
(Near-)Linear-Time Randomized Algorithms for Row Minima in Monge Partial
Matrices and Related Problems

Timothy M. Chan∗

Abstract

We revisit classical problems about searching in totally
monotone and Monge matrices, which have many appli-
cations in computational geometry and other areas. We
present a number of new results, including the following:

• A randomized algorithm that finds the row minima in an
n×n Monge staircase matrix in O(n) expected time; this
improves a longstanding O(nα(n)) bound by Klawe and
Kleitman (1990) for totally monotone staircase matrices.

• A randomized algorithm that reports the K smallest
elements (in an arbitrary order) in an n × n Monge
(complete or staircase) matrix in O(n + K) expected
time; this improves and extends a previous O(n+K log n)
algorithm by Kravets and Park [SODA’90].

• A randomized algorithm that reports the K smallest
elements (in an arbitrary order) in an n × n totally
monotone (complete) matrix in O(n+K log∗ n) expected
time.

• A randomized algorithm that reports the ki smallest
elements in the i-th row, for every i, in an n × n
totally monotone (complete) matrix in O((n+K) log∗ n)
expected time, where K =

∑
i
ki.

• A randomized algorithm that finds the row min-
ima in an n × n totally monotone “v-matrix” in
O(nα(n) log∗ n log log n) expected time; this answers an
open question by Klawe [SODA’90]. The log∗ n factor can
be removed in the Monge case.

1 Introduction

Totally monotone and Monge matrices. Totally
monotone matrices and Monge matrices arise in many
subareas of algorithms, including computational geom-
etry, dynamic programming speedups, shortest paths
in planar graphs, and combinatorial optimization. An
m×nmatrix1 A is concave totally monotone iff for every
i < i′ and j < j′,

A[i, j] ≥ A[i, j′] =⇒ A[i′, j] ≥ A[i′, j′].

The matrix A is concave Monge iff for every i < i′ and
j < j′,

A[i, j] +A[i′, j′] ≤ A[i, j′] +A[i′, j].

∗Department of Computer Science, University of Illinois at
Urbana-Champaign (tmc@illinois.edu). This research has been

supported in part by NSF Grant CCF-1814026.
1Note that some papers on this topic switch m and n for

rectangular matrices.

Clearly, the Monge property (also known as the “quad-
rangle inequality”) implies total monotonicity. Al-
though the converse is not necessarily true, in most
applications, total monotonicity is actually proved by
establishing the Monge property.

Convex total monotonicity and the convex Monge
property can be defined similarly but with ≥ and ≤
reversed. (Note that a convex totally monotone or
Monge matrix can be turned into a concave totally
monotone or Monge matrix by reversing the order of
the columns.)

By default, a matrix will refer to a complete ma-
trix where all entries are filled. In the case of a par-
tial matrix where some entries may be unfilled, the
definitions are similar: the conditions should hold for
all i < i′ and j < j′ whenever all four elements
A[i, j], A[i′, j′], A[i, j′], A[i′, j] are filled.

The seminal work on the topic is the SMAWK algo-
rithm by Aggarwal, Klawe, Moran, Shor, and Wilber [4]
(named after the initials of the authors), which can
compute the minima of all the rows of an m × n to-
tally monotone (complete) matrix A in linear O(m+n)
time. In fact, the time bound is O(n(1 + log

⌈

m
n

⌉

)) if
a compact output representation is allowed; this bound
is optimal. The input A may be given implicitly—we
only assume that any matrix entry can be evaluated
on demand in constant time. (Even more restrictively,
the only primitive operation required is comparing two
elements in a common row.) The SMAWK algorithm
has numerous applications, which we will refrain from
exhaustively listing (see various surveys, e.g., [9, 21]).

Row minima in partial matrices. An important line
of work have followed subsequently, aiming to develop
row minima algorithms for more general types of totally
monotone partial matrices. Aggarwal and Klawe [3]
began studying the case of staircase matrices: A falling
staircase matrix is a partial matrix such that the filled
entries in each row form a suffix of the row, and the filled
entries in each column form a prefix of the column. For
example, this include the case of an upper triangular
matrix, with entries A[i, j] filled for i ≤ j. Similarly,
a rising staircase matrix is a partial matrix such that

1465

Copyright © 2021
Copyright for this paper is retained by authors

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

1
 t

o
 2

0
7
.1

5
2
.7

1
.4

6
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

the filled entries in each row form a prefix of the row,
and the filled entries in each column form a prefix
of the column. (See Figure 1(a,b).) Row minima in
concave totally monotone, falling staircase matrices (or
convex totally monotone, rising staircase matrices) can
be found in linear time directly by SMAWK, since the
unfilled entries may be filled with large numbers while
preserving total monotonicity. However, computing row
minima in concave totally monotone, rising staircase
matrices (or convex totally monotone, falling staircase
matrices) is more challenging, and arises in a number
of applications. Aggarwal and Klawe gave an O((m +
n) log logm)-time algorithm for this problem, which was
later improved to an O(nα(m) + m)-time algorithm
by Klawe and Kleitman [27] in 1990. Their result
is notable for being one of a few algorithms in the
literature that has an original recursion with inverse
Ackermann complexity (not directly due to the use
of union-find data structures or the combinatorics of
Davenport-Schinzel sequences).

In SODA’90, Klawe [26] introduced more general
classes of partial matrices: A skyline matrix is a partial
matrix such that all the defined entries in each column
form a suffix of the column. A v-matrix is a partial ma-
trix such that all the defined entries in each column oc-
cur contiguously (but not necessarily as a prefix or suf-
fix). Similarly, an h-matrix is a partial matrix such that
all undefined entries in each row occur contiguously.
(See Figure 1.) Klawe proved an Ω(nα(n)) lower bound
for the number of evaluations of matrix entries to com-
pute row minima for totally monotone v-matrices and
h-matrices for m = Θ(n). She then described row min-
ima algorithms for totally monotone skyline matrices re-
quiring O(nα(m) log logm+m) time and O(nα(m)+m)
comparisons, or alternatively O(n log logm + m) time
and comparisons. In the introduction of her paper, she
raised the question of finding any o(n logm+m)-time al-
gorithm more generally for totally monotone v-matrices
(or h-matrices).

In the intervening 30 years, no further improve-
ments have been reported on these problems since the
papers by Klawe and Kleitman and by Klawe.

New results. In this paper, we give the first linear-
time algorithm for computing row minima in an m ×
n concave Monge, rising staircase matrix (or convex
Monge, falling staircase matrix). The algorithm is
randomized, Las-Vegas style. This improves Klawe
and Kleitman’s longstanding O(nα(m) + m) bound.
More precisely, the expected time bound of our algo-
rithm (assuming a compact output representation) is
O(n(1+log

⌈

m
n

⌉

)), matching that of SMAWK. From the
practical perspective, the improvement of an α factor

may seem slight, but from the theoretical perspective,
the result interestingly demonstrates that appearance of
inverse Ackermann is unnecessary for this and related
problems, and cleans up some of the time bounds re-
ported in the literature.

To be fair, we should reiterate that Klawe and Kleit-
man’s algorithm works more generally for totally mono-
tone staircase matrices, not just Monge staircase ma-
trices. But as mentioned, in most (if not all) known
applications involving total monotonicity, the Monge
property is satisfied. Indeed, in Appendix A, we list a
number of applications of our new algorithm in compu-
tational geometry and dynamic programming speedups.
A more limiting disadvantage of our algorithm is that
it does not generalize to the “online” setting, unlike
Klawe and Kleitman’s (see their paper for the defini-
tion), which is required in some applications to dynamic
programming speedups.

We also answer Klawe’s open question [26] about
v-matrices, by giving the first nontrivial algorithm
for finding the row minima in an m × n to-
tally monotone v-matrix, with expected running time
O(nα(m) log∗ m log logm + m) (or more precisely,
O(nα(m) log∗ m log logm + nα(m) log

⌈

m
n

⌉

)). The log∗

factor can be removed in the Monge case.

(≤ K)-selection and other related problems. In
addition to row minima, we also consider a number
of related, basic problems about searching in a totally
monotone or Monge matrix:

• (≤ K)-selection: report the K smallest elements (in
an arbitrary order).

• (≤ t)-reporting : report all elements that are at most
t (in an arbitrary order).

