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Abstract

We revisit classical problems about searching in totally
monotone matrices, which have many applications in com-
putational geometry and other areas. In a companion paper,
we gave new (near-)linear-time algorithms for a number of
such problems. In the present paper, we describe new sub-
quadratic results for more basic problems, including the fol-
lowing:

• A randomized algorithm to select the K-th small-
est element in an n × n totally monotone matrix in
O(n4/3 polylog n) expected time; this improves previ-

ous O(n3/2 polylog n) algorithms by Alon and Azar
[SODA’92], Mansour et al. (1993), and Agarwal and Sen
(1996).

• A near-matching lower bound of Ω(n4/3) for the problem
(which holds even for Monge matrices).

• A similar result for selecting the ki-th smallest in the i-th
row for all i.

• In the case when all ki’s are the same, an improvement
of the running time to O(n6/5 polylog n).

• Variants of all these bounds that are sensitive to K (or∑
i ki).

These matrix searching problems are intimately related

to problems about arrangements of pseudo-lines. In par-

ticular, our selection algorithm implies an O(n4/3 polylog n)

algorithm for computing incidences between n points and n

pseudo-lines in the plane. This improves, extends, and sim-

plifies a previous method by Agarwal and Sharir [SODA’02].

1 Introduction

Selection in totally monotone matrices. Totally
monotone matrices arise in many subareas of algo-
rithms, including computational geometry, dynamic
programming speedups, shortest paths in planar graphs,
and combinatorial optimization (see various surveys,
e.g., [9, 25]). An m×n matrix A is totally monotone iff
for every i < i′ and j < j′,

A[i, j] ≥ A[i, j′] =⇒ A[i′, j] ≥ A[i′, j′].

Early work on matrix searching focused on the basic
problem of computing the minimum of each row: the
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well-known result by Aggarwal, Klawe, Moran, Shor,
and Wilber [5] showed that all row minima in a totally
monotone matrix can be found in linear time. The
input matrix may be given implicitly—we only assume
that any matrix entry can be evaluated on demand in
constant time. (In fact, their algorithm only requires
comparisons of elements in a common row.)

Two important lines of research have subsequently
followed, investigating (i) the row minima problem
in more general types of totally monotone “partial”
matrices, as well as (ii) other, more general searching
problems in totally monotone matrices. The focus of
this paper is on the second direction. We study the
following fundamental matrix searching problems:

• K-selection: compute the K-th smallest element.

• t-ranking : count the number of elements that are at
most t.

• row (k1, . . . , km)-selection: for each i = 1, . . . ,m,
output the ki-th smallest in the i-th row.

• row (t1, . . . , tm)-ranking : for each i = 1, . . . ,m,
count the number of elements in the i-th row that
are at most ti.

We reuse K to denote the output count in the t-
ranking problem, or

∑
i ki in the row (k1, . . . , km)-

selection problem, or the total output count in the row
(t1, . . . , tm)-ranking problem.

For example, the row minima problem corresponds
to row (1, . . . , 1)-selection. Ranking and selection prob-
lems are closely related (ranking easily reduces to se-
lection by binary search, and ranking algorithms can
often be modified to yield selection algorithms). Fred-
erickson and Johnson [23, 24] gave optimal algorithms
for these types of problems for sorted matrices (which
are less general), but the corresponding problems for
totally monotone matrices have not yet been satisfacto-
rially solved.

Previous results. For small K, there were algorithms
with running time close to O(m + n + K), as first
described by Kravets and Park [30] in SODA’90 and
improved and extended by the author in a companion
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previous selection algorithms by Alon and Azar [6],
Mansour et al. [32], or Agarwal and Sen [3]. The
geometric perspective allows us to tap into the rich body
of techniques from computational geometry, on range
searching and arrangements of lines, to attack matrix
searching problems.

Some techniques for lines can be generalized to
pseudo-lines without much effort. For example, exist-
ing algorithms for constructing the arrangement of n
lines [19] can be adapted for pseudo-lines, taking Õ(n2)
time. Primitive operations such as computing the in-
tersection of two pseudo-lines can be done in logarith-
mic time by binary search instead of constant time,
but since optimizing logarithmic factors is not a main
concern in the present paper, this is acceptable. So,
it is not difficult to obtain an Õ(n2 + m) algorithm
for the ranking problem. By a standard trick of di-
viding the pseudo-lines into n/

√
m groups of size

√
m,

this would already give an algorithm with running time
Õ(dn/√me ·m) = Õ(n

√
m+m).

However, certain techniques are not generalizable.
Even some very simple operations about points and
lines are no longer doable. For example, we cannot
easily form a pseudo-line through two input points. We
cannot determine the orientation of three points, since a
“correct” answer would require knowing the relationship
of the points with respect to all pseudo-lines, which
would be expensive (not Õ(1)-time doable).

In traditional settings, it is well known that n half-
plane or simplex range counting queries on m points
in the plane can be answered in Õ((mn)2/3 + m + n)
time [2, 14, 33, 34]. Standard solutions involve a com-
bination of cutting trees and partition trees. Cuttings
can be generalized for pseudo-lines, since they can be
constructed from arrangements of random subsets of
pseudo-lines. But the simplicial partition trees of Ma-
toušek [33, 34] appear difficult to generalize (even the
simpler suboptimal partition trees of Willard [44] are
not obviously generalizable). In the offline setting where
all the queries are given, partition trees can usually
be avoided completely by switching to dual space, in-
terchanging points and lines; interpolating between an
Õ(n2 + m) solution and its dual Õ(m2 + n) solution
would then yield the desired result. However, this would
require a generalization of duality between points and
pseudo-lines.

