallest
among all columns is at most the (3k;/4 + clogn)-th
smallest among the columns in R with high probability
(say 1 — n~3) by a Chernoff bound, for a sufficiently
large constant c. (If failure is detected, we can switch
to a brute-force quadratic-time algorithm.) Thus, we
obtain:

Tselect (m, n, K) < Tselect (m; %7 % + O(m IOg n)) +
O(T(m,n,K)+m+n+K).

By wusing Theorem 4.1, the recurrence solves to
Tsetect (m,n, K) = O(mlognlog" n+mn+ Klog"n). The
n and K terms are fine; however, the m term has an
extra logarithmic factor.

Second approach, via Clarkson—Shor. We now
improve the m term by modifying the Clarkson—Shor-
style divide-and-conquer algorithm from Section 2. (In
contrast, the (< k)-reporting algorithm from Section 4.1
does not seem adaptable.)

Take a random sample R of L of size 7. Compute
the lower envelope LE(R) and its vertical decomposition
VD(R), in O(m + 2) time as before. For each cell
A € VD(R), compute its conflict list La; as before,
this takes time O(3_Acyp(r) [Lal), which has expected
value O((%)s) = O(n).

Let X’ be the subset of all z € X with k, > b. For
each A € VD(R) with |La| < bs, we recursively solve
the subproblem for L and the z-values in X — X’ that
lie in the a-projection of A. Let X" be the subset of
all z-values in X — X’ whose answers found lie above
LE(R). Let X" be the subset of all z-values in X
that lie in the z-projection of cells A € VD(R) with
|La| > bs. We recursively solve the subproblem for L
and X' U X" UX".

We have |X'| < £ For each 2 € X — X/, the
probability that x € X" i.e., that the k,-th lowest point
on z is above LE(R), is at most g Thus, the expected
size of X" is O((%*)s). Furthermore, by Clarkson and
Shor’s analysis, the expected value of |La| for the cell
A intersecting a fixed = is O(s). Thus, the probability
that |[La| > bs is O(3), and so the expected size of X"
is O(%).

Choose s = b?. The expected size of X' U X" U X"
is then O(mJgK), which is O(%) since K > m. Observe
that only the z-values of X" may participate in two
recursive calls, and the expected value of er xn ke 18

at most O(£2) = O(£). We thus obtain the following

Copyright © 2021

1476 Copyright for this paper is retained by authors

Downloaded 10/25/21 to 207.152.71.46 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

recurrence:

Tselect (m, n, K) Z Tselect (mia ng, Kz) +

Tselect(O(%)zna K/) + O(m + n)’

for some m;’s, n;’s, and K;’s with Y .n; = O(n),
max;n; = OB3), >,m; < m, and >, K, + K' <
K+0(%)and K' < K.

By the first approach, we can replace
Tselect (mi, g, K,L) with O(ml 1Ogo(1) nﬁ—nl—i—KZ lOg* nz)
Letting K" = K — K', we get:

Tselect (m7 n, K) < O(m logo(l) b+n+

(K" + £)log" b) +
Tselect(O(%)a n, K — KN)'

Now we expand the recurrence using an increasing

sequence by, b, .. .:

Tsetect(m, n, K)
< O ((m 1og®M by + n 4+ K log" by)
+ (& logO(l) be +n+ (Kj +)log’k ba) +
OW by +n+ (Kj, + 55-) log" by_1)
+ K)

1" : 1"
for some K}'’s with }_, K/ < K.

Choose by = 2 and b; = 21 for a sufficiently
small constant 6 > 0, and let h = O(log"n) be the
smallest index such that b, > n. We conclude that
Tsetect(m,n, K) = O(m + (n + K)log™n) = O((n +
K)log*n) (since m < K).

+

\x

THEOREM 5.2. Given an m X n totally monotone ma-
triz and numbers ki, ..., k, > 1, we can report the k;
smallest elements (in an arbitrary order) in the i-th row,
foralli=1,...,m, in O((n+ K)log™ n) expected time.

Remarks. We leave as an open question whether the
time bound could be improved to O(n + K log" n), to
match the complexity of (< t)-reporting.