• row (≤ k1, . . . , km)-selection: for each i = 1, . . . ,m,
report the ki smallest elements (in an arbitrary
order) in the i-th row.

• row (≤ t1, . . . , tm)-reporting : for each i = 1, . . . ,m,
report all elements that are at most ti (in an arbitrary
order).

For the last three problems, we use K to denote
the total output size (e.g., for the third problem, K =
∑

i ki). For example, the standard row minima problem
corresponds to row (≤ 1, . . . , 1)-selection. Note that row
(≤ t1, . . . , tm)-reporting is equivalent to (≤ t)-reporting,
by translating the values in each row (i.e., changing
A[i, j] to A[i, j] − ti); this operation preserves total
monotonicity and the Monge property. The (≤ K)-
selection and the (≤ t)-reporting problem have similar
complexity, since there is a straightforward reduction

1466

Copyright © 2021
Copyright for this paper is retained by authors

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

1
 t

o
 2

0
7
.1

5
2
.7

1
.4

6
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

O(Kb + mb
s + m

b).
Choose s = b2. The expected size of P ′ is then

O(m+K
b). We then obtain the following recurrence:

T (m,n,K) ≤
∑

i

TO(b3)(mi, ni,Ki) +

T (O(m+K
b), n,K ′) + O(m+ n),(2.1)

for some mi’s, Ki’s, and K ′ with
∑

i ni = O(n),
∑

i mi ≤ m, and
∑

i Ki +K ′ ≤ K.
The above recurrence by itself does not yield good

results (mainly because n does not decrease in the
T (O(m+K

b), n,K ′) term), but we will fix this by com-
bining the recurrence with one extra ingredient. . .

Symmetry. Notice that so far, we have only used the
total monotonicity of the input matrix A. Since both
A and the transpose of A are assumed to be totally
monotone, we can actually transpose the input and
obtain

T (m,n,K) = T (n,m,K),

as the (≤ t)-reporting problem is unchanged after
transposition. This is the extra ingredient we need.

Putting it all together. We will not use recursion for
the subproblems associated with the cells ∆ ∈ VD(R),
but instead use any naive algorithm with running time
O((m+n) logO(1) N+K) (there are many options, one of

which is to use the O(m+n log(c) N+K)-time algorithm
from Section 4.1, e.g., with c = 1). This way, we can

replace TO(b3)(mi, ni,Ki) with O((mi + ni) log
O(1) b +

Ki). From (2.1), letting K ′′ = K −K ′, we get:

T (m,n,K) ≤ O((m+ n) logO(1) b+K ′′) +

T (O(Kb), n,K −K ′′).(2.2)

Note that we have replaced O(m+K
b) with O(Kb). This

is because we can initially reduce m to O(K) by
running SMAWK in O(m + n) time, and removing
points of P below LE(L) which do not contribute to the
output. (This extra step is not essential, but simplifies
calculations.)

Using symmetry to rewrite T (O(Kb), n,K −K ′′) as

T (n,O(Kb),K −K ′′) and applying (2.2) a second time,
we get:

T (m,n,K) ≤ O
(

(m+ n+ K
b) log

O(1) b+K ′′′
)

+

T (O(Kb), O(Kb),K −K ′′′)

for some K ′′′ ≤ K.
Now we expand the recurrence using an increasing

sequence of parameters b1, b2, . . .:

T (m,n,K) ≤ O
(

(m+ n+ K
b1
) logO(1) b1 +K ′′′

1 +

(Kb1 + K
b2
) logO(1) b2 +K ′′′

2

+ (Kb2 + K
b3
) logO(1) b3 +K ′′′

3 + · · ·
)

for some K ′′′
j ’s with

∑

j K
′′′
j ≤ K.

Finally, choosing bj = 2j (and noting that
∑

j j
O(1)/2j = O(1)), we conclude that T (m,n,K) =

O(m+ n+K).

Theorem 2.1. Given an m × n totally monotone ma-
trix whose transpose is also totally monotone, we can
report all K elements that are at most a given value t
(in an arbitrary order) in O(m+ n+K) expected time.

Remarks. This result appears new even in the case of
lines (rather than pseudo-lines), yielding an O(m+ n+
K)-time randomized algorithm for 2D offline halfplane
range reporting, assuming that the input points are pre-
sorted by x and the lines pre-sorted by slope. Here, sym-
metry T (m,n,K) = T (n,m,K) follows from standard
point-line duality. In contrast, standard algorithms for
2D halfplane or 3D halfspace range reporting [11, 16]
require O((m + n) log n + K) time and do not exploit
input pre-sortedness.

The ideas behind our algorithm (the usage of
Clarkson–Shor divide-and-conquer combined with sym-
metry or duality) has similarities with some known work
on offline 3D dominance range reporting; for exam-
ple, see [1, proof of Theorem 3] (the algorithm there
only considered one round of bootstrapping with dual-
ity, since the target time bound was O(n log log n+K),
whereas our algorithm uses multiple rounds and is more
interesting).

Derandomization appears very difficult (lower en-
velopes of random samples may be derandomized using
deterministic construction of shallow cuttings [15], but
this requires at least Ω(n log n) time).

3 Generalization to Monge Staircase Matrices

We now extend our linear-time algorithm for (≤ t)-
reporting to Monge staircase matrices. At the same
time, we obtain a linear-time algorithm for row minima
in Monge staircase matrices. (As mentioned in the
introduction, the difficult cases are concave Monge,
rising staircase matrices and convex Monge, falling
staircase matrices.)

Let Tminima(m,n) be the expected time needed to
solve the row minima problem for a Monge staircase
matrix where m and n are the expected number of rows
and columns respectively.

1470

Copyright © 2021
Copyright for this paper is retained by authors

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

1
 t

o
 2

0
7
.1

5
2
.7

1
.4

6
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

In geometric terms, the generalization to staircase
matrices corresponds to the setting where the pseudo-
lines are replaced with pseudo-line segments, all un-
bounded on one side, say, the left side. Further-
more, the x-coordinates of the segments’ right endpoints
are monotonically increasing or decreasing with their
pseudo-slopes: we refer to such curves as monotone
pseudo-rays.

For a set P of points of (expected) size m and a
set L of monotone pseudo-rays of (expected) size n, the
(≤ t)-reporting problem is to find all pairs (p, `) ∈ P×L
with p above `. For a set X of values of (expected) size
m and a set L of monotone pseudo-rays of (expected)
size n, the row minima problem is to evaluate the lower
envelope of L at the x-coordinates of X. It is assumed
that the x-coordinates of P or X are pre-sorted, and
the pseudo-rays of L are pre-sorted by pseudo-slope.
(For the row minima problem, a compact representation
of the output is allowed: if the answers for multiple
consecutive values in X are defined by the same pseudo-
ray in L, they may be reported once.)

For bootstrapping purposes, we will need an O((m+

n) logO(1) N +K) algorithm for (≤ t)-reporting. There
are many options, one of which is to use binary divide-
and-conquer to reduce to the pseudo-line case: We com-
pute the median x-coordinate xm of the rays’ endpoints,
let P1 (resp. P2) be the points left (resp. right) of x = xm

and L1 (resp. L2) be the pseudo-rays whose endpoints
are left (resp. right) of x = xm. We recursively solve
the problem for P1 and L1, and for P2 and L2, and fi-
nally solve the problem for P1 and L2 by viewing the
pseudo-rays of L2 as pseudo-lines and invoking, say,
the O(m+ n log(c) N +K) algorithm from Section 4.1,
e.g., with c = 1. This yields a total time bound of
O((m+ n log(c) N) logN +K).