In SODA’02, Agarwal and Sharir [4] (extending an
earlier result of Goodman [26]) actually described such
a duality transform between points and pseudo-lines.
Their technique would fix many of the issues mentioned
above (for example, orientation of three points can
be determined by examining the intersections formed
by the three dual pseudo-lines). However, Agarwal

and Sharir’s algorithm for constructing the transform
requires efficient data structures for performing cer-
tain operations on the pseudo-lines (namely, dynamic
pseudo-halfplane range emptiness). For pseudo-lines
that are defined by polynomials of constant degree,
they showed there is such a data structure with O(nε)
time per operation for an arbitrarily small constant
ε > 0. However, such data structures are not available
for general pseudo-line families (and pseudo-line fami-
lies formed by general totally monotone matrices do not
have “constant description complexity”).2

Our new algorithm will not explicitly use duality
but will work entirely in primal space. We exploit a
simple observation that faces in the dual arrangement
roughly correspond to equivalence classes of points in
the primal (the correspondence isn’t perfect but is good
enough for our purposes). The existence of a duality
transform is needed in the analysis of our algorithm,
but not in the algorithm itself. With this approach
(and some standard data structures for dynamic lower
envelopes), we obtain a (relatively simple) randomized

incremental algorithm with Õ(m2 + n) running time.
Combined with standard cuttings, we then get the
desired Õ((mn)2/3 +m+ n) result.

As byproduct, we obtain an algorithm with the
same time bound for computing incidences between
points and pseudo-lines in the plane. One of the
key applications of Agarwal and Sharir’s duality trans-
form [4] was in solving this incidence problem, a so-
called “Hopcroft’s problem” for pseudo-lines. Our new
algorithm for incidence is thus (i) slightly faster (replac-
ing nε with polylogarithmic factors in their time bound
of O(m2/3−εn2/3+2ε +m1+ε + n1+ε)), (ii) more general
(working for any pseudo-line family, not just pseudo-
lines defined by constant-degree polynomial arcs), and
most importantly, (iii) simpler (not just avoiding the
O(nε)-time data structures but also bypassing the ex-
plicit construction of the duality transform). We think
this new algorithmic result is of independent interest to
computational geometers, regardless of the connection
to matrix searching. (Agarwal and Sharir’s algorithm
for the duality transform is still a powerful result, but
our point is that it is not necessary for solving the inci-
dence problems.)

The problems addressed here are also related to a
line of research started in the late 1990s on solving com-
putational geometry problems with restricted predicates
[8, 10, 31, 37]. Motivated by precision issues and cost
of exact arithmetic, the goal was to understand to what

2If the matrix is Monge, some form of duality is possible,

as observed in the companion paper [13], but in the present
paper, our goal is in obtaining results for general totally monotone

matrices.
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extent higher-degree predicates could be avoided in solv-
ing geometric problems. Our work here shows that
Hopcroft’s problem and its relatives can be solved with
very limited primitive operations or predicates (just de-
ciding whether an input point is above a pseudo-line,
and whether one pseudo-line is above another pseudo-
line at the x-coordinate of an input point); the time
complexity is unaffected by the predicate restriction (ig-
noring logarithmic factors). It should not be taken for
granted that the same time bound is always achievable;
for example, Boissonnat and Snoeyink [8] showed that
the complexity of the pseudo-line segment intersection
problem changes drastically when restricted to a certain
natural set of predicates.

Our lower bound for selection in totally monotone
or Monge matrices is also obtained using the above geo-
metric perspective, and turns out to be a simple conse-
quence of standard incidence bounds from combinato-
rial geometry (the Szemerédi–Trotter theorem) [35, 42].
Lower bounds on Hopcroft’s problem or offline range
searching are difficult to prove in general models of com-
putation; for example, see Erickson’s work [22] on lower
bounds in a restricted model of so-called “partitioning
algorithms”. Our lower bound is easier to prove due
to the more abstract setting, but it is still nice to see
a super-linear, and near-tight, lower bound for a basic
problem in a natural setting.

Finally, our unusual Õ(n6/5) result on the row
(k, . . . , k)-selection problem is obtained by combining

the Õ(m2 + n) algorithm with combinatorial results on
the well-known k-level or k-set problem [18, 35]. The
result is new even for the case of lines (for example,
we can determine which of n given points are above
the k-level of n lines in 2D in Õ(n6/5) time). Any
improvement on the k-set problem could potentially
lead to improvement in our bound.

2 Ranking

We focus on the row (t1, . . . , tm)-ranking problem
(which includes the t-ranking problem) for an m × n
totally monotone matrix A. Solution to the selection
problems will follow once we have solved the ranking
problem.

In geometric terms, the problem is equivalent to the
following, which is a form of offline pseudo-halfplane
range counting :

Given a set P of m points and a set L of n pseudo-
lines in the plane, count the number of pseudo-lines
below p for each point p ∈ P .

Let X be the set of all x-coordinates of P . Define
the pseudo-slope of a pseudo-line to be the rank of its
y-value at x = ∞ among the n pseudo-lines of L. The

only allowed primitive operations are testing whether a
point p ∈ P is above a pseudo-line ` ∈ L, and testing
whether a pseudo-line ` ∈ L is above another pseudo-
line `′ ∈ L at the x-coordinate of X (which correspond
to comparisons of the form A[i, j] ≤ A[i, j′] or A[i, j] ≤
ti). For simplicity, we assume no degeneracies (no
point incident on a pseudo-line). It is straightforward
to modify our algorithm in degenerate cases (or apply
symbolic perturbation to avoid such cases).