Alternatively, if we use the O(m+n log(® n+K) al-
gorithm for (< k)-reporting as a start, then the first ap-
proach gives Tyelect(m, n, K) = O(mlogn + nlog(c) n+
K). In the second approach, by beginning with b =
1og(c) n, we have h = O(1) and get Tyelect(m, n, K) =
O((m +n)log"” n + K).

5.3 Row minima for totally monotone v-
matrices. As another application of our (< k)-
reporting algorithm, we consider the row minima prob-
lem for an m x n totally monotone v-matrix.

In geometric terms, the problem corresponds to
computing a discrete lower envelope of n pseudo-line
segments (or pseudo-segments):

For a set X of m values and a set L of n pseudo-
segments in the plane, evaluate the lower envelope of
L at the z-coordinates of X.

We assume that the z-coordinates of X and of the
endpoints of L have been pre-sorted, and the pseudo-
segments of L has been pre-sorted by pseudo-slope.
More precisely, each pseudo-segment is given a distinct
number called the pseudo-slope, with the property
that if segments ¢ and ¢ intersect and ¢ has larger
pseudo-slope than ¢, then ¢ is below ¢ to the left
of the intersection. (A lemma from [13] states that
such a numbering exists iff the pseudo-segments are
extendible.) As is known [24, 38], the lower envelope
of n pseudo-segments has at most O(na(n)) vertices.
We need two subroutines:

1. A naive lower envelope algorithm with O(n?(1 +
log [2])) running time:
Draw vertical lines at the endpoints to divide the
plane into O(n) slabs. In each slab formed by two
consecutive vertical lines, run SMAWK to compute
lower envelope (since the pseudo-segments may be
treated as pseudo-lines within the slab). The total
time for these n subproblems is O(>2™ n(1 +
log [2:])) for some m;’s with ZO(? m; = m. The

sum is at most O(n?(1+1log [2%])) by concavity of

the logarithm.

2. An algorithm for solving the reporting problem for
points and pseudo-segments in O(m3+n+K log™ n)
expected time—given a set P of m points and a
set L of n pseudo-segments, report all K pairs
(p,¢) € P x L with p above ¢:

Draw vertical lines at the endpoints to divide the
plane into O(n) slabs. For each pair of slabs o7 and
09, run our reporting algorithm from Theorem 4.1
on the points between o7 and o2 and the pseudo-
segments with left endpoints in o; and right end-
points in oy (for such a subproblem, the pseudo-
segments may be treated as pseudo-lines). There
are O(m?) subproblems; each point participates in
O(m?) subproblems, but each pseudo-segment par-
ticipates in one. By Theorem 4.1, the total ex-
pected time is O(m3 +n + K log" n).

Choose a hierarchy of random samples Ry C Ry C

Cc Ry = L, Where each element of L is in R;
3/4

with probability - e and n; = n, N1 = n;’, and
ng = O(1) (Wlth L = O(loglogn)) At the i-th
Copyright © 2021

1477 Copyright for this paper is retained by authors

Downloaded 10/25/21 to 207.152.71.46 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

iteration, we assume that we have already computed

the lower envelope LE(R;), its vertical decomposition

VD(R;), and the conflict lists of the cells of VD(R;). For

each cell A € VD(R;), we compute the lower envelope

LE(R;+1 N La) inside A by the above subroutine 1. By

gluing all these lower envelopes, we obtain LE(R;1).
The total time for these steps is

0 <|:Zz ZAGVD(Ri) |Riz1 N Lal?
(1+log [Mﬁ1)D ’

where 37 \cypryma = m for each i. By
concavity of the logarithm, the sum is at most
oS + log [%—‘)), where S = > .S
and SZ = ZAEVD(R) |Ri+1 N LA|2. NOW,

EIS] = E|Sacvom ()2 By a stan-
dard analysis of Clarkson and Shor [17, 34],

this expectation is O((;-a(;-)) (G)?) =

O((Za(m)ymm) = Ofna(n)/yim). Tt follows
that E[S] = O3, na(n)/\/n;) = O(na(n)). So,