(≤ t)-reporting algorithm. We solve the (≤ t)-
reporting problem for monotone pseudo-rays by adapt-
ing the Clarkson–Shor-style divide-and-conquer algo-
rithm from Section 2. We point out the key differences:

The lower envelope of pseudo-rays (even without
monotonicity) still has a linear number of vertices
(which include both intersections and segment end-
points that are visible from below), since their lower
envelope complexity is related to order-2 Davenport-
Schinzel sequences [38]. Thus, LE(R) still has expected
size O(ns). However, we can no longer use SMAWK
to compute LE(R); instead, the discrete lower envelope
computation now requires Tminima(m, n

s) time. The to-
tal conflict list size

∑

∆∈VD(R) |L∆| is again bounded by

O(n) in expectation. To compute the conflict lists of all
cells in VD(R), it suffices to compute the conflict lists of
all vertices of LE(R), where the conflict list of a vertex v

is defined as the list of all pseudo-rays of L below v. This
is because a pseudo-ray ` intersects a cell ∆ iff ` is below
at least one of the two vertices of ∆ or the right end-
point of ` is in ∆. (We can easily identify the endpoints
inside every cell by one left-to-right linear scan.) Now,
computing the conflict lists of the vertices of LE(R) cor-
responds to a row (≤ t1, . . . , tm)-reporting problem. As
noted in the introduction, row (≤ t1, . . . , tm)-reporting
reduces to (≤ t)-reporting, by translating the values in
each row (namely, resetting A[i, j] to A[i, j] − ti)—this
operation preserves the Monge property. So, the con-
flict list computation can be done by an extra recursive
call! The recursion is for a subproblem with O(ns) ex-
pected number of points and n pseudo-rays, with O(n)
expected output size. (Fortunately, this extra subprob-
lem will not hurt the recurrence too much.)

With s = b2, recurrence (2.1) is changed to the
following:

T (m,n,K) ≤ Tminima(m, n
b2) + T (O(n

b2), n,O(n)) +
∑

i

TO(b3)(mi, ni,Ki) +

T (O(m+K
b), n,K ′) + O(m+ n),(3.3)

for some mi’s, Ki’s, and K ′ with
∑

i ni = O(n),
∑

i mi ≤ m, and
∑

i Ki +K ′ ≤ K.
In addition, we still have symmetry T (m,n,K) =

T (n,m,K), because the transpose of a Monge staircase
matrix is still a Monge staircase matrix (after reversing
the order of the rows and the order of the columns).

Row minima algorithm. We solve the row minima
problem, i.e., the discrete lower envelope problem, sim-
ilarly by Clarkson–Shor-style divide-and-conquer. Take
a random sample R of L of size n

s . Recursively com-
pute the (discrete) lower envelope LE(R) and consider
its vertical decomposition VD(R). Compute the con-
flict lists of all cells ∆ ∈ VD(R). As before, this reduces
to a reporting problem for an expected O(ns) number
of points and n pseudo-rays, with O(n) expected out-
put size. For each cell ∆ ∈ VD(R), let m∆ be the
number of x-values of X in the x-projection of ∆; note
that

∑

∆∈VD(R) m∆ is equal to m (in expectation). For

each cell ∆ ∈ VD(R), compute the lower envelope of
L∆. For example, we can adapt a naive O(|L∆|2)-time
algorithm for this purpose. However, in the discrete set-
ting, the computation of the intersection of two pseudo-
rays cannot be done in constant time, but requires
O(logm∆) time by binary search (we only need to know
the position of the intersection relative to m∆ x-values).
So, the naive algorithm requires O(|L∆|2 logm∆) time.
By a standard analysis of Clarkson and Shor [17, 34],

E

[

∑

∆∈VD(R) |L∆|4
]

= O((ns)s
4) = O(ns3). By con-

1471

Copyright © 2021
Copyright for this paper is retained by authors

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

1
 t

o
 2

0
7
.1

5
2
.7

1
.4

6
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

cavity of the log2 function and Jensen’s inequality,
∑

∆∈VD(R) log
2 m∆ ≤ O(|R|(1 + log2(

∑

∆ m∆/|R|))).
By Jensen’s inequality again, E

[

∑

∆∈VD(R) log
2 m∆

]

≤
O(ns (1 + log2

⌈

sm
n

⌉

)). Hence, by the Cauchy–Schwarz
inequality,

E
[
∑

∆ |L∆|2 logm∆

]

≤
√

E [
∑

∆ |L∆|4] · E
[
∑

∆ log2 m∆

]

= O(
√

ns3 · n
s (1 + log2

⌈

sm
n

⌉

))

= O(sn(1 + log
⌈

sm
n

⌉

)).

Choose s to be a sufficiently large constant. We
then obtain:

Tminima(m,n) ≤ Tminima(m, n
2) + T (O(n), n,O(n))

+ O(n(1 + log
⌈

m
n

⌉

)),(3.4)

Putting it all together. Expanding (3.4) and noting

that
∑

j
n
2j (1+log

⌈

2jm
n

⌉

) = O(n(1+log
⌈

m
n

⌉

)), we get:

Tminima(m,n) ≤
∞
∑

j=1

T (O(n
2j),

n
2j , O(n

2j)) +

O(n(1 + log
⌈

m
n

⌉

)).(3.5)

In (3.3), we can replace TO(b3)(mi, ni,Ki) with

O((mi + ni) log
O(1) b + Ki) using an aforementioned

naive algorithm. Thus,

T (m,n,K) ≤ Tminima(m,O(n
b2)) +

T (O(n
b2), n,O(n)) +

O((m+ n) logO(1) b+K −K ′) +

T (O(m+K
b), n,K ′).(3.6)

Using symmetry to rewrite T (O(n
b2), n,O(n))

as T (n,O(n
b2), O(n)) and T (O(m+K

b), n,K ′) as

T (n,O(m+K
b),K ′) and applying (3.6) to expand these

two terms, and setting m = n, we get:

T (n, n,K) ≤ Tminima(n,O(n
b2)) +

O((n+ K
b) log

O(1) b+K ′′
0) +

4
∑

j=1

T (O(n+K
b), O(n+K

b),K ′′
j)(3.7)

for some K ′′
0 , . . . ,K

′′
4 with K ′′

0 + · · ·+K ′′
4 ≤ K +O(n).

Rewriting Tminima(n,O(n
b2)) using (3.5), we obtain:

T (n, n,K) ≤ O((n+ K
b) log

O(1) b+K ′′′
0) +

∑

j

T (n′
j , n

′
j ,K

′′′
j)

for some n′
j ’s and K ′′′

j ’s with
∑

j n
′
j = O(

∑

j
n/b2

2j +

n+K
b) = O(n+K

b) and K ′′′
0 +

∑

j K
′′′
j ≤ K+O(

∑

j
n/b2

2j +
n) = K +O(n).

Now we expand the recurrence using an increasing
sequence of parameters b1, b2, . . . (and note that the
expression c0(· · · c0((c0(n+K)/b1+K)/b2+ · · ·+K)/bj
is upper-bounded by O(n+K

bj
), assuming bj ≥ c for some

sufficiently large constant c depending on c0):

T (n, n,K) ≤ O
(

(n+ K
b1
) logO(1) b1 +K ′′′′

1 +

(n+K
b1

+ K
b2
) logO(1) b2 +K ′′′′

2 +

(n+K
b2

+ K
b3
) logO(1) b3 +K ′′′′

3 + · · ·
)

for some K ′′′′
j ’s with

∑

j K
′′′′
j ≤ K+O(n+ n+K

b1
+ n+K

b2
+

· · ·) = K +O(n).
Finally, choosing bj = cj (and noting that

∑

j j
O(1)/cj = O(1)), we conclude that T (n, n,K) =

O(n+K). This implies that T (m,n,K) = O(m+n+K).
Substituting this back into (3.5), we can also con-

clude that Tminima(m,n) = O(n(1 + log
⌈

m
n

⌉

)).

Theorem 3.1. Given an m×n Monge staircase matrix,
we can report all K elements that are at most a given
value t (in an arbitrary order) in O(m+n+K) expected
time.

Given an m × n Monge staircase matrix, we can
report the row minima in O(n(1+log

⌈

m
n

⌉

)) ≤ O(m+n)
expected time.

Remarks. Note that all the translation and transpo-
sition operations on the input matrix are to be done
implicitly (we just need to remember an offset value per
row and per column).

The row minima or lower envelope part of the
algorithm here is similar to (and is modelled after) the
randomized divide-and-conquer algorithm by Millman
et al. [32] for discrete lower envelope of pseudo-lines,
which also runs in O(n(1 + log

⌈

m
n

⌉

)) expected time.
(For pseudo-lines, the conflict list computation is easier
and does not require halfplane range reporting.)

Note how crucial it is that we solve both the (≤ t)-
reporting and the lower envelope problem simultane-
ously: the (≤ t)-reporting algorithm requires lower en-
velopes of samples, and the lower envelope algorithm
requires (≤ t)-reporting to compute conflict lists.