It is useful to imagine altering each pseudo-line
` in the following manner: between two consecutive
x-values xj , xj+1 ∈ X, make ` stay horizontal from
x = xj to x = xj+1 − δi, and from x = xj+1 − δi
to x = xj+1, with a vertical jump at x = xj+1 − δi,
where i is the pseudo-slope of ` and δ > 0 is an
infinitesimal. The alteration allows us to explicitly
compute the intersection of two pseudo-lines inO(logm)
time without needing to change the required primitive
operations (since we can find the two consecutive x-
values between which the intersection is located, by
binary search, and then the intersection point itself
can be determined from the pseudo-slopes of the two
pseudo-lines).

We first review known data structures for dynamic
lower (or upper) envelopes that we will use. (These are
easier than the dynamic pseudo-halfplane range empti-
ness data structures needed by Agarwal and Sharir [4]—
the data structures below work for general pseudo-
lines.)

Lemma 2.1. Let X be a set of m x-values and L be a set
of n pseudo-lines. There is a dynamic data structure for
maintaining a subset C ⊆ L of pseudo-lines, supporting
the following operations:

• insert a pseudo-line to C;

• delete a pseudo-line from C;

• given a query value x ∈ X, find the lowest (or
highest) pseudo-line of C at x-coordinate x.

• given a query value x ∈ X, find the leftmost vertex of
the lower (or upper) envelope of C with x-coordinate
> x.

Each insertion or deletion takes O(log2 n logm) time,
and each query takes O(log n) time.

Proof. (Sketch) This follows from a dualized version
of Overmars and van Leeuwen’s hull tree structure [40].
(Agarwal et al. [1] described the dualized method specif-
ically for pseudo-lines, but the solution is simpler in our
setting, where we know all pseudo-lines and points in
advance and we don’t care about extra logarithmic fac-
tors.) For the sake of completeness, we include a quick
sketch:
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Let LE(C) denote the lower envelope of C. (We
can handle the upper envelope similarly.) For each
dyadic interval I, let CI be the subset of all pseudo-
lines of C with pseudo-slope in I. Divide I into two
dyadic subintervals I1 and I2 (with I1 left of I2). of half
the length. Store the intersection point zI of LE(CI1)
and LE(CI2). (The intersection point is unique since
the pseudo-lines in CI1 have smaller pseudo-slopes than
CI2 .)

For the first type of query, if the given value x is
less than the x-coordinate of zI , then we recursively
find the lowest pseudo-line of CI2 at the x-coordinate x;
otherwise, we recursively find the lowest pseudo-line of
CI1 at x. The query time is O(log n).

For the second type of query, if the given value x
is less than the x-coordinate of zI , then we recursively
query in CI2 , but if the returned answer is to the right
of zI , return zI instead; otherwise, we recursively query
in CI1 .

To insert/delete a pseudo-line ` in CI : if the pseudo-
slope of ` is in I2, we recursively insert/delete ` in CI2 ;
otherwise, we recursively insert/delete ` in CI1 . We then
recompute zI by binary search over X, using O(logm)
calls to the query algorithm, in O(log n logm) time. The
overall update cost is O(log2 n logm).

Corollary 2.1. Let X be a set of m x-values and
L be a set of n pseudo-lines. There is a dynamic
data structure for maintaining a collection C of disjoint
subsets of L, supporting the following operations:

• given a query value x ∈ X, report the lowest (or
highest) pseudo-line of C at x-coordinate x;

• given a point q, split a subset C ∈ C into two subsets
C≺q = {` ∈ C : ` is below q} and C�q = {` ∈ C :
` is above q}.

The total time over all splits is O(n log3 n logm), and
each query takes O(logm) time.

Proof. We use a standard amortization trick, of splitting
a set by repeatedly deleting elements of the smaller from
the larger set.

To split C for a given point q, first initialize k = 1.
Find the k lowest and highest pseudo-lines of C at the
x-coordinate of q, by making O(k) queries and deletions
(and re-insertions). If q is below the k-th lowest pseudo-
line, then move the pseudo-lines below q to a new subset
C≺q, by O(k) deletions and insertions. Otherwise, if q
is above the k-th highest pseudo-line, move the pseudo-
lines above q to a new subset C�q, by O(k) deletions
and insertions. Otherwise, double k and repeat. This
way, the split is accomplished by making a total of
O(min{|C≺q|, |C�q|}) queries, insertions, and deletions.

We can charge each query/insertion/deletion operation
to a member of the smaller of the two sets C≺q or
C�q. Each time a pseudo-line ` is charged, the subset
containing ` decreases by at least a factor of 2. Thus,
the total number of queries, insertions, and deletions
over a sequence of splits is O(n log n), which has total
cost O(n log3 n logm) by Lemma 2.1.

2.1 Warm-up: Õ(m3 + n) algorithm. We are now
ready to describe a simple incremental algorithm to
solve the row ranking problem.

We say that a point q is completely above (resp.
completely below) a set C of pseudo-lines if q is above
(resp. below) all pseudo-lines in C. We say that q
conflicts with C if q is neither completely above nor
completely below C. For two pseudo-lines `, `′ ∈ L, we
say that ` and `′ are equivalent w.r.t. a point set Q iff
{q ∈ Q : ` is above q} and {q ∈ Q : `′ is above q} are
identical. (See Figure 2(a).)

The idea is to incrementally maintain the equiva-
lence classes of L as we insert points one at a time.
More precisely, let P = {p1, . . . , pn}. In the i-th iter-
ation, we maintain the collection C of all equivalence
classes of L w.r.t. {p1, . . . , pi}, which are stored in the
data structure from Corollary 2.1. The counts can be
computed along the way.

Pseudocode.

0. let p1, . . . , pm be the points of P (in any order),
and initialize C = {L}

1. for i = 1 to m do
2. for each C ∈ C do
3. if pi conflicts with C then

split C into C≺pi
and C�pi

in C
4. for each C ∈ C do
5. if pi is completely above C then

add |C| to count[pi]

Correctness of the algorithm is easy to see.