S = O(na(n)) with probability Q(1). We can repeat
an O(1) expected number of times to ensure success.
The time bound is O(na(n)(1 + log [ML(IOE;"—‘)) <

na(n) —
O(na(n)log [2] + na(n)logloglog n).
Before proceeding to the next iteration, we still need
to compute the conflict lists of the cells of VD(R;41).
It suffices to compute the conflict list of every vertex
v of LE(R;t1), where the conflict list of v is defined
as the list of all pseudo-segments below v. This is
because a pseudo-line segment ¢ intersects a cell A iff
¢ is below at least one of the two vertices of A or at
least one of the endpoints of ¢ is inside A. For each
cell A € VD(R;), we want to find the pseudo-segments
of La below each vertex of LE(R;+1 N La) inside A.
By the above subroutine 2, this takes O(|R;y1 N La |+
|Lal + Kalog" n) expected time per cell A, where Ka
is the total size of the conflict lists of the vertices of
LE(R;+1) inside A. The total expected cost over all
cells is proportional to

[ZAEVD(R)((mﬂ) +[Lal) +
ZA,GVD(R1+1) |LA/|10g n] .

By Clarkson-Shor, this is O((;-a () (5 +1) +n;) +

(ol i log”n) = O((Eam)(,)+
na(n)log®n) = O(na(n)log™n). The total over all
¢ = O(loglogn) iterations is O(na(n)log™ nloglogn).
The overall time bound is O(na(n) log” nloglogn+
na(n)log [2]). In the case of n > m, we

can divide into - subproblems of size m and

obtain an O(Z(ma(m)log™ mloglogm)) =
O(na(m)log™ mloglogm) time bound.

THEOREM 5.3. Given an m x n totally mono-
tone wv-matriz, we can find all row minima in
O(na(m)log*mloglogm + na(m)log [2]) <
O(na(m)log™ mloglogm + m) expected time.

Remarks. The log" factor may be removed in the
Monge case, by using the reporting algorithm from
Theorem 2.1 in the implementation of subroutine 2.

The nloglog m barrier seems harder to break. This
appears to require implementing subroutine 2 in, say,
O(m1log®M n+n+K) time instead of O(m®® +n+K).

For large n, it is possible to achieve linear running
time by a more naive approach: Namely, divide the
plane into b vertical slabs each containing 4+ z-values. If
a pseudo-segment spans multiple slabs, divide it into a
left, middle, and right piece where each left/right piece
is contained in a slab, and all the middle pieces have z-
coordinates from b distinct values. We recursively solve
the problem inside each slab, ignoring the middle pieces.
For the middle pieces, we put pieces with the same
z-projection in the same class, and then compute the
discrete lower envelope of each class by SMAWK (since
within the same class, the pseudo-segments behave like
pseudo-lines). The total cost of these O(b?) calls to
SMAWK is O(b*m+n) (since each middle piece belongs
to just one class). We can combine the envelopes
in O(b>m) additional time. The total time over all
O(log, n) levels of recursion is O((b*m + n)log, n).
Setting b = n%/? yields O(n + m'*?®) for any constant
0 > 0. This upper bound may not be too exciting, but it
disproves a conjecture of Klawe [26] that her Q(na(n))
lower bound for m = O(n) could be strengthened to
Q(na(m)) for n > m.

Acknowledgement. I thank Jeff Erickson for a con-
versation about SMAWK and staircase matrices, which
led to the start of this work.

References

[1] Peyman Afshani, Timothy M. Chan, and Konstantinos
Tsakalidis. Deterministic rectangle enclosure and of-
fline dominance reporting on the RAM. In Proc. 41st
International Colloguium on Automata, Languages,
and Programming (ICALP), Part I, pages 77-88, 2014.
d0i:10.1007/978-3-662-43948-7_7.

[2] Pankaj K. Agarwal and Micha Sharir. Pseudo-line
arrangements: Duality, algorithms, and applications.
SIAM J. Comput., 34(3):526-552, 2005. doi:10.1137/
S0097539703433900.

Copyright © 2021

1478 Copyright for this paper is retained by authors

Downloaded 10/25/21 to 207.152.71.46 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

3]

[4]

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Alok Aggarwal and Maria M. Klawe. Applications of
generalized matrix searching to geometric algorithms.
Discret. Appl. Math., 27(1-2):3-23, 1990. doi:10.
1016/0166-218X(90)90124-U.

Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Pe-
ter W. Shor, and Robert E. Wilber. Geometric appli-
cations of a matrix-searching algorithm. Algorithmica,
2:195-208, 1987. doi:10.1007/BF01840359

Alok Aggarwal and James K. Park. Notes on searching
in multidimensional monotone arrays. In Proc. 29th
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 497-512, 1988. doi:10.1109/SFCS.

1988.21966.
Alok Aggarwal, Baruch Schieber, and Takeshi
Tokuyama. Finding a minimum-weight k-link path

graphs with the concave Monge property and appli-
cations. Discret. Comput. Geom., 12:263-280, 1994.
doi:10.1007/BF02574380.

Alok Aggarwal and Subhash Suri. Fast algorithms for
computing the largest empty rectangle. In Proc. 3rd
ACM Symposium on Computational Geometry (SoCG),
pages 278-290, 1987. doi:10.1145/41958.41988.
Wolfgang W. Bein, Mordecai J. Golin, Lawrence L.
Larmore, and Yan Zhang. The Knuth—Yao quadrangle-
inequality speedup is a consequence of total monotonic-
ity,. ACM Trans. Algorithms, 6(1):17:1-17:22, 20009.
doi:10.1145/1644015.1644032.

Rainer E. Burkard, Bettina Klinz, and Riidiger Rudolf.
Perspectives of Monge properties in optimization. Dis-
cret. Appl. Math., 70(2):95-161, 1996. doi:10.1016/
0166-218X(95)00103-X.

Erin W. Chambers, Jeff Erickson, and Amir Nayyeri.
Homology flows, cohomology cuts. SIAM J. Comput.,
41(6):1605-1634, 2012. doi:10.1137/090766863.
Timothy M. Chan. Random sampling, halfspace range
reporting, and construction of (< k)-levels in three
dimensions. SIAM J. Comput., 30(2):561-575, 2000.
doi:10.1137/S0097539798349188.

Timothy M. Chan. On enumerating and selecting
distances. Int. J. Comput. Geom. Appl., 11(3):291-304,
2001. doi:10.1142/50218195901000511.

Timothy M. Chan. On levels in arrangements of curves.
Discret. Comput. Geom., 29(3):375-393, 2003. doi:
10.1007/s00454-002-2840-2.

Timothy M. Chan. Near-optimal randomized algo-
rithms for selection in totally monotone matrices.
Manuscript, 2020.

Timothy M. Chan and Konstantinos Tsakalidis. Op-
timal deterministic algorithms for 2-d and 3-d shal-
low cuttings. Discret. Comput. Geom., 56(4):866-881,
2016. doi:10.1007/s00454-016-9784-4.

Bernard Chazelle, Leonidas J. Guibas, and D. T. Lee.
The power of geometric duality. BIT, 25(1):76-90,
1985. doi:10.1007/BF01934990.

Kenneth L. Clarkson and Peter W. Shor. Application
of random sampling in computational geometry, II.
Discret. Comput. Geom., 4:387-421, 1989. doi:10.
1007/BF02187740.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

31]

32]

1479

Karen L. Daniels, Victor J. Milenkovic, and Dan Roth.
Finding the largest area axis-parallel rectangle in a
polygon. Comput. Geom., 7:125-148, 1997. doi:
10.1016/0925-7721(95)00041-0.

David Eppstein, Zvi Galil, Raffaele Giancarlo, and
Giuseppe F. Italiano. Sparse dynamic programming II:
convex and concave cost functions. J. ACM, 39(3):546—
567, 1992. doi:10.1145/146637.146656.

Pedro F. Felzenszwalb and Daniel P. Huttenlocher.
Distance transforms of sampled functions. Theory of
Computing, 8(1):415-428, 2012. doi:10.4086/toc.
2012.v008a019.

Zvi Galil and Kunsoo Park. Dynamic program-
ming with convexity, concavity, and sparsity. Theor.
Comput. Sei., 92(1):49-76, 1992. doi:10.1016/
0304-3975(92)90135-3.

Pawel Gawrychowski, Shay Mozes, and Oren Weimann.
Submatrix maximum queries in Monge and partial
Monge matrices are equivalent to predecessor search.
ACM Trans. Algorithms, 16(2):16:1-16:24, 2020. doi:
10.1145/3381416.