Certain applications require solving the row min-
ima problem for double staircase matrices. Aggarwal
and Klawe [3] observed that such matrices can be de-
composed into staircase matrices, but alternatively, it
is straightforward to adapt our row minima algorithm
directly to handle double staircase matrices (since such
matrices are closed under transposition and the lower

1472

Copyright © 2021
Copyright for this paper is retained by authors

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

1
 t

o
 2

0
7
.1

5
2
.7

1
.4

6
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

intersect I. By a linear scan over the pre-sorted set P ,
we can generate all PI ’s, each sorted by x. For each I,
we solve the problem for PI and LI recursively.

Afterwards, for each p ∈ PI found to be above a
pseudo-line ` ∈ LI by the recursive calls, we search
for all points on p’s chain that are above ` (and have
not been found before), by doing a linear scan in both
directions from p.

Correctness. Consider a pseudo-line ` ∈ LI for a given
interval I. Suppose that some point of P on a concave
chain γ is above `. We claim that at least one point of
PI is above ` (and so the linear scans afterwards will
find all points of P above `). Let v be the vertex of γ
that is defined by a pair of pseudo-lines (`′, `′′) with the
pseudo-slope of ` between the pseudo-slopes of `′ and `′′.
Consider the predecessor point v− and successor point
v+ of v among the points of P on γ. Then slope(`) lies in
the range of v− and the range of v+. So, v−, v+ ∈ PI .
As one of v− and v+ must be above `, the claim is
proved.

Running time. Consider an interval I of size b and a
concave chain γ. Consider the portion γI of γ that is
defined by pseudo-lines with pseudo-slopes in I. The
only points of P on γ that have ranges intersecting I
are the points of P on γI , plus 2 extra points (the
predecessor of the leftmost point on γI and the successor
of the rightmost point on γI). Summing over all g
chains and all n

b intervals, we can then bound
∑

I |PI |
by m+ 2gn

b .
The linear scans after the recursive calls take O(K)

additional time. Thus,

Tchains(m,n,K; g) ≤ O(m+ n+K) +

n/b
∑

i=1

T (mi, b,Ki),(4.9)

for some mi’s and Ki’s with
∑

i mi ≤ m + 2gn
b and

∑

i Ki ≤ K.

Putting it all together. Set g = log n and b =
log2 n. Combining (4.8) and (4.9) gives the following
recurrence:

T (m,n,K) ≤ O(m+n+K) +

n/ log2 n
∑

i=1

T (mi, log
2 n,Ki),

for some mi’s and Ki’s with
∑

i mi ≤ m+O(n
logn) and

∑

i Ki ≤ O(K). (For the base case, if n drops below a
constant, T (m,O(1),K) = O(m).)

Expanding the recurrence for O(log∗ n) levels of
recursion (and noting that O(n

logn + n
log(log2 n)

+ · · ·) =

O(n)), we see that T (m,n,K) = O((m + n) log∗ n +
K2O(log∗ n)).

Remarks. Slight improvement in the m term is possi-
ble: We can initially reduce m to O(K), as mentioned
before by running SMAWK in O(m + n) time, and re-
moving points of P below LE(L). Thus, T (m,n,K) ≤
O(m+n)+T (K,n,K) = O(m+n log∗ n+K2O(log∗ n)).

Alternatively, we can stop after c+1 levels of recur-
sion, and switching to the trivial bound T (m,n,K) =
O(mn) for the base case. This gives T (m,n,K) =

O((m+ n) log(c) n+K) for any constant c.
Slight improvement in the m term is again possible:

In Part I, the number of points actually drops to O(n) in
expectation, since on each edge of each chain, only two
points (the leftmost and rightmost) may have nonempty
ranges, and the expected total size of the chains is
O(

∑

i
n
2i) = O(n). Thus, T (m,n,K) ≤ O(m + n +

K) + T (O(n), n,K) = O(m+ n log(c) n+K).
We remark that the general idea of using logarithmi-

cally many random samples of different sizes is inspired
by previous work on halfspace range reporting [11], but
the way we use samples here (not requiring the standard
Clarkson–Shor framework) appears original.

4.2 Refinements. The running time of the preced-
ing algorithm is already very close to linear, but for
those who care about optimizing iterated logarithmic
factors, we offer two modifications to improve the time
bound further: the first to improve the n term, the sec-
ond to improve the K term. Both modifications con-
cerns Part I of the algorithm only.

First modification. We take a random sample Ri only
for i = log s, . . . , log n− 1, where s is a parameter to be
set later. This way, the total size of the Ri’s is reduced
to O(

∑

i≥log s
n
2i) = O(ns).

For the analysis of the expected output size, fix
a point p ∈ P having k pseudo-lines below it. If
k ≥ 4s, our earlier proofs that E[z] ≤ E[2i

∗

] = O(k)
and Pr[z ≤ αk] = Ω(α) go through unchanged. If
k < 4s, we instead have E[z] ≤ E[2i

∗

] ≤ O(s +
∑∞

i=log s+2 2
i · (k

2i)
2) = O(s). The expected output

size for the problem for P↑ and L is now bounded by
O(K + sm).

Now, p participates in O(i∗ − log s + 1) calls to
SMAWK, and E[i∗−log s] ≤ E[2i

∗

/s] = O(1+ k
s). Thus,

the total expected cost for SMAWK is O(m+ K
s + n

s).
(Note the sublinearity of the n

s term; nowhere did we
spend O(n) time outside of the recursive calls.) We get

T (m,n,K) ≤ O(m+ n
s +K) +

Tchains(m,n,O(K + sm); log n).(4.10)

1474

Copyright © 2021
Copyright for this paper is retained by authors

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

1
 t

o
 2

0
7
.1

5
2
.7

1
.4

6
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Second modification. Next, to mitigate the constant-
factor blow-up in the output size K, we repeat the
procedure d times (with an independent collection of

samples), for another parameter d. Let p
(j)
↑ be the lifted

point p↑ from the j-th repetition. Redefine p↑ as the

lowest of p
(j)
↑ over all j. The number of concave chains

now increases by a factor of d, to at most d log n, but
the expected output size decreases, as we now show.

Fix a point p ∈ P having k pseudo-lines below
it. Let z(j) be the number of pseudo-lines above p

and below p
(j)
↑ . Let z be the number of pseudo-lines

above p and below p↑, i.e., z = minj z
(j). If k < 4s,

we already have E[z] ≤ E[z(1)] = O(s). Assume
k ≥ 4s. As we have analyzed earlier, E[z(j)] ≤ ck
for some constant c, and Pr[z(j) ≤ αk] = Ω(α) for

any α ≤ O(1). Thus, Pr[z > 2ik
d] ≤ (1 − Ω(2

i

d))
d =

e−Ω(2i) for 2i ≤ O(d). On the other hand, Pr[z >
2ick] ≤ (1

2i)
d by Markov’s inequality. So, E[z] ≤ O(kd +

∑

i≥1
2ik
d e−Ω(2i)+

∑

i≥1(
1
2i)

d−1k) ≤ O(kd +
k
2d
) = O(kd).

It follows that the expected output size for the
problem for P↑ and L is (1 +O(1d))K +O(sm). Thus,

T (m,n,K) ≤ O(d(m+ n
s + K

s) +K)+

Tchains(m,n, (1 +O(1d))K +O(sm); d log n).(4.11)

Putting it all together. Set g = d log n, b = log2 n,
s = (log∗ n)4, and d = (log∗ n)2. Combining (4.11) and
(4.9) yields the following new recurrence (loosely upper-
bounding d log n by log2 n):

T (m,n,K) ≤ O(m(log∗ n)2 + n
(log∗ n)2 +K) +

n/ log2 n
∑

i=1

T (mi, log
2 n,Ki),(4.12)

for some mi’s and Ki’s with
∑

i mi ≤ m+O(n(log
∗ n)2

logn)

and
∑

i Ki ≤ (1 +O(1
(log∗ n)2))K +O(m(log∗ n)4).

To solve the recurrence, define n1 = n and
nj = log2 nj−1, and let h = O(log∗ n) be the
smallest index such that nh is below a constant.