Running time. To analyze the running time of the
algorithm, we need to bound the number of equivalence
classes. To this end, we use Agarwal and Sharir’s duality
transform [4]: they showed that given a set P of points
and a set L of pseudo-lines, there exists a mapping of
points p ∈ P to pseudo-lines p∗, and of pseudo-lines
` ∈ L to points `∗, such that p is above ` iff p∗ is above
`∗.

Let Ai be the arrangement of the dual pseudo-lines
p∗1, . . . , p

∗
i . Observe that each equivalence class C w.r.t.

{p1, . . . , pi} maps to a face in the dual arrangement Ai:
if the points `∗ and (`′)∗ are in the same face of Ai,
then {p∗ ∈ {p∗1, . . . , p∗i } : p∗ is below `∗} and {p∗ ∈
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Lines 5–6 require a query in the data struc-
ture from Corollary 2.1. The number of queries
in the i-th iteration is O(

∑
p∈P

∑
C µ−

i (p, C)).

The total is O(
∑m

i=1

∑
p∈P

∑
C µ−

i (p, C)). Clearly,∑m
i=1 µ

−
i (p, C) ≤

∑m
i=1 µ

+
i (p, C), since a class de-

stroyed must have been created in some earlier
iteration. Thus, the total number of queries is at most
O(

∑m
i=1

∑
p∈P

∑
C µ+

i (p, C)).
We use backwards analysis [38, 41] to bound

E[
∑

C µ+
i (p, C)] for each fixed i and each fixed p ∈ P ,

as follows:
As in the earlier analysis, we use Agarwal and

Sharir’s duality transform [4]. Let Ai be the arrange-
ment of the dual pseudo-lines p∗1, . . . , p

∗
i . Let C

∗ = {`∗ :
` ∈ C}. If p conflicts with a class C at the end of the i-
th iteration, then the pseudo-line p∗ is above some point
in C∗ and below some point in C∗, and so it must in-
tersect the face of Ai containing C∗ (the converse may
not be true but is not important). Furthermore, if C
is created in the i-th iteration, then p∗i must appear on
the boundary of the face of Ai containing C∗.

Thus, if µ+
i (p, C) is true, then p∗ intersects the face

of Ai containing C∗, and p∗i appears on the boundary
of this face. (See Figure 2(b).)

So,
∑

C µ+
i (p, C) is upper-bounded by the number

of appearances of p∗i on the boundaries of the faces of
Ai intersected by the pseudo-line p∗, i.e., the number of
appearances of p∗i in the zone of the pseudo-line p∗ in
Ai. By the Zone Theorem [20], the sum of the number
of edges in the faces of the zone is O(i). Conditioned to
a fixed subset {p∗1, . . . , p∗i } (and thus a fixed A∗

i ), we can
think of p∗i as a random element that is equally likely
to be any element in this subset, with probability 1/i.
It follows that E[

∑
C µ+

i (p, C)] = O(i/i) = O(1). Since
this expectation bound is independent of the subset, it
holds unconditionally.

Therefore, the entire algorithm makes
O(E[

∑m
i=1

∑
p∈P

∑
C µ+

i (p, C)]) = O(m2) queries,

costing Õ(m2) time, in expectation. The total cost of

the split operations is Õ(n). The total expected time

bound is Õ(m2 + n).

Remarks. As in other randomized incremental algo-
rithms, the conflict graph may alternatively be replaced
by a history dag (or, in this case, a “history tree”) [38].

There are similarities with a randomized algorithm
by Mulmuley and Sen [39], although their goal was in de-
veloping dynamic point location data structures in hy-
perplane arrangements for random update sequences. It
is also interesting to compare the above algorithm with
the standard (non-randomized) incremental algorithm
for constructing an arrangement of (pseudo-)lines [19].

To find all the faces intersected by the current line,
the standard algorithm navigates from faces to adja-
cent faces, viewing the arrangement as a planar graph,
which we cannot do without explicitly constructing the
duality map (faces that are empty of points are essen-
tial for navigation). In contrast, our algorithm basically
navigates from parent faces to child faces in the history
tree. The analysis of the standard algorithm uses the
Zone Theorem in a straightforward way; the random-
ized analysis of our algorithm uses the Zone Theorem
in a subtler way.

Note that by dividing points into groups of size√
n, the above result automatically implies an algorithm

with expected running time Õ(dm/
√
ne·n) = Õ(m

√
n+

n). This bound is already new, but we will improve it
further.

2.3 Õ((mn)2/3 + m + n) algorithm. For the final

algorithm, we combine the Õ(m2 + n) algorithm with
the standard geometric technique of cuttings, which are
generalizable to pseudo-lines without any extra effort.
Below, a cell refers to a “pseudo-trapezoid”, which has
two vertical sides, and a top and bottom side that are
parts of the input pseudo-lines. We assume that the
intersection of two pseudo-lines can be computed in
Õ(1) time, which is true after altering the pseudo-lines
as described previously.

Lemma 2.2. (Cutting Lemma) Let L be a set of n
pseudo-lines, ∆0 be an initial cell, and a ≤ n. We
can cut ∆0 into O(a2) cells each intersecting O(na log a)
pseudo-lines of L.

In fact, the expected number of cells is bounded
by O(a + ν∆0

( an )
2), where ν∆0

denotes the number of
intersections in ∆0 among the pseudo-lines of L. The
construction takes Õ(naO(1)) expected time.

Proof. (Sketch) With randomization, a standard, sim-
ple way to construct cuttings [15, 38] is to just take
a random sample R of size a, and construct the ver-
tical decomposition of the arrangement formed by R.
This construction immediately generalizes to pseudo-
lines. (We cannot use the canonical triangulation, but
the vertical decomposition is fine, and yields pseudo-
trapezoidal cells.)