Ronald L. Graham. An efficient algorithm for deter-
mining the convex hull of a finite planar set. Inf.
Process. Lett., 1(4):132-133, 1972. doi:10.1016/
0020-0190(72)90045-2.

Sergiu Hart and Micha Sharir. Nonlinearity of
Davenport—Schinzel sequences and of generalized path
compression schemes. Combinatorica, 6(2):151-178,
1986. doi:10.1007/BF02579170.

Haim Kaplan, Shay Mozes, Yahav Nussbaum, and
Micha Sharir. Submatrix maximum queries in Monge
matrices and partial Monge matrices, and their applica-
tions. ACM Trans. Algorithms, 13(2):26:1-26:42, 2017.
doi:10.1145/3039873.

Maria M. Klawe. Superlinear bounds for matrix search-
ing problems. J. Algorithms, 13(1):55-78, 1992. doi:
10.1016/0196-6774(92)90005-W.

Maria M. Klawe and Daniel J. Kleitman. An almost
linear time algorithm for generalized matrix searching.
SIAM J. Discret. Math., 3(1):81-97, 1990. doi:10.
1137/0403009.

Philip N. Klein, Shay Mozes, and Oren Weimann.
Shortest paths in directed planar graphs with negative
lengths: A linear-space O(nlog®n)-time algorithm.
ACM Trans. Algorithms, 6(2):30:1-30:18, 2010. doi:
10.1145/1721837.1721846.

Dina Kravets and James K. Park. Selection and
sorting in totally monotone arrays. Math. Syst. Theory,
24(3):201-220, 1991. doi:10.1007/BF02090398.
Lawrence L. Larmore. An optimal algorithm with
unknown time complexity for convex matrix searching.
Inf. Process. Lett., 36(3):147-151, 1990. doi:10.1016/
0020-0190(90)90084-B.

Michael McKenna, Joseph O’Rouke, and Subhash Suri.
Finding the largest rectangle in an orthogonal polygon.
In Proc. 28rd Allerton Conference on Communication,
Control and Computing, 1985.

David L. Millman, Steven Love, Timothy M. Chan,

Copyright © 2021
Copyright for this paper is retained by authors

Downloaded 10/25/21 to 207.152.71.46 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

and Jack Snoeyink. Computing the nearest neighbor
transform exactly with only double precision. In Proc.
9th International Symposium on Voronoi Diagrams in
Science and Engineering (ISVD), pages 66—74, 2012.
doi:10.1109/ISVD.2012.13.

[33] Shay Mozes and Christian Wulff-Nilsen. Short-
est paths in planar graphs with real lengths in
O(nlog®n/loglogn) time. In Proc. 18th European
Symposium on Algorithms (ESA), Part II, pages 206—
217, 2010. doi:10.1007/978-3-642-15781-3_18.

[34] Ketan Mulmuley. Computational Geometry: An In-
troduction Through Randomized Algorithms. Prentice
Hall, 1994.

[35] Seth Pettie and Vijaya Ramachandran. An optimal
minimum spanning tree algorithm. J. ACM, 49(1):16—
34, 2002. doi:10.1145/505241.505243.

[36] Baruch Schieber. Computing a minimum weight k-link
path in graphs with the concave Monge property. J.
Algorithms, 29(2):204-222, 1998. doi:10.1006/jagm.
1998.0955.

[37] Raimund Seidel. Backwards analysis of randomized
geometric algorithms. In J. Pach, editor, New Trends
in Discrete and Computational Geometry, pages 37—68.
Springer, 1993.

[38] Micha Sharir and Pankaj K. Agarwal. Davenport-
Schinzel Sequences and Their Geometric Applications.
Cambridge University Press, 1995.

[39] F. Frances Yao. Efficient dynamic programming using
quadrangle inequalities. In Proc. 12th ACM Sympo-
sium on Theory of Computing (STOC), pages 429-435,
1980. doi:10.1145/800141.804691.