Note that
∏h

j=1(1 + O(1
(log∗ nj)2

)) ≤ eO(
∑

j′ (1/j
′)2) =

O(1). At the j-th level of the recursion, the
sum of the local m values is bounded by m +

O(
∑j

j′=1

n(log∗ nj′)
2

lognj′
) = m + O(

n(log∗ nj)
2

lognj
) (as the se-

ries is super-geometric), and the sum of the local K

values is O(K +
∑j

j′=1(m +
n(log∗ nj′)

2

lognj′
)(log∗ nj′)

4) =

O(K+m(log∗ n)5+
n(log∗ nj)

6

lognj
). The total cost at the j-

th level is O((m+
n(log∗ nj)

2

lognj
)(log∗ nj)

2+ n
(log∗ nj)2

+(K+

m(log∗ n)5 +
n(log∗ nj)

6

lognj
)) = O(m(log∗ n)5 + n

(log∗ nj)2
+

K). Since
∑h

j=1
1

(log∗ nj)2
≤ O(

∑

j′(1/j
′)2) = O(1), the

total over all h levels is T (m,n,K) = O(m(log∗ n)6 +
n+K log∗ n).

Final improvement. Finally, we can improve the m
term by using our earlier Clarkson–Shor-style divide-
and-conquer approach. A recurrence similar to (2.1)
still holds, since it does not use symmetry. Choose b =
(log∗ n)6. Instead of recursion, use the above new algo-
rithm, which allows us to replace TO(b3)(mi, ni,Ki) with

O(mi(log
∗ b)6 + ni +Ki log

∗ b), and T (O(m+K
b), n,K ′)

with O(m+K
b (log∗ n)6 + n+K ′ log∗ n).

Then (2.1) gives T (m,n,K) = O(m(log∗ log∗ n)6 +
n+K log∗ n).

As noted before, we can initially reduce m to O(K)
after spending O(m + n) time. We get our final time
bound T (m,n,K) = O(m+ n+K log∗ n).

Theorem 4.1. Given an m × n totally monotone ma-
trix, we can report all K elements that are at most a
given value t in O(m+ n+K log∗ n) expected time, or

alternatively in O(m+ n log(c) n+K) expected time for
any constant c.

Remarks. The only primitive operations needed by
the algorithms in this section are comparisons of the
form A[i, j] ≤ A[i, j′] or A[i, j] ≤ t.

We leave open the question of whether the remain-
ing log∗ factor can be further reduced. If there were an
O(m(log∗ n)O(1) + n + K) algorithm, then bootstrap-
ping with (2.1) would give a time bound with a dou-
bly iterated logarithm. But we don’t even know of an
O(m logO(1) n + K) algorithm, or for that matter, an
O(mO(1) + n+K) algorithm.

It is possible to design a randomized algorithm that
has optimal but unknown time complexity for the (≤ t)-
reporting problem for totally monotone matrices, simi-
lar to results by Larmore [30] on row minima for totally
monotone staircase matrices, or Pettie and Ramachan-
dran [35] on minimum spanning trees. The algorithm in
Section 4.1 reduces the problem to instances of size at
most log(c) n, after a constant number of rounds, and for
such extremely small instances, we can build an optimal
decision tree by “brute force”.

5 Consequences

In this section, we describe applications or variants of
our (≤ t)-reporting algorithms to solve a number of
related problems.

5.1 (≤ K)-selection. There is a simple general ran-
domized reduction of the (≤ K)-selection problem to
(≤ t)-reporting (this reduction does not require geom-

1475

Copyright © 2021
Copyright for this paper is retained by authors

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

1
 t

o
 2

0
7
.1

5
2
.7

1
.4

6
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

etry, and has been observed before in other contexts,
e.g., in [12]):

First, we may reducem to be at mostK, by running
a row minima algorithm, selecting theK-th smallest row
minimum t0, and keeping only rows whose minima are
at most t0.

Now, pick a random sample of n entries from the
entire m× n matrix, and let t be the

⌈

2K
m

⌉

-th smallest
of the sample, which can be found in O(n) time. Now,
run our (≤ t)-reporting algorithm, with a time limit of
T (m,n, 6K). If the output contains between K and 6K
elements, we report the first K smallest elements from
the output in O(m+K) additional time.

The expected rank of t is
⌈

2K
m

⌉

m, which is between
2K and 3K (since m ≤ K). Straightforward calcula-
tions show that the rank of t is between K and 6K
with probability Ω(1). Thus, an O(1) expected number
of trials suffices. The total expected running time is
O(T (m,n, 4K)). Consequently, by using Theorems 4.1
and 3.1, we obtain the following:

Theorem 5.1. Given an m × n totally monotone ma-
trix and a number K, we can report the K smallest el-
ements (in an arbitrary order) in O(m+ n+K log∗ n)
expected time.

Given an m × n Monge (complete or staircase)
matrix and a number K, we can report the K smallest
elements (in an arbitrary order) in O(m + n + K)
expected time.

5.2 Row (≤ k1, . . . , km)-selection for totally

monotone matrices. We now consider the row (≤
k1, . . . , km)-selection problem for a totally monotone
matrix, which is trickier than (≤ K)-selection. Let
Tselect(m,n,K) be the expected time needed to solve
this problem where m is the (expected) number of rows,
n is the (maximum) number of rows, and K is the (ex-
pected) sum

∑

i ki.
In geometric terms, the problem reduces to the

following:

Given a set X of values of (expected) size m, a set
L of pseudo-lines of (maximum) size n in the plane,
and a number kx for each x ∈ X, report the first kx
lowest pseudo-lines of L at x-coordinate x for each
x ∈ X. We let K be the (expected) sum

∑

x∈X kx.

First approach, via sampling. We first give a gen-
eral randomized reduction from row (≤ k1, . . . , km)-
selection to (≤ t1, . . . , tm)-reporting, which as men-
tioned reduces to (≤ t)-reporting (this reduction does
not require geometry):

Take a sample R of n
2 columns. Find the

min
{

3
4ki + c log n, ki

}

-th smallest ti for the i-th row

among the columns in R, by recursion. Run
our algorithm for row (≤ t1, . . . , tm)-reporting, in
O(T (m,n,K)) time. Search for the answers among the
output entries.

Observe that in the i-th row, the ki-th smallest
among all columns is at most the (3ki/4 + c log n)-th
smallest among the columns in R with high probability
(say 1 − n−3) by a Chernoff bound, for a sufficiently
large constant c. (If failure is detected, we can switch
to a brute-force quadratic-time algorithm.) Thus, we
obtain:

Tselect(m,n,K) ≤ Tselect(m, n
2 ,

3K
4 +O(m log n)) +

O(T (m,n,K) +m+ n+K).

By using Theorem 4.1, the recurrence solves to
Tselect(m,n,K) = O(m log n log∗ n+n+K log∗ n). The
n and K terms are fine; however, the m term has an
extra logarithmic factor.

Second approach, via Clarkson–Shor. We now
improve the m term by modifying the Clarkson–Shor-
style divide-and-conquer algorithm from Section 2. (In
contrast, the (≤ k)-reporting algorithm from Section 4.1
does not seem adaptable.)

Take a random sample R of L of size n
s . Compute

the lower envelope LE(R) and its vertical decomposition
VD(R), in O(m + n

s) time as before. For each cell
∆ ∈ VD(R), compute its conflict list L∆; as before,
this takes time O(

∑

∆∈VD(R) |L∆|), which has expected

value O((ns)s) = O(n).
Let X ′ be the subset of all x ∈ X with kx > b. For

each ∆ ∈ VD(R) with |L∆| ≤ bs, we recursively solve
the subproblem for L∆ and the x-values in X−X ′ that
lie in the x-projection of ∆. Let X ′′ be the subset of
all x-values in X − X ′ whose answers found lie above
LE(R). Let X ′′′ be the subset of all x-values in X
that lie in the x-projection of cells ∆ ∈ VD(R) with
|L∆| > bs. We recursively solve the subproblem for L
and X ′ ∪X ′′ ∪X ′′′.