Corollary 2.2. Let L be a set of n pseudo-lines, and
r ≤ n. We can cut the plane into O(r2) cells, each in-
tersecting at most n/r pseudo-lines of L. Furthermore,
we can compute the cell, the list L∆ of all pseudo-lines
of L intersecting each cell ∆, and the number count∆

of pseudo-lines of L below each cell ∆, in total expected
time Õ(nr). Given a set P of m points, we can compute
P ∩∆ for all cells ∆, in O(m log r) additional time.
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Proof. (Sketch) This follows from Chazelle’s hierarchi-
cal cutting method [14]. The description can be simpli-
fied with randomization, and for the sake of complete-
ness, we include a quick sketch:

Let b be a sufficiently large constant. Construct
a constant-degree tree of cells, where the root cell is
the entire plane. We maintain the invariant that each
cell ∆ at level j intersects |L∆| ≤ n/bj pseudo-lines
of L. By applying the Cutting Lemma with a =

(c0b log b)
|L∆|
n/bj for a sufficiently large constant c0, we

can subdivide a given cell ∆ at level j into an expected
O(a+ν∆(

a
|L∆| )

2) = O(b log b+(b2j+2 log2 b) ν∆

n2 ) number

of child cells, each intersecting at most c′0
|L∆|
a log a ≤

n/bj+1 pseudo-lines for some constant c′0. Let tj be the
number of cells at level j. Then tj+1 ≤ O(b log b)tj +
O(b2j+2 log2 b), implying that tj+1 = O(b2j+2 log b) =
O(b2j) for a sufficiently large constant b. We output
the cells at level ` = dlogb re. The total number of cells
is thus O(r2), and each intersects at most n/r pseudo-
lines.

For each child cell ∆′ of ∆, we can compute L∆′ and
count∆′ from L∆ and count∆ in O(|L∆|) = O(n/bj)

time. The total expected time is Õ(
∑

j≤` b
2j · n/bj) =

Õ(nr). The leaf cell containing a given point p can be
located in O(log r) time by following a path in the tree.

We now apply the above corollary. Further subdi-
vide each cell so that each cell contains at most dm/r2e
points of P ; the number of cells needed remains O(r2).
For each cell ∆, solve the subproblem for the O(m/r2)
points of P ∩∆ and the O(n/r) pseudo-lines of L∆, by
using the algorithm in Section 2.2. Afterwards, for each
p ∈ P∆, we add count∆ to the current count for p.

The total expected running time is

Õ(r2 · ((m/r2)2+n/r)+nr+m) = Õ(m2/r2+nr+m).

Setting r = dm2/3/n1/3e gives Õ((mn)2/3 + m + n),
assuming that m ≤ n2. For m > n2, we can divide
into groups of n2 points and solve the problem for each
group in Õ(n2) time, yielding Õ(m) total time.

Theorem 2.1. Given an m × n totally monotone ma-
trix and values t1, . . . , tm, we can count the number of
elements at most ti in the i-th row, for all i = 1, . . . ,m,
in Õ((mn)2/3 +m+ n) expected time.

Remarks. The number of hidden logarithmic factors
is small (in the low single-digit), but we have not
attempted to optimize it and so will left it unspecified.

It is straightforward to modify our algorithms to
compute all incidences between n points and m pseudo-
lines in Õ((mn)2/3 + m + n) expected time, using

the same primitive operations. We just have to pay
more careful attention to degeneracies. (For example,
in defining equivalence of two pseudo-lines ` and `′

w.r.t. Q, we should additionally insist that {q ∈ Q :
q is on `} and {q ∈ Q : q is on `′} are identical.)

Cuttings can be constructed deterministically [14],

but the toughest part to derandomize is the Õ(m2 + n)
randomized incremental algorithm. (In the Monge
case, we might be able to avoid this part, however, by
duality or symmetry [13].) The more straightforward

Õ(m3 + n) algorithm is already deterministic, so it
should be possible to obtain some improved (but not
necessarily near-optimal) deterministic algorithms with
our approach.

3 Consequences

3.1 K-sensitive running time. We can make the
running time of our row (t1, . . . , tm)-ranking algorithm
sensitive to K, the sum of the row ranks of the ti’s, i.e.,
the sum of the levels of the points in P . Here, the level
of a point p is the number of pseudo-lines of L below p.

Assume that an upper bound K0 of K is given.
Let k∗ = K0

m . Take a random sample R of size n
4k∗

and compute the lower envelope LE(R) and its vertical
decomposition VD(R). The decomposition has O( n

k∗

)

cells, and each cell intersects Õ(k∗) pseudo-lines of L
w.h.p. (by Clarkson and Shor’s analysis [16, 38]). For
each cell ∆ ∈ VD(R), let L∆ be its conflict list (the
subset of all pseudo-lines of L intersecting ∆). To
compute the conflict lists, for each pseudo-line `, we find
a vertex of LE(R) that is above `, by binary search, and
then find all cells ∆ ∈ VD(R) intersected by `, by a
linear search in both directions starting at that initial
vertex. The total running time is Õ(n +

∑
∆ |L∆|) =

Õ(n+ ( n
k∗

)k∗) = Õ(n) w.h.p. We further subdivide the
cells so that each cell contains at most m/( n

k∗

) points;
the number of cells remains O( n

k∗

). For each cell ∆, we
solve the subproblem for P∩∆ and L∆ by the algorithm
from the previous section. The total time is

Õ(( n
k∗

) · ((m/( n
k∗

)) · k∗)2/3 + k∗ +m/( n
k∗

))

= Õ(n1/3m2/3k
1/3
∗ +m+ n)

= Õ((mnK0)
1/3 +m+ n).