A Applications

We mention a few applications of our row minima algo-
rithm for Monge staircase matrices, to various problems
in computational geometry and dynamic programming;:

e Given two disjoint convex n-gons P and @ in the
plane, we want to find the nearest (or farthest)
invisible vertex of @) for each vertex of P. Aggarwal
and Klawe [3] observed that this problem can be
reduced to row minima in Monge staircase matrices.
We can now solve the problem in O(n) expected time.

e Given an orthogonally convex n-gon P in the plane,
we want to find the largest-area axis-aligned rectan-
gle contained in P. Daniels et al. [18] used Klawe
and Kleitman’s algorithm to solve this problem in
O(na(n)) time (the Monge property was observed
earlier by McKenna et al. [31]). We can now solve
the problem in O(n) expected time.”

50n a related note, Aggarwal and Suri [7] studied the problem
of finding the largest empty axis-aligned rectangle for a set of
n points in the plane, and gave an O(nlog? n)-time algorithm,
using row minima in Monge staircase matrices and other types of
Monge partial matrices as subroutines. Our result does not seem

Daniels et al. [18] then showed that for an z-
monotone polygon (where every vertical line inter-
sect the polygon at most twice), the same problem
can be solved in O(na(n)logn) time, by divide-and-
conquer. Our improvement yields an O(nlogn) ex-
pected time bound.

e Given a complete DAG with n vertices whose edge
weights satisfy the convex Monge property, and given
two vertices s and t and a number k, we want to find
the shortest path from s to ¢ using exactly k links.
Straightforward dynamic programming reduces the
problem to k instances of the row minima problem in
convex Monge, upper triangular matrices. Our new
algorithm implies an O(nk) expected time bound,
improving a previous bound of O(nka(n)) [9]. (Note
that the problem in the concave Monge case has
received much more attention [6, 36].)

e In a seminal work, F. Yao [39] studied the problem
of evaluating a recurrence of the following form: for
any 1 <i<j<n,

c(i,j) = w(i, j) + ig}jgj(c(% k—1) +c(k, 7)),

where the values c(i,7) are given. Naive dynamic
programming requires O(n?) time. Yao described an
O(n?)-time algorithm to compute all c(i, j) values
when w satisfies the concave Monge property and,
in addition, w(i,j) < w(i,j") whenever [i,j] C
[i',5']. Aggarwal and Park [5] noted an O(n?a(n))-
time algorithm for the less studied case when w
satisfies the convex Monge property and, in addition,
w(i,j) > w(i’,j") whenever [i,j] C [i,5']. We can
now improve the time bound in this convex case to
O(n?). This can be most easily seen by following an
approach of Bein et al. [8], who reduced the problem
to O(n) instances of row minima in a Monge, upper
triangular matrix. Bein et al. described the reduction
for the concave case, but the same approach works
in the convex case.

There were also a few algorithms in the literature on
planar or surface-embedded graphs (e.g., [28, 10, 33])
that used Klawe and Kleitman’s row minima algorithm
as an intermediate step, which now may be replaced
by our new algorithm; however, the final running time
in these graph algorithms appears to be dominated by
other steps. There were also a number of important
applications of Klawe and Kleitman’s algorithm to
speed up certain types of dynamic programming that
arise from computational biology [19], but these require

to Immediately improve their overall time bound, but perhaps
with more effort, some improvement might be possible.. .

Copyright © 2021

1480 Copyright for this paper is retained by authors

Downloaded 10/25/21 to 207.152.71.46 Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

matrix searching in an “online setting”, for which our
new algorithm does not seem applicable.

Our (< K)-selection algorithm has at least one
interesting application in computational geometry:

e Given a convex n-gon P in the plane, we want
to report the K farthest pairs of vertices (in an
arbitrary order). For general planar point sets, the
problem requires O(nlogn + K) time [12]. Kravets
and Park [29] used their (< K)-selection algorithm
to obtain an O(n + K log %)—time algorithm for the
problem for a convex polygon. Our result implies an
optimal O(n + K)-time randomized algorithm.

B A Simple
SMAWK

In this appendix, we briefly sketch a simple O(m + n)-
time randomized algorithm for the original problem of
computing row minima in a complete m x n totally
monotone matrix, which may serve as an alternative
to SMAWK [4]. Now, SMAWK is already a simple (but
tricky) algorithm. In some sense, the new algorithm
is conceptually more straightforward, and thus may
have some pedagogical value. (It is not easier to
implement, however.) Millman et al. [32] have already
given an alternative randomized linear-time algorithm
via sampling, but the following randomized incremental
algorithm is a little simpler.