We have |X ′| ≤ K
b . For each x ∈ X − X ′, the

probability that x ∈ X ′′, i.e., that the kx-th lowest point
on x is above LE(R), is at most b

s . Thus, the expected
size of X ′′ is O((mb)s). Furthermore, by Clarkson and
Shor’s analysis, the expected value of |L∆| for the cell
∆ intersecting a fixed x is O(s). Thus, the probability
that |L∆| > bs is O(1b), and so the expected size of X ′′′

is O(mb).
Choose s = b2. The expected size of X ′ ∪X ′′ ∪X ′′′

is then O(m+K
b), which is O(Kb) since K ≥ m. Observe

that only the x-values of X ′′ may participate in two
recursive calls, and the expected value of

∑

x∈X′′ kx is

at most O(Kb
s) = O(Kb). We thus obtain the following

1476

Copyright © 2021
Copyright for this paper is retained by authors

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

1
 t

o
 2

0
7
.1

5
2
.7

1
.4

6
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

recurrence:

Tselect(m,n,K) ≤
∑

i

Tselect(mi, ni,Ki) +

Tselect(O(Kb), n,K
′) +O(m+ n),

for some mi’s, ni’s, and Ki’s with
∑

i ni = O(n),
maxi ni = O(b3),

∑

i mi ≤ m, and
∑

i Ki + K ′ ≤
K +O(Kb) and K ′ ≤ K.

By the first approach, we can replace
Tselect(mi, ni,Ki) with O(mi log

O(1) ni+ni+Ki log
∗ ni).

Letting K ′′ = K −K ′, we get:

Tselect(m,n,K) ≤ O(m logO(1) b+ n+

(K ′′ + K
b) log

∗ b) +

Tselect(O(Kb), n,K −K ′′).

Now we expand the recurrence using an increasing
sequence b1, b2, . . .:

Tselect(m,n,K)

≤ O
(

(m logO(1) b1 + n+K ′′
1 log∗ b1)

+ (Kb1 log
O(1) b2 + n+ (K ′′

2 + K
b1
) log∗ b2) + · · ·

+ (K
bh−1

logO(1) bh + n+ (K ′′
h + K

bh−1
) log∗ bh−1)

+ K
bh
n
)

for some K ′′
j ’s with

∑

j K
′′
j ≤ K.

Choose b1 = 2 and bj = 2b
δ
j−1 for a sufficiently

small constant δ > 0, and let h = O(log∗ n) be the
smallest index such that bh ≥ n. We conclude that
Tselect(m,n,K) = O(m + (n + K) log∗ n) = O((n +
K) log∗ n) (since m ≤ K).

Theorem 5.2. Given an m × n totally monotone ma-
trix and numbers k1, . . . , km ≥ 1, we can report the ki
smallest elements (in an arbitrary order) in the i-th row,
for all i = 1, . . . ,m, in O((n+K) log∗ n) expected time.

Remarks. We leave as an open question whether the
time bound could be improved to O(n + K log∗ n), to
match the complexity of (≤ t)-reporting.

Alternatively, if we use the O(m+n log(c) n+K) al-
gorithm for (≤ k)-reporting as a start, then the first ap-

proach gives Tselect(m,n,K) = O(m log n+ n log(c) n+
K). In the second approach, by beginning with b1 =

log(c) n, we have h = O(1) and get Tselect(m,n,K) =

O((m+ n) log(c) n+K).

5.3 Row minima for totally monotone v-

matrices. As another application of our (≤ k)-
reporting algorithm, we consider the row minima prob-
lem for an m× n totally monotone v-matrix.

In geometric terms, the problem corresponds to
computing a discrete lower envelope of n pseudo-line
segments (or pseudo-segments):

For a set X of m values and a set L of n pseudo-
segments in the plane, evaluate the lower envelope of
L at the x-coordinates of X.

We assume that the x-coordinates of X and of the
endpoints of L have been pre-sorted, and the pseudo-
segments of L has been pre-sorted by pseudo-slope.
More precisely, each pseudo-segment is given a distinct
number called the pseudo-slope, with the property
that if segments ` and `′ intersect and ` has larger
pseudo-slope than `′, then ` is below `′ to the left
of the intersection. (A lemma from [13] states that
such a numbering exists iff the pseudo-segments are
extendible.) As is known [24, 38], the lower envelope
of n pseudo-segments has at most O(nα(n)) vertices.

We need two subroutines:

1. A naive lower envelope algorithm with O(n2(1 +
log

⌈

m
n2

⌉

)) running time:

Draw vertical lines at the endpoints to divide the
plane into O(n) slabs. In each slab formed by two
consecutive vertical lines, run SMAWK to compute
lower envelope (since the pseudo-segments may be
treated as pseudo-lines within the slab). The total

time for these n subproblems is O(
∑O(n)

i=1 n(1 +

log
⌈

mi

n

⌉

)) for some mi’s with
∑O(n)

i=1 mi = m. The

sum is at most O(n2(1+ log
⌈

m
n2

⌉

)) by concavity of
the logarithm.

2. An algorithm for solving the reporting problem for
points and pseudo-segments in O(m3+n+K log∗ n)
expected time—given a set P of m points and a
set L of n pseudo-segments, report all K pairs
(p, `) ∈ P × L with p above `:

Draw vertical lines at the endpoints to divide the
plane into O(n) slabs. For each pair of slabs σ1 and
σ2, run our reporting algorithm from Theorem 4.1
on the points between σ1 and σ2 and the pseudo-
segments with left endpoints in σ1 and right end-
points in σ2 (for such a subproblem, the pseudo-
segments may be treated as pseudo-lines). There
are O(m2) subproblems; each point participates in
O(m2) subproblems, but each pseudo-segment par-
ticipates in one. By Theorem 4.1, the total ex-
pected time is O(m3 + n+K log∗ n).

Choose a hierarchy of random samples R1 ⊂ R2 ⊂
· · · ⊂ R` = L, where each element of L is in Ri

with probability 1
ni
, and n1 = n, ni+1 = n

3/4
i , and

n` = O(1) (with ` = O(log log n)). At the i-th

1477

Copyright © 2021
Copyright for this paper is retained by authors

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

1
 t

o
 2

0
7
.1

5
2
.7

1
.4

6
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

iteration, we assume that we have already computed
the lower envelope LE(Ri), its vertical decomposition
VD(Ri), and the conflict lists of the cells of VD(Ri). For
each cell ∆ ∈ VD(Ri), we compute the lower envelope
LE(Ri+1 ∩L∆) inside ∆ by the above subroutine 1. By
gluing all these lower envelopes, we obtain LE(Ri+1).

The total time for these steps is

O
([

∑

i

∑

∆∈VD(Ri)
|Ri+1 ∩ L∆|2·

(1 + log
⌈

m∆

|Ri+1∩L∆|2

⌉

)
])

,

where
∑

∆∈VD(Ri)
m∆ = m for each i. By

concavity of the logarithm, the sum is at most

O(S(1 + log
⌈

m log logn
S

⌉

)), where S =
∑

i Si

and Si =
∑

∆∈VD(Ri)
|Ri+1 ∩ L∆|2. Now,

E[Si] = E

[

∑

∆∈VD(Ri)
(|L∆|
ni+1

)2
]

. By a stan-

dard analysis of Clarkson and Shor [17, 34],
this expectation is O((n

ni
α(n

ni
))(ni

ni+1
)2) =

O((n
ni
α(n))

√
ni) = O(nα(n)/

√
ni). It follows

that E[S] = O(
∑

i nα(n)/
√
ni) = O(nα(n)). So,

S = O(nα(n)) with probability Ω(1). We can repeat
an O(1) expected number of times to ensure success.

The time bound is O(nα(n)(1 + log
⌈

m log logn
nα(n)

⌉

)) ≤
O(nα(n) log

⌈

m
n

⌉

+ nα(n) log log log n).
Before proceeding to the next iteration, we still need

to compute the conflict lists of the cells of VD(Ri+1).
It suffices to compute the conflict list of every vertex
v of LE(Ri+1), where the conflict list of v is defined
as the list of all pseudo-segments below v. This is
because a pseudo-line segment ` intersects a cell ∆ iff
` is below at least one of the two vertices of ∆ or at
least one of the endpoints of ` is inside ∆. For each
cell ∆ ∈ VD(Ri), we want to find the pseudo-segments
of L∆ below each vertex of LE(Ri+1 ∩ L∆) inside ∆.
By the above subroutine 2, this takes O(|Ri+1 ∩L∆|3+
|L∆|+K∆ log∗ n) expected time per cell ∆, where K∆

is the total size of the conflict lists of the vertices of
LE(Ri+1) inside ∆. The total expected cost over all
cells is proportional to

E

[

∑

∆∈VD(Ri)
((|L∆|

ni+1
)3 + |L∆|) +

∑

∆′∈VD(Ri+1)
|L∆′ | log∗ n

]

.