The above handles all points of P that are below
LE(R). We repeat the process for all remaining points
above LE(R). Observe that at least half of the points
of P have level at most 2k∗. For each point with
level at most 2k∗, the probability that it is above
LE(R) is at most 2k∗ · n/(4k∗) = 1/4. Thus, the
expected number of points of P below LE(R) is at least
n/4. Consequently, the process stops after an O(log n)
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expected number of iterations. Therefore, the expected
running time of the algorithm is Õ((mnK0)

1/3 + m +
n); by repeating logarithmically many times, the time
bound holds w.h.p. To finish, we try K0 = 1, 2, 4, 8, . . .
until the algorithm successfully runs to completion
(which is true w.h.p. when K0 ≥ K). The total time

bound remains Õ((mnK)1/3 +m+ n).

Theorem 3.1. Given an m × n totally monotone ma-
trix and values t1, . . . , tm, we can count the number of
elements at most ti in the i-th row, for all i = 1, . . . ,m,
in Õ((mnK)1/3 +m+n) expected time, where K is the
sum of the counts.

Remark. A similar K-sensitive bound, Õ(n2/3K1/3 +
n), was known before for the problem of selecting the
K-th smallest distance (under the Euclidean metric) for
a set of n points in the plane [11].

3.2 Column (t, . . . , t)-ranking. Our algorithms can
be modified to solve the column (t, . . . , t)-ranking prob-
lem: counting the number of elements at most a given
value t, in each column. In geometric terms, the
problem reduces to counting the the number of points
of P above ` for each pseudo-line `—this is offline
pseudo-halfplane range counting. We briefly describe
the changes:

In the Õ(m + n2) algorithm, for each equivalence
class C, we maintain the number count[C] of points
completely above C. In line 3, we initialize count[C≺pi

]
and count[C�pi

] to count[C]. In line 6, if p is
completely above C ′, we increment count[C ′]. At the
end, the count for a pseudo-line ` is the count for `’s
equivalence class.

In the Õ((mn)2/3 + m + n) algorithm: In Corol-
lary 2.2, we also compute the number count[`] of points
of P in the cells completely above `. To do so, if ∆′ is a
child of ∆ and ` ∈ L∆ is completely below ∆′, we add
|P ∩∆′| to count[`].

In the K-sensitive algorithm, the changes are
straightforward.

Theorem 3.2. Given an m × n totally monotone ma-
trix and a value t, we can count the number of elements
at most t in the j-th column, for all j = 1, . . . , n, in
Õ((mnK)1/3 + m + n) expected time, where K is the
sum of the counts.

3.3 Row successors. In the row successor problem,
we are given values t1, . . . , tm, and want to find the
smallest element greater than ti in the i-th row, for
all i = 1, . . . ,m. In geometric terms, the problem
corresponds to offline vertical ray shooting : for each
p ∈ P , find the first pseudo-line of L hit by a vertical

upward ray from p. We observe that our algorithms can
be modified to solve this problem:

In the Õ(m + n2) algorithm, in line 6, if p is
completely below C ′, we can find the lowest pseudo-line
` of C ′ at the x-coordinate of p by querying the data
structure in Corollary 2.1; if ` is lower than the current
answer for p, reset the current answer for p to `.

In the Õ((mn)2/3 + m + n) algorithm, no major
changes are required (since the answer for p may be
found in the cell containing p). The K-sensitive algo-
rithm also requires no major changes.

3.4 Row (k1, . . . , km)-selection. There are several
ways to adapt our ranking algorithm to solve the row
(k1, . . . , km)-selection problem.3 If we don’t mind some
extra logarithmic factors, there is a general random-
ized reduction from row (k1, . . . , km)-selection to row
ranking and row successors (this reduction does not
require geometry, and is based on standard sampling
ideas, though this particular variant might be new):

Choose a hierarchy of random samples R1 ⊂ R2 ⊂
· · · ⊂ R` = {1, . . . , n} with ` = log n, where Rj has
size 2j . Let Aj be the submatrix formed by the columns
in Rj .

Consider a fixed j ∈ {1, . . . , `}. For each i with
ki ∈ [ n2j ,

n
2j−1 ), first compute the (c log n)-th smallest

element ti in the i-th row of Aj , for a sufficiently
large constant c—we do this simultaneously for all i,
for example, by O(log n) calls to the row successors
algorithm for Aj . By a Chernoff bound, the answer
for the i-th row (i.e., the ki-th smallest in the i-th row
of A) is upper-bounded by ti, and furthermore, the rank

of ti in the i-th row of A is at most Õ(ki).
We now proceed in ` rounds and maintain a value

ti for each row i. Before round j, we assume that the
answer for the i-th row lies between ti and the successor
of ti in the i-th row of Aj−1. Then w.h.p., the number of
elements in the i-th row of Aj between these two values
is O(log n). We start with ti and generate the O(log n)
successors of ti, but not exceeding the upper bound ti,
in the i-th row of Aj—we do this simultaneously for
all i, by O(log n) calls to the row successors algorithm
for Aj . We compute the ranks of these elements in the
i-th row of A—again we do this simultaneously for all
i, by O(log n) calls to the row ranking algorithm for
A. (Because of the upper bound ti, the total rank in

each call is Õ(K).) As a result, we know where the
answer lies among these O(log n) candidates, and can

3It is tempting to try parametric search [36], but one issue
is that an efficient parallelization of the ranking algorithm is

required (so our randomized incremental algorithm would need

change). Another issue is that the row selection problem is seeking
multiple values, not one. . .

1491

Copyright © 2021
Copyright for this paper is retained by authors

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

1
 t

o
 2

0
7
.1

5
2
.7

1
.4

6
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



then update ti so that the answer for the i-th row lies
between ti and the successor of ti in the i-th row of Aj .

At the end of the ` rounds, we know the answer
for every row i. In total, we have made O(log2 n) calls
to the row successors algorithm and the row ranking
algorithm.