Though the main idea has its roots from known
randomized incremental algorithms for planar lower
envelopes of lines (i.e., convex hulls in the dual) [17, 34],
we will desribe it in matrix terms. Let A be the input
m X n concave totally monotone matrix. By padding
with extra rows or columns, we may assume that m = n.
For each i = 1,...,n, we want to compute the index j;
that minimizes A[7, j;]. Note that j; < jo < -+ < jp,
because of total monotonicity. Set jo = 0 and j,+1 =
n + 1. In addition, for each j = 1,...,n, we will also
compute the index ; for which j;, <j < ji, 41

Randomized Alternative to

Algorithm. We will describe the randomized incre-
mental algorithm “backwards”, to make the analysis
easier: Namely, the algorithm randomly picks a row ¢*
and a column j*, delete the row and the column, solve
the problem recursively for the resulting (n—1) x (n—1)
matrix, then add back the row and the column and up-
date the answers. (See Figure 5.)

To add back row ¢*: We just compute j;» by finding
the minimum of A[é, j] over all j = jix_1,..., =41 (by
naive linear search), and update i; appropriately for all
J=Jir=1s- s Jir41-

To add back column j*: We find the the smallest
i" < ij+_1 with A[,j] < A[,j»] (by naive linear

Figure 5: How the answer staircase S changes when
inserting a row ¢* (top) or when inserting a column j*
(bottom).

search), and the largest ¢/ > i+ with A[i"”,j] <
A", jin] (by another naive linear search). We then reset
Jito j* foralli =14,...,¢" and update i; appropriately
for all j = ji/, N ,ji//.

Analysis. We bound the expected running
time by wusing a standard backwards analy-
sis [34, 37]. Define the answer staircase S to be
an orthogonal polygonal path through positions
(07 0)7 (Oajl)v (1a.j1)7 (Q)jl)a (27j2)a) (najn)a (na TL),
with respect to the final answers for the entire n x n
matrix A.

The cost of adding back row ¢* is proportional to the
sum of the lengths of the horizontal edges in S contained
in rows ¢* — 1 and ¢*. Since the sum of these lengths
over all i* is O(n), the expected cost for a random i* is
o(1).

The cost of adding back column j* is proportional to
the sum of the lengths of the vertical edge in S contained
in column j5* and its two adjacent horizontal edges in
S. (If column j* contains just a single position of S and
not a vertical edge, the cost is O(1).) Since the sum of
these lengths over all j* is O(n) (as each edge is counted
O(1) times), the expected cost for a random j* is O(1).

Thus, the total expected cost for an n x n matrix
satisfies the recurrence T'(n) < T'(n—1)+0O(1), yielding
T(n) = O(n). For an m x n input matrix, the expected
running time is thus O(m + n).

Copyright © 2021

1481 Copyright for this paper is retained by authors

Downloaded 10/25/21 to 207.152.71.46 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

Remarks. In actual implementation, the active rows
(resp. columns) need to be kept in a sorted, doubly
linked list, to avoid shifting indices when deleting rows
(resp. columns); for example, i* 4+ 1 should actually be
the successor/predecessor of i* in the linked list. Be-
cause of all the pointer manipulations and bookkeep-
ing of the extra indices j;’s, the above algorithm prob-
ably would not compete as well with SMAWK in prac-
tice (which has very efficient existing implementations).
Also, the above algorithm does not seem to work in the
online setting, unlike SMAWK.

The random-sampling-based algorithm by Millman
et al. [32] (which achieves a better O(n(1 + log [Z]))
expected cost in the non-square case) similarly removes
columns at random but does not remove rows; however,
it is less simple and requires extra binary searches.

1482

Copyright © 2021
Copyright for this paper is retained by authors

	Introduction
	(t)-Reporting for Monge Matrices
	Generalization to Monge Staircase Matrices
	(t)-Reporting for Totally Monotone Matrices
	First almost linear algorithm.
	Refinements.

	Consequences
	(K)-selection.
	Row (k1,…,km)-selection for totally monotone matrices.
	Row minima for totally monotone v-matrices.

	Applications
	A Simple Randomized Alternative to SMAWK