By Clarkson–Shor, this is O((n
ni
α(n

ni
))(ni

ni+1
)3 + ni) +

(n
ni+1

α(n
ni+1

))ni+1 log
∗ n) = O((n

ni
α(n))(n

3/4
i + ni) +

nα(n) log∗ n) = O(nα(n) log∗ n). The total over all
` = O(log log n) iterations is O(nα(n) log∗ n log log n).

The overall time bound is O(nα(n) log∗ n log log n+
nα(n) log

⌈

m
n

⌉

). In the case of n > m, we
can divide into n

m subproblems of size m and

obtain an O(n
m (mα(m) log∗ m log logm)) =

O(nα(m) log∗ m log logm) time bound.

Theorem 5.3. Given an m × n totally mono-
tone v-matrix, we can find all row minima in
O(nα(m) log∗ m log logm + nα(m) log

⌈

m
n

⌉

) ≤
O(nα(m) log∗ m log logm+m) expected time.

Remarks. The log∗ factor may be removed in the
Monge case, by using the reporting algorithm from
Theorem 2.1 in the implementation of subroutine 2.

The n log logm barrier seems harder to break. This
appears to require implementing subroutine 2 in, say,
O(m logO(1) n+n+K) time instead of O(mO(1)+n+K).

For large n, it is possible to achieve linear running
time by a more naive approach: Namely, divide the
plane into b vertical slabs each containing m

b x-values. If
a pseudo-segment spans multiple slabs, divide it into a
left, middle, and right piece where each left/right piece
is contained in a slab, and all the middle pieces have x-
coordinates from b distinct values. We recursively solve
the problem inside each slab, ignoring the middle pieces.
For the middle pieces, we put pieces with the same
x-projection in the same class, and then compute the
discrete lower envelope of each class by SMAWK (since
within the same class, the pseudo-segments behave like
pseudo-lines). The total cost of these O(b2) calls to
SMAWK is O(b2m+n) (since each middle piece belongs
to just one class). We can combine the envelopes
in O(b2m) additional time. The total time over all
O(logb n) levels of recursion is O((b2m + n) logb n).
Setting b = nδ/2 yields O(n + m1+δ) for any constant
δ > 0. This upper bound may not be too exciting, but it
disproves a conjecture of Klawe [26] that her Ω(nα(n))
lower bound for m = Θ(n) could be strengthened to
Ω(nα(m)) for n > m.

Acknowledgement. I thank Jeff Erickson for a con-
versation about SMAWK and staircase matrices, which
led to the start of this work.

References

[1] Peyman Afshani, Timothy M. Chan, and Konstantinos
Tsakalidis. Deterministic rectangle enclosure and of-
fline dominance reporting on the RAM. In Proc. 41st
International Colloquium on Automata, Languages,
and Programming (ICALP), Part I, pages 77–88, 2014.
doi:10.1007/978-3-662-43948-7_7.

[2] Pankaj K. Agarwal and Micha Sharir. Pseudo-line
arrangements: Duality, algorithms, and applications.
SIAM J. Comput., 34(3):526–552, 2005. doi:10.1137/
S0097539703433900.

1478

Copyright © 2021
Copyright for this paper is retained by authors

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

1
 t

o
 2

0
7
.1

5
2
.7

1
.4

6
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

[3] Alok Aggarwal and Maria M. Klawe. Applications of
generalized matrix searching to geometric algorithms.
Discret. Appl. Math., 27(1-2):3–23, 1990. doi:10.

1016/0166-218X(90)90124-U.
[4] Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Pe-

ter W. Shor, and Robert E. Wilber. Geometric appli-
cations of a matrix-searching algorithm. Algorithmica,
2:195–208, 1987. doi:10.1007/BF01840359.

[5] Alok Aggarwal and James K. Park. Notes on searching
in multidimensional monotone arrays. In Proc. 29th
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 497–512, 1988. doi:10.1109/SFCS.

1988.21966.
[6] Alok Aggarwal, Baruch Schieber, and Takeshi

Tokuyama. Finding a minimum-weight k-link path
graphs with the concave Monge property and appli-
cations. Discret. Comput. Geom., 12:263–280, 1994.
doi:10.1007/BF02574380.

[7] Alok Aggarwal and Subhash Suri. Fast algorithms for
computing the largest empty rectangle. In Proc. 3rd
ACM Symposium on Computational Geometry (SoCG),
pages 278–290, 1987. doi:10.1145/41958.41988.

[8] Wolfgang W. Bein, Mordecai J. Golin, Lawrence L.
Larmore, and Yan Zhang. The Knuth–Yao quadrangle-
inequality speedup is a consequence of total monotonic-
ity. ACM Trans. Algorithms, 6(1):17:1–17:22, 2009.
doi:10.1145/1644015.1644032.

[9] Rainer E. Burkard, Bettina Klinz, and Rüdiger Rudolf.
Perspectives of Monge properties in optimization. Dis-
cret. Appl. Math., 70(2):95–161, 1996. doi:10.1016/

0166-218X(95)00103-X.
[10] Erin W. Chambers, Jeff Erickson, and Amir Nayyeri.

Homology flows, cohomology cuts. SIAM J. Comput.,
41(6):1605–1634, 2012. doi:10.1137/090766863.

[11] Timothy M. Chan. Random sampling, halfspace range
reporting, and construction of (≤ k)-levels in three
dimensions. SIAM J. Comput., 30(2):561–575, 2000.
doi:10.1137/S0097539798349188.

[12] Timothy M. Chan. On enumerating and selecting
distances. Int. J. Comput. Geom. Appl., 11(3):291–304,
2001. doi:10.1142/S0218195901000511.

[13] Timothy M. Chan. On levels in arrangements of curves.
Discret. Comput. Geom., 29(3):375–393, 2003. doi:

10.1007/s00454-002-2840-2.
[14] Timothy M. Chan. Near-optimal randomized algo-

rithms for selection in totally monotone matrices.
Manuscript, 2020.

[15] Timothy M. Chan and Konstantinos Tsakalidis. Op-
timal deterministic algorithms for 2-d and 3-d shal-
low cuttings. Discret. Comput. Geom., 56(4):866–881,
2016. doi:10.1007/s00454-016-9784-4.

[16] Bernard Chazelle, Leonidas J. Guibas, and D. T. Lee.
The power of geometric duality. BIT, 25(1):76–90,
1985. doi:10.1007/BF01934990.

[17] Kenneth L. Clarkson and Peter W. Shor. Application
of random sampling in computational geometry, II.
Discret. Comput. Geom., 4:387–421, 1989. doi:10.

1007/BF02187740.

[18] Karen L. Daniels, Victor J. Milenkovic, and Dan Roth.
Finding the largest area axis-parallel rectangle in a
polygon. Comput. Geom., 7:125–148, 1997. doi:

10.1016/0925-7721(95)00041-0.
[19] David Eppstein, Zvi Galil, Raffaele Giancarlo, and

Giuseppe F. Italiano. Sparse dynamic programming II:
convex and concave cost functions. J. ACM, 39(3):546–
567, 1992. doi:10.1145/146637.146656.

[20] Pedro F. Felzenszwalb and Daniel P. Huttenlocher.
Distance transforms of sampled functions. Theory of
Computing, 8(1):415–428, 2012. doi:10.4086/toc.

2012.v008a019.
[21] Zvi Galil and Kunsoo Park. Dynamic program-

ming with convexity, concavity, and sparsity. Theor.
Comput. Sci., 92(1):49–76, 1992. doi:10.1016/

0304-3975(92)90135-3.
[22] Pawel Gawrychowski, Shay Mozes, and Oren Weimann.

Submatrix maximum queries in Monge and partial
Monge matrices are equivalent to predecessor search.
ACM Trans. Algorithms, 16(2):16:1–16:24, 2020. doi:

10.1145/3381416.
[23] Ronald L. Graham. An efficient algorithm for deter-

mining the convex hull of a finite planar set. Inf.
Process. Lett., 1(4):132–133, 1972. doi:10.1016/

0020-0190(72)90045-2.
[24] Sergiu Hart and Micha Sharir. Nonlinearity of

Davenport–Schinzel sequences and of generalized path
compression schemes. Combinatorica, 6(2):151–178,
1986. doi:10.1007/BF02579170.