Theorem 3.3. Given an m × n totally monotone ma-
trix and numbers k1, . . . , km, we can find the ki-th small-
est element in the i-th row, for all i = 1, . . . ,m, in
Õ((mnK)1/3+m+n) expected time, where K =

∑
i ki.

3.5 K-selection. There is a similar general random-
ized reduction from K-selection to row ranking and row
successors:

Choose a hierarchy of random samples R1 ⊂ R2 ⊂
· · · ⊂ R` = {1, . . . , n} with ` = log n, where Rj has
size 2j . Let Aj be the submatrix formed by the columns
in Rj .

First compute the ( cK logn
m )-th smallest element t in

a random subset of n elements in the matrix, in O(n)
time. By a Chernoff bound, the answer (i.e., the K-th
smallest in A) is upper-bounded by t, and furthermore,

the rank of t in the i-th row of A is at most Õ(K).
We now proceed in ` rounds and maintain a value

ti for each row i. Before round j, we assume that the
answer lies between ti and the successor of ti in the i-th
row of Aj−1. Then w.h.p., the number of elements in
the i-th row of Aj between these two values is O(log n).
We start with ti and generate the O(log n) successors of
ti, but not exceeding the upper bound t, in the i-th row
of Aj—we do this simultaneously for all i, by O(log n)
calls to the row successors algorithm for Aj . Relative
to all these O(m log n) elements, we determine where
the answer lies; this can be done by binary search with
O(log(mn)) calls to the ranking algorithm. (Because of

the upper bound t, the rank in each call is Õ(K).) We
can then update ti so that the answer lies between ti
and the successor of ti in Aj .

At the end of the ` rounds, we know the answer
for every row i. In total, we have made O(log2 n) calls
to the row successors algorithm and the row ranking
algorithm.

Theorem 3.4. Given an m × n totally monotone ma-
trix and a number K, we can find the K-th smallest
element in Õ((mnK)1/3 +m+ n) expected time.

3.6 Row (k, . . . , k)-selection. We now describe a
better time bound for row (k1, . . . , km)-selection in the
case when k1 = · · · = km = k.

In geometric terms, the problem corresponds to the
following:

Given a set X of m values and a set L of n pseudo-
lines in the plane, determine the k-th lowest pseudo-
line at each x-coordinate x ∈ X.

In other words, we want to find the intersection of the
k-level with the vertical lines at the x-coordinates of X,
where the k-level consists of all points that are on one
pseudo-line and above exactly k − 1 pseudo-lines.

We need two known facts about k-levels. The first
is an efficient output-sensitive algorithm. Here, we
assume that the intersection of two pseudo-lines can be
computed in Õ(1) time, which is true after altering the
pseudo-lines as described before.

Lemma 3.1. The k-level of a set L of n pseudo-lines
can be constructed in Õ(n + h) time, where h is the
number of vertices of the k-level.

Proof. This follows by adapting a known algorithm
by Edelsbrunner and Welzl [21], which reduces the
k-level construction problem to dynamic lower/upper
envelopes. We sweep the plane from left to right by a
vertical line x = xm. At any time, we maintain the
k-th lowest pseudo-line ` of L at x = xm, the subset
L− of the k lowest pseudo-lines of L at x = xm, and
the subset L+ be the subset of the n − k + 1 highest
pseudo-lines of L at x = xm (the only element in both
L− and L+ is `). We store L− and L+ in the dynamic
data structure in Lemma 2.1. In each iteration, we find
the next vertex of the upper envelope of L− to the right
of x = xm and the next vertex of the lower envelope
of L+ to the right of x = xm, by querying the data
structure. We change xm to the smaller x-coordinate of
these two vertices, and then make local changes to L−

and L+ (O(1) insertions/deletions) before proceeding to
the next iteration. The number of insertion and deletion
operations is O(h).

Second, we need the current best known bound
on the combinatorial complexity of the k-level (which
is famously still an open problem), or slightly more
generally, the (k ± s)-levels:

Lemma 3.2. For n pseudo-lines in the plane and s ≤ k,
the total number of vertices in the j-level for j =
k − s, . . . , k + s is at most O(nk1/3s2/3).

Proof. Dey [18] proved this bound for lines in his
celebrated paper; Tamaki and Tokuyama [43] provided
the generalization to pseudo-lines.

From these two facts, we can immediately solve our
problem just by constructing the k-level in Õ(nk1/3)
expected time, which is already an improvement for
certain input parameters. The bound could in fact be
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better if the worst-case k-level complexity turns out to
be smaller. But even with the current combinatorial
bounds above, we can obtain a strict improvement, by
a more focused divide-and-conquer around the neigh-
borhood of the k-level, as we now describe:

Let s ≤ k be a parameter to be set later. First
choose a random number s′ ∈ {1, . . . , s}, and compute
the (k + s′)-level L+ and the (k − s′)-level L−. The
expected size of these two levels is O(nk1/3s2/3/s) =
O(nk1/3/s1/3), and the expected construction time is

thus Õ(nk1/3/s1/3) by Lemma 3.1. We can repeat an
O(1) expected number of times to guarantee this size
bound.

Divide the plane into z = Θ(nk1/3/s4/3) vertical
slabs each containing O(s) vertices of L+ and L−.
Let Lσ be the pseudo-lines that participate in defining
vertices of L+ and L− in σ; we have |Lσ| = O(s). Let
L′
σ be the pseudo-lines that are between L− and L+

at the left wall of σ; we have |L′
σ| ≤ O(s). We can

compute L′
σ for all σ by sweeping the plane from left to

right and maintaining the subset of O(s) lines between
L− and L+ at the sweep line (whenever we hit a vertex
of L+ or L−, we make local changes to L′

σ). Inside σ,
the k-level of L corresponds to the kσ-level of Lσ ∪ L′

σ

for some kσ. For example, we can take any fixed point
p on L− and set kσ to be the level of p in Lσ∪L′

σ minus
the level of p in L (the latter number is k − s′).

Subdivide slabs further so that each slab contains
O(m/z) x-values of X. The number of slabs remains
O(z).

For each slab σ, solve the subproblem for the
O(m/z) x-values of X in σ and the O(s) pseudo-lines
in Lσ ∪ L′

σ, by the algorithm from Section 2.2.
The total expected running time is

Õ(z · ((m/z)2 + s)) = Õ(m2/z + zs)

= Õ((m2s4/3)/(nk1/3) + nk1/3/s1/3).

Setting s = min{d(nk1/3/m)6/5e, k} gives

Õ(m2/5n3/5k1/5 + m + n), assuming that m ≤ nk1/3.
If m > nk1/3, we can directly solve the problem using
Lemma 3.1 in Õ(nk1/3) ≤ Õ(m) time.

Theorem 3.5. Given an m × n totally monotone ma-
trix and a number k, we can find the k-th small-
est element in the i-th row, for all i = 1, . . . ,m, in
Õ(m2/5n3/5k1/5 +m+ n) expected time.

Remarks. This result appears new even in the case of
lines.

A similar strategy of doing divide-and-conquer
around a neighborhood of the k-level was also employed
in an algorithm in the appendix of [12] but for a differ-

ent problem (computing all local minima of the k-level

of n lines in the plane in Õ((nk)3/5 + n) time).
The same idea can be used to prove that given m

lines and n points at level k in the plane, the number
of point-line incidences is O(m2/5n3/5k1/5 + m + n).
An interesting combinatorial question (which might
potentially be easier than the original k-level problem)
is whether this incidence bound could be improved to
near-linear.

4 Lower Bound

In this final section, we prove our lower bound for the
t-ranking problem for an m×n totally monotone matrix
A. The proof works even if A is Monge. We will lower-
bound the number of accesses to the elements of A
(which would automatically lower-bound the number of
comparisons, for whatever the class of comparisons we
allow).

We start with a known construction of a set P
of m points and a set L of n lines in the plane that
have Ω((mn)2/3 +m + n) incidences [35, 42]. We may
assume that no two points of P have the same x-
coordinates, no lines are vertical, and no two lines of
L have the same slope, because we can apply a random
affine transformation, which preserves incidences and
guarantees that the condition is true with probability 1.

Sort the points p1, . . . , pm of P in increasing x-
order and the lines `1, . . . , `n of L in decreasing order of
slopes. Let the i-th point be (xi, yi) and the j-th line
be y = mjx+ bj . Define

A[i, j] = mjxi + bj − yi.

We can check that the Monge property is strictly
satisfied: for any i < i′ and j < j′, A[i, j] + A[i′, j′] −
A[i, j′]−A[i′, j] = (mj′−mj)(xi′−xi) < 0. This implies
that A is (strictly) totally monotone.

Let δ be the minimum of |(mj′ −mj)(xi′ −xi)| over
all i < i′ and j < j′. Set t = δ/4.

Observe that if (pi, `j) is an incidence pair, then
A[i, j] = 0. We claim that any correct deterministic
algorithm must evaluate A[i, j] for all incidence pairs
(pi, `j). If this is not true for some incidence pair (pi, `j),
then the adversary could reset A[i, j] from 0 to δ/2; the
Monge property would still be satisfied. But the rank
of t would decrease by 1, and so the answer cannot be
determined yet. This proves an Ω((mn)2/3 + m + n)
lower bound. (If degeneracies are not allowed, we can
first replace A[i, j] by A[i, j] + δij for some random
δij ∈ (0, δ/100), which preserves the Monge property.)

Similarly, any randomized algorithm with Ω(1)
correctness probability must evaluate A[i, j] for at least
a fraction of the incidence pairs (pi, `j).

We can make the bound sensitive to K, by noting

1493

Copyright © 2021
Copyright for this paper is retained by authors

D
o
w

n
lo

ad
ed

 1
0
/2

5
/2

1
 t

o
 2

0
7
.1

5
2
.7

1
.4

6
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



the existence of a set P and a set L with Ω((mnK)1/3+
m + n) incidences, where the sum of the levels of the
points of P is bounded by K. To this end, we construct
n
k∗

groups, where k∗ = K
m , and each group consists of

m/( n
k∗

) points and k∗ lines with ((m/( n
k∗

)) · k∗)2/3 +
m/( n

k∗

) + k∗) incidences. We place each group in a
bounding box, where the lines touch both the left and
right sides of the box. Apply an affine transformation to
turn each box into a very thin rectangle, so that we get
n
k∗

thin rectangles in concave position, with sufficient
spacing in between. This will ensure that no line from
one group may intersect or go below the rectangle of
another group. The sum of the ranks of the points
is at most O(( n

k∗

)k2∗) = O(K). The total number of
incidences (and thus a lower bound on the number of
evaluations) is

Θ(( n
k∗

) · ((m/( n
k∗

)) · k∗)2/3 + k∗ +m/( n
k∗

))

= Θ(n1/3m2/3k
1/3
∗ +m+ n)

= Θ((mnK)1/3 +m+ n).

A similar argument applies to related problems
including K-selection, row (k1, . . . , km)-selection, and
row successors.

Theorem 4.1. For any m,n,K with K ≤ mn/c for
some constant c, any (deterministic or randomized)
algorithm that counts the number of elements at most t
in an m× n Monge matrix must access Ω((mnK)1/3 +
m+ n) elements, for some input with count K.

Any algorithm that finds the K-th smallest element
in an m× n Monge matrix must access Ω((mnK)1/3 +
m+ n) elements.
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