[25] Haim Kaplan, Shay Mozes, Yahav Nussbaum, and
Micha Sharir. Submatrix maximum queries in Monge
matrices and partial Monge matrices, and their applica-
tions. ACM Trans. Algorithms, 13(2):26:1–26:42, 2017.
doi:10.1145/3039873.

[26] Maria M. Klawe. Superlinear bounds for matrix search-
ing problems. J. Algorithms, 13(1):55–78, 1992. doi:

10.1016/0196-6774(92)90005-W.
[27] Maria M. Klawe and Daniel J. Kleitman. An almost

linear time algorithm for generalized matrix searching.
SIAM J. Discret. Math., 3(1):81–97, 1990. doi:10.

1137/0403009.
[28] Philip N. Klein, Shay Mozes, and Oren Weimann.

Shortest paths in directed planar graphs with negative
lengths: A linear-space O(n log2 n)-time algorithm.
ACM Trans. Algorithms, 6(2):30:1–30:18, 2010. doi:

10.1145/1721837.1721846.
[29] Dina Kravets and James K. Park. Selection and

sorting in totally monotone arrays. Math. Syst. Theory,
24(3):201–220, 1991. doi:10.1007/BF02090398.

[30] Lawrence L. Larmore. An optimal algorithm with
unknown time complexity for convex matrix searching.
Inf. Process. Lett., 36(3):147–151, 1990. doi:10.1016/
0020-0190(90)90084-B.

[31] Michael McKenna, Joseph O’Rouke, and Subhash Suri.
Finding the largest rectangle in an orthogonal polygon.
In Proc. 23rd Allerton Conference on Communication,
Control and Computing, 1985.

[32] David L. Millman, Steven Love, Timothy M. Chan,

1479

Copyright © 2021
Copyright for this paper is retained by authors

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

1
 t

o
 2

0
7
.1

5
2
.7

1
.4

6
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

and Jack Snoeyink. Computing the nearest neighbor
transform exactly with only double precision. In Proc.
9th International Symposium on Voronoi Diagrams in
Science and Engineering (ISVD), pages 66–74, 2012.
doi:10.1109/ISVD.2012.13.

[33] Shay Mozes and Christian Wulff-Nilsen. Short-
est paths in planar graphs with real lengths in
O(n log2 n/ log log n) time. In Proc. 18th European
Symposium on Algorithms (ESA), Part II, pages 206–
217, 2010. doi:10.1007/978-3-642-15781-3_18.

[34] Ketan Mulmuley. Computational Geometry: An In-
troduction Through Randomized Algorithms. Prentice
Hall, 1994.

[35] Seth Pettie and Vijaya Ramachandran. An optimal
minimum spanning tree algorithm. J. ACM, 49(1):16–
34, 2002. doi:10.1145/505241.505243.

[36] Baruch Schieber. Computing a minimum weight k-link
path in graphs with the concave Monge property. J.
Algorithms, 29(2):204–222, 1998. doi:10.1006/jagm.

1998.0955.
[37] Raimund Seidel. Backwards analysis of randomized

geometric algorithms. In J. Pach, editor, New Trends
in Discrete and Computational Geometry, pages 37–68.
Springer, 1993.

[38] Micha Sharir and Pankaj K. Agarwal. Davenport-
Schinzel Sequences and Their Geometric Applications.
Cambridge University Press, 1995.

[39] F. Frances Yao. Efficient dynamic programming using
quadrangle inequalities. In Proc. 12th ACM Sympo-
sium on Theory of Computing (STOC), pages 429–435,
1980. doi:10.1145/800141.804691.

A Applications

We mention a few applications of our row minima algo-
rithm for Monge staircase matrices, to various problems
in computational geometry and dynamic programming:

• Given two disjoint convex n-gons P and Q in the
plane, we want to find the nearest (or farthest)
invisible vertex of Q for each vertex of P . Aggarwal
and Klawe [3] observed that this problem can be
reduced to row minima in Monge staircase matrices.
We can now solve the problem in O(n) expected time.

• Given an orthogonally convex n-gon P in the plane,
we want to find the largest-area axis-aligned rectan-
gle contained in P . Daniels et al. [18] used Klawe
and Kleitman’s algorithm to solve this problem in
O(nα(n)) time (the Monge property was observed
earlier by McKenna et al. [31]). We can now solve
the problem in O(n) expected time.5

5On a related note, Aggarwal and Suri [7] studied the problem
of finding the largest empty axis-aligned rectangle for a set of

n points in the plane, and gave an O(n log2 n)-time algorithm,

using row minima in Monge staircase matrices and other types of
Monge partial matrices as subroutines. Our result does not seem

Daniels et al. [18] then showed that for an x-
monotone polygon (where every vertical line inter-
sect the polygon at most twice), the same problem
can be solved in O(nα(n) log n) time, by divide-and-
conquer. Our improvement yields an O(n log n) ex-
pected time bound.

• Given a complete DAG with n vertices whose edge
weights satisfy the convex Monge property, and given
two vertices s and t and a number k, we want to find
the shortest path from s to t using exactly k links.
Straightforward dynamic programming reduces the
problem to k instances of the row minima problem in
convex Monge, upper triangular matrices. Our new
algorithm implies an O(nk) expected time bound,
improving a previous bound of O(nkα(n)) [9]. (Note
that the problem in the concave Monge case has
received much more attention [6, 36].)

• In a seminal work, F. Yao [39] studied the problem
of evaluating a recurrence of the following form: for
any 1 ≤ i < j ≤ n,

c(i, j) = w(i, j) + min
i<k≤j

(c(i, k − 1) + c(k, j)),

where the values c(i, i) are given. Naive dynamic
programming requires O(n3) time. Yao described an
O(n2)-time algorithm to compute all c(i, j) values
when w satisfies the concave Monge property and,
in addition, w(i, j) ≤ w(i′, j′) whenever [i, j] ⊂
[i′, j′]. Aggarwal and Park [5] noted an O(n2α(n))-
time algorithm for the less studied case when w
satisfies the convex Monge property and, in addition,
w(i, j) ≥ w(i′, j′) whenever [i, j] ⊂ [i′, j′]. We can
now improve the time bound in this convex case to
O(n2). This can be most easily seen by following an
approach of Bein et al. [8], who reduced the problem
to O(n) instances of row minima in a Monge, upper
triangular matrix. Bein et al. described the reduction
for the concave case, but the same approach works
in the convex case.

There were also a few algorithms in the literature on
planar or surface-embedded graphs (e.g., [28, 10, 33])
that used Klawe and Kleitman’s row minima algorithm
as an intermediate step, which now may be replaced
by our new algorithm; however, the final running time
in these graph algorithms appears to be dominated by
other steps. There were also a number of important
applications of Klawe and Kleitman’s algorithm to
speed up certain types of dynamic programming that
arise from computational biology [19], but these require

to immediately improve their overall time bound, but perhaps
with more effort, some improvement might be possible. . .

1480

Copyright © 2021
Copyright for this paper is retained by authors

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

1
 t

o
 2

0
7
.1

5
2
.7

1
.4

6
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

Remarks. In actual implementation, the active rows
(resp. columns) need to be kept in a sorted, doubly
linked list, to avoid shifting indices when deleting rows
(resp. columns); for example, i∗ ± 1 should actually be
the successor/predecessor of i∗ in the linked list. Be-
cause of all the pointer manipulations and bookkeep-
ing of the extra indices ji’s, the above algorithm prob-
ably would not compete as well with SMAWK in prac-
tice (which has very efficient existing implementations).
Also, the above algorithm does not seem to work in the
online setting, unlike SMAWK.

The random-sampling-based algorithm by Millman
et al. [32] (which achieves a better O(n(1 + log

⌈

m
n

⌉

))
expected cost in the non-square case) similarly removes
columns at random but does not remove rows; however,
it is less simple and requires extra binary searches.

1482

Copyright © 2021
Copyright for this paper is retained by authors

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

1
 t

o
 2

0
7
.1

5
2
.7

1
.4

6
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s

	Introduction
	(t)-Reporting for Monge Matrices
	Generalization to Monge Staircase Matrices
	(t)-Reporting for Totally Monotone Matrices
	First almost linear algorithm.
	Refinements.

	Consequences
	(K)-selection.
	Row (k1,…,km)-selection for totally monotone matrices.
	Row minima for totally monotone v-matrices.

	Applications
	A Simple Randomized Alternative to SMAWK